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ABSTRACT

Batch normalization (BN) is a ubiquitous technique for training deep neural net-
works that accelerates their convergence to reach higher accuracy. However, we
demonstrate that BN comes with a fundamental drawback: it incentivizes the model
to rely on frequent low-variance features that are highly specific to the training
(in-domain) data, and thus fails to generalize to out-of-domain examples. In this
work, we investigate this phenomenon by first showing that removing BN layers
across a wide range of architectures leads to lower out-of-domain and corruption
errors at the cost of higher in-domain error. We then propose the Counterbalancing
Teacher (CT) method, which leverages a frozen copy of the same model without
BN as a teacher to enforce the student network’s learning of robust representations
by substantially adapting its weights through a consistency loss function. This
regularization signal helps CT perform well in unforeseen data shifts, even without
information from the target domain as in prior works. We theoretically show in
an overparameterized linear regression setting why normalization leads a model’s
reliance on such in-domain features, and empirically demonstrate the efficacy of
CT by outperforming several methods on standard robustness benchmark datasets
such as CIFAR-10-C, CIFAR-100-C, and VLCS.

1 INTRODUCTION

Batch normalization (BN), a neural network layer that normalizes input features by aggregating
batch statistics during training, is a key component for accelerating convergence in the modern deep
learning toolbox (Ioffe and Szegedy, 2015; Santurkar et al., 2018; Bjorck et al., 2018). It plays a
critical role in stabilizing training dynamics for large models optimized with stochastic gradient
descent, and has since spurred a flurry of research in related modifications (Ba et al., 2016; Kingma
and Ba, 2014) and its understanding (Gitman and Ginsburg, 2017; Santurkar et al., 2018; Luo et al.,
2018; Kohler et al., 2018).

Despite its advantages, BN has recently been shown to be a source of vulnerability to adversarial
perturbations (Galloway et al., 2019; Benz et al., 2021). In our work, we take this observation one step
further and demonstrate that BN also compromises a model’s out-of-domain (OOD) generalization
capabilities. Specifically, we demonstrate that normalization incentivizes the model to exploit highly
predictive, low-variance features (Geirhos et al., 2018; 2020), that lead to poor classification accuracy
when the test environment differs from that of training. Given the widespread use and benefits of
normalization, we desire a way to mitigate such drawbacks in models trained with BN.

To better understand this phenomenon, we investigate the effect of normalization in over-parametrized
regimes, where there exist multiple solutions and inductive bias (e.g., minimizing the norm of the
weights) significantly impacts the estimated parameters. Similar to recent work in the theory of deep
learning (Khani and Liang, 2021; Raghunathan et al., 2020; Nakkiran, 2019; Hastie et al., 2019;
Liang et al., 2020), we study the min-norm solution in over-parametrized linear regression. Without
normalization, the inductive bias selects a model that fits training data and minimizes a fixed norm
independent of data; with normalization, the same inductive bias selects a model that minimizes a
data-dependent norm, leading the model to rely more on low-variance features. While such highly
predictive features yield better performance in-domain where the features do not vary significantly,
they cause performance to plummet in OOD settings (e.g. data corruptions or missing features). This
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Figure 1: The Counterbalancing Teacher (CT) model’s architecture. In the first step, the teacher
encoder (i.e., unnormalized) Gθ is trained to map input x into a label. In the second step, we freeze
Gθ, remove its classification head cGθ , and train the student encoder (i.e., with batch-norm) Fζ while
regularizing its learned representations rFζ using distance function Lct and rGθ . Stopping gradients
operation is shown by 8. Classifier heads and class probabilities are denoted by c and p, respectively.
During inference, we only use Fζ .

is in direct contrast to models trained without BN that assign equal weight to all input features, which
help to reduce their overfitting on the training set.

Drawing inspiration from our observation and the knowledge distillation literature (Hinton et al.,
2015; Romero et al., 2014), we propose a simple teacher-student model to combine the best of both
worlds: we leverage features derived both from a network without BN (teacher) and its clone with BN
(student) to learn representations that achieve high standard and robust accuracies. We incorporate
a regularization term in the loss function which encourages the features learned from the student
encoder to have similar statistics and structure to those learned from the teacher; we name this model
the Counterbalancing Teacher (CT) and show that it helps in achieving both higher robust and clean
accuracy compared to a (batch) normalized model. In particular, CT retains good performance in
OOD settings even without knowledge of statistics of the new domain.

Our results mark a significant improvement over prior works, which have tackled similar problems by
either: (a) modifying the statistics of a trained model (Schneider et al., 2020; Benz et al., 2021) using
privileged information from the target domain; or (b) augmenting the training data using a set of
predefined corruption functions (Hendrycks et al., 2019b). As recent studies (Vasiljevic et al., 2016;
Geirhos et al., 2018; Taghanaki et al., 2020) show that such approaches often fail to generalize due to
the tendency of neural networks to memorize data-specific properties, this motivates a shift towards de-
veloping models that are inherently robust, independent of data augmentation or input transformation.

Empirically, we demonstrate that CT outperforms most existing data augmentation-based techniques
and covariate shift adaption-based methods (which require information from the test set) on mean
corruption error on CIFAR10-C and CIFAR100-C (Hendrycks and Dietterich, 2019), and achieves
state-of-the-art performance in domain generalization on the VLCS dataset (Torralba and Efros,
2011). We further test CT on corrupted 3D point-cloud data (Taghanaki et al., 2020) and show
it outperforms existing methods in terms of mean classification accuracy over multiple test sets.
To the best of our knowledge, this is the first work to explore both theoretically and empirically
why BN leads to a model’s over-reliance on frequent, low-variance features, which can adversely
affect its performance on the downstream classification task. This is also the first work to present
a robust representation learning framework for common input distortions without additional data
augmentation strategies or information derived from the target domain.

In summary, our contribution is threefold:

1. We provide theoretical justifications for why normalization encourages a model to exploit
low-variance features, and empirically evaluate how this behavior can adversely affect
downstream classification accuracy.

2. We propose CT, a representation learning approach demonstrating that regularizing repre-
sentations of a batch-normalized network (i.e., student) using those from an unnormalized
copy (i.e., teacher) can significantly improve a model’s robustness.

3. We experimentally verify the robustness of the representations learned by CT to input
distortions and domain shift on a variety of tasks and models.
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2 PROBLEM STATEMENT AND ANALYSIS

We assume a supervised classification setting: given an input variable x ∈ X ⊆ Rd, and a set of
corresponding labels y ∈ Y = {1, ..., k}, we aim to learn a classifier fζ : X −→ Y by minimizing
the empirical risk:

ζ = argmin
ζ

Ex,y∼pd(x,y)[`(x, y; ζ)] ≈ argmin
ζ

n∑
i=1

`(fζ(xi), yi) (1)

Here pd(x, y) is the underlying joint distribution where the dataset D = {(xi, yi)}ni=1 is sampled
from. In the following sections, we first discuss the effect of (batch) normalization on the solutions
found in underspecified regimes, then elaborate on our approach to optimize the aforementioned
empirical risk. In this context, we refer to a problem as underspecified or overparameterized when
degrees of freedom of a model is larger than the number of training samples.

2.1 THE EFFECT OF NORMALIZATION IN OVERPARAMETRIZED REGIMES

Modern deep learning frameworks usually incorporate many parameters (often larger than the
number of training data points), which lead to underspecified regimes. In other words, many distinct
solutions solve the problem equally i.e., have the same training or even held-out loss (D’Amour
et al., 2020). In the underspecified regime, the inductive bias of the estimation procedure, such as
choosing parameters with the minimum norm, significantly impacts the estimated parameters. In
such regimes, we show that normalizing data incentivizes the model to rely on features with lower
variance. We analyze the effect of normalization on the min-norm solution in overparametrized
noiseless linear regression. This setup has been studied in many recent works for understanding some
phenomena in deep networks (Khani and Liang, 2021; Raghunathan et al., 2020; Nakkiran, 2019).

Let X ∈ Rn×d denote training examples and Y ∈ Rn denote their target. Considering that we
are in an over parametrized regime (d > n), there should be an equivalence class of solutions. We
assume that the inductive bias of the model is to choose the min-norm solution (the parameter with
the minimum `2 norm). This is in line with the recent speculation that the inductive bias in deep
networks tends to find a solution with minimum norm (Gunasekar et al., 2018). One can show that
the convergence point of gradient descent run on the least-squares loss is the min-norm solution.

Without normalization, the model chooses the min-norm solution which fits the training data:

ζ̂ = arg min
ζ
‖ζ‖22 s.t. Xζ = Y. (2)

Now we observe how normalization changes the estimated parameters. Let U be a diagonal matrix
where Uii denotes the standard deviation of the ith feature. By normalization, we transform X to
XU−1 (for simplicity, we assume the mean of each feature is 0, we can show that transforming
points do not change the estimated parameter, see Appendix C.1 for details). In this case the model
estimates β̂ as follows:

β̂ = arg min
β

‖β‖22 s.t. XU−1β = Y, (3)

and since we normalize data points at the test time as well, the estimated parameter used for
prediction at the test time is θ̂ = U−1β̂. Substituting θ instead of U−1β (thus Uθ = β), we can write
the equal formulation of 3 as:

θ̂ = arg min
θ
‖Uθ‖22 s.t. Xθ = Y. (4)

For the same equivalence class of solutions a model with normalization (4) chooses different param-
eters in comparison to a model without normalization (2). In particular, 2 chooses an interpolant
with a minimum data independent norm. On the other hand, 4, chooses an interpolant with a min-
imum data-dependent norm, which incentives the model to assign higher weights to low variance
features. Note that projection of θ̂ and ζ̂ is the same in column space of training points. Formally
if Π = X>(XX>)−1X denote the column space of training points then Πθ̂ = Πζ̂. However,
their projections to the null space of training points (I − Π) are different. As a result as we have
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more data (smaller null space), θ̂ and ζ̂ become closer, and converge when n > d. Our analysis
hold for classification with max-margin, we only need to substitute Xθ = Y by Y �Xθ ≥ 1 (see
Appendix C.2 for details).

We conjecture that minimizing the data-dependent norm in each layer leads to reliance on low
variance (frequent) features, which can result in a better in-domain generalization as these feature do
not exhibit high variations. Nonetheless, in a new domain where some (or all) of the training-domain
features are missing or altered (e.g., when there is some data-agnostic corruption such as Gaussian
noise), 2 performs better as its inductive bias is data independent. How should we change the
regularization such that it selects for a model that performs well both in- and out-of-domain? Inspired
by this analysis, we introduce a simple, yet powerful two-step approach that combines the normalized
and unnormalized copies of the same network for robust representation learning.

3 COUNTERBALANCING TEACHER (CT)

3.1 TRAINING THE TEACHER ENCODER (I.E. UNNORMALIZED ENCODER)

For an arbitrary neural network encoder F parametrized by ζ with one or more batch normalization
layers, we first create a clone of the network. We refer to the cloned network as G and its parameters
as θ. We then remove all the batch norm layers from the cloned network and train it using the
classification (k class) objective of the task in hand LGcls. In our experiments, we minimize the
cross-entropy loss as a supervised classification objective:

LGcls(pGθ , y) = −
k∑
i

yi log(piGθ ), (5)

henceforward we refer to Gθ as the Counterbalancing Teacher or simply CT, and Fζ as the Student.

3.2 REGULARIZING FOR ROBUSTNESS USING THE COUNTERBALANCING TEACHER (CT)
METHOD

We subsequently use CT with frozen parameters to regularize the training objective of the Student
network. Inspired from the work of Huang and Belongie (2017), we propose the following objective
to regularize the representations of Fζ (i.e. Student) using:

Lct
(
rGθ , rFζ

)
=

1

h

h∑
i=1

(
riGθ − r

i
Fζ

)2
(6)

Fζ and Gθ map the input x to latent representations rFθ ∈ Rh and rGθ ∈ Rh respectively. h denotes
the dimension of feature vectors. Finally, we add Lct to the cross entropy objective and minimize:

L(rGθ , rFζ , pFζ , y) = LFcls(pFζ , y) + λLct(rGθ , rFζ ) (7)

To calculate the first and and second terms in Equation 6 (RHS), we l2 normalize both rGθ and rFζ .
Another variant of the model would be to train both Gθ and Fζ simultaneously, however, as Fζ
converges faster, it dominates Gθ. We found the current 2-steps setting working better i.e., training
and freezing Gθ in the first step. Similar to knowledge distillation, a limitation of our CT method
can be training an extra encoder as a regularizer, however, note that the encoder is removed during
inference, therefore the processing time at inference will be similar to that of the original model. The
λ in Eq. 7 controls the amount of regularization.

4 EXPERIMENTAL RESULTS

In this section, we are interested in empirically investigating the following questions:

1. Do batch and other normalization techniques lead to learning frequent low variance features?
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Figure 2: (a) In the MNIST classification task, the model without BN (NoBN) achieves high
classification accuracy even if the frequent training features are missing during inference. (b)
Ablation results on the “None” test set. (c) The model with BN (2nd row) puts more emphasis on the
red/blue squares as they are the frequent features while the NoBN model (3rd row) does not.

2. Would a trained model with normalization fail if the dominant features are missing or
corrupted, and how would an unnormalized network behave in the same scenario?

3. Does our CT method lead to a reasonable in- and out-of-domain accuracy as well as low
corruption error across different architectures and data modalities?

4.1 BATCH NORMALIZATION IS A CAUSE OF FAILURE WHEN FREQUENT INPUT FEATURES ARE
MISSING

We start with a synthetic experiment to test the hypothesis that batch normalization leads to learning
low variance dominant features. We design a binary classification problem by selecting two digits
of “2” and “3” from the MNIST dataset and add a red and a blue square to all samples of class “3”
(Figure 2c first row) as “frequent” features.

We examine this hypothesis both qualitatively (visualizing the important input features for the trained
classifiers using GradCAM (Selvaraju et al., 2017)) and quantitatively by evaluating on multiple test
sets: 1) RB: similar to training samples, digit “3” includes both the red and blue squares, 2) R: digit
“3” includes only red square, 3) B: digit “3” includes only blue square, and 4) None: contains no
square.

Ideally, a classifier should not rely only on the dominant features to predict the class. However, as
shown in the second row of Figure 2c, the network trained with batch normalization quickly picks
up those low variance clues, which in this case is either the red or the blue square. However, the
same network without normalization takes into account other features as well. We verify this by
quantifying classification accuracy on the different test sets. As demonstrated in Figure 2a, since the
model relies mostly on the colored squares, it drastically fails when those features are missing at test
time (the “None” test set) which is not the case for the network without normalization.

4.2 BATCH NORMALIZATION IS A CAUSE OF FAILURE WHEN INPUT FEATURES ARE
CORRUPTED

In this experiment, we focus on a scenario where models are trained with clean data while the test
data is shifted by common data corruptions. Here, we use the WideResNet 40-2 and AllConvNet
architectures and CIFAR-10-C dataset to be consistent with the work of Hendrycks et al. (2019b).
For simplicity and to directly study the effect of normalization under data shifts we do not use
dropout and data augmentations in this experiment. We further replace batch normalization with other
common normalization techniques such as layer normalization (LN) (Ba et al., 2016) and instance
normalization (IN) (Ulyanov et al., 2016). As shown in Figure 3, the model with no normalization
(NN) outperforms all the three types of normalization when evaluated on corrupted data. Whereas, on
the clean data all three techniques do generally well. With our CT model, corruption errors improves
significantly on WideResNet and ResNext, by ∼ 4% and ∼ 3%, respectively.

5



Under review as a conference paper at ICLR 2022

5

15

25

35

45

wBN NoBN LN IN CT (ours)

Cl
as

sif
ic

at
io

n 
er

ro
r

Clean error Curroption error

(a) ResNext

19

24

29

34

39

44

wBN NoBN LN IN CT (ours)

Cl
as

sif
ic

at
io

n 
er

ro
r

Clean error Curroption error

(b) WideResNet

Figure 3: CIFAR-10-C error. For both the models, CT achieves lower corruption errors.

4.3 REGULARIZING A BATCH NORMALIZED MODEL USING CT LEADS TO A HIGHER
ROBUSTNESS

Here we compare our counterbalance teacher model with recent approaches on robustness, multi-
domain generalization, and corrupted point cloud classification using different data sets and models.

Robustness to common data corruptions. We compare the robustness of our CT model to two
main groups of the recent approaches on robustness: 1) covariate shift adaptation and 2) data
augmentation-based methods on CIFAR-10-C and CIFAR-100-C (Hendrycks and Dietterich, 2019).
Covariate shift adaptation approaches (Benz et al., 2021; Schneider et al., 2020) are designed with
the assumption that there exist some samples from (or close to test distribution) which can be used to
calibrate the parameters of the batch normalization layers. However, we show that these approaches
work only if BN statistics are adapted to a particular corruption. This is unrealistic, especially at
inference time, as we often do not have prior knowledge of corruption types that may or may not
occur. Additionally, we show adapting batch norm statistics to a single or a few distortion types can
often fail to generalize to unseen distortions (Geirhos et al., 2018; Vasiljevic et al., 2016) which is
also the case for data augmentation-based methods.

CT vs. covariate shift adaptation methods for robustness. We consider three scenarios for
adaptation of batch norm statistics; Let C = {ci | i ∈ Z} be the set of corruptions that can be applied
to the input of the network (we assume that the corruption severity level (Hendrycks and Dietterich,
2019) is 3 in all scenarios):

(I) Adapt-one-test-one: BN statistics are adapted to a batch of samples from each corruption
type ci at a time, and classification error is computed on the same ci. This is repeated for each
corruption type and classification error is averaged over each type (Benz et al., 2021; Schneider
et al., 2020). However, it is not trivial to differentiate samples based on corruption type and
adapt each separately at test time.

(II) Adapt-one-test-all: BN statistics are adapted to a batch of samples from a randomly selected
ci, and the classification error is averaged over C. This experiment reveals the caveats of
adaptation on a single corruption, where model fails to generalize to other types of corruptions.

(III) Adapt-all-test-all: BN statistics are adapted to a batch of samples from a random combination
of samples from C. The goal is to aid adaptation of statistics by looking at samples from
“all” corruption types. The classification error is then averaged over C. This scenario is more
realistic than (I) and (II), but still requires a batch of samples from the target domain.

In Figure 4, we shed light on a more realistic scenario of batch norm statistics adaptation. We
assume access to some extra samples, but not their corruption types (i.e., adapt-all-test-all).
Surprisingly, we regardless of batch size, such methods perform significantly worse on both clean
and corruption errors compared to our CT method on CIFAR-10-C with WideResNet model. Further
analysis on how adaptation-based methods cause generalization failures are included in Table 6.
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Figure 4: Corruption (left) and clean (right) errors by increasing adaptation batch size on CIFAR-10-C.
Covariate shift adaptation-based methods fail in a more realistic setting (adapt-all-test-all)
i.e. updating the batch norm statistics using randomly selected batches of samples from the target do-
main, while CT performs significantly better without requiring the target domain knowledge/statistics.

SimCLR BYOL Barlow Twins CT (ours)

CIFAR-10-C AllConvNet 30.87 34.12 34.35 14.0±0.55
WideResNet 23.12 26.04 25.80 11.6±0.15

CIFAR-100-C AllConvNet 57.51 63.76 60.07 39.8±0.06
WideResNet 57.59 56.40 55.88 33.7±0.12

Table 1: CT’s mean corruption error (mCE) compared to common self-supervised and contrastive
learning methods on CIFAR-10-C and CIFAR-100-C. All SSL models are first pre-trained (self-
supervised), then fine-tuned (supervised).

Comparing the robustness of CT to self-supervised methods on common input corruptions.
In this experiment, we evaluate how recent self-supervised and contrastive learning methods perform
on unseen input corruptions: SimCLR (Chen et al., 2020), BYOL (Grill et al., 2020), and Barlow
Twins (Zbontar et al., 2021). As reported in Table 1, our method outperforms all self-supervised
methods (with fine-tuned encoders) based on the mean corruption error for both CIFAR-10-C
and CIFAR-100-C by a large margin. For all the methods in Table 1 we use the same individual
augmentations (same operations as in AutoAugment) as in other experiments. See appendix B.2
for linear evaluation results. Concretely, we note that these self-supervised representation learning
methods proceed in two stages: pre-training an encoder via self-supervision; and learning a linear
classification head on top of the pre-trained encodings. To make it a fair comparison, our modification
was to convert this two-stage process into a single joint-training procedure, by using an objective that
combines these two terms: (1) a contrastive loss term that uses label information to select positive and
negative examples for training the encoder (similar to Supervised Contrastive Learning by (Khosla
et al., 2020)); and (2) a cross-entropy loss term for the downstream classification task. In this way,
both the encoder and classifier benefit from labeled supervision.

Comparing CT to data augmentation-based methods. Hendrycks et al. (2019b) has studied
the effectiveness of different data augmentation techniques on making a model robust to common
data corruptions. They proposed to create a weighted mixture of input samples using multiple
different augmentation types (AugMix) and showed this method can outperform other augmentation-
based methods on robustness to common corruptions. Since our CT model is inherently data
augmentation-independent, without any augmentation, it outperforms (by achieving 25.7% mCE
while the original mCE is 39.6%) several recent and widely used augmentation-based approaches
such as Standard (Hendrycks et al., 2019b), Cutout (DeVries and Taylor, 2017), CutMix (Yun et al.,
2019), and Adversarial Training (Madry et al., 2017) on CIFAR-10-C with WideResNet. When CT is
used with a few simple data augmentations (AutoAugment (Cubuk et al., 2018) individual operations,
but randomly), as shown in Table 2, it outperforms most of the data augmentation-based methods
including the recent and advanced ones such as Mixup (Zhang et al., 2017) and AutoAugment (Cubuk
et al., 2018), while it achieves comparable results to AugMix without the Jensen-Shannon divergence
(JSD) loss on CIFAR-10-C and CIFAR-100-C datasets with different networks.
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Standard Cutout Mixup CutMix AutoAug AdvT AugMix CT (ours)

CIFAR-10-C AllConvNet 30.8 32.9 24.6 31.3 29.2 28.1 15.0 14.0±0.55
WideResNet 26.9 26.8 22.3 27.1 23.9 26.2 11.2 11.6±0.15

CIFAR-100-C AllConvNet 56.4 56.8 53.4 56.0 55.1 56.0 42.7 39.8±0.06
WideResNet 53.3 53.5 50.4 52.9 49.6 55.1 35.9 33.7±0.12

Table 2: CIFAR-10-C and CIFAR-100-C mean corruption error (mCE) compared to common
data augmentation techniques. AdvT, and AutoAug refer to adversarial training, Auto Augment,
respectively. Our CT approach outperforms six out of seven methods while it achieves comparable
results to AugMix which leverages complex augmentations.

CT’s performance in domain generalization. In this experiment, we evaluate CT on domain
generalization using the VLCS benchmark (Torralba and Efros, 2011). VLCS consists of images
from five object categories shared by the PASCAL VOC 2007, LabelMe, Caltech, and Sun datasets,
which are considered to be four separate domains. We follow the standard evaluation strategy used
in (Carlucci et al., 2019), where we partition each domain into a train (70%) and test set (30%)
by random selection from the overall dataset. We use ResNet-18 as the backbone to make a fair
comparison with the state-of-the-art. As summarized in Table 3, CT outperforms the state-of-the-art
on 3 out of 4 domains and by 1.83% on average.

Method Caltech LabelMe Pascal Sun Average

DeepC (Li et al., 2018b) 87.47 62.06 64.93 61.51 68.89
CIDDG (Li et al., 2018b) 88.83 63.06 64.38 62.10 69.59
CCSA (Motiian et al., 2017) 92.30 62.10 67.10 59.10 70.15
SLRC (Ding and Fu, 2017) 92.76 62.34 65.25 63.54 70.15
TF (Li et al., 2017) 93.63 63.49 69.99 61.32 72.11
MMD-AAE (Li et al., 2018a) 94.40 62.60 67.70 64.40 72.28
D-SAM (D’Innocente and Caputo, 2018) 91.75 57.95 58.59 60.84 67.03
Shape Bias (Asadi et al., 2019) 98.11 63.61 74.33 67.11 75.79
CT (ours) 99.21 65.87 74.10 71.20 77.60

Table 3: Multi-source domain generalization accuracy (%) on the VLCS dataset with ResNet-18 as
the base network for classification. All reported numbers are averaged over three runs.

CT’s classification performance on corrupted 3D point cloud data. In this experiment, we use
the RobustPointSet dataset Taghanaki et al. (2020) which is created for analysis of point classifiers
in terms of robustness to 3D corruptions. We follow the same training-domain validation setting as
in Taghanaki et al. (2020). We train each model without data augmentation on the clean training
set and select the best performing checkpoint on the clean validation set for each method. We then
test the models on the six distorted unseen test sets. This experiment shows the vulnerability of the
models trained on original data to unseen input transformations. As shown in Table 4, PointNet-CT
significantly improves classifcation accuracy on most of the shifted test sets, and 1.87% on average
compared to original PointNet.

Method Original Noise Translation MissingPart Sparse Rotation Occlusion Avg.

PointNet 89.06 74.72 79.66 81.52 60.53 8.83 39.47 61.97
PointNet-NoNorm 87.99 78.65 79.02 76.82 72.61 6.89 35.13 62.44
PointNet-CT (ours) 89.83 78.12 82.25 82.58 68.40 7.62 38.10 63.84

Table 4: Robust classification accuracy on RobustPointSet. The Noise column for example shows
the result of training on the Original train set and testing with the Noise test set. When we train
PointNet using our CT method its performance significantly improves on average and particularly on
Noise, Translation, MissingPart, and Sparse test sets.
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5 RELATED WORK

Reducing classification error on common input corruptions. Hendrycks et al. (2019b) proposed
a data augmentation technique which mixes multiple augmented samples using random weights and
showed improvements on robust accuracy. Rusak et al. (2020) proposed to mix Guassian noise with
adversarial samples for robustness to common distortions. However, as in the real world, the space of
distortions and their mixture is not finite, it is not trivial to devise a set of augmentation types that will
make a model robust to all distortions. Moreover, making a model robust to certain corruptions via
augmentation does not generalize to others. Dodge and Karam (2017) leverage an ensemble approach
for robustness against distortions, but they also assume corruptions are known beforehand.

Batch normalization’s vulnerability. Several works have studied the effect of batch normalization
in the context of robustness to adversarial perturbations. However, as the most relevant works to
ours, Schneider et al. (2020) and Benz et al. (2021) suggested improving robustness to common data
corruptions by updating the batch normalization parameters using statistics calculated form extra
test distribution samples. However, extra test samples are not always available, and similar to data
augmentation-based methods, these approaches work only when a model is adapted to a specific
distortion and tested on the same distortion type.

Teacher-student models in the context of robustness. The focus of the few existing methods on
leveraging teacher-student models for robustness has been on adversarial perturbations for developing
adversarially robust models either by training teacher encoders with adversarial (Goldblum et al.,
2020; Papernot et al., 2016) or augmented (Arani et al., 2021) examples. In contrast, our CT method is
augmentation-independent. Adversarially trained models might not necessarily be robust to common
data corruptions, as we showed in Table 2, our CT method performs significantly better (at least
by 12%) on both CIFAR-10-C and CIFAR-100-C datasets across different models compared to the
adversarially trained model (AdvT). Even if the augmented samples are crafted by common data
augmentations rather than adding adversarial noise, the robustness obtained by the augmentations does
not generalize to unseen corruptions, even when they are from the same family of the augmentations
a model has seen (Vasiljevic et al., 2016) during training.

Similarities to self-supervised methods. Our CT method is similar to self-supervised models
(SSL) (Chen et al., 2020; Grill et al., 2020; He et al., 2020) in the sense that SSL also leverages a
copy of the same model but for encoding a different view of the input. In SSL, the copy of the model
is the same as the main model, while we discard batch normalization layers in our CT model from
one of the copies. Hendrycks et al. (2019a) showed that SSL can improve error on distorted data,
however their method—and in general existing self-supervised methods—are highly dependent on
data-augmentation (inductive bias) for creating different views while our approach does not require
extra views of the data. Note that our method does not employ any self-supervised loss function.

6 CONCLUSION

In this work, we investigated the effect of BN on model robustness. We provided a theoretical
justification in the overparameterized linear regime for how BN compromises OOD generalization
performance by encouraging the model to rely on highly predictive, low-variance input features. Then,
we proposed a robust representation learning framework – Counterbalancing Teacher (CT) – which
leverages a frozen copy of the same model without BN as a teacher to regularize the features learned
by a student network to improve generalization. Empirically, we demonstrated that our method’s
learned representations are robust to common corruptions on a suite of domain generalization tasks.
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APPENDIX

A ADDITIONAL EXPERIMENTAL DETAILS

We implement our CT variants using Tensorflow Abadi et al. (2016).

A.1 MNIST MISSING FEATURES EXPERIMENT

We trained the MNIST models (architecture below) with SGD optimizer (with Tensorflow’s default
parameters) and batch size of 128 for 100 epochs. For the NoBN model, we simply removed the BN
layers and trained all models without any data augmentation.

Table 5: MNIST small CNN architecture with batch normalization layers. Batch normalization layers
(in gray) are omitted in the Teacher network.

# Layer
1 Conv2D (in=d, out=16, stride=1)
2 BatchNorm
3 ReLU
4 Conv2D (in=16, out=16, stride=1)
5 BatchNorm
6 ReLU
7 MaxPool2D (stride=2)
8 Conv2D (in=16, out=32, stride=1)
9 BatchNorm
10 ReLU
11 Conv2D (in=32, out=32, stride=1)
12 BatchNorm
13 ReLU
14 MaxPool2D (stride=2)
15 Dense (nodes=256)
16 BatchNorm
17 ReLU
18 Dense (nodes=c)
19 Softmax

A.2 COMPARING CT TO OTHER METHODS ON COMMON INPUT CORRUPTION

For both CIFAR-10-C and CIFAR-100-C we train Gθ using Adam optimizer with learning rate of
0.0001 and batch size of 64. In the second step, we train Fζ using SGD with Nesterov, initial learning
rate of 0.1 and decaying to 0.00001 using cosine scheduler for 300 epochs.

A.3 APPLYING CT TO POINT CLOUDS

We trained both Gθ and Fζ with Adam optimizer and learning rate of 0.001 (divided by 10 at epochs
50 and 75) and batch size of 32 for 500 epochs.

A.4 APPLYING CT TO DOMAIN GENERALIZATION

We trained CT with SGD optimizer with learning rate of 0.001 and momentum of 0.9. We set batch
size to 32 and image size to 224x224, and train for 500 epochs.
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A.5 SELF-SUPERVISED BASELINES

We train the self-supervised methods with batch size 256 for 1000 epochs while maintaining the orig-
inal hyper-parameters. We fine-tune all self-supervised methods for 350 epochs with Adam Kingma
and Ba (2014) and with starting learning rate of 0.001 with a cosine decay, and l2 coefficient set to
0.0005 to avoid overfitting.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 BATCH-NORM ADAPTATION ADDITIONAL RESULTS

Batch norm adaptation-based results for robustness to common input corruptions on CIFAR-10-C.

Table 6: Changes in clean error (CLN-E), mean corruption error (mCE), and corruption error with
respect to changes in adaptation batch size (BS). In this table, the model’s batch normalization
layers are only adapted to one corruption (CRP) based on the method presented in Benz et al.
(2021). This table shows an example of adapt-one-test-all scenario. All numbers are reported with
the WideResNet40-2 model. Adaptation of batch norm statistics to Impulse noise, when observed
test-time data is adequate, will improve the robustness to similar corruption types (Gaussian, Shot and
Impulse noise). However it significantly reduces generalization to other corruption types. Top row
shows original model performance without adaptation. Second row shows adapt-one-test-one
results.

CRP BS CLN-E mCE Gauss. Shot Impulse Defocus Glass Motion Snow Compress

None - 14.2 37.54 56.26 47.93 49.28 29.54 56.44 38.51 32.35 32.71

a-o-t-o 32 23.83 26.07 37.72 35.03 34.82 16.84 40.03 24.86 27.86 31.1

Impulse 32 29.04 49.88 45.92 41 39.52 56.97 60.46 65.79 40.31 45.51
Impulse 16 33.06 55.02 51.39 45.73 43.62 62.27 66.23 71.03 45.62 51.12
Impulse 2 43.7 61.47 62.31 58.16 58.33 62.68 73.32 68.68 56.95 59.56
Defocus 32 20.39 41.98 70.47 62.49 59.07 21.54 65.94 35.58 41.16 38.9
Defocus 16 21.11 44.43 72.24 64.88 58.77 24.53 69.55 38.36 43 41.64
Defocus 2 44.47 62.1 74.39 70.69 68.91 51.03 74.98 54.16 64.18 68.92

B.2 LINEAR EVALUATION OF SELF-SUPERVISED MODELS

Self-supervised linear evaluation results where encoders are frozen and only classification layer is
trained.

Table 7: CT’s mean corruption error (mCE) compared to common self-supervised and contrastive
learning methods on CIFAR-10-C and CIFAR-100-C. Encoders are frozen and only classification
layer is trained (linear evaluation).

SimCLR BYOL Barlow Twins CT (ours)

CIFAR-10-C AllConvNet 58.84 65.47 58.2 16.9
WideResNet 58.18 53.32 59.75 13.9

CIFAR-100-C AllConvNet 82.91 91.2 86.16 42.6
WideResNet 84.08 83.38 85.61 43.1

B.3 PREDICTIVE PERFORMANCE OF MNIST DATASET VARIABLES.

The following analysis is performed to determine whether the dark and light pixels in the MNIST
experiment are discriminative. We plot histograms of all pixel values for each class separately. The
histograms look very similar, as shown in Figure 5, indicating that the dark or light pixels are not
predictive alone. Therefore we add red or blue squares/variables which are both low variance and
predictive.
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Figure 5: Histogram plots of class ‘2’ vs. ‘3’.

C ADDITIONAL ANALYSIS ON THE EFFECT OF NORMALIZATION IN OVERPARAMETERIZED
REGIME

C.1 SUBTRACTING MEAN DOES NOT CHANGE THE ESTIMATED PARAMETERS

In Section 2.1, we show that dividing each feature by its variance incentivize the model to rely more
on features with low variance. Here we show that subtracting mean from each feature and target does
not change the estimated parameter in overparametrized regime. Recall that X ∈ Rn×d denote the
training examples and Y ∈ Rn denote their target. Let µX ∈ Rd be the mean of features in training
data, and µY ∈ R denote the mean of the their targets.

Since µX is a linear combination of the rows of X and row operation does not change the projection
matrix; therefore, the following two linear programs have the same solution:

ζ̂ = arg min ‖ζ‖
s.t. Xζ = Y

θ̂ = arg min ‖θ‖
s.t. (X − µX)θ = Y −~1µY

C.2 THE EFFECT OF NORMALIZATION ON MAX-MARGIN CLASSIFIERS

In Section 2.1, we analyze the effect of normalization in linear regression. Here we show that
the analysis hold for the max-margin classifiers as well. Soudry et al., Soudry et al. (2018),
show that without any explicit regularization, gradient descent on logistic loss converges to the L2
maximum margin separator for all linearly separable datasets. In the overparametrized regime data
are completely separable, there are also some investigation that as d increases all the data points serve
a support vectors Narang (2020).

Without normalization we have:

ζ̂ = arg min ‖ζ‖22 s.t. Y �Xζ ≥ 1 (8)

Recall that U is a diagonal matrix where Uii is the standard deviation of the ith feature. After
normalization we have:

β̂ = arg min ‖β‖22 s.t. Y �XU−1β ≥ 1 (9)

At the test time we predict sign(XU−1β̂), substituting U−1β with θ we have:

θ̂ = arg min ‖Uθ‖22 s.t. Y �Xθ ≥ 1 (10)

Similar to linear regression scenario normalizing data change the inductive bias of estimator to choose
a model that rely more on low variance features. This data-dependent norm lead to good performance
in-domain where such features exhibit low variation but will perform poorly out of domain data are
corrupted independently or are sampled from a different distribution with different statistic than the
training distribution.
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