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Abstract

As progress on automated fact-checking con-
tinues to be called, veracity classification has
gained more attention. It is the task of predict-
ing the veracity of a given claim by comparing
it with retrieved pieces of evidence. One of
the challenges for this task is to obtain manual
annotations for large datasets, especially when
it comes to new domains for which labelled
data is unavailable in the first instance. In this
paper, we describe a vector-based approach
that achieves significant performance improve-
ment on veracity classification in few-shot set-
tings. Performance is compared with two
competitive baselines: (1) fine-tuning BERT
/ RoBERTa, and (2) the state-of-the-art few-
shot veracity classification approach leverag-
ing language model perplexity with thresholds.
Our approach first utilises sentence-BERT to
get sentence vectors of claims and evidences.
We then create a relation vector for each claim-
evidences pairs, by applying absolute opera-
tion on their vector offsets. Experiments show
significant improvements over the baselines.

1 Introduction

Automated fact-checking is attracting an increas-
ing amount of attention. Despite the advances done
in the task by proposing and making use of state-
of-the-art natural language processing (NLP) mod-
els, the dominant approach generally requires large
amount of data and/or involves training big lan-
guage models. However, methods that have low
demand on labelled data and are capable of be-
ing implemented and deployed fast are particularly
desired in practice. Collecting a large dataset is
expensive, time-consuming and may be unrealistic
when time and resources are limited. For exam-
ple, the current COVID-19 pandemic has triggered
a remarkable amount of online misinformation
(Saakyan et al., 2021). To combat the rapid spread
of ongoing misinformation on new and emerging
topics, fact-checkers cannot wait for the large scale

datasets to become available and then train a large
model in a post hoc manner. Furthermore, mis-
information constantly shifts topics, resulting in
collected datasets and trained models going out-
dated fast.

Therefore, an effective approach that can per-
form well by only using a small amount of data is
particularly helpful in real-world settings intending
to combat misinformation. We focus on the task of
veracity classification, which is the task of assess-
ing claim veracity with retrieved evidences (Thorne
et al., 2018; Wadden et al., 2020; Lee et al., 2021).
It is dominantly tackled as a label prediction task:
given a claim ¢ and a set of evidences e, predict
the veracity label for the claim ¢ out of “Support",
“Refute” and “Nolnfo”.

This paper presents a novel and effective ap-
proach on doing veracity classification with very
limited data, i.e. as little as approximately 10 sam-
ples per veracity class. We first utilise sentence
BERT (Reimers and Gurevych, 2019) to get sen-
tence vectors for the claim and its evidences and
then calculate the absolute offset of the two vectors
as a relation vector, which may ultimately indicate
one of [support], [refute] or [neutral]. Each
relation vector corresponds to a veracity label. Fig-
ure 1 provides an illustration. We obtain improved
relation vectors by averaging the vectors of all fit
samples, which is comparably accessible and effi-
cient and involves no gradient update. During infer-
ence, we calculate the relation vector for the claim
and evidences at hand and compare its euclidean
distance among the candidate relation vectors to
determine the veracity.

We compare performance with two baseline
systems: (1) finetuning BERT (Devlin et al.,,
2019)/RoBERTa (Liu et al., 2019) models to
do label prediction; (2) using perplexity from
BERT/GPT (Radford et al., 2019) models with a
threshold to do binary classification (Lee et al.,
2021). The latter is selected for being the current
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Figure 1: Illustration of our vector-based approach.

state-of-the-art model on few-shot veracity clas-
sification. Experiments show that our approach
achieves significant improvements over the base-
lines in few-shot settings.

Our main contributions include the following:

* We achieve overall better performance on few-
shot veracity classification than both baseline
approaches.

* Our approach features simplicity and effec-
tiveness, which brings low demand on labelled
data and computing resources. In particular, it
involves no model training.

* Our approach is flexible and can be easily
adapted to any pairwise classification tasks. It
also doesn’t have explicit limits on the number
of classes, while the previous SOTA approach
(Lee et al., 2021) is restricted to binary classi-
fication.

2 Related Work

The literature on automated fact-checking has wit-
nessed a surge over recent years, with various
datasets published (Thorne et al., 2018; Chen et al.,
2019; Augenstein et al., 2019; Ostrowski et al.,
2020; Kotonya and Toni, 2020; Sathe et al., 2020;
Wadden et al., 2020; Schuster et al., 2021; Diggel-
mann et al., 2021; Saakyan et al., 2021; Aly et al.,
2021) and novel systems proposed (Mithun et al.,
2021; Samarinas et al., 2021; Bekoulis et al., 2021).

However, following the current general trend in
NLP, researchers have primarily focused on collect-
ing and utilising large-scale datasets with lengthy
pipelines whose cores are large language mod-
els which are computationally expensive, requir-
ing resources that are not accessible to everyone.
When dealing with veracity classification, most re-
cent systems fine-tune a large pre-trained language
model to do three-way label prediction, including
VERISCI (Wadden et al., 2020), VERTSERINI
(Pradeep et al., 2020), ParagraphJoint (Li et al.,
2021).

To the best of our knowledge, few-shot veracity
classification is not well-studied. Previous efforts
only experimented with perplexity-based binary
veracity classification. Lee et al. (2021) hypoth-
esised that evidence-conditioned perplexity score
from language models are helpful for assessing
claim veracity. They explored using perplexity
scores with a threshold ¢/ to determine claim ve-
racity into “supported” and “unsupported”: if the
score is lower than the threshold th, it is classi-
fied as “unsupported” and otherwise “supported”.
This perplexity-based approach has achieved bet-
ter performance on few-shot binary classification
than fine-tuning a BERT model. However, it is fac-
ing severe challenges when dealing with multiple
classes; for example, it is not capable of tackling
the veracity classification task in three-way settings
involving “Support”, “Refure” and “Nolnfo”.

3 Methodology

Our method roots in formal semantics and is in-
spired by one of the most well-known equations in
NLP. Using a word2vec (Mikolov et al., 2013) word
embedding models, researchers have achieved em-
bedding representations that capture sufficient con-
text to satisfy the following equation:

[king] — [man] 4+ [woman] = [queen] (1)

Despite how elegant the above equation is, direct
applications on solving NLP tasks seem challeng-
ing. However, if we create a [DIF F']| vector to
store the elegantly captured semantic differences,
we may transform it into the following:

[DIFF] = [king]—[man] = [queen]—Jwoman]
2
With recent advances on efficiently applying
BERT models to get sentence-level representa-
tions (Reimers and Gurevych, 2019), we may eas-
ily scale it up to capture semantic differences at
the sentence level. For a sentence pair « that has
sentence,, and sentence;,, we have :

[DIFF,] = [sentenceg,] — [sentences,] (3)

In the context of veracity classification that com-
pares a claim with evidences, we are given multi-
ple labelled sentence pairs that belong to the same
class, and we can expect to obtain similar [DIF'F']
vectors for different instances within a class. We
may then obtain the average of [DIF F] vectors



within a class, i.e., a [DI F'F']| vector for each class
following equation 4.

n

1
- ;([[sentencela]] — [sentence;,])
4
As shown above, a vector that stores pairwise
semantic difference is straightforward to obtain.
Furthermore, these [DIFF] vectors have great
application potentials on doing pairwise classifica-
tions, especially in low-resource settings. As long
as the number of the classes is manageable, we pro-
pose that we can utilise the average vectors above
to do efficient classification with very few samples
and very limited computing resources.

[DIFF] =

This paper demonstrates the application on the
task of veracity classification.

Note that the calculated [DIF F']| vectors may
contain much more information than our target
classification labels depending on the task. For
instance, the semantic differences between the ev-
idence “Soul Food is a 1997 American comedy-
drama film produced by Kenneth “ Babyface ” Ed-
monds , Tracey Edmonds and Robert Teitel and
released by Fox 2000 Pictures.” and the claim “Fox
2000 Pictures released the film Soul Food.” is the
semantic meaning of the target relation [support]
as well as additional information that is equivalent
to sentence “It is a 1997 American comedy-drama
film produced by Kenneth “ Babyface ” Edmonds ,
Tracey Edmonds and Robert Teitel.”

Therefore, we propose to further apply the ab-
solute value function on every value of a [DIFF]
vector to obtain a [Relation] vector. This is em-
pirically tested to be effective at controlling the
impact of random redundant information. In other
words, we adapt Equation 4 to Equation 5 for the
task of veracity classification:

[Relation] Z |[evidences;,|—[claim;,]|)

(&)

During inference, we calculate the euclidean dis-

tance between the current [Relation] vector and

every target [Relation] vector, i.e., [support],

[refute] and [neutral] for the task of veracity

classification, and make predictions on the one that
has smallest euclidean distance value.

3\*—‘

4 Experiments

4.1 Datasets

We conduct experiments on the Fact Extraction
and Verification (FEVER) (Thorne et al., 2018)
and SCIFACT (Wadden et al., 2020) datasets.
FEVER is one of the most well-studied large-scale
datasets for automated fact-checking. It contains
claims that are manually modified from Wikipedia
sentences and their corresponding Wikipedia evi-
dences. Claims are annotated into three categories:
“Support”, “Refute” and “Not Enough Info”. SCI-
FACT is a smaller dataset that focuses on scientific
claim verification. The claims are annotated by
experts and evidences are retrieved from research
paper abstracts. Similarly, claims are classified into
“Support”, “Contradict” and “Not_ Enough_Info”.

4.2 Model implementation

We implemented our vector-based approach by
utilising sentence BERT (Reimers and Gurevych,
2019) with huggingface transformers model hub
(Wolf et al., 2020). Specifically, we use three
variants of BERT (Devlin et al., 2019) as the
base model: BERT-base, BERT-large and BERT-
base-nli. We use VECgBERrT,, VECBERT, and
VECBERTs_ ., to denote them thereafter. The
first two use vanilla BERT models available from
huggingface model hub with model id bert-base-
uncased and bert-large-uncased respectively. The
last one is a sentence BERT model that has been
fine-tuned on natural language inference (NLI)
tasks and is available on sentence BERT repository
with model id bert-base-nli-mean-tokens. We in-
clude experiments with V ECggrr, ., in both
binary and three-way veracity classifications as nat-
ural language inference is high relevant.

4.3 Baselines

Our baseline fine-tuning approach to binary classi-
fication involves fine-tuning BERT-base, BERT-
large, RoBERTa-base and XLNET-base (Yang
et al., 2019), which are denoted as F'TggRrry,
FTerr,, FTRoBERTay and FTxNET, there-
after. Furthermore, the perplexity-based approach
involves GPT-2 and BERT models, which are de-
noted as PPLpgrr, and PPLgpr,. Please see
implementation details in Lee et al. (2021).

We finetune the following models as baselines
for our three-way veracity classification: BERT-
base, BERT-large, RoBERTa-base and RoBERTa-
large. We utilise huggingface transformers library



(Wolf et al., 2020) for easily finetuning these mod-
els, with model id being bert-base-uncased, bert-
large-uncased, roberta-base and roberta-large re-
spectively.

4.4 Results

Experiments are conducted in both binary and
three-way settings for FEVER and three-way for
SCIFACT. Binary classification on FEVER en-
ables direct comparison with the SOTA model, i.e.
perplexity-base approach, while the three-way clas-
sification on both FEVER and SCIFACT dataset
demonstrate the further potential of our approach
on both datasets.

4.4.1 Results on FEVER binary classification

We first report performance on the FEVER dataset
in binary setting for direct comparison with the
SOTA model. To do this, and in line with previous
work, we merge “Refute” and “Not Enough Info”
into “Unsupport”. This is done for comparing
performance with the perplexity-based approach as
it is only available in this particular setting.

Following the baseline paper (Lee et al., 2021),
we only use the test set of FEVER dataset, as it al-
ready has lots of claims. Specifically, we randomly
sample 3333 instances out of “Support” class,
1666 instances and 1667 instances out of the “Not
Enough Info” class and the “Refute” class respec-
tively. Samples of the latter two classes are treated
as “Unsupport”. We sample n shots, i.e. n in-
stances per class, as the training set for the fine-
tuning approach and as the fit set for the perplexity-
based approach and the vector-based approach, and
use the rest as test set to evaluate performance.

Table 1 reports results on binary setting of
FEVER dataset. Model names that start with “FT”
refer to methods directly fine-tuning the pre-trained
language models indicated in the subscript. Model
names that start with “PPL” refer to perplexity-
based, state-of-the-art methods. Model names that
start with “VEC” refer to our vector based ap-
proach.

As shown in the table, all of the fine-tuned mod-
els achieve very low performance in all 2-shot, 10-
shot and 50-shot settings, with their accuracy peak-
ing at around 50%, which is equivalent to a random
classifier in the binary setting. PP Lgpr, achieves
best performance with 2 shots, but struggles to gain
significant improvements with more shots. Interest-
ingly, VECBERT, ., achieves a substantial per-
formance boost of almost 20 points when increas-

ing the fitset from 2 shots to 10 shots, and achieves
the best overall performance in the 10-shot and
50-shot settings. Furthermore, with the same base
language model B E RTp, vector-based approach
VECBERT, always outperforms the perplexity-
based approach PPLpgprr, in terms of accu-
racy: its accuracy is 1.15%, 14.18% and 14.29%
higher in 2-shot, 10-shot and 50-shot settings re-
spectively. Regarding macro F1, VECBERrT,
is only 0.15% lower in the 2-shot setting than
PPLBERT,, but 13.8% and 14.65% higher in 10-
shot and 50-shot settings. Overall, the vector-based
approach achieves significant improvements in 10-
shot and 50-shot settings, compared to both the
fine-tuning approach and the perplexity-based ap-
proach.

4.4.2 Results on FEVER three-way
classification

We then report our experiments on the three-way
setting with the FEVER dataset. Due to the in-
nate limitations of the perplexity-based approach,
i.e., only suitable for binary classification, we do
not include it in three-way experiments. For the
vector-based approach, we experiment with three
base models that are available for sentence BERT to
use, namely bert-base-uncased, bert-large-uncased
and bert-base-nli-mean-tokens. The first two are
vanilla BERT model while the last one is a BERT-
base model that is finetuned on natural language
inference tasks (Reimers and Gurevych, 2019). For
the fine-tuning approach, we experiment with bert-
base-uncased, bert-large-uncased, roberta-base
and roberta-large.

We randomly sample 3333 instances for each
class out of “Support”, “Refute” and “Not Enough
Info”. Experiments for both the fine-tuning ap-
proach and the vector-based approach are con-
ducted in 2-shot, 4-shot, 6-shot, 8-shot, 10-shot,
20-shot, 30-shot, 40-shot, 50-shot and 100-shot
settings with 10 different random seeds: 123, 124,
125, 126, 127, 128, 129, 130, 131, 132. Due to
the variability in performance of the fine-tuning
approach introduced by its non-deterministic na-
ture, we do 5 runs for each setting and report
the average results. Following the baseline pa-
per (Lee et al., 2021), We use 5e 5 for FTsgRrry
and F'TroBERTq as learning rate and 2¢~° for
FTgerr, and FTr,BERTq;- All models share
the same batch size of 32 and are trained for 10
epochs.

Figure 2 reports the accuracy scores for both



Model ‘ Accuracy Macro-F1

#of Shots | 2 10 50 2 10 50
FTBERTS 51.56 51.56 52.18 | 37.34 37.34 38.82
FTBERT, 50.80 50.80 51.14 | 36.49 36.49 39.99
FTRoBERTap 50.00 50.00 50.44 | 33.33 33.33 38.15
FTx.NETS 49.41 4941 49.18 | 44.65 44.65 4842
PPLBERT, 52.54 57.59 5744|4133 57.11 5694
PPLgpry 61.92 62.82 6748 | 57.50 57.04 64.7
VECBERT, 53.69 71.77 71.73 | 41.18 7091 71.59
VECBERT, 5231 69.83 70.51 | 3934 69.26 70.34
VECBERTs n.; | 5531 81.12 80.89 | 4441 81.1 80.89

Table 1: Comparison of Few-Shot Performance on binary setting of the FEVER Dataset. The baseline results are

taken from the baseline paper (Lee et al., 2021).

%%mparison of Few-Shot Performance (Accuracy) on FEVER Dataset

0.7 1 e

0.6 4

- FTperT,

0.5
FTgeaT,

=+ FTRoBERTa,
=4+ FTRoBEATa,
—8— VECgerT, ,,
—8— VECgerT,
0.3 1 P VECaerT,

0.4 4

T T T T T T
0 20 40 60 80 100
# of shots

Figure 2: Comparison of Few-Shot Accuracy Perfor-
mance on the FEVER Dataset.

approaches on the three-way veracity classifica-
tion task of FEVER dataset in various few-shot
settings, while Figure 3 reports the macro F1
score. FIBgrry, FIBERT,» F'TRoBERTay and
FTroBERTG; follow our baseline approach and
finetune a BERT-base, BERT-large, RoBERTa-
base and RoBERTa-large model respectively.
VECBERTy, VECBERT, and VECBERT n11
follow our proposed vector-based approach
with model base choice of bert-base-uncased,
bert-large-uncased and bert-base-nli-mean-tokens
model respectively.

Both figures show consistent performance in-
crease trend with increasing amount of data for
both approaches. However, it is clear that when
given under 20 shots, the vector-based approach
has significant performance advantages. The
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Figure 3: Comparison of Few-Shot Macro F1 Perfor-
mance on the FEVER Dataset.

vector-based approach starts its performance boost
right at the beginning, but the baseline approach
has a delay and only slowly start its performance
boost after 10-shots. This proves the vector-based
approach as effective compared to other methods,
particularly when labelled data is scarce.

4.4.3 Results on SCIFACT three-way
classification

Furthermore, experiments on three-way veracity
classification with the SCIFACT dataset show sim-
ilar trend. The SCIFACT dataset is much smaller
than the FEVER dataset, with only 809 claims in
the training set and 300 claims in the development
set (the test set is not yet available at the time of
writing as it was withheld for a shared task). We
use both the train set and dev set. We randomly



sample n instances for each class out of “Support”,

“Contradict” and “Not Enough Info” and use them
as the fit/train set, with n being one of 2, 4, 6,
8, 10, 20, 30, 40, 50, 100. We randomly sam-
ple 70 instances for each class in dev set and use
them to evaluate performance, as the dev set is very
unbalanced with 138, 114 and 71 pairs for each
class. Following the same methodology as with the
FEVER dataset, we also sample with 10 different
random seeds: 123, 124, 125, 126, 127, 128, 129,
130, 131, 132 and do 5 runs for each setting for the
fine-tuning approach. The reported performance
scores are the average results over multiple runs
and multiple random samplings of seeds. We use
the same hyperparameters as above.

Comparison of Few-Shot Performance (Accuracy) on SCIFACT Dataset
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Figure 4: Comparison of Few-Shot Accuracy Perfor-
mance on the SCIFACT Dataset.
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Figure 5: Comparison of Few-Shot Macro F1 Perfor-
mance on the SCIFACT Dataset.

Figure 4 reports the accuracy scores for both
approaches on three-way veracity classification
task of SCIFACT dataset in various few-shot

settings, while Figure 5 reports the macro F1
score. FIBgrry» FIBERT,» F'TRoBERTay and
FTroBERTq; follow our baseline approach and
finetune a BERT-base, BERT-large, RoBERTa-
base and RoBERTa-large model respectively.
VECBERTy, VECBERT, and VECBERT; n11
follow our proposed vector-based approach with
model base choice of BERT-base, BERT-large and
BERT-base-nli-mean-tokens model respectively.

Similar to the results on the FEVER dataset, con-
sistent performance increase trends are shown with
increasing amount of data for both approaches. No-
ticeably the absolute performance scores on the
SCIFACT dataset is overwhelmingly lower than
the FEVER dataset. Though with more fluctua-
tions, the vector-based approach still starts its per-
formance boost right at the beginning. The baseline
approach has a more severe delay and experience
almost no performance gain when given fewer than
10-shots. This indicates that the Vector-based ap-
proach maintains significant performance advan-
tages in few-shot settings even with a much more
difficult dataset.

4.4.4 Summary of results

These experiments have demonstrated the effective-
ness of our proposed approach when doing verac-
ity classification in few-shot settings. By making
use of relation vectors, our approach is capable
of doing multi-class classification with only very
few samples. With only 10 shots, our approach
achieves approximately 80% accuracy on binary
veracity classification, which is about 30% higher
than the fine-tuning approach and 20% higher than
the perplexity-based approach. Furthermore, we
achieve 60% accuracy on three-way veracity clas-
sification within the domain of general Wikipedia
texts, while the fine-tuning approach would only
achieve around 33% accuracy, which is similar to
a random guess. Given the difficulty of perform-
ing veracity classification on scientific texts in the
SCIFACT dataset, our approach still achieves ac-
curacy above 40% , while the performance of the
fine-tuning approach remains similar to a random
guess.

5 Discussion and Future Work

5.1 Discussion

Thanks to its simplicity, our vector-based approach
yields very good performance in few-shot veracity
classification. By outperforming competitive base-



lines, including a state-of-the-art model and Trans-
formers, we show the potential of our approach
in scenarios where the scarcity of labelled data
and/or computing resources require the use of a
light-weight approach. This in turn validates our
proposed methodology that averaging pairwise off-
sets between claims and evidences for each class
can lead to meaningful vectors that can help char-
acterise each of the classes for the veracity classifi-
cation task: “Support”, “Refute” and “Nolnfo”.

Further work on applying it to other pairwise
classification tasks are likely to yield similarly ex-
citing results. One may question the simplicity of
the proposed approach. However, it is thanks to this
simplicity that our method overcome the heavy re-
liance of advanced machine learning techniques on
large amount of training data which in turn makes
them struggle to work in few-shot settings.

We also aim to bring researchers’ attention to
the cost effectiveness of data usage. In the context
of automated fact-checking, naturally occurring la-
belled data would only emerge slowly in a post hoc
manner, due to the complexity of the task. More-
over, collected data may become outdated quickly
as new events continue to occur. Our approach has
demonstrated the potential for leveraging a small
amount of data when being used effectively. We
hope it will encourage future research to study the
cost effectiveness of collecting large amount of
data for simple tasks.

5.2 Future Work

Our work opens up a few directions for future re-
search, which we discuss next.

5.2.1 Sentence Vectors

To further customise the approach to a specific
task, we believe that getting better sentence vec-
tors is a promising direction. For example, we
may use BioBERT (Lee et al., 2020) as the base
model other than vanilla BERT, when dealing with
biomedical texts. Alternatively, a BERT model that
is already finetuned on relevant tasks is likely to
yield a stronger presence of the target information.

5.2.2 Relation Vectors

We proposed to apply absolute operation to get
our relation vectors as it is effective to reduce the
amount of preserved information. However, it has
also cancelled the directionality of relation vectors.
For example, the evidence “England has the best
football team in Europe.” supports the claim “Eng-

land has the best football team in the UK.” but the
support relation doesn’t stay if the claim and the
evidence are swapped. Future work on preserving
the directionality without losing the simplicity and
effectiveness is highly desired.

5.2.3 Cross-dataset Applications

As demonstrated above, a specific relation vector
for a specific domain may be easily obtained and
has good performance when doing inference within
the same dataset. An interesting direction is to
make use of these vectors in a cross-dataset manner.
For example, to obtain a [support] vector from a
natural language inference dataset and use it on the
task of veracity classification. The major challenge
here lies in domain adaptation.

6 Conclusions

We have presented a simple but effective vector-
based approach which achieves significant improve-
ments over the baseline systems in few-shot verac-
ity classification. It has very low demand on data
quantity and computing resources. We have also
demonstrated that future research on cost effective-
ness of data usage is highly valued.
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