
A Vector-Based Approach to Few-Shot Veracity Classification for
Automated Fact-Checking

Anonymous ACL submission

Abstract

As progress on automated fact-checking con-001
tinues to be called, veracity classification has002
gained more attention. It is the task of predict-003
ing the veracity of a given claim by comparing004
it with retrieved pieces of evidence. One of005
the challenges for this task is to obtain manual006
annotations for large datasets, especially when007
it comes to new domains for which labelled008
data is unavailable in the first instance. In this009
paper, we describe a vector-based approach010
that achieves significant performance improve-011
ment on veracity classification in few-shot set-012
tings. Performance is compared with two013
competitive baselines: (1) fine-tuning BERT014
/ RoBERTa, and (2) the state-of-the-art few-015
shot veracity classification approach leverag-016
ing language model perplexity with thresholds.017
Our approach first utilises sentence-BERT to018
get sentence vectors of claims and evidences.019
We then create a relation vector for each claim-020
evidences pairs, by applying absolute opera-021
tion on their vector offsets. Experiments show022
significant improvements over the baselines.023

1 Introduction024

Automated fact-checking is attracting an increas-025

ing amount of attention. Despite the advances done026

in the task by proposing and making use of state-027

of-the-art natural language processing (NLP) mod-028

els, the dominant approach generally requires large029

amount of data and/or involves training big lan-030

guage models. However, methods that have low031

demand on labelled data and are capable of be-032

ing implemented and deployed fast are particularly033

desired in practice. Collecting a large dataset is034

expensive, time-consuming and may be unrealistic035

when time and resources are limited. For exam-036

ple, the current COVID-19 pandemic has triggered037

a remarkable amount of online misinformation038

(Saakyan et al., 2021). To combat the rapid spread039

of ongoing misinformation on new and emerging040

topics, fact-checkers cannot wait for the large scale041

datasets to become available and then train a large 042

model in a post hoc manner. Furthermore, mis- 043

information constantly shifts topics, resulting in 044

collected datasets and trained models going out- 045

dated fast. 046

Therefore, an effective approach that can per- 047

form well by only using a small amount of data is 048

particularly helpful in real-world settings intending 049

to combat misinformation. We focus on the task of 050

veracity classification, which is the task of assess- 051

ing claim veracity with retrieved evidences (Thorne 052

et al., 2018; Wadden et al., 2020; Lee et al., 2021). 053

It is dominantly tackled as a label prediction task: 054

given a claim c and a set of evidences e, predict 055

the veracity label for the claim c out of “Support", 056

“Refute” and “NoInfo”. 057

This paper presents a novel and effective ap- 058

proach on doing veracity classification with very 059

limited data, i.e. as little as approximately 10 sam- 060

ples per veracity class. We first utilise sentence 061

BERT (Reimers and Gurevych, 2019) to get sen- 062

tence vectors for the claim and its evidences and 063

then calculate the absolute offset of the two vectors 064

as a relation vector, which may ultimately indicate 065

one of JsupportK, JrefuteK or JneutralK. Each 066

relation vector corresponds to a veracity label. Fig- 067

ure 1 provides an illustration. We obtain improved 068

relation vectors by averaging the vectors of all fit 069

samples, which is comparably accessible and effi- 070

cient and involves no gradient update. During infer- 071

ence, we calculate the relation vector for the claim 072

and evidences at hand and compare its euclidean 073

distance among the candidate relation vectors to 074

determine the veracity. 075

We compare performance with two baseline 076

systems: (1) finetuning BERT (Devlin et al., 077

2019)/RoBERTa (Liu et al., 2019) models to 078

do label prediction; (2) using perplexity from 079

BERT/GPT (Radford et al., 2019) models with a 080

threshold to do binary classification (Lee et al., 081

2021). The latter is selected for being the current 082
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Figure 1: Illustration of our vector-based approach.

state-of-the-art model on few-shot veracity clas-083

sification. Experiments show that our approach084

achieves significant improvements over the base-085

lines in few-shot settings.086

Our main contributions include the following:087

• We achieve overall better performance on few-088

shot veracity classification than both baseline089

approaches.090

• Our approach features simplicity and effec-091

tiveness, which brings low demand on labelled092

data and computing resources. In particular, it093

involves no model training.094

• Our approach is flexible and can be easily095

adapted to any pairwise classification tasks. It096

also doesn’t have explicit limits on the number097

of classes, while the previous SOTA approach098

(Lee et al., 2021) is restricted to binary classi-099

fication.100

2 Related Work101

The literature on automated fact-checking has wit-102

nessed a surge over recent years, with various103

datasets published (Thorne et al., 2018; Chen et al.,104

2019; Augenstein et al., 2019; Ostrowski et al.,105

2020; Kotonya and Toni, 2020; Sathe et al., 2020;106

Wadden et al., 2020; Schuster et al., 2021; Diggel-107

mann et al., 2021; Saakyan et al., 2021; Aly et al.,108

2021) and novel systems proposed (Mithun et al.,109

2021; Samarinas et al., 2021; Bekoulis et al., 2021).110

However, following the current general trend in111

NLP, researchers have primarily focused on collect-112

ing and utilising large-scale datasets with lengthy113

pipelines whose cores are large language mod-114

els which are computationally expensive, requir-115

ing resources that are not accessible to everyone.116

When dealing with veracity classification, most re-117

cent systems fine-tune a large pre-trained language118

model to do three-way label prediction, including119

VERISCI (Wadden et al., 2020), VERT5ERINI120

(Pradeep et al., 2020), ParagraphJoint (Li et al.,121

2021).122

To the best of our knowledge, few-shot veracity 123

classification is not well-studied. Previous efforts 124

only experimented with perplexity-based binary 125

veracity classification. Lee et al. (2021) hypoth- 126

esised that evidence-conditioned perplexity score 127

from language models are helpful for assessing 128

claim veracity. They explored using perplexity 129

scores with a threshold th to determine claim ve- 130

racity into “supported” and “unsupported”: if the 131

score is lower than the threshold th, it is classi- 132

fied as “unsupported” and otherwise “supported”. 133

This perplexity-based approach has achieved bet- 134

ter performance on few-shot binary classification 135

than fine-tuning a BERT model. However, it is fac- 136

ing severe challenges when dealing with multiple 137

classes; for example, it is not capable of tackling 138

the veracity classification task in three-way settings 139

involving “Support”, “Refure” and “NoInfo”. 140

3 Methodology 141

Our method roots in formal semantics and is in- 142

spired by one of the most well-known equations in 143

NLP. Using a word2vec (Mikolov et al., 2013) word 144

embedding models, researchers have achieved em- 145

bedding representations that capture sufficient con- 146

text to satisfy the following equation: 147

JkingK− JmanK + JwomanK = JqueenK (1) 148

Despite how elegant the above equation is, direct 149

applications on solving NLP tasks seem challeng- 150

ing. However, if we create a JDIFF K vector to 151

store the elegantly captured semantic differences, 152

we may transform it into the following: 153

JDIFF K = JkingK−JmanK = JqueenK−JwomanK
(2) 154

With recent advances on efficiently applying 155

BERT models to get sentence-level representa- 156

tions (Reimers and Gurevych, 2019), we may eas- 157

ily scale it up to capture semantic differences at 158

the sentence level. For a sentence pair x that has 159

sentencexa and sentencexb
, we have : 160

JDIFFxK = JsentencexaK− Jsentencexb
K (3) 161

In the context of veracity classification that com- 162

pares a claim with evidences, we are given multi- 163

ple labelled sentence pairs that belong to the same 164

class, and we can expect to obtain similar JDIFF K 165

vectors for different instances within a class. We 166

may then obtain the average of JDIFF K vectors 167
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within a class, i.e., a JDIFF K vector for each class168

following equation 4.169

JDIFF K =
1

n

n∑
i=1

(JsentenceiaK−JsentenceibK)

(4)170

As shown above, a vector that stores pairwise171

semantic difference is straightforward to obtain.172

Furthermore, these JDIFF K vectors have great173

application potentials on doing pairwise classifica-174

tions, especially in low-resource settings. As long175

as the number of the classes is manageable, we pro-176

pose that we can utilise the average vectors above177

to do efficient classification with very few samples178

and very limited computing resources.179

This paper demonstrates the application on the180

task of veracity classification.181

Note that the calculated JDIFF K vectors may182

contain much more information than our target183

classification labels depending on the task. For184

instance, the semantic differences between the ev-185

idence “Soul Food is a 1997 American comedy-186

drama film produced by Kenneth “ Babyface ” Ed-187

monds , Tracey Edmonds and Robert Teitel and188

released by Fox 2000 Pictures.” and the claim “Fox189

2000 Pictures released the film Soul Food.” is the190

semantic meaning of the target relation JsupportK191

as well as additional information that is equivalent192

to sentence “It is a 1997 American comedy-drama193

film produced by Kenneth “ Babyface ” Edmonds ,194

Tracey Edmonds and Robert Teitel.”195

Therefore, we propose to further apply the ab-196

solute value function on every value of a JDIFF K197

vector to obtain a JRelationK vector. This is em-198

pirically tested to be effective at controlling the199

impact of random redundant information. In other200

words, we adapt Equation 4 to Equation 5 for the201

task of veracity classification:202

JRelationK =
1

n

n∑
i=1

(|JevidencesiaK−JclaimibK|)

(5)203

During inference, we calculate the euclidean dis-204

tance between the current JRelationK vector and205

every target JRelationK vector, i.e., JsupportK,206

JrefuteK and JneutralK for the task of veracity207

classification, and make predictions on the one that208

has smallest euclidean distance value.209

4 Experiments 210

4.1 Datasets 211

We conduct experiments on the Fact Extraction 212

and Verification (FEVER) (Thorne et al., 2018) 213

and SCIFACT (Wadden et al., 2020) datasets. 214

FEVER is one of the most well-studied large-scale 215

datasets for automated fact-checking. It contains 216

claims that are manually modified from Wikipedia 217

sentences and their corresponding Wikipedia evi- 218

dences. Claims are annotated into three categories: 219

“Support”, “Refute” and “Not Enough Info”. SCI- 220

FACT is a smaller dataset that focuses on scientific 221

claim verification. The claims are annotated by 222

experts and evidences are retrieved from research 223

paper abstracts. Similarly, claims are classified into 224

“Support”, “Contradict” and “Not_ Enough_Info”. 225

4.2 Model implementation 226

We implemented our vector-based approach by 227

utilising sentence BERT (Reimers and Gurevych, 228

2019) with huggingface transformers model hub 229

(Wolf et al., 2020). Specifically, we use three 230

variants of BERT (Devlin et al., 2019) as the 231

base model: BERT-base, BERT-large and BERT- 232

base-nli. We use V ECBERTB
, V ECBERTL

and 233

V ECBERTB−NLI
to denote them thereafter. The 234

first two use vanilla BERT models available from 235

huggingface model hub with model id bert-base- 236

uncased and bert-large-uncased respectively. The 237

last one is a sentence BERT model that has been 238

fine-tuned on natural language inference (NLI) 239

tasks and is available on sentence BERT repository 240

with model id bert-base-nli-mean-tokens. We in- 241

clude experiments with V ECBERTB−NLI
in both 242

binary and three-way veracity classifications as nat- 243

ural language inference is high relevant. 244

4.3 Baselines 245

Our baseline fine-tuning approach to binary classi- 246

fication involves fine-tuning BERT-base, BERT- 247

large, RoBERTa-base and XLNET-base (Yang 248

et al., 2019), which are denoted as FTBERTB
, 249

FTBERTL
, FTRoBERTaB and FTXLNETB

there- 250

after. Furthermore, the perplexity-based approach 251

involves GPT-2 and BERT models, which are de- 252

noted as PPLBERTB
and PPLGPTB

. Please see 253

implementation details in Lee et al. (2021). 254

We finetune the following models as baselines 255

for our three-way veracity classification: BERT- 256

base, BERT-large, RoBERTa-base and RoBERTa- 257

large. We utilise huggingface transformers library 258

3



(Wolf et al., 2020) for easily finetuning these mod-259

els, with model id being bert-base-uncased, bert-260

large-uncased, roberta-base and roberta-large re-261

spectively.262

4.4 Results263

Experiments are conducted in both binary and264

three-way settings for FEVER and three-way for265

SCIFACT. Binary classification on FEVER en-266

ables direct comparison with the SOTA model, i.e.267

perplexity-base approach, while the three-way clas-268

sification on both FEVER and SCIFACT dataset269

demonstrate the further potential of our approach270

on both datasets.271

4.4.1 Results on FEVER binary classification272

We first report performance on the FEVER dataset273

in binary setting for direct comparison with the274

SOTA model. To do this, and in line with previous275

work, we merge “Refute” and “Not Enough Info”276

into “Unsupport”. This is done for comparing277

performance with the perplexity-based approach as278

it is only available in this particular setting.279

Following the baseline paper (Lee et al., 2021),280

we only use the test set of FEVER dataset, as it al-281

ready has lots of claims. Specifically, we randomly282

sample 3333 instances out of “Support” class,283

1666 instances and 1667 instances out of the “Not284

Enough Info” class and the “Refute” class respec-285

tively. Samples of the latter two classes are treated286

as “Unsupport”. We sample n shots, i.e. n in-287

stances per class, as the training set for the fine-288

tuning approach and as the fit set for the perplexity-289

based approach and the vector-based approach, and290

use the rest as test set to evaluate performance.291

Table 1 reports results on binary setting of292

FEVER dataset. Model names that start with “FT”293

refer to methods directly fine-tuning the pre-trained294

language models indicated in the subscript. Model295

names that start with “PPL” refer to perplexity-296

based, state-of-the-art methods. Model names that297

start with “VEC” refer to our vector based ap-298

proach.299

As shown in the table, all of the fine-tuned mod-300

els achieve very low performance in all 2-shot, 10-301

shot and 50-shot settings, with their accuracy peak-302

ing at around 50%, which is equivalent to a random303

classifier in the binary setting. PPLGPTB
achieves304

best performance with 2 shots, but struggles to gain305

significant improvements with more shots. Interest-306

ingly, V ECBERTB−NLI
achieves a substantial per-307

formance boost of almost 20 points when increas-308

ing the fitset from 2 shots to 10 shots, and achieves 309

the best overall performance in the 10-shot and 310

50-shot settings. Furthermore, with the same base 311

language model BERTB , vector-based approach 312

V ECBERTB
always outperforms the perplexity- 313

based approach PPLBERTB
in terms of accu- 314

racy: its accuracy is 1.15%, 14.18% and 14.29% 315

higher in 2-shot, 10-shot and 50-shot settings re- 316

spectively. Regarding macro F1, V ECBERTB
317

is only 0.15% lower in the 2-shot setting than 318

PPLBERTB
, but 13.8% and 14.65% higher in 10- 319

shot and 50-shot settings. Overall, the vector-based 320

approach achieves significant improvements in 10- 321

shot and 50-shot settings, compared to both the 322

fine-tuning approach and the perplexity-based ap- 323

proach. 324

4.4.2 Results on FEVER three-way 325

classification 326

We then report our experiments on the three-way 327

setting with the FEVER dataset. Due to the in- 328

nate limitations of the perplexity-based approach, 329

i.e., only suitable for binary classification, we do 330

not include it in three-way experiments. For the 331

vector-based approach, we experiment with three 332

base models that are available for sentence BERT to 333

use, namely bert-base-uncased, bert-large-uncased 334

and bert-base-nli-mean-tokens. The first two are 335

vanilla BERT model while the last one is a BERT- 336

base model that is finetuned on natural language 337

inference tasks (Reimers and Gurevych, 2019). For 338

the fine-tuning approach, we experiment with bert- 339

base-uncased, bert-large-uncased, roberta-base 340

and roberta-large. 341

We randomly sample 3333 instances for each 342

class out of “Support”, “Refute” and “Not Enough 343

Info”. Experiments for both the fine-tuning ap- 344

proach and the vector-based approach are con- 345

ducted in 2-shot, 4-shot, 6-shot, 8-shot, 10-shot, 346

20-shot, 30-shot, 40-shot, 50-shot and 100-shot 347

settings with 10 different random seeds: 123, 124, 348

125, 126, 127, 128, 129, 130, 131, 132. Due to 349

the variability in performance of the fine-tuning 350

approach introduced by its non-deterministic na- 351

ture, we do 5 runs for each setting and report 352

the average results. Following the baseline pa- 353

per (Lee et al., 2021), We use 5e−6 for FTBERTB
354

and FTRoBERTaB as learning rate and 2e−5 for 355

FTBERTL
and FTRoBERTaL . All models share 356

the same batch size of 32 and are trained for 10 357

epochs. 358

Figure 2 reports the accuracy scores for both 359
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Model Accuracy Macro-F1

# of Shots 2 10 50 2 10 50

FTBERTB
51.56 51.56 52.18 37.34 37.34 38.82

FTBERTL
50.80 50.80 51.14 36.49 36.49 39.99

FTRoBERTaB 50.00 50.00 50.44 33.33 33.33 38.15
FTXLNETB

49.41 49.41 49.18 44.65 44.65 48.42

PPLBERTB
52.54 57.59 57.44 41.33 57.11 56.94

PPLGPTB
61.92 62.82 67.48 57.50 57.04 64.7

V ECBERTB
53.69 71.77 71.73 41.18 70.91 71.59

V ECBERTL
52.31 69.83 70.51 39.34 69.26 70.34

V ECBERTB−NLI
55.31 81.12 80.89 44.41 81.1 80.89

Table 1: Comparison of Few-Shot Performance on binary setting of the FEVER Dataset. The baseline results are
taken from the baseline paper (Lee et al., 2021).

Figure 2: Comparison of Few-Shot Accuracy Perfor-
mance on the FEVER Dataset.

approaches on the three-way veracity classifica-360

tion task of FEVER dataset in various few-shot361

settings, while Figure 3 reports the macro F1362

score. FTBERTB
, FTBERTL

, FTRoBERTaB and363

FTRoBERTaL follow our baseline approach and364

finetune a BERT-base, BERT-large, RoBERTa-365

base and RoBERTa-large model respectively.366

V ECBERTB
, V ECBERTL

and V ECBERTB−NLI
367

follow our proposed vector-based approach368

with model base choice of bert-base-uncased,369

bert-large-uncased and bert-base-nli-mean-tokens370

model respectively.371

Both figures show consistent performance in-372

crease trend with increasing amount of data for373

both approaches. However, it is clear that when374

given under 20 shots, the vector-based approach375

has significant performance advantages. The376

Figure 3: Comparison of Few-Shot Macro F1 Perfor-
mance on the FEVER Dataset.

vector-based approach starts its performance boost 377

right at the beginning, but the baseline approach 378

has a delay and only slowly start its performance 379

boost after 10-shots. This proves the vector-based 380

approach as effective compared to other methods, 381

particularly when labelled data is scarce. 382

4.4.3 Results on SCIFACT three-way 383

classification 384

Furthermore, experiments on three-way veracity 385

classification with the SCIFACT dataset show sim- 386

ilar trend. The SCIFACT dataset is much smaller 387

than the FEVER dataset, with only 809 claims in 388

the training set and 300 claims in the development 389

set (the test set is not yet available at the time of 390

writing as it was withheld for a shared task). We 391

use both the train set and dev set. We randomly 392
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sample n instances for each class out of “Support”,393

“Contradict” and “Not Enough Info” and use them394

as the fit/train set, with n being one of 2, 4, 6,395

8, 10, 20, 30, 40, 50, 100. We randomly sam-396

ple 70 instances for each class in dev set and use397

them to evaluate performance, as the dev set is very398

unbalanced with 138, 114 and 71 pairs for each399

class. Following the same methodology as with the400

FEVER dataset, we also sample with 10 different401

random seeds: 123, 124, 125, 126, 127, 128, 129,402

130, 131, 132 and do 5 runs for each setting for the403

fine-tuning approach. The reported performance404

scores are the average results over multiple runs405

and multiple random samplings of seeds. We use406

the same hyperparameters as above.407

Figure 4: Comparison of Few-Shot Accuracy Perfor-
mance on the SCIFACT Dataset.

Figure 5: Comparison of Few-Shot Macro F1 Perfor-
mance on the SCIFACT Dataset.

Figure 4 reports the accuracy scores for both408

approaches on three-way veracity classification409

task of SCIFACT dataset in various few-shot410

settings, while Figure 5 reports the macro F1 411

score. FTBERTB
, FTBERTL

, FTRoBERTaB and 412

FTRoBERTaL follow our baseline approach and 413

finetune a BERT-base, BERT-large, RoBERTa- 414

base and RoBERTa-large model respectively. 415

V ECBERTB
, V ECBERTL

and V ECBERTB−NLI
416

follow our proposed vector-based approach with 417

model base choice of BERT-base, BERT-large and 418

BERT-base-nli-mean-tokens model respectively. 419

Similar to the results on the FEVER dataset, con- 420

sistent performance increase trends are shown with 421

increasing amount of data for both approaches. No- 422

ticeably the absolute performance scores on the 423

SCIFACT dataset is overwhelmingly lower than 424

the FEVER dataset. Though with more fluctua- 425

tions, the vector-based approach still starts its per- 426

formance boost right at the beginning. The baseline 427

approach has a more severe delay and experience 428

almost no performance gain when given fewer than 429

10-shots. This indicates that the Vector-based ap- 430

proach maintains significant performance advan- 431

tages in few-shot settings even with a much more 432

difficult dataset. 433

4.4.4 Summary of results 434

These experiments have demonstrated the effective- 435

ness of our proposed approach when doing verac- 436

ity classification in few-shot settings. By making 437

use of relation vectors, our approach is capable 438

of doing multi-class classification with only very 439

few samples. With only 10 shots, our approach 440

achieves approximately 80% accuracy on binary 441

veracity classification, which is about 30% higher 442

than the fine-tuning approach and 20% higher than 443

the perplexity-based approach. Furthermore, we 444

achieve 60% accuracy on three-way veracity clas- 445

sification within the domain of general Wikipedia 446

texts, while the fine-tuning approach would only 447

achieve around 33% accuracy, which is similar to 448

a random guess. Given the difficulty of perform- 449

ing veracity classification on scientific texts in the 450

SCIFACT dataset, our approach still achieves ac- 451

curacy above 40% , while the performance of the 452

fine-tuning approach remains similar to a random 453

guess. 454

5 Discussion and Future Work 455

5.1 Discussion 456

Thanks to its simplicity, our vector-based approach 457

yields very good performance in few-shot veracity 458

classification. By outperforming competitive base- 459
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lines, including a state-of-the-art model and Trans-460

formers, we show the potential of our approach461

in scenarios where the scarcity of labelled data462

and/or computing resources require the use of a463

light-weight approach. This in turn validates our464

proposed methodology that averaging pairwise off-465

sets between claims and evidences for each class466

can lead to meaningful vectors that can help char-467

acterise each of the classes for the veracity classifi-468

cation task: “Support”, “Refute” and “NoInfo”.469

Further work on applying it to other pairwise470

classification tasks are likely to yield similarly ex-471

citing results. One may question the simplicity of472

the proposed approach. However, it is thanks to this473

simplicity that our method overcome the heavy re-474

liance of advanced machine learning techniques on475

large amount of training data which in turn makes476

them struggle to work in few-shot settings.477

We also aim to bring researchers’ attention to478

the cost effectiveness of data usage. In the context479

of automated fact-checking, naturally occurring la-480

belled data would only emerge slowly in a post hoc481

manner, due to the complexity of the task. More-482

over, collected data may become outdated quickly483

as new events continue to occur. Our approach has484

demonstrated the potential for leveraging a small485

amount of data when being used effectively. We486

hope it will encourage future research to study the487

cost effectiveness of collecting large amount of488

data for simple tasks.489

5.2 Future Work490

Our work opens up a few directions for future re-491

search, which we discuss next.492

5.2.1 Sentence Vectors493

To further customise the approach to a specific494

task, we believe that getting better sentence vec-495

tors is a promising direction. For example, we496

may use BioBERT (Lee et al., 2020) as the base497

model other than vanilla BERT, when dealing with498

biomedical texts. Alternatively, a BERT model that499

is already finetuned on relevant tasks is likely to500

yield a stronger presence of the target information.501

5.2.2 Relation Vectors502

We proposed to apply absolute operation to get503

our relation vectors as it is effective to reduce the504

amount of preserved information. However, it has505

also cancelled the directionality of relation vectors.506

For example, the evidence “England has the best507

football team in Europe.” supports the claim “Eng-508

land has the best football team in the UK.” but the 509

support relation doesn’t stay if the claim and the 510

evidence are swapped. Future work on preserving 511

the directionality without losing the simplicity and 512

effectiveness is highly desired. 513

5.2.3 Cross-dataset Applications 514

As demonstrated above, a specific relation vector 515

for a specific domain may be easily obtained and 516

has good performance when doing inference within 517

the same dataset. An interesting direction is to 518

make use of these vectors in a cross-dataset manner. 519

For example, to obtain a JsupportK vector from a 520

natural language inference dataset and use it on the 521

task of veracity classification. The major challenge 522

here lies in domain adaptation. 523

6 Conclusions 524

We have presented a simple but effective vector- 525

based approach which achieves significant improve- 526

ments over the baseline systems in few-shot verac- 527

ity classification. It has very low demand on data 528

quantity and computing resources. We have also 529

demonstrated that future research on cost effective- 530

ness of data usage is highly valued. 531
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