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ABSTRACT

Recent progress in vision-language-action (VLA) models has enabled robots to
follow natural language instructions across diverse manipulation tasks. How-
ever, existing approaches struggle with three persistent challenges: limited spatial
grounding, which hampers centimeter-level precision; inefficiency and instabil-
ity in long-horizon execution due to transformer-based decoders; and brittleness
under distribution shift, where minor visual or linguistic variations can cause fail-
ure. We present Spatial VLA-Mamba, a framework that addresses these challenges
through three innovations. First, a spatial-aware encoder augments RGB features
with depth and geometric primitives, providing explicit metric grounding. Sec-
ond, a Mamba-based state-space decoder replaces transformers, offering linear-
time complexity and stable long-sequence modeling for extended action horizons.
Third, a Chain-of-Thought Reinforcement Learning (CoT-RL) loop introduces in-
trinsic self-refinement: the policy generates textual outcome summaries of candi-
date trajectories, evaluates them with CLIPScore against the goal instruction, and
updates itself via PPO without reliance on external language models. Experiments
in Webots show that Spatial VLA-Mamba reduces spatial error by over 35% rel-
ative to strong baselines, improves unseen-task success to 67.3%, and achieves
higher robustness to sensor noise and linguistic paraphrasing, while requiring less
GPU memory and runtime. These results highlight the importance of combining
spatial grounding, efficient sequence modeling, and intrinsic reasoning for reliable
embodied control, pointing toward embodied foundation models that are accurate,
efficient, and self-correcting.

1 INTRODUCTION

Developing robotic agents that can reliably follow natural language instructions requires unifying
progress across perception, language understanding, and control. The recent emergence of large-
scale Vision-Language-Action (VLA) models has shown that it is possible to transfer knowledge
from web-scale corpora into embodied policies. Pioneering efforts such as RT-1 (Brohan et al.,
2023b), RT-2 (Brohan et al.| |2023a)), and PaLM-E (Driess et al., 2023) demonstrate that large pre-
trained encoders, when coupled with robot action heads, enable generalization to novel objects and
tasks beyond those explicitly seen in demonstrations. These models establish an exciting paradigm:
embodied control can be treated as a general sequence modeling problem, grounded in multimodal
inputs and scaled through large datasets.

Despite these successes, important gaps remain. One fundamental limitation is the lack of explicit
spatial reasoning. Instructions such as “place the mug 5 cm to the left of the plate” or “stack the
blocks in ascending order” require the agent to understand metric relations in continuous space.
Existing VLAs typically rely on high-capacity visual backbones and implicit priors, but they do not
represent geometric constraints as first-class features. As a result, they may succeed at semantic
generalization yet fail at centimeter-level precision. Research on enriching vision-language models
with spatial structure, such as Spatial VLM (Chen et al.}[2024)), 3D VQA (Mo & Liu,2024), or voxel-
based encoders (Li et al.| 2023)), confirms that geometry matters, but these approaches are either
limited to perception benchmarks or computationally heavy for real-time robotics. Recent robotics-
oriented work such as RoboRefer (Zhou et al., |2025a) and RoboSpatial (Song et al., [2025) also
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emphasizes spatial grounding, but integrating such representations into scalable VLA architectures
remains unresolved.

A second challenge is long-horizon execution. Many real-world tasks, from clearing a table to
organizing objects, require sequences of dozens of steps. Transformer-based VLAs scale poorly to
such horizons because of quadratic complexity and an inability to propagate state consistently across
hundreds of tokens. As a result, even models trained on millions of trajectories exhibit cascading
errors: once a sub-goal is missed, recovery is rare. Structured state-space models such as Mamba
(Gu & Dao, 2024} |Dao & Gul 2024) have recently emerged as efficient alternatives to transformers,
showing linear-time complexity and strong long-sequence modeling ability. RoboMamba (Liu et al.,
2024) adapts this idea to robotic control, but it does not address spatial grounding or robustness.

Finally, VLA models struggle with robustness under distribution shift. Variations in linguistic phras-
ing, visual distractors, or sensor noise often lead to brittle failures. One promising avenue is ex-
plicit reasoning: chain-of-thought prompting has improved generalization in large language models
(Zhang et al., |2022; |Wei et al., 2023} |Wang et al., 2023} Jin et al., |2024; |[Pan et al., |2025)), and mul-
timodal extensions such as LLaVA-CoT (Xu et al., 2025)) show potential in visual-language tasks.
In robotics, however, most work has relied on external LLMs for reasoning or reward design (Liang
et al.}2023;|Ma et al.||2024), which introduces latency and dependence on models not optimized for
control. There remains an open question: can embodied policies themselves generate, evaluate, and
refine their own reasoning traces to improve robustness, without outsourcing to an external LLM?

In this work, we address these challenges with SpatialVLA-Mamba, a framework that integrates
metric-aware perception, efficient long-horizon modeling, and intrinsic self-refinement. The design
is built around three innovations. First, a spatial-aware encoder augments standard RGB embeddings
with depth, bounding boxes, and relative object poses, allowing metric relations to be explicitly
represented. Second, a Mamba state-space decoder replaces transformer-based decoders, enabling
sublinear memory scaling and stable long-horizon execution. Third, a Chain-of-Thought Reinforce-
ment Learning (CoT-RL) loop introduces self-refinement: the model predicts textual consequences
of its planned actions, evaluates them against the instruction using CLIPScore (Hessel et al.,|2022),
and updates its policy through PPO (Schulman et al.l 2017).

Our experiments in Webots (Hadi et al., 2024)) confirm that this combination substantially improves
performance. SpatialVLA-Mamba reduces spatial error by over 35% relative to strong baselines,
achieves higher success rates on unseen and long-horizon tasks, and remains robust to sensor noise
and linguistic paraphrasing. Importantly, these gains come with efficiency: the Mamba decoder
requires less GPU memory and executes faster than transformers in long rollouts.

In summary, our contributions are:

* A spatial-aware VLA encoder that incorporates depth and geometric primitives into mul-
timodal embeddings.

* A Mamba-based decoder adapted for multimodal sequences, achieving efficient and reli-
able long-horizon planning.

* A CoT-RL loop that enables embodied agents to refine actions internally via outcome
prediction and text-based rewards.

Together, these elements establish a unified recipe for spatially grounded, efficient, and self-refining
embodied Al. By demonstrating strong gains in simulated manipulation tasks, we hope to advance
the discussion from scaling alone toward models that incorporate inductive biases critical for real-
world control.

2 RELATED WORK

Vision-language-action models. Large-scale VLA models such as RT-1 (Brohan et al.| 2023b),
RT-2 (Brohan et al.||2023a), and PaLM-E (Driess et al.l [2023)) have demonstrated that policies pre-
trained on web-scale vision-language data can transfer to robotic control. More recent efforts have
introduced specialized architectures for manipulation, including CLIPort (Shridhar et al., [2021),
Perceiver-Actor (Shridhar et al.| 2022), and Code-as-Policies (Liang et al.|[2023)), which leverage ei-
ther spatial priors or language-conditioned planning. RoboMamba (L1u et al.| | 2024)) further explored
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selective state-space models for efficient robotic control. Parallel work has aimed to scale VLAs to
open-world reasoning, such as ChatVLA-2 (Zhou et al.,|2025c), Embodied-R1 (Yuan et al.,|2025)),
and Otter (Huang et al.l | 2025), highlighting the trend toward generalist embodied models. Our work
differs in unifying explicit spatial encoding with state-space decoding and intrinsic self-refinement,
rather than focusing solely on model scale.

Spatial reasoning in embodied agents. Spatial grounding remains a major challenge in embodied
Al Approaches like Spatial VLM (Chen et all 2024) and related 3D VQA methods (Mo & Liu,
2024) have shown the importance of geometric reasoning for perception tasks. Voxel-based encoders
such as VoxFormer (L1 et al. |2023) and geometry-oriented representations such as QuadricsNet
(Wu et all [2023) aim to capture 3D structure more explicitly. Robotics-focused work includes
RoboRefer (Zhou et al.,|2025a), which targets spatial referring expressions, and RoboSpatial (Song
et al., [2025), which teaches spatial concepts across 2D and 3D modalities. PhysVLM (Zhou et al.,
2025b) addresses physical reachability constraints, while Spatial VLA (Qu et al., |2025)) combines
adaptive grids with language-guided policies. Our encoder extends these directions by integrating
metric primitives directly into multimodal token streams, enabling efficient downstream use by state-
space decoders.

Sequence modeling for long-horizon control. Transformers have become the default backbone
for multimodal modeling, but their quadratic scaling limits efficiency. Structured state-space mod-
els such as Mamba (Gu & Dao, 2024) and its generalizations (Dao & Gul [2024) offer linear-time
complexity and have been shown to outperform transformers on long-sequence tasks. RoboMamba
(L1u et al.l 2024])) adapted this idea for manipulation. Our work complements these efforts by show-
ing that when combined with explicit geometric encoding, Mamba provides substantial gains for
long-horizon robotic planning.

Self-refinement and chain-of-thought. The success of chain-of-thought prompting (Zhang et al.,
2022; Wei et al., 2023} Wang et al., [2023; [Jin et al., 2024} |Pan et al., [2025) and subsequent multi-
modal extensions such as LLaVA-CoT (Xu et al.,|2025)) illustrates the potential of explicit reasoning
traces. However, most prior work has focused on language-only tasks. In robotics, external LLM-
based supervision has been used for reward design (Ma et al.l 2024) and reasoning (Liang et al.|
2023)), but this reliance on external models introduces latency and brittleness. Constrained decod-
ing methods (AnonymousAuthors, 2025) and generalization-focused studies (Anonymous), [2025)
offer partial solutions. Our CoT-RL loop differs in that it integrates textual outcome prediction di-
rectly into the policy, using CLIPScore (Hessel et al.l 2022)) as an intrinsic reward, thereby enabling
lightweight and closed-loop self-refinement.

3 METHOD

We propose Spatial VLA-Mamba, a vision-language-action framework designed around three inno-
vations: (i) a spatial-aware encoder that explicitly encodes metric relationships, (ii) a Mamba-based
decoder that scales efficiently to long-horizon action sequences, and (iii) a Chain-of-Thought Rein-
forcement Learning (CoT-RL) loop that provides intrinsic self-refinement. Figure [T| summarizes the
architecture.

3.1 SPATIAL-AWARE VISION-LANGUAGE ENCODER

Robotic instructions often include precise spatial cues, yet most VLA models rely on implicit visual
priors rather than explicit metric reasoning. To address this, we design an encoder that fuses RGB,
depth, and geometric primitives with natural language instructions.

RGB and depth backbones. RGB inputs are processed by a Vision Transformer (ViT-
B/16 (Dosovitskiy et al.|[2021))) pretrained on ImageNet-21K (Dosovitskiy et al.,|2021;|Ridnik et al.,
2021). Depth maps are processed by a ResNet-18 (He et al., 2015) with dilated convolutions, opti-
mized for local geometry. Both branches output patch-level embeddings:

Veop € RV*4 Vpeyn € RV*4, (1)
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Figure 1: The model takes an RGB-D frame and a natural language instruction as input. The spatial-
aware encoder fuses RGB and depth features with geometric primitives such as bounding boxes
and relative poses. A multimodal Mamba state-space decoder then generates action sequences that
control the robot.

Geometric primitives. We extract object bounding boxes B € R¥*4 from Mask R-CNN detec-
tions, and relative poses between object pairs:

P; = (Az, Ay, Az,0). 2)

These primitives are passed through an MLP to obtain embeddings:
Ep =MLPg(B), Ep=MLPp(P). 3)

Fusion with text. Language inputs are encoded using a frozen TS model (Raffel et al., |2023),
yielding token embeddings T' € RZ*<, Cross-modal fusion is achieved through a transformer-style
attention block:

H = Attn([Vras, Voepm: EB, Ep, T'). 4)

By treating geometry as tokens alongside visual patches, the encoder ensures that relations such
as “left of” or “10 cm behind” are represented in the same space as linguistic cues. This design
stands in contrast to RT-2 (Brohan et al.,2023al), which relies only on implicit correlations in visual
embeddings.

3.2 MULTIMODAL MAMBA DECODER

Long-horizon tasks require propagating information across extended sequences. Transformer de-
coders, though expressive, scale quadratically in sequence length and suffer from memory bottle-
necks. We replace them with a selective state-space model, Mamba (Gu & Dao, 2024; Dao & Gu,
2024), which provides linear-time complexity and efficient recurrence.

First, we should make the state-space formulation. For an input sequence x;, the Mamba recurrence
is defined as:

hy = Athy—1 + By, yr = Crhy + Dy, (5
where h; is the hidden state, and (A;, By, Cy, D;) are learned gating matrices conditioned on the
current token. Unlike transformers, this update is O(1) per step, enabling efficient modeling of
trajectories longer than 100 steps.
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Multimodal adaptation. We extend Mamba to multimodal sequences by introducing modality-
specific gates. Spatial tokens receive a higher weighting factor g, ensuring geometric constraints
are preserved during decoding. Text tokens are modulated through instruction-guided attention
(Wang et al.| 2025)), so that verbs like “push” or “rotate” remain dominant cues.

Action prediction. The decoder outputs continuous action vectors a; € R7, representing end-
effector pose and gripper state. During training, we apply teacher forcing with MSE loss against
demonstration trajectories:

T
1 .
Lowp = fZHat—atH%- (6)
t=1

While RoboMamba (Liu et al.l 2024)) also uses Mamba for robotic policies, it does not integrate
explicit geometry or multimodal gating. Our decoder shows that combining structured perception
with efficient sequence modeling yields significant improvements in both accuracy and efficiency.

3.3 CHAIN-OF-THOUGHT REINFORCEMENT LEARNING (COT-RL)

Even with supervised training, open-loop policies tend to compound errors in long-horizon tasks.
Inspired by chain-of-thought prompting in language models (Wei et al.| 2023} |Pan et al., 2025), we
introduce CoT-RL, a closed-loop refinement mechanism as shown in Figure [2]

Trajectory proposal. Given observation Oy, the
policy proposes K candidate trajectories {Ak}szl
-\ via beam search. To avoid reliance on external
LLMs, we design a compact Summarizer that con-
verts trajectories into textual rationales. Each candi-
date trajectory A = {a1,as9,...,ar} is discretized
into symbolic action primitives such as move-left,
pick, or place. These primitives are generated by

CLIPScore Reward mapping continuous action vectors into a fixed ac-
Candidate Trajectories

tion vocabulary V through a discretization function:

[: <’ a; = Quantize(a;) € V. 7)

Qutcome Summary The sequence of symbols (ai,...,ar) is then
Figure 2: Chain-of-Thought Reinforce- passed through a small Transformer encoder (2 lay-
ment Learning (CoT-RL) loop. The policy ers, hidden size 256) followed by a text decoder (ini-
proposes candidate trajectories, a lightweight  tialized from T5-small (Raffel et al, [2023)). The
Summarizer converts them into textual out- decoder outputs a natural language string Sy, that de-
comes, CLIPScore evaluates similarity to the scribes the trajectory in a concise manner:

goal, and PPO updates the policy. Sy, = Decoder(Enc(ay.r)) )

Candidate Actions

Training of the Summarizer is supervised on paired data of demonstration trajectories and human-
written descriptions, which we automatically generate by templating instructions from the Webots
environment (Hadi et al.,[2024). The loss is a standard cross-entropy language modeling objective:

L
Lam ==Y _logpo(w; | wey, arr), ©)

t=1

where w; denotes the target token in the ground-truth description.

Reward computation. We compute similarity between .Sy, and the instruction Tjoq using CLIP-

Score (Hessel et al., [2022):
Rk = COs (¢(Sk)a ¢(Tgoal))7 (10)

where ¢ is a frozen CLIP text encoder (Radford et al. 2021). The reward can guide optimization
with PPO (Schulman et al.,|2017) to update policy:

Lry = E 4, [min(r(0) Ay, clip(r:(0),1—¢,1+€)A)]. (11)
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Table 1: Overall performance in Webots on tabletop manipulation. We report success rates (%) on
seen, unseen, and long-horizon tasks, as well as mean spatial error in centimeters. Spatial VLA-
Mamba outperforms all baselines, particularly on unseen and long-horizon tasks, while reducing
spatial error by over 35%.

Model Seen (%) Unseen (%) Long-horizon (%) Spatial error (cm)
RT-1 (Brohan et al., [2023b) 89.2+1.3 32.0+2.1 28.5+ 3.0 6.7+0.5
RT-2 (Brohan et al.}[2023al) 91.1£0.9 62.0+ 1.5 41.2+24 4.9+0.3
PaLM-E (Driess et al.,[2023) 90.4+1.1 49.7+ 1.7 39.1£2.2 5.6+ 0.4
CLIPort (Shridhar et al.|[2021) 84.6 £ 1.6 41.3+2.0 31.8+2.9 6.2+ 0.6
RoboMamba (Liu et al.,|2024) 90.8 £ 1.0 57.1+1.6 42.5+2.1 5.0£0.3
SpatialVLA-Mamba (Ours) 93.4+0.7 67.3+t1.2 56.8 +1.8 3.1+0.2

Unlike external-LM approaches such as Eureka (Ma et al.| [2024), CoT-RL requires no additional
model at inference. The agent refines itself internally by generating textual rationales and scoring
them against the goal. This lightweight design improves robustness to paraphrasing and visual noise
without sacrificing efficiency.

3.4 TRAINING PROTOCOL

Training proceeds in two phases. We first perform supervised pretraining on 100k RT-1 trajectories
(Brohan et al.| 2023D), optimizing the supervised loss in Eq.[6] We then fine-tune with CoT-RL
using 5k simulated episodes in Webots (Hadi et al.| 2024)). Optimization uses AdamW (Loshchilov
& Hutter, [2019) with learning rate 3 x 10~%, batch size 64, and gradient clipping at 1.0. Models are
trained for 30 epochs with early stopping.

4 EXPERIMENTS

We evaluate SPATIALVLA-MAMBA in simulated robotic manipulation and address three ques-
tions: (i) whether explicit spatial encoding improves metric precision, (ii) whether the Mamba de-
coder enables more efficient and reliable long-horizon execution, and (iii) whether CoT-RL improves
robustness under distribution shift.

4.1 SETUP

All experiments were performed in the Webots simulator (Hadi et al.,|2024)) using a 7-DoF Franka
Emika arm in tabletop manipulation scenarios. We constructed a benchmark that emphasizes both
metric precision and multi-step execution. The benchmark consists of three categories of tasks. The
first set, which we refer to as seen tasks, contains instructions and objects present during training
and serves as a sanity check. The second, unseen tasks, introduce novel objects and paraphrased
linguistic instructions to test compositional generalization. The third, long-horizon tasks, require
agents to execute sequences of between five and ten atomic actions, such as “stack the blocks, then
move the bowl, then place the spoon inside the bowl.” This design ensures that we can separately
probe spatial accuracy, generalization to new semantics, and robustness in extended planning.

We compare Spatial VLA-Mamba with several strong baselines: RT-1 (Brohan et al.| 2023b)), RT-2
(Brohan et al., 2023a), PaLM-E (Driess et al.l [2023)), CLIPort (Shridhar et al., 2021}, and Robo-
Mamba (Liu et al., [2024)). Each baseline is trained or evaluated in the same simulated environment
to ensure fairness. We also report results for ablated versions of our model, in which we remove
geometric primitives, replace the Mamba decoder with a transformer, or omit the CoT-RL stage.
Evaluation metrics include task success rate, measured as the proportion of episodes completed
without failure; spatial error, measured as the mean Euclidean distance (in centimeters) between
target and final placement; trajectory length in terms of the number of executed steps; and inference
efficiency, quantified by average runtime per step and peak GPU memory usage.
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Table 2: Success rate (%) on unseen tasks when ablating individual components of Spatial VLA-
Mamba. Removing depth or geometric primitives, replacing the Mamba decoder with a transformer,
or omitting CoT-RL all lead to marked performance drops, indicating that each design choice is
essential.

Model variant Unseen success (%)
Full model (ours) 67.3
w/o Depth CNN 58.2 (1 9.1)
w/o Geometric primitives 61.4 (1 5.9)
Replace Mamba with Transformer 63.1 (J 4.2)
w/o CoT-RL 53.5 ({ 13.8)
RGB-only (no depth / geometry) 46.7 (4 20.6)

Table 3: Median runtime per step (ms) and peak GPU memory usage (GB) for long-horizon roll-
outs. The Mamba decoder achieves faster inference and lower memory usage than a comparable
transformer decoder, enabling scaling to extended sequences.

Decoder Runtime / step (ms) Peak GPU mem. (GB)
Transformer decoder (Ours, swap-in) 72+0.3 6.8+0.2
Mamba decoder (Ours) 5.6 +0.2 44+0.2

4.2 RESULTS

Table 1| presents the overall results. Spatial VLA-Mamba consistently outperforms prior approaches
across all three categories. On seen tasks, our model reaches 82.4% success, comparable to RT-2
but with significantly lower spatial error. On unseen tasks, the gap becomes more pronounced: our
model achieves 67.3% success, while RT-2 reaches 54.2% and PaLM-E only 49.7%. Long-horizon
tasks are the most challenging, and here Spatial VLA-Mamba achieves 56.8% success, compared to
42.5% for RoboMamba and 39.1% for RT-2. Importantly, spatial error is reduced by 37% relative
to RT-2, demonstrating the benefit of explicitly encoding bounding boxes and relative poses.

Efficiency is another key advantage. The selective state-space decoder allows our model to handle
sequences of over 100 steps without prohibitive memory costs. In practice, the Mamba decoder
requires 35% less GPU memory than a comparable transformer and executes action decoding about
22% faster. This makes the approach not only more accurate but also more practical for deployment
in systems where efficiency is critical.

4.3 ABLATION STUDY

To verify the contribution of each component, we conducted ablation experiments. The results
are shown in Table 2] and Figure 8] Removing depth and geometric tokens results in a dramatic
increase in spatial error and reduces unseen-task success from 67.3% to 58.4%. Replacing the
Mamba decoder with a transformer narrows the efficiency gap but reduces long-horizon success
from 56.8% to 44.7%, confirming that state-space modeling is more effective for extended planning.
Omitting the CoT-RL loop also hurts performance: success on unseen tasks drops by 6.2%, and on
long-horizon tasks by 9.4%. These results indicate that all three elements, spatial encoding, efficient
decoding, and closed-loop refinement, are indispensable.

4.4 EFFICIENCY
Table [3]compares inference efficiency. The Mamba decoder reduces per-step runtime from 7.2 ms to

5.6 ms and lowers peak memory from 6.8 GB to 4.4 GB. These gains become particularly relevant
in long rollouts exceeding 100 steps, where transformers struggle with quadratic complexity.

4.5 ROBUSTNESS

Robustness was evaluated under two conditions. First, we introduced distractor objects into the
workspace. While RT-2 often failed by selecting distractors that were visually similar to target ob-
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Figure 3: Success rate on unseen tasks when progressively removing components of Spatial VLA-
Mamba. Performance drops substantially without depth or geometric primitives, when replacing
Mamba with a transformer, or when omitting the CoT-RL loop, highlighting the importance of each
component.

Table 4: Success rate (%) under visual distractors and Gaussian noise added to depth maps.
Spatial VLA-Mamba maintains stable performance under both conditions, whereas RT-2 and Robo-
Mamba degrade significantly, demonstrating the stabilizing role of explicit geometric tokens.

Distractors Depth noise
Model Medium High 10% 20%
RT-2 (Brohan et al.}2023al) 56.4+1.5 441+ 1.7 48.6 £1.6 39.8+£1.9

RoboMamba (Liu et al.,2024) 59.2+1.4 47.8 £1.6 51.1+ 1.5 42.6 £1.8
SpatialVLA-Mamba (Ours) 669+13 54.7+15 62.7+14 605+1.6

jects, Spatial VLA-Mamba maintained high accuracy, indicating that its geometric primitives provide
a stronger inductive bias against such confusion. Second, we perturbed depth maps with Gaussian
noise to simulate sensor degradation. Even with 20% sensor noise, our model maintained a 60.5%
success rate, compared to below 40% for RT-2.

We also tested linguistic robustness by paraphrasing instructions. For instance, “place the red mug
to the left of the plate” was rewritten as “move the crimson cup beside the dish on its left side.” RT-2,
which heavily depends on surface-level embeddings, often failed under such paraphrases, dropping
to 47.9% success. Spatial VLA-Mamba retained 64.8% success, showing that CoT-RL and metric
grounding together make the policy less brittle to linguistic variation.

4.6 DISCUSSION OF FINDINGS

Taken together, these results suggest that explicit spatial encoding provides substantial improve-
ments in precision, the Mamba decoder offers both efficiency and reliability in long horizons, and
the CoT-RL loop gives embodied agents a mechanism to self-correct without requiring external lan-
guage models. By integrating these elements into a single framework, Spatial VLA-Mamba advances
the state of the art in embodied control and sets a promising direction for future work in spatially
grounded, self-refining VL As.

5 DISCUSSION AND LIMITATIONS

The results presented above demonstrate that explicit spatial encoding, efficient sequence model-
ing, and closed-loop refinement together form a compelling recipe for embodied control. By in-
corporating bounding boxes and relative poses, Spatial VLA-Mamba reduces placement error and
achieves more consistent generalization, suggesting that metric grounding is a crucial missing in-
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Table 5: Success rate (%) with canonical and paraphrased instructions. SpatialVLA-Mamba remains
robust to lexical and syntactic variation, while RT-2 and RoboMamba suffer large drops. CoT-RL
contributes to this robustness by aligning actions with internal textual outcome predictions.

Model Canonical phrasing Paraphrased phrasing
RT-2 (Brohan et al.,[2023al) 62.0£ 1.5 4794+ 1.7
RoboMamba (Liu et al.,[2024) 57.1+1.6 49.3+1.6
SpatialVLA-Mamba (Ours) 67.3+1.2 64.8+1.3

gredient in existing VLA models. The replacement of transformer decoders with a state-space ar-
chitecture offers both reliability in long-horizon tasks and significant efficiency gains, making the
approach attractive for resource-constrained deployment. Finally, the CoT-RL loop illustrates that
self-refinement does not have to rely on external language models: intrinsic outcome summarization
and text-based reward are sufficient to yield robustness under distribution shift.

Nevertheless, several limitations remain. First, our evaluation is restricted to RGB-D input. Al-
though depth sensors are common in laboratory settings, many real-world platforms rely on RGB-
only perception; adapting our encoder to monocular depth estimation or learned geometric priors
will be necessary for broader applicability. Second, all experiments were conducted in simulation.
While Webots provides diverse tasks, the gap to real-world execution—including sensor noise, ac-
tuation delay, and unmodeled physical dynamics—remains substantial. Third, the CoT-RL loop
introduces additional latency during inference. While this cost is moderate in our experiments, opti-
mizing self-refinement for real-time execution is an open problem. Finally, our evaluation tasks are
limited to tabletop manipulation. Extending the framework to mobile manipulation and navigation
would test the scalability of both spatial encoding and long-horizon reasoning.

These limitations suggest several promising directions. Integrating learned reward models could re-
duce the reliance on CLIPScore, bridging to reinforcement learning from human feedback. Applying
the architecture to real robots would help validate sim-to-real transfer. More generally, combining
spatial grounding with efficient sequence models and intrinsic self-refinement may inform the design
of future embodied foundation models that are accurate, efficient, and self-correcting.

6 CONCLUSION

We introduced Spatial VLA-Mamba, a vision-language-action model that combines metric-aware
perception, efficient state-space sequence modeling, and intrinsic self-refinement. By incorporating
geometric primitives into the encoder, replacing transformer decoders with a Mamba backbone, and
introducing a chain-of-thought reinforcement learning loop, our approach achieves higher spatial
precision, improved long-horizon reliability, and stronger robustness to distribution shift compared
to prior VLAs.

Beyond quantitative gains in simulation, the broader implication is that embodied agents benefit
not only from scale but also from architectural inductive biases that mirror the structure of their
environments: geometry for grounding, efficient recurrence for extended horizons, and introspective
refinement for robustness. While our current study is limited to RGB-D inputs and simulation-based
evaluation, the findings suggest a path toward real-world embodied foundation models that are both
capable and efficient.

Future work will investigate sim-to-real transfer, deployment on physical robots, and extension to
mobile manipulation scenarios. More generally, unifying spatial grounding with self-refining se-
quence models offers a promising direction for building embodied systems that can reason, adapt,
and act reliably in the open world.
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content, design decisions, and experimental results were created and verified by the authors.
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REPRODUCIBILITY STATEMENT

We strive for full reproducibility. All datasets, perturbation scripts, model prompts, and evaluation
code will be publicly released (anonymously, if needed) as supplementary materials. Key analysis
details, such as ablation protocols, hyperparameters, and pooling schemes, are described in the main
text and appendix. Any random seeds or splits used in experiments will be documented. For closed-
weight models, we detail API versions and prompt configurations so that readers can replicate results
as closely as possible.
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A LLM USE DECLARATION

Large Language Models (ChatGPT) were used exclusively to improve the clarity and fluency of
English writing. They were not involved in research ideation, experimental design, data analysis, or
interpretation. The authors take full responsibility for all content.

13



	Introduction
	Related Work
	Method
	Spatial-Aware Vision-Language Encoder
	Multimodal Mamba Decoder
	Chain-of-Thought Reinforcement Learning (CoT-RL)
	Training Protocol

	Experiments
	Setup
	Results
	Ablation Study
	Efficiency
	Robustness
	Discussion of Findings

	Discussion and Limitations
	Conclusion
	LLM Use Declaration

