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ABSTRACT

Interpretable reinforcement learning (RL) seeks to create agents that are efficient,
transparent, and understandable to the populations that they impact. A signifi-
cant gap in current approaches is the underutilization of human feedback, which
is typically employed only for post-hoc evaluation. We propose to center the
needs of end users by incorporating the feedback that would be obtained in a
user study directly into the training of interpretable RL algorithms. Our approach
involves preference learning, where we learn preferences over high-level features
that are not directly optimizable during the RL training process. We introduce
an evolutionary algorithm that leverages user feedback to guide training toward
interpretable decision-tree policies that are better aligned with human preferences.
We demonstrate the effectiveness of our method through experiments using syn-
thetic preference data. Our results show an improvement in preference alignment
compared to baselines, yielding policies that are more aligned with underlying
user preferences but does so with sample efficiency in the number of user queries,
thereby decreasing the burden on the user in providing such data.

1 INTRODUCTION

Advancements in reinforcement learning (RL) have resulted in autonomous agents capable of per-
forming tasks with remarkable ability in many applications, such as robotics (Mahmood et al., 2018),
games (Vinyals et al., 2019; Hafner et al., 2023), vehicular control (Yan et al., 2022), and more.
However, these achievements often come at the cost of interpretability: the neural networks governing
the agents’ decision-making processes are opaque, hindering understanding of their workings (Räuker
et al., 2023). This opacity not only hinders people’s ability to decide to trust and collaborate with
these agents but also poses significant challenges in diagnosing and rectifying their faults.

Interpretable RL seeks to address this challenge by generating understandable representations of
these decision-making processes (Glanois et al., 2021). However, existing techniques often do not
account for user needs or preferences. From the perspective of human-computer interaction, adopting
a user-centered approach is fundamental for ensuring that user needs are met (Lieberman et al., 2006).
Recognizing this, researchers in the interpretable machine learning field have increasingly advocated
for integrating human-centered methodologies into both the design (Schoonderwoerd et al., 2021)
and evaluation (Boyd-Graber et al., 2022; Colin et al., 2022) of interpretable models.

In interpretable RL, however, the goal of satisfying end user desires is, in practice, often not reached.
Evaluations of explanation quality and utility are frequently performed only after training (Narayanan
et al., 2022), so insights garnered from these evaluations are not readily integrated back into the model
itself. We envision utilizing human feedback during training to find RL policies that are better aligned
with the preferences and desired tasks of users. In this work, we focus on constructing interpretable
decision tree (DT) policies (McCallum, 1996; Pyeatt et al., 2001; Gupta et al., 2015) instead of
opaque neural network policies. DTs (Quinlan, 1996) are a popular method for interpretable machine
learning due to the consensus that they are human-understandable (Lipton, 2018; Rudin, 2019).

We propose to center user preferences through a novel learning approach that incorporates human
feedback into the training process of interpretable RL algorithms. The algorithm iteratively refines its
estimate of the underlying user preferences over DT policies and constructs new candidate policies to
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Figure 1: PASTEL overview. PASTEL consists of two main parts: i) preference elicitation and
learning and ii) interpretable policy generation. In preference elicitation and learning, users provide
feedback on candidate interpretable models. During interpretable policy generation, the current
preference estimate guides generation of interpretable models that better align with user preferences.

query for user preference feedback. The key insight is that maintaining a set of preference estimates
can be useful for constructing DT policies that maximally satisfy those estimates. Then, eliciting
further feedback by potentially considering these candidate policies allows us to refine the estimate.
By incorporating this feedback during training, we create policies that are better aligned with user
needs and preferences, rather than simply evaluating or measuring these preferences after training.

Contributions In this work, we make the following contributions. We propose “Preference Aligned
Selection of Trees via Evolutionary Learning” (PASTEL), the first algorithm to leverage preference
feedback for interpretable RL training. This algorithm consists of three main components. First, we
introduce a simple but effective evolutionary algorithm to guide training toward DT policies that
are better tailored toward preferences of end users. Second, we maintain a population of preference
estimates to help guide the selection of DT policies used for eliciting user feedback. Third, we improve
efficiency by pruning the set of candidate DT policies for querying, maintaining an approximation of
the Pareto frontier. We demonstrate the effectiveness of our method through experiments on two RL
environments using synthetic but empirically justified preference data. We show that our approach
not only yields policies that are more aligned with user preferences but is also more sample efficient
in the number of user queries, decreasing the burden on human users. By bridging the gap between
training RL agents and evaluating their explanations, we believe our work opens new avenues for
developing more interpretable, user-centered RL systems. In summary, we contribute the following:

• A framework formalizing the idea of preference-based interpretable reinforcement learning,
• PASTEL, the first algorithm to leverage preference feedback to train interpretable RL

policies, and
• An evaluation of PASTEL showing that it can produce better preference-aligned DT policies

compared with standard techniques for generating interpretable DT policies.

2 RELATED WORK

Interpretable Machine Learning. Interpretable machine learning (ML) has become increasingly
important as ML systems are deployed for more complex and sensitive use cases (Prashanth et al.,
2016; Chebotar et al., 2021). The need for interpretability arises from the desire to understand,
appropriately trust, and effectively manage these systems. The most relevant line of work to ours is
in interpretable RL. Although many structures have been proposed to use in lieu of neural networks
for RL policies, including domain-specific programming languages (Verma et al., 2018) and human-
friendly prototypes (Kenny et al., 2022), we focus on DT policies due to the general consensus
that they are human-understandable (Lipton, 2018; Rudin, 2019). One challenge with DTs is their
discrete structure is not immediately amenable to gradient-based training. Although work has applied
gradient-based training to DT policies by introducing non-linearities in the splits (Silva et al., 2020),
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the conversion of the soft tree (Irsoy et al., 2012) to a standard DT results in severe performance
loss, making this approach inapplicable in our setting. Moreover, prior work trains DT policies only
from the perspective of reward maximization (Bastani et al., 2018; Topin et al., 2021) under a fixed
interpretability objective (typically, depth minimization). Our approach not only focuses on obtaining
reward-maximizing DT policies but also aligning them with preferences. While our emphasis is on
interpretability, we note that our framework also readily lends itself to explanation generation.

Learning from Human Feedback. There is growing interest in the area of learning from human
feedback (Griffith et al., 2013; Hadfield-Menell et al., 2016; Stiennon et al., 2020) due to the difficulty
of specifying a concrete objective that captures the full extent of what people want ML algorithms
to do. Our work can be viewed as a general framework for incorporating human feedback into
interpretable machine learning. In contrast, previous work often treats the interpretability objective
as fixed (e.g., by specifying a maximum tree depth or known weight on the depth (Custode and
Iacca, 2023)) or only as a way to evaluate the resulting explanations. This prior knowledge can be
used to set an initial guess within our model, and the evaluation metrics can be used along with
our approach. Furthermore, we aim for a practical algorithm that demonstrates sample efficiency in
gathering preferences, aligning with prior work that emphasizes the importance of minimizing user
effort in interactive machine learning systems (Cakmak and Thomaz, 2012; Wilson et al., 2012).

Preference Elicitation. Preference elicitation and learning have been extensively studied across
various disciplines, addressing the need to understand preferences over a set of alternatives (Chajewska
et al., 2000; Conen and Sandholm, 2001; Loepp et al., 2014; Weernink et al., 2014; Li et al., 2023).
Approaches in this field often focus on ranking elicitation by employing methods such as pairwise
comparisons (Eric et al., 2007; Lu and Boutilier, 2011a; Branke et al., 2017) or asking individuals
to rank their top choices among all or a subset of alternatives (Lu and Boutilier, 2011b; Soufiani
et al., 2013; Drummond and Boutilier, 2014; Zhao et al., 2018). These methods typically result in the
elicitation of full rankings or partial orders for agents or groups. Our work, while building on these
works on preference elicitation, shifts the focus from eliciting rankings to learning the underlying
preference model parameters. Our approach shares similarities with Bayesian Experimental Design
(Chaloner and Verdinelli, 1995; Rainforth et al., 2024), where the objective is to learn information
about the preference model ✓, and aims to explore the integration of preference elicitation and
learning, with an emphasis on aligning models with the preferences of downstream users.

3 PROBLEM STATEMENT

We formulate the problem of integrating user feedback into interpretable RL to identify the most
preferred DT policy. We frame the task as an online iterative process of pairwise comparisons over a
finite horizon, or query budget, T .

Interpretable Tree Policy Representation. Let ⇧̂ denote the set of all possible DT policies and
E represent the set of all possible environmental or contextual information. We define a mapping
function m : ⇧̂⇥ E ! Rd that maps a DT policy ⇡̂ and the full set of environmental information to a
d-dimensional feature vector f⇡̂ 2 Rd, such that

f⇡̂ = m(⇡̂, E). (1)

These features may include structural attributes (e.g., depth, number of leaves), performance metrics
(e.g., average accumulated reward), and explanation characteristics (e.g., which state features are
used in the tree). We assume that the mapping m is known and is sufficient to describe the users’
preferences. The mapping function m internally determines which elements are relevant and how
they contribute to the resulting feature vector f⇡̂ .

User Preference Model. Let ✓ be a latent parameter vector representing user preferences. Then,
following standard assumptions of linearity in the preference elicitation literature (Li et al., 2010;
Chu et al., 2011; Saha, 2021), we model the user’s utility function as a linear combination of the
policy attributes and ✓, such that

v(⇡̂; ✓) = v(m(⇡̂, E); ✓) = f>⇡̂ ✓. (2)

This formulation allows us to compactly capture user preferences over various aspects of the DT
policies. The user’s stochastic response o to pairwise queries of DT policies Q = (⇡̂, ⇡̂0) is based on
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their underlying utility function v. Given two DT policies ⇡̂i, ⇡̂j with corresponding feature vectors
f⇡̂i , f⇡̂j , the probability that ⇡̂i is preferred to ⇡̂j is:

P(⇡̂i � ⇡̂
j |✓) = 1

1 + exp

✓
�

⇣
v
�
f⇡̂j ; ✓

�
� v (f⇡̂i ; ✓)

⌘◆ , (3)

where � is an inverse temperature parameter governing the stochasticity of user responses. This
preference model corresponds to the standard Terry-Plackett-Luce model (Bradley and Terry, 1952;
Luce, 2012) with a rationality coefficient (Shah et al., 2016; Laidlaw and Dragan, 2022).

Preference Elicitation Framework. At each iteration t 2 [T ], the algorithm can present the user
with a pair of tree policies Qt = (⇡̂t, ⇡̂

0
t) selected from a set ⇧̂t. The user provides stochastic

feedback ot based on their underlying utility function v. We focus on the pairwise query setting, such
that each query |Qt| = 2.

Learning Objective. After T queries, the learner outputs a recommended tree ⇡̂T . The learner
derives the recommendation as:

⇡̂T = argmax⇡̂2⇧̂v̂t(⇡̂; ✓̂), (4)

where v̂T (⇡̂; ✓̂) is the estimated utility of tree ⇡̂ after T queries, and ⇧̂T is the set of trees considered
up to iteration T . We formulate the objective as maximizing the true utility of the recommended DT
policy after T queries:

max
⇡̂2⇧̂

v(⇡̂; ✓). (5)

A key advantage of our setting is the ability to generate new interpretable models or explanations,
providing a higher degree of control over the options presented to users in each round. This
contrasts with settings like movie recommendation, where creating new items based on preferences is
impractical.

4 PASTEL

How can we create interpretable policies that align with what humans actually want? We propose
PASTEL, an algorithm that interleaves preference learning and policy finding to produce interpretable
decision tree policies aligned with user preferences. Detailed in Algorithm 1, this algorithm proceeds
as follows. First, PASTEL creates initial preference estimates ✓̂ = ✓̂i, . . . ✓̂N and an initial population
of DT policies ⇧̂0. In each iteration t 2 [T ], the algorithm first updates preference estimates and then
updates the policy population by repeating steps 2 and 3:

1. Initialization: Create a set of preference estimates and an initial population of DT policies.
2. Preference Elicitation and Learning: Select policies for querying the user, obtain user

feedback, and update the preference estimate ✓̂t.
3. Interpretable Policy Generation: Use an evolutionary algorithm to generate a new popula-

tion of policies ⇧̂t.

After exhausting the query budget, the algorithm identifies the best policy with respect to the final
preference estimate. We now describe each component in detail.

4.1 INITIALIZATION

Create Initial Preference Estimates. We initialize multiple preference estimates {✓1 . . . ✓N}
using Xavier initialization, where each ✓i 2 Rd is drawn from a uniform distribution U(�r, r)
with r =

p
6/d. This approach, inspired by the Query by Committee (QbC) paradigm in active

learning, maintains a diverse set of hypotheses about user preferences. The ensemble of estimates
⇥ = ✓1, . . . , ✓N enables robust exploration of the preference space P ✓ Rd, mitigating the risk of
overfitting to early, potentially noisy preferences. For policy selection, we employ a voting mechanism
where each estimate ✓i contributes to the decision. We simply take the maximum, breaking ties
uniformly at random.

4
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Algorithm 1 PASTEL

1: Initialize ✓̂ = ✓̂
1
0, . . . , ✓̂

N
0 randomly

2: Train RL policy ⇡
⇤  RLTraining()

3: Generate initial population of tree policies ⇧̂0 = {⇡̂1, . . . ⇡̂K⇥M} using VIPER-style imitation
learning of ⇡⇤

4: Obtain feature vector f⇡̂ for each ⇡̂ 2 ⇧̂
5: Initialize best policy so far as ⇡̂⇤

0  ⇡̂ = argmax⇡̂2⇧̂0
vote({v̂i(f⇡̂; ✓i)}Ni=1)

6: for t 1 to T do
7: Obtain reduced population ⇧̂t�1 with Pareto frontier filtering
8: Choose policies to present to user according to Equation (7)
9: Obtain feedback ot�1 about Qt�1 according to Equation (3)

10: Update ✓̂
i
t according to Equation (8)

11: for ✓̂
i
t do

12: Assign the initial population for EA  0  ⇧̂0

13: for g = 0, 1, . . . , G� 1 do
14: Evaluate fitness of  g according to f>⇡̂ ✓̂

i
t

15: Initialize next population  g+1  ;
16: while | g+1| < population size do
17: p1, p2  SelectParents( g, k) using tournament selection
18: if n ⇠ U(0, 1) < ⇢ then
19: p1, p2  Crossover(p1, p2)
20: end if
21: Mutate(p1), Mutate(p2)
22: Add p1, p2 to  g+1

23: end while
24: end for
25: end for
26: Assign ⇧̂t   i

G, P for more preference queries
27: end for
28: return Best policy ⇡̂

⇤ according to v̂T

Generate Policies for Preference Elicitation. In real-world applications, policies typically must not
only satisfy user preferences but also perform competently in their intended domain. We leverage this
insight to develop an initialization method for candidate policies that are both performant and diverse
with the goal of providing a strong starting point for preference elicitation. Our approach builds on
VIPER (Bastani et al., 2018), a DAgger-based interactive imitation learning algorithm (Ross et al.,
2011) in which an RL policy ⇡

⇤ acts as an expert to guide the training of decision-tree policies.
Following this framework, we train a high-quality RL policy ⇡

⇤ for the domain of interest. Then,
we generate a pool of DTs, which serve as candidate tree policies. To ensure that there is sufficient
diversity in the initial set of DT policies, we make two key modifications to VIPER. First, instead
of only outputting the final best tree ⇡̂ according to return or alignment with the expert ⇡⇤, we
instead use all tree policies generated during the K VIPER iterations. Second, we introduce depth
randomization, in which we choose a set of M maximum depths to constrain the resulting depths of
the trees. From this process, we obtain an initial population of |⇧̂0| = K⇥M tree policies, which we
then convert into their corresponding d-dimensional feature vectors f⇡̂ 2 Rd  m(⇡̂, ·), 8⇡̂ 2 ⇧̂0.

Pareto Frontier Filtering. Given that users have limited time, we want to ensure that the feedback
we gain from each comparison is informative. To maximize the value of each user interaction, we
avoid presenting policies that are dominated in all dimensions, as repeated selections of clearly
superior policies provide little information about how users trade off different feature dimensions.
Instead, we propose filtering the policy set based on the Pareto frontier. Given a dataset D in a
multi-dimensional space and a corresponding preference direction for each dimension, we identify
the points that comprise the Pareto frontier:

P = {x 2 D | @y 2 D, such that y dominates x}, (6)
where a point y dominates x if it is at least as good in all dimensions and strictly better in at least
one dimension. PASTEL then chooses from this reduced set of trees for preference elicitation. This
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approach not only ensures that users are presented with only the most promising options but can also
dramatically reduce the computational complexity of the selection process. In many practical cases,
the size of the Pareto frontier grows sublinearly with respect to n. For instance, in two-dimensional
problems, it follows a logarithmic relationship. This reduces the complexity from the naive O(Tn2)
to O(T log2 n). This reduction means that we can explore the use of more computationally intensive
techniques for identifying the most informative pairs for comparison.

4.2 PREFERENCE ELICITATION AND LEARNING

We now introduce our preference elicitation and learning process, designed to learn user preferences
over DT policies. Our approach combines a selection strategy with an update mechanism to navigate
preference spaces. We aim to converge on accurate preference estimates while handling stochasticity
in user responses.

Selection Process The selection process employs a novel approach to identify the most informative
pair of items (f⇡̂i , f⇡̂k) from a set F , given a collection of preference estimates ✓jj = 1m. For each
potential pair and each ✓j , the algorithm computes two hypothetical updates:

✓
(i)
j = ✓j � ⌘rL(f⇡̂i � f⇡̂k |✓j) and ✓

(k)
j = ✓j � ⌘rL(f⇡̂k � f⇡̂i |✓j),

where ⌘ is the learning rate and rL is the gradient of the logistic loss. The cosine similarity
cos(✓(i)j , ✓

(k)
j ) is then computed for each ✓j . The algorithm selects the pair (f⇡̂i , f⇡̂k) that minimizes

the average cosine similarity across all ✓j :

(f⇡̂i , f⇡̂k) = argmin
(f⇡̂i

,f⇡̂k
)

1

m

mX

j=1

cos(✓(i)j , ✓
(k)
j ). (7)

This approach aims to maximize the expected information gain by choosing pairs that lead to the
most orthogonal (i.e., least similar) updates across the ensemble of preference estimates, thereby
efficiently exploring the preference space.

Preference Update In modeling preferences over DT policies, we seek an approach that accounts
for uncertainty, allows for online updates, and efficiently estimates preferences in a potentially
high-dimensional feature space. As a result, we adopt a logistic regression model with stochastic
gradient updates. After receiving (noisy) feedback ot about Qt from the user based on Equation (3),
the algorithm then updates the current estimates of the underlying preference vector. Specifically,
PASTEL uses the user feedback and the selected DT policies’ corresponding feature vectors f⇡̂, f 0⇡̂ to
update each ✓̂ as:

✓̂t+1 = ✓̂t + ↵ · (ot � �(✓̂>t (f⇡̂ � f 0⇡̂))) · (f⇡̂ � f 0⇡̂), (8)
where ↵ is the learning rate, �(·) is the logistic function, ot 2 {0, 1} is the binary label derived from
the user’s feedback, and f⇡̂ � f 0⇡̂ is the difference between the feature vectors of the compared DT
policies.

4.3 INTERPRETABLE POLICY GENERATION

Equipped with our updated N preference estimates, we now focus on generating new structures to
align with those preferences. The goal is to create these structures such that they can be checked
against (and possibly added to) the current Pareto frontier for further preference elicitation. Because
many popular structures used in interpretable reinforcement learning, such as DTs, are not differen-
tiable, we require an algorithm that can produce new DTs without relying on gradients.1 As a result,
we introduce an EA to generate new DT policies. EAs (Bäck and Schwefel, 1993) do not require
the objective function to be differentiable. They work by evolving a population of solutions over
generations to optimize a given objective function, called the fitness function.

In PASTEL, we call an EA for each of the theta estimates ✓̂i, . . . , ✓̂N , such that the fitness function
for the associated EA uses ✓̂i to evaluate the quality of each individual in the population. Specifically,

1When the interpretable models or explanations can be updated using gradients, one can directly leverage
work that uses preference feedback for RL (Christiano et al., 2017; Bai et al., 2022).
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each f⇡̂ is evaluated as v̂(f⇡̂) = ✓̂f⇡̂, and the individual that maximizes this value after G rounds of
the EA is the best tree policy according to that ✓̂ estimate. Then, it is compared with the set of DT
policies in the Pareto frontier and added to the set if it is non-dominated. Each time the EA is called
it proceeds as in Lines 17-29 of Algorithm 1.

Fitness Because we envision that this algorithm could actually interact with end users, we prioritize
efficiency. One challenge is that, in each EA loop, we need to estimate the quality, or fitness, of each
new DT policy using ✓̂. When the feature vector comprises of simple policy attributes, this estimation
is fast. However, when environment return is included, we often need to perform rollouts for a
fixed number of episodes ⇢ to estimate the expected return. This process could be computationally
expensive, especially with a large number of candidates. To address this challenge, we propose
an adaptive policy evaluation algorithm that dynamically adjusts its evaluation process based on
the policy’s performance profile, allowing for fewer episodes to be evaluated for less promising
candidates. We use an UCB-inspired bound (Slivkins et al., 2019) to estimate the expected return for
each tree as

R̃ = R̂+ c

r
ln(n)

n
, (9)

where n is the number of episodes performed. As we gather more samples (increasing n), our
confidence interval narrows, allowing us to be more certain estimate on the expected return of each
arm. To allow for fewer episodes to be rolled out for less promising arms, we design a stopping
condition

c

r
ln(n)

n
 ✏base

1 + ✏scale · R̃
, (10)

which is updated after each rollout. This formulation embodies a key insight: as the estimate R̃

increases (suggesting a potentially better policy), we decrease ✏, demanding higher precision. This
allows us to differentiate more accurately between high-performing policies.

Crossover In EAs, the crossover operator aims to construct new individuals by combining the parts
of promising individuals. We choose to preserve individuals that are scored highly according to ✓̂,
then perform subtree swapping as a crossover operator. Subtree swapping first randomly selects a
node within the tree structure of the two parents in the crossover operation, denoted as ncross 2 N .
Then, the subtrees rooted at this node are exchanged, resulting in two new individuals.

Mutation To more broadly explore the space of possible trees, we perform mutations on randomly
selected nodes of a tree in one of three ways, determined by tunable weights on the three mutation
strategies: random, subtree rebuilding, and subtree removal. Random mutation (Mrand) selects a
random feature and a corresponding split value (or selects a new random action) to create a new
node n

0. Subtree rebuilding (Msubtree) first retrieves the subset of data Dpath 2 D corresponding to a
chosen node. The subtree is then reconstructed using imitation learning with Dpath. Subtree removal
replaces the subtree rooted at the selected node with an action.

5 EXPERIMENTS

We evaluate the performance of PASTEL on two different RL environments. Because DTs are
generally considered interpretable, we conduct a functionally-grounded evaluation (Doshi-Velez
and Kim, 2017), in which we define a specific set of features that would inform user preferences
for interpretable models and simulate these preferences. A crucial advantage of testing our method
in these simulated environments is that we can evaluate how well our model is able to recover the
preferences of the “ground truth” users, which provides us with insights about how our methods
could perform with real users.

Environments. We select CartPole-v1 and PotholeWorld-v0 as our test environments not only
because a reward-optimal policy can be represented as a tree but also for their complementary
characteristics. CartPole-v1, a classic control problem, offers a simple, well-understood domain
with a low-dimensional state space (cart position, velocity, pole angle, and angular velocity) and
binary actions (push left or right), serving as an excellent benchmark for basic RL capabilities. In
contrast, PotholeWorld-v0 (Topin et al., 2021) presents a more complex, driving-inspired scenario

7
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CartPole-v1 PotholeWorld
Feature Type Values Feature Type Values
Reward Performance [0, 500] Reward Performance [�170, 49.95]
Depth Structural {0, . . . , 10} Depth Structural {0, . . . , 10}
Num. leaves Structural {1, . . . , 1024} Num. leaves Structural {1, . . . , 1024}
State feature
used

Explanation {0, 1} Action taken Explanation {0, 1}

Table 1: Features used in the preference vectors for the two environments.

Figure 2: Comparison of normalized scores for PASTEL and VIPER algorithms on the PotholeWorld-
v0 and CartPole-v1 environments. Each bar in the plots represents a different preference vector.

where an agent navigates lanes to avoid obstacles. We augment PotholeWorld-v0 with a controllable
parameter governing lane reward trade-offs, allowing exploration of long-term planning in stochastic
environments. In PotholeWorld-v0, the state is simply the current position, with three possible actions
corresponding to lane choices. As a result, the agent must learn through experience to navigate
around the potholes.

Features. We test with d = 4 features for each environment. To evaluate the method, we choose
at least one feature from each type (performance-based, structural, and explanation characteristics).
Table 1 shows the features used.

Preference Generation. To generate the values for ✓, we adopt a vector scaling technique (Ehrgott,
2005). We linearly combine the basis vectors, with each vector maximizing only one preference. This
setup enables the exploration of explicit trade-offs among these preferences by adjusting the scaling
factor for each vector entry ↵, such that

Pn
i=1 |✓i| = 1. The scaling factor is 0.25, resulting in 35

different ✓ values for each environment. We run each ✓ with 3 random seeds for each experiment.

Baselines In our experiments, we compare against two baselines: VIPER and what we call Random-
ized Dueling Preference Selection (RDPS). The latter baseline is inspired by randomized dueling
bandit algorithms used in preference-based learning. The algorithm maintains the current best ex-
planation. At each iteration t, the algorithm compares the current best with a randomly selected
challenger. After eliciting pairwise preference feedback, the winner of the duel becomes the updated
best explanation. This process is repeated for T queries.

Performance Metrics. We normalize the results using the maximum and minimum possible values
of the decision tree, obtained by running EA for each true preference vector, ✓, and its inverse, �✓,
respectively. The normalized values are in [0, 1].

5.1 RESULTS

PASTEL produces tree policies that better align with human preferences compared with VIPER.
We first investigate whether PASTEL produces better-aligned DT policies under a noisy regime by
setting � in Equation (3) to be 10. We compare PASTEL with VIPER to verify that we can indeed
produce better preference-aligned trees than VIPER’s reward maximizing algorithm. Because VIPER
does not incorporate preferences in its learning process, the best tree is chosen based on return
only. We evaluate the quality of the DT policies recommended by both approaches at T = 40
queries for PotholeWorld-v0 and T = 20 queries for CartPole-v1. As shown in Figure 2, PASTEL
produces substantially more preference-aligned trees than VIPER. For PotholeWorld-v0, PASTEL
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Noise Regime PASTEL RDPS VIPER

Easy 0.9772 ± 0.0042 0.89649 ± 0.0114 0.75628 ± 0.0328
Medium 0.9496 ± 0.0089 0.843133 ± 0.0160 0.75628 ± 0.0328

Table 2: Mean normalized scores for PASTEL, RDPS, and VIPER in two different noise regimes.

Algorithm PotholeWorld-v0 CartPole-v1
PASTEL 0.9772 ± 0.0042 0.9865 ± 0.0028
PASTEL-DTEA 0.9349 ± 0.0043 0.8872 ± 0.0204
PASTEL-ITER 0.7158 ± 0.0470 0.9864 ± 0.0030
PASTEL-PFF 0.9668 ± 0.0054 0.9642 ± 0.0081
PASTEL-CSS 0.9707 ± 0.0052 0.9884 ± 0.0027

Table 3: Ablation study: mean normalized scores for all PASTEL ablations. Error is standard
error. For PotholeWorld-v0, all components of PASTEL contribute to its performance. However,
CartPole-v1 is simpler, so the major benefit stems from the EA.

maintains scores close to 1.0 with minimal variance, indicating robust and near-optimal performance.
In contrast, VIPER shows considerable fluctuation in its scores. Similarly, in CartPole-v1, PASTEL
again demonstrates higher stability and performance, consistently achieving near maximum scores
across all preference vectors. VIPER’s performance in CartPole-v1, while showing some improvement
over its PotholeWorld-v0 results, still exhibits significant variability with scores ranging from around
0.6 to 1.0. These findings suggest that PASTEL can indeed produce more preference-aligned DT
policies.

PASTEL produces aligned policies under different levels of noise. We investigate this question in
PotholeWorld-v0 for two different noise regimes: easy and medium. We achieve these regimes by
setting � in Equation (3) to values that result in progressively more probabilistic disparity between
the best and the worst trees in the original set of trees. In other words, there exists a 1� ✏ probability
of choosing the best tree over the worst tree. In the medium setting, we set � such that ✏ is closer to
0.5 and reduce the value to reflect the difficulty of the other settings. Here, we compare with RDPS
and VIPER. However, VIPER does not learn preferences and therefore is resistant to noise. Table 2
shows the results of this experiment. We find that, although RDPS can outperform VIPER in terms of
preference score, PASTEL still can find better preference-aligned trees in both noise regimes. This
indicates that PASTEL can be relatively robust to noise.

Ablation study: the different components of PASTEL have different, environment-dependent
contributions to the overall score. Table 3 presents the results of an ablation study on the PASTEL
algorithm. The base version of PASTEL achieves strong performance in both environments, with mean
normalized scores of 0.9772 ± 0.0042 and 0.9865 ± 0.0028, respectively. Removing the evolutionary
algorithm component (PASTEL-DTEA) results in a notable drop in performance, especially in
CartPole-v1, where the score decreases to 0.8872 ± 0.0204, suggesting that the evolutionary strategy
is particularly important in environments with lower complexity. Similarly, the non-iterative variant
(PASTEL-ITER) shows a significant degradation in PotholeWorld-v0, with a mean score of 0.7158 ±
0.0470, while maintaining comparable performance in CartPole-v1 (0.9864 ± 0.0030). The absence
of Pareto frontier filtering (PASTEL-PFF) leads to a slight reduction in both environments, indicating
that Pareto filtering contributes modestly but consistently to overall performance. Lastly, random
sampling (PASTEL-CSS) instead of the designed preference elicitation strategy leads to only a minor
performance drop, with the algorithm still maintaining competitive scores in both environments.
These results show that each component of PASTEL contributes to its performance, though the
importance of each varies depending on the environment.

6 CONCLUSION AND FUTURE WORK

We proposed to incorporate user feedback directly into the explanation-generation process. This
approach provides a proof of concept that incorporating the preferences of users into the process
yields explanations that are better aligned with users goals and desires. By leveraging human
feedback during training, our approach addresses a critical gap in existing interpretable RL methods,
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which often fail to consider user needs in real-time. Through experiments in two environments,
we demonstrated that our method not only produces DT policies that are better aligned with the
underlying preferences but also does so efficiently, in 40 queries or fewer. Our work lays the
groundwork for future research on developing more user-centered, interpretable RL systems that
prioritize alignment with human expectations.

Limitations and Future Work. One limitation of our work is the assumption of static user prefer-
ences, which may not accurately reflect the dynamic nature of preferences in real-world applications.
To address this, future work could explore techniques for modeling and adapting to evolving user
preferences over time, allowing the system to update and refine policies as user goals shift. Another
limitation is the use of synthetic data for evaluation, which may not fully capture the diversity of
real-world user perspectives. In future studies, incorporating a wider range of user input and adopting
an application-grounded evaluation approach (Doshi-Velez and Kim, 2017) could provide more
meaningful insights, particularly by leveraging real-world data to model the latent factors that influ-
ence user preferences. This would enable more robust, user-centered policy generation in practical
settings.
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theory meets reinforcement learning: Prediction and control. In International Conference on
Machine Learning, pages 1406–1415. PMLR, 2016.

Larry D Pyeatt, Adele E Howe, et al. Decision tree function approximation in reinforcement
learning. In Proceedings of the 3rd International Symposium on Adaptive Systems: Evolutionary
Computation and Probabilistic Graphical Models, volume 2, pages 70–77, 2001.

J. Ross Quinlan. Learning decision tree classifiers. ACM Computing Surveys (CSUR), 28(1):71–72,
1996.

Tom Rainforth, Adam Foster, Desi R Ivanova, and Freddie Bickford Smith. Modern bayesian
experimental design. Statistical Science, 39(1):100–114, 2024.
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