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ABSTRACT

Is it possible to derive an optimally compact image representation that preserves
semantic information without performance loss for a class of downstream tasks?
This paper addresses this fundamental question by providing a formal definition
of semantic lossless optimal compression. We introduce a framework Semantic
Optimal LOssless Vector Quantization (SOLO-VQ as a practical realization to
address this concept. Unlike prior works, which often rely on heuristics and eval-
uate on generic image datasets where optimality is unverifiable, we propose a
novel evaluation protocol. We construct a series of synthetic datasets and associ-
ated tasks where the information-theoretic rate limits for lossless compression are
computable. Within these controlled environments, we empirically demonstrate
that SOLO-VQ achieves provably optimal and lossless compression, effectively
reaching the theoretical lower bounds. Our work establishes a principled founda-
tion for goal-oriented semantic media data compression and suggests a promising
methodology towards achieving this goal for compressive real-world image trans-
mission.

1 INTRODUCTION

Learning compact, interpretable, and task-relevant encoding from high-dimensional inputs such as
images is a fundamental goal in machine learning. Classical approaches Ballé et al. (2016; 2018);
Mentzer et al. (2020); Cheng et al. (2020); He et al. (2022) to compression often optimize for low-
level fidelity—preserving pixel values or human-level perception-without explicit regard for the
semantic utility of the compressed representation. In contrast, we advocate for a new perspective:
semantic compression, which seeks to discretize visual data into compact codes sufficiently allow
the receiver to solve a predefined set of semantic tasks without performance loss.

We formalize semantic compression as a framework where a compressor produces a discrete rep-
resentation C = E(X) from an image X , such that downstream semantic tasks {Ti(X)} can be
accurately predicted from C. This objective defines a notion of lossless semantic compression,
wherein the semantic information required for the tasks is fully preserved in the code. We further
define the notion of optimality, where the entropy of the code matches the joint entropy of the task
labels, providing an information-theoretic bound on compression.

To operationalize this framework, we introduce a three-stage training pipeline: (1) learning a la-
tent space for codebook initialization; (2) constructing discrete codebooks via k-means clustering
in latent space; and (3) introducing projectors to further adapt initialized codebooks to the latent
space for tasks’ performance. This disentangled training process enables precise control over se-
mantic accuracy and code length, allowing us to analyze the trade-off between compression and
task performance.

While prior vector quantization methods such as VQ-VAE van den Oord et al. (2017) and VQ-
GAN Esser et al. (2021) have demonstrated strong performance in generative modeling and recon-
struction, they primarily focus on preserving appearance rather than semantic content. Our approach
draws inspiration from their discretization mechanisms but repurposes them with a fundamentally
different goal: preserving semantic information rather than reconstructing pixels.

Our formulation is also complementary to the broader landscape of representation learning meth-
ods, which often rely on proxy objectives (e.g., contrastive loss, masked prediction) and heuristic
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inductive biases. Semantic compression, in contrast, is defined directly in terms of its end use: solv-
ing tasks. This makes the learned representations inherently interpretable and their utility directly
measurable.

To rigorously evaluate semantic compression, we construct synthetic datasets with known task struc-
tures and computable entropies. These controlled environments allow us to empirically verify loss-
lessness and optimality, providing a stepping stone toward applying semantic compression in real-
world settings.

2 SEMANTIC OPTIMAL LOSSLESS COMPRESSION

In this section, we formally define semantic compression, its lossless form, and its optimal lossless
form.

2.1 DEFINITION: SEMANTIC COMPRESSION

We formally define semantic compression of images as comprising the following components:

1. A pretrained semantic compressor E that takes as input an image, represented by a random
variable X , and produces a discrete and compact semantic code C = E(X).

2. A set of downstream semantic tasks T = {T1, . . . , Tm}, where each Ti is a function of the
input variable X , such as image segmentation, depth estimation, semantic understanding,
image classification, or object counting.
A set of downstream semantic tasks T = {T1, . . . , Tn}, where each Ti is a function of the
input variableX , and Ti(X) provides the ground-truth target forX under the i-th task—for
example, a segmentation map, a depth map, or a classification label.

3. A set of task-specific decoding headsH = {H1, . . . ,Hm}, each fine-tuned on its respective
task in T . Each decoder Hi takes the semantic code C as input and produces a prediction
Hi(C) for task Ti.

Figure 1: An Experimental Proof-of-Concept for Semantic Compression.

At first glance, this formulation resembles the general verification of unsupervised representation
learning(Le et al., 2012; Chen et al., 2020; Grill et al., 2020; Caron et al., 2021). The key distinction
is that semantic compression does not rely on inductive biases from heuristic architectures, such
as assuming semantic invariance across augmented views(Chen et al., 2020; He et al., 2020) or
enforcing distant representations from different samples(Chen et al., 2020; He et al., 2020; Wu
et al., 2018) or patches(Caron et al., 2021; Wang et al., 2021; Chen et al., 2023). Instead, semantic
compression is directly optimized with respect to a predefined set of downstream tasks with an
information bottleneck. This makes the framework more interpretable and allows the compactness
of the representation to be explicitly considered by design.

Although semantic compression may appear less general than representation learning—since it
learns an encoder optimized for a specific set of tasks—this is not necessarily a limitation. In prac-
tice, semantic signals in images are inherently defined by a wide range of semantic tasks, many
of which share significant information (e.g., semantic segmentation and depth estimation). There-
fore, we expect that a semantic encoder trained on a sufficiently broad set of tasks can capture rich
semantic content and generalize to unseen downstream tasks.
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2.2 DEFINITION: SEMANTIC LOSSLESS COMPRESSION

A semantic compressor E is said to be lossless if, for any input sample X , the resulting code C =
E(X) allows the construction (i.e., training) of a set of decoding heads H = {H1, . . . ,Hm} such
that all task predictions are exactly correct, that is,

Hi(C) = Ti(X), ∀i ∈ {1, . . . , n}, ∀X.

In practice, we adopt a relaxed version of this condition: if, for a well-partitioned test set with no data
leakage, the codes produced by E enable us to train decoding headsH that achieve perfect accuracy
on all tasks within a reasonable amount of time, we consider the compressor E to be lossless.

In practice, we relax this condition: if the codes produced by E on a well-partitioned, leakage-free
test set allow us to train a set of decoding headsH that achieve perfect accuracy within a reasonable
amount of time, we consider E to be lossless. In the general lossy case, we interpret the loss on
semantic tasks as the distortion induced by the compression.

2.3 DEFINITION:SEMANTIC OPTIMAL LOSSLESS COMPRESSION

A lossless semantic compressor E is said to be optimal if the entropy of its output code C equals
the joint entropy of the downstream tasks, i.e.,

H(C) = H(T1(X), . . . , Tm(X)).

This joint entropy represents the information-theoretic lower bound for lossless compression, deter-
mining the minimal achievable average code length under a lossless semantic representation.

For a non-optimal compressor, one can consider its code length redundancy relative to the optimal
code length H(C)−H(T1(X), . . . , Tm(X)).

Alternatively, one may directly analyze the trade-off between the compression rate H(C) and the
average distortion incurred on downstream tasks.

3 PUSHING TO THE LIMIT

An ultimate goal is to obtain a semantic compressor that approaches the performance of an optimal
lossless compressor, by achieving near-minimal distortion and near-optimal code length on real-
world image datasets and a universal set of downstream tasks. However, the entropy of real-world
data and tasks is often intractable to estimate accurately due to their inherent complexity and the
limited number of available samples. Moreover, verifying perfect prediction for a wide range of
downstream tasks would require an enormous amount of human annotation and validation. As a
result, it is infeasible to directly measure the loss and code length redundancy of a semantic encoder
on realistic datasets and task collections.

As a first step toward this ambitious objective, we aim to validate our approach in a toy environment
where both optimality and losslessness can be explicitly verified. To this end, we introduce a suite
of synthetic datasets paired with carefully designed semantic tasks, each possessing the following
key properties:

• Each task admits a lossless decoder, which can be trained to achieve perfect prediction;

• The combined entropy H(T1(X), . . . , Tm(X)) of the tasks is analytically computable.

These two properties enable an exciting possibility: on such synthetic datasets and tasks, it be-
comes feasible to empirically achieve and verify an optimal lossless compressor. In Section 4.1, we
demonstrate that our proposed method indeed achieves this goal.

3.1 SYNTHESIZED DATASETS, TASKS AND EVALUATION METRICS

We design two categories of synthetic datasets: a Pong-style image dataset and a geometric object
arrangement (Geo) datasets.
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• Pong Dataset: We use Python scripts to generate images resembling those in the Atari
Pong game. Each image includes a ball, a score pair, and two paddles for both players, and
score indicators. Importantly, this dataset is not derived from the actual game engine and
does not reflect the true game dynamics or its associated distribution. The ball and paddles
are restricted to a finite set of discrete grid positions; scores are integers between 0 and
3; and the two background regions are independently colored from a predefined discrete
color set. This dataset is designed to simulate the type of visual environments commonly
encountered by AI agents in game-like settings. Appendix provides illustrations of the
synthesized datasets, including Pong-S 6, Pong-SPB 7, and Pong-SPC 8.

• Geo Datasets: We use Blender, combined with scripted automation, to generate images
in which a set of geometric objects are randomly arranged on a gray background. Each
object is selected from a finite set of shapes and colors, and its position is restricted to a
discrete grid. This dataset is designed to simulate the visual recognition setting in 3D scene
understanding. Appendix provides illustrations of the synthesized datasets, including Geo-
4Seg 3 and Geo-6Seg 4.

The discrete nature of states in both datasets allows for tractable analysis and exact enumeration.
For simplicity, we primarily sample all configurations uniformly across their possible state spaces.
Nonetheless, we also explore the impact of non-uniform data distributions on encoding performance.

Across these two datasets, we consider the following types of semantic tasks and corresponding
evaluation metrics:

• Information Extraction (Classification) Tasks: For example, predicting paddle positions
or scores from Pong images. Prediction accuracy is the metric used to evaluate this type of
tasks.

• Semantic Segmentation Tasks: Segmenting geometric objects from the background in the
object arrangement dataset, with optional grouping of same-shaped objects into identical
segmentation masks. Two standard metrics are used to evaluate segmentation tasks:

– Mean Intersection over Union(mIoU) is defined as the average Intersection over
Union(IoU) across all classes, where IoU for each class is computed as the ratio be-
tween the intersection and the union of the predicted and ground-truth regions.

– Mean Class Accuracy is defined as the average of per-class accuracies, where the
accuracy for each class is computed as the ratio of correctly predicted pixels to the
total number of pixels in that class.

More detailed descriptions of the dataset and tasks are provided in the experiments section 4, along
with example visualizations included in the appendix.

3.2 PROPOSED METHOD

We propose a three-stage approach SOLO-VQ to obtain a semantic lossless optimal compressor,
as shown in Fig.2. The semantic compressor E consists of two main components: An encoder E
that generates continuous representation vectors {vi}ni=1 for an input image X and a set of vector
quantizers {Qi}ni=1 that correspondingly quantize {vi}ni=1 to n tokens as the discrete semantic
code. The m affine heads {Hi}ni=1 are then used to decode the code into the targets of the m
downstream tasks {Ti}mi=1.

Stage 1: VQ-Aware Latent Pretraining. In this stage, we pretrain the encoder, the affine heads,
and the dimension reduction/expansion modules in an end-to-end manner without quantization. The
goal is to prepare a well-structured latent space suitable for subsequent vector quantization. A key
intuition is that affine heads partition the input space into regions bounded by hyperplanes, where
each region maps to the same output. Vector quantization similarly partitions the latent space into
Voronoi cells, which are also defined by hyperplane boundaries. This structural similarity implies
that affine heads encourage the latent space to align better with the quantization boundaries, improv-
ing overall quantization efficiency.
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Figure 2: The proposed Semantic Compression method.

Stage 2: Codebook Initialization. We freeze the encoder and the dimension reduction compo-
nents, and perform {ki}ni=1-means clustering to initialize either a single shared codebook or n in-
dependent codebooks for each latent vector position. Prior work has shown that clustering-based
initialization leads to better codebook utilization. The use of multiple independent codebooks al-
lows us to fully leverage the position-specific structure of the latent representation, and later enables
progressive codebook shrinking to exploit compression limits. All vectors are quantized in a nor-
malized, reduced-dimensional space, which has also been shown to improve codebook utilization.

Stage 3: Codebook Adaptation. In this stage, the codebooks are frozen, and we train a
lightweight projector to remap the fixed codebook into the encoder’s latent space, while jointly
fine-tuning the encoder, the affine heads, and other components. The objective is to adapt the
clustering-derived codebook to the downstream semantic tasks. Using a learnable projector to remap
the codebook—rather than updating it directly via straight-through gradients—has also been shown
to significantly improve codebook utilization. In order to explore the optimal bitrate on multi-token
setting, we initialize and gradually reduce the codebooks’ size based on the algorithm 1 2.

Component Architecture. Encoder and dimension reduction components: a Vision Transformer
(ViT); Projector: a lightweight Transformer; Affine dimension expansion components and Affine
heads: an affine layer.(linear layer with bias)

4 EXPERIMENTS

We evaluate our method in controlled synthetic environments to verify empirical optimality, rate-
distortion behavior, generalization ability, and multi-task performance. Our key findings are orga-
nized into four parts.
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4.1 SEMANTIC OPTIMAL LOSSLESS COMPRESSION

We begin by demonstrating that our method achieves optimal and lossless semantic compression
on two synthetic datasets: Pong image classification and small-scale semantic segmentation. These
controlled environments are designed so that all possible semantic configurations can be exactly
enumerated, allowing us to compute closed-form entropy bounds. In both settings, our method
matches the theoretical lower bound on bitrate while attaining perfect task performance—providing
strong empirical evidence of semantic optimality.

Score Classification on Pong dataset. We begin with simple Pong-S, where the goal is to extract
the score from the pixel-level Pong image. Our method achieves 100% prediction accuracy while
using a code length equal to the theoretical minimum entropy log2 16 = 4 bits.

Table 1: Prediction accuracy on Pong-S.
Stage Score Pair (%)
Pre-Quantization Training 100.00
Codebook Initialization 100.00

Small-Scale Semantic Segmentation on Geo dataset. We next evaluate the semantic segmen-
tation task on the Geo-4Seg dataset. Each image in this dataset contains four distinct geometric
shapes arranged in a uniformly random order, resulting in 4! possible shape permutations. Each
shape can independently occupy one of three discrete positions, leading to a total of 34 spatial con-
figurations. In total, the dataset contains 4! × 34 = 1944 unique semantic segmentation maps. To
introduce visual variability, the color of each shape is sampled independently and uniformly from a
palette of 19 distinct colors. This results in multiple images sharing the same segmentation map but
differing in color appearance. The training set includes all 1944 possible segmentation maps, while
the test set consists of images with unseen color combinations—that is, none of the color patterns
in the test set appear in the training set. We start with a codebook size of 1944, meaning that an
optimally lossless compressor must classify inputs exactly and uniformly into all codebook entries.

SOLO-VQ achieves 100% mIoU on all test samples using a codebook size equal to the lower bound
1944. As shown in and Figure.3, significantly outperforming VQ methods such as VQ-VAE and
VQ-STE++. The online clustering codebook (CVQ-VAE) can also eventually achieve similar levels
performance (99.93%) at the lowerbound. However, CVQ-VAE requires significantly longer time
to converge due to its randomness. (see Figure 11).

Figure 3: Exploratory comparison of vector-quantization methods in the one-token setting on Geo-
4Seg. The x-axis begins at 1, 944, the minimal codebook size dictated by the 1, 944 unique seg-
mentation maps, and doubles at each step (×2), corresponding to a +1-bit increase under uniform
usage.

4.2 GENERALIZATION IN COMPLEX ENVIRONMENTS

We now test whether semantic compression can scale to more complex distributions and generalize
to unseen semantic instances. We use the Geo-6Seg dataset, which contains six distinct object
types. Each object can independently occupy one of six positions and take on one of nineteen

6
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colors, resulting in a significantly larger number of unique segmentation configurations. (6!× 66 =
33, 592, 320), such that exhaustive enumeration becomes infeasible.

The task entropy lower bound is log2(33, 592, 320) ≃ 25.002 bits. Our method achieves 100% test
accuracy using only 29.679 bits of code length, which is remarkably close to the theoretical mini-
mum. Importantly, the test set includes many configurations that were never seen during training,
indicating that our model generalizes its semantic abstraction capabilities beyond memorization.

We also plot the rate-distortion curves in Fig. 4, comparing our method with the strongest baselines
from Section 4.1. Our method consistently achieves better semantic fidelity at lower code rates,
highlighting its compression efficiency and generalization capability.

Figure 4: Rate–distortion analysis of vector-quantization methods on Geo-6Seg, plotting rate as
bits per image (BPI) versus semantic-segmentation performance (distortion proxy). Each image is
represented by four tokens, and the information-theoretic lower-bound rate is 25.002 BPI.

4.3 MULTI-TASK COMPRESSION AND COMPOSITIONAL SEMANTICS

To test whether our method supports semantic composition across multiple tasks, we construct a
multi-task version of the Pong dataset Pong-SPC involving three attributes: Score Pair (S): 16
possible combinations; Background Color (C): 8 possible combinations; for each score pair, 4 op-
tions appear with equal probability; Paddle Locations (P): 16 possible combinations (independent
of S and C). Visualizations of selected samples can be found in Fig.8. All configurations are sampled
with equal probability. The joint entropy of the semantic space can be calculated as:

H(S, P,C) = H(P ) +H(S) +H(C | S) = log2 16 + log2 16 + log2 4 = 12 bits.

Our method achieves perfect accuracy across all three tasks using exactly 12 bits of code length,
demonstrating that it effectively captures both independent and conditionally dependent semantics
within one codebook, as shown in Tab.2.

We also evaluated another set of non-independent downstream tasks Pong-SPB:Score pair classi-
fication (S), Paddle location (P), and Ball location (B). Visualizations of selected samples can be
found in Fig.7. Similarly it achieves lossless optimal compression, as shown in Tab.3.

Table 2: Multi-Task score-pair, paddle-location, and background-color classification on Pong-SPC.
Stage Score Pair (%) Paddle Location (%) Background Color (%)
Pre-Quantization Training 100.00 100.00 100.00
Codebook Initialization 100.00 100.00 100.00

Table 3: Multi-Task score-pair, paddle-location, and ball-location classification on Pong-SPB.
Stage Score Pair (%) Paddle Location (%) Ball Location (%)
Pre-Quantization Training 100.00 100.00 100.00
Codebook Initialization 100.00 100.00 100.00

7
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4.4 ABLATION STUDY

Affine Decoder Structure. We ablate the use of affine decoders in our architecture by replacing
them with either MLP decoders with non-linear operations. As shown in Tab.4, we find that the
affine decoder (i.e., linear layer with bias) strikes the best code efficiency.

Codebook Initialization via Clustering. We ablate the k-means-based codebook initialization
step in Stage 2 by directly initializing the codebooks randomly and training them end-to-end. As
shown in Tab.5, skipping clustering leads to slower convergence, larger quantization errors, and
degraded task accuracy. This confirms that initializing the codebook with cluster centroids from
latent space provides a strong prior, making quantization more stable and semantically meaningful
from the beginning. Further clustering visualizations reveal the impact of affine heads and MLP
heads on centroid assignment. MLP heads tend to cause either over-allocation or under-utilization
of centroids, as shown in Fig.5.

Table 4: Ablation Study: Comparing non-linear vs. affine designs for the post-latent function in the
one-token setting on Geo-4Seg.

Decoder Function Pre-Quantization Training Codebook Initialization
mean Class

Accuracy (%) mIoU (%)
mean Class

Accuracy (%) mIoU (%)

Non-Linear 100.00 100.00 99.97 99.91
Affine 100.00 100.00 100.00 100.00

Table 5: Analysis of Codebook Initialization to explain the performance advantage of the affine
post-latent function.

Decoder Function Codebook Quantization

K-means Inertia
Codebook
Usage (%)

Quantization
Accuracy (%)

Non-Linear 17.838 100.00 98.71
Affine 0.944 100.00 100.00

Figure 5: UMAP visualization of latent space quantization: the affine post-latent function enables
correct alignment for codebook quantization, whereas the non-linear post-latent function leads to
misaligned (incorrect) quantization.

Projector in the Quantizer. Our quantizer includes a learnable projector that adapts the fixed
codebook to the encoder’s current latent space during training. We ablate this component by remov-
ing the projector and directly computing distances in the original latent space. As shown in Tab.6,
this results in codebook mismatch and reduced performance. The projector enables the model to

8
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align quantization regions with the evolving latent geometry, especially when encoder parameters
are updated during joint training.

Tab.7 summarizes the performance impact of all ablated settings, all evaluated under the
information-theoretic lower bound.

Table 6: Ablation of the proposed Semantic Compression (single-token) on Geo-4Seg.
Stage 1 Stage 2 mean Class Acc. (%) mIoU (%)

✓ ✗ 20.00 18.72
✗ ✓ 99.99 99.95
✓ ✓ 100.00 100.00

Table 7: Ablation of the proposed Semantic Compression (two-token) on Geo-4Seg.
Stage 1 Stage 2 Stage 3 mean Class Acc. (%) mIoU (%)

✓ ✗ ✗ 20.00 18.72
✗ ✗ ✓ 20.00 18.72
✓ ✓ ✗ 71.75 62.02
✗ ✓ ✓ 83.82 83.22
✓ ✓ ✓ 100.00 100.00

5 CONCLUSION

In this work, we introduce a new paradigm for image representation: semantically optimal lossless
compression. Unlike prior representation learning frameworks, semantic compression explicitly
targets losslessness and minimal code length with respect to a predefined set of downstream tasks.

We propose a concrete instantiation, SOLO-VQ, which employs a three-stage training procedure
designed to jointly maximize codebook utilization and task accuracy. To enable rigorous evalua-
tion, we construct a suite of synthetic datasets and task settings where optimality and losslessness
can be analytically verified. We show that SOLO-VQ achieves both lossless task prediction and
information-theoretic optimality on these synthetic benchmarks—something no existing method can
accomplish, despite the simplicity of the domains.

We further demonstrate that SOLO-VQ generalizes to more complex scenarios, achieving lossless
compression on previously unseen samples rather than merely memorizing training instances. In the
multi-task setting with non-independent semantic targets, our method continues to achieve optimal
lossless compression, matching the joint entropy lower bound.

A series of ablation studies validate the design choices of our method and highlight the importance
of each component. Through these results, we establish the promise of SOLO-VQ as a new semantic
representation paradigm. In future work, we aim to extend this framework to more complex, real-
world datasets. We are optimistic that, given sufficiently diverse data and rich downstream tasks,
SOLO-VQ can learn compact representations that generalize beyond the predefined task set.

9
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Appendix

A SYNTHESIZED DATASET

Figure 6: Pong-S: Score-pair classification. Lower-bound bitrate: 4 bits/image.

B CONVERGENCE-RATE COMPARISON

From the training curve 11 of our proposed SOLO-VQ and CVQ-VAE, we can notice that SOLO-
VQ converges much faster than CVQ-VAE.

C PROJECTOR ARCHITECTURE

Table 8 compares MLP and Transformer architectures for the projector module. The experiments
are performed in the two-token setting on PermRate-4Seg-A. To ensure fairness, both experiments
start from the same encoder, codebook, and decoder weights, while only the projector architecture
differs. Each projector is trained from scratch with a comparable number of parameters, enabling a
controlled evaluation of the architectural impact.
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The Transformer projector outperforms the MLP because self-attention enables each codeword to
be refined in relation to all others. This global adjustment captures dependencies across codewords,
resulting in a codebook structure that better aligns with encoder outputs and enhances quantization
efficiency.

Table 8: Ablation Study: The model architecture for the Projector.
Projector # of Params. mean Class Acc. (%) mIoU (%)
MLP 1.596 M 98.11 97.98
Transformer 1.586 M 100.00 100.00

D ALGORITHM PSEUDOCODE

Algorithm 1 Initialize VQ Codebooks by Inertia-Threshold Selection
Require: Pretrained encoder Eθ; training set X = {xi}ni=1; number of codebooks C; size options

S = {1, 2, . . . , N}; inertia threshold τ (default 25)
1: Freeze θ
2: Init representation pools: Z(c) ← ∅ for all c ∈ {1, . . . , C}
3: for each x ∈ X do
4: (z(1), . . . , z(C))← Eθ(x) ▷ encoder outputs C tokens
5: for c = 1 to C do
6: append z(c) to Z(c)

7: end for
8: end for
9: for c = 1 to C do ▷ one codebook per token position

10: {(C(c)
s , I

(c)
s )}s∈S ← {KMEANS(Z(c), k=s) | s ∈ S} ▷ run K-means for all sizes, record

inertia
11: s(c) ← min{ s ∈ S | I(c)s ≤ τ } if exists; else s(c) ← N

12: Initialize codebook: C(c) ← C
(c)

s(c)
▷ centers⇒ codewords; size = s(c)

13: end for
14: return {C(c)}Cc=1 ▷ initialized codebooks only

Algorithm 2 Progressive Codebook Shrinkage under Lossless Test Constraint
Require: pretrained encoder Eθ and decoder Dϕ; randomly initialized projectors {Pψ(c)}Cc=1;

codebooks {C(c)}Cc=1 with sizes {s(c)}Cc=1 initialized by Alg. 1; size options S={1, . . . , N};
train set Xtr, test set Xte; test loss Lte

1: while true do
2: Fine-tune model: jointly update (θ, ϕ, {ψ(c)}, {C(c)}) on Xtr

3: Lossless test check: compute Lte on Xte; if Lte ̸= 0 then return {s(c)}Cc=1 ▷
stop—current sizes are the smallest achievable

4: Choose codebook to shrink (largest size):
5: if maxc s

(c) = 1 then return {s(c)}Cc=1 ▷ all codebooks already at size 1
6: end if
7: c⋆ ← argmaxc s

(c) ▷ break ties by smallest c (or any fixed rule)
8: snext ← max{ s ∈ S | s < s(c

⋆) } ▷ nearest smaller allowed size
9: Reinitialize codebook c⋆ at size snext:

10: build pool Z(c⋆) ← {z(c⋆) : (z(1), . . . , z(C))← Eθ(x), x ∈ Xtr}
11: (C

(c⋆)
snext , I

(c⋆)
snext )← KMEANS(Z(c⋆), k=snext)

12: C(c⋆) ← C
(c⋆)
snext ; s(c

⋆) ← snext ▷ centers become codewords
13: Continue loop.
14: end while
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Figure 7: Pong-SPB: Multi-task classification of score pair, paddle location, and ball location. The
three tasks are completely independent. Lower-bound bitrate: 13 bits/image.
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Figure 8: Pong-SPC: Multi-task classification of score pair, paddle location, and background color.
The score-pair and background-color tasks are dependent: score pairs from classes 1–8 (0:0 to
1:3) are associated with only 4 of the 8 background colors, while classes 9–16 (0:0 to 1:3) use the
remaining 4 colors, with no overlap. Both subsets are uniformly distributed across their respective
colors. Lower-bound bitrate: 12 bits/image.
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Figure 9: Geo-4Seg: Semantic segmentation of four objects and the background. Lower-bound
bitrate: ≈ 10.925 bits/image.

Figure 10: Geo-6Seg: Semantic segmentation of 6 objects and the background. Lower-bound bi-
trate: ≈ 25.002 bits/image.
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Figure 11: SOLO-VQ vs. CVQ-VAE on the training convergence rate.
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