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Abstract

The development of large language models001
leads to the formation of a pre-train-then-align002
paradigm, in which the model is typically pre-003
trained on a large text corpus and undergoes004
a tuning stage to align the model with human005
preference or downstream tasks. In this work,006
we investigate the relationship between pre-007
training and fine-tuning by fine-tuning multiple008
intermediate pre-trained model checkpoints, we009
find that i) continual pre-training improves the010
model in a latent way that unveils after fine-011
tuning; ii) with extra fine-tuning, the datasets012
that the model does not demonstrate capabil-013
ity gain much more than those that the model014
performs well during the pre-training stage; iii)015
although model benefits significantly through016
supervised fine-tuning, it may forget previously017
known domain knowledge and the tasks that are018
not seen during fine-tuning; iv) the supervised019
fine-tuned model resembles high sensitivity to020
few-shot evaluation prompts, but this sensitiv-021
ity can be alleviated by more pre-training. 1022

1 Introduction023

The rise of large language models (LLMs) as a024

general-purpose tool for a diverse range of nat-025

ural language processing tasks has dramatically026

transformed the field, introducing new paradigms027

for data collection and model training (Brown028

et al., 2020, Biderman et al., 2023, Touvron et al.,029

2023, Jiang et al., 2023, Chowdhery et al., 2023,030

Groeneveld et al., 2024, Wang et al., 2024, in-031

ter alia). Numerous models, training methods,032

datasets, and evaluation methods continue to be033

developed on an ongoing basis. Nevertheless, a034

unified paradigm has emerged for training LLMs:035

pre-train on an enormous corpus of diverse docu-036

ments, ranging from 250B (Biderman et al., 2023)037

to 15T (AI@Meta, 2024) tokens, followed by an038

1Code, results, and data to reproduce the experiments are
available at https://anonymous.4open.science
/r/AmuroCharRelease-DEC5

Figure 1: Illustration of the experimental scheme.

alignment stage to make the model more useful and 039

performative for various tasks. 040

Based on this paradigm, work has focused on 041

improving each of these two stages. For better 042

pre-trained models, exploration is done on larger 043

training sets (Hoffmann et al., 2022; AI@Meta, 044

2024; Touvron et al., 2023), different data selec- 045

tion mechanisms (Xia et al., 2024), higher qual- 046

ity data (Zhou et al., 2024), and various model 047

architectures (Su et al., 2024; Touvron et al., 2023). 048

Meanwhile, research on model alignment includes 049

different training objectives (Rafailov et al., 2024; 050

Schulman et al., 2017), new datasets (Narayanan 051

and Aepli, 2024), more efficient training (Hu et al., 052

2021; Dettmers et al., 2024), safety tuning (Bianchi 053

et al., 2023), among other approaches. The align- 054

ment stage usually involves either supervised fine- 055

tuning for specific tasks or instruction fine-tuning 056

for general-purpose usage. Regardless, fine-tuning 057

(almost always) comes at the end of pre-training 058

and yields remarkable improvements on down- 059

stream tasks (Touvron et al., 2023; Groeneveld 060

et al., 2024). However, the benefits of each stage 061

are largely explored independently, with improve- 062

ments to pretraining being orthogonal to benefits 063

from model alignment. Fine-tuning starts with the 064

final pretraining model checkpoint. 065

Rather than explore these two training regimes 066

independently, we question: how do model pre- 067

training and fine-tuning interact to affect the 068

resulting abilities of the model? Does more pre- 069
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training hinder better fine-tuning results? What070

does the model learn during pre-training, and071

what does it forget during fine-tuning? To an-072

swer these questions, we fine-tune multiple pre-073

training checkpoints of a large language model074

(Figure 1), evaluating each checkpoint and its fine-075

tuned version on downstream evaluation sets. We076

track model abilities during pre-training and com-077

pare them to improvements achievable after fine-078

tuning at each pre-training stage. We explore both079

supervised fine-tuning and instruction fine-tuning,080

testing the models’ memorization and forgetting081

when learning specific tasks and serving as general-082

purpose language-AI tools. To the best of our083

knowledge, we are the first to explore fine-tuning084

intermediate model checkpoints.085

Our experiments yield novel insights into LLM086

training. We find that (1) continued pre-training087

can improve a model in ways that are only revealed088

after fine-tuning (§5); (2) tasks for which the model089

performs well during pre-training benefit much less090

from fine-tuning than datasets where the model091

does not demonstrate capabilities (§4, §5); (3) al-092

though supervised fine-tuning can improve perfor-093

mance on in-distribution tasks, it can also cause the094

model to forget tasks that it was previously able095

to solve or domain knowledge (§6); (4) fine-tuned096

models show high sensitivity to few-shot evaluation097

prompts, but this sensitivity can be alleviated by098

more pre-training (§6). Our findings provide useful099

insights into model training and can inform meth-100

ods for both pre-training and fine-tuning. Further-101

more, our work shows the value of testing multiple102

model checkpoints, and we encourage model de-103

velopers to release these checkpoints to aid future104

studies.105

2 Background: Model Training106

We begin with a brief survey of the core compo-107

nents of LLM training: pre-training, fine-tuning,108

and instruction fine-tuning. We also discuss the109

related topic of in-context learning as well as dif-110

ferent efficient fine-tuning strategies.111

In this work, “model alignment” is referred to as112

a general term that refers to aligning the model with113

a desired behavior, which can be accomplished by114

fine-tuning models after pretraining. The term is115

associated with other definitions (Shen et al., 2024).116

We also note several related studies that explore117

training dynamics to understand model behavior118

(Tirumala et al., 2022; Chen et al., 2023; Tian et al.,119

2023). With this in mind, we conduct an empirical 120

study on how the amount of pre-training affects the 121

effectiveness of fine-tuning. 122

Pre-training The first step of training a LLM 123

is pre-training on a massive text corpus (Achiam 124

et al., 2023; Touvron et al., 2023; Groeneveld et al., 125

2024). For decoder-only models in the GPT family, 126

the subject of our paper, work since the introduc- 127

tion of GPT-2 (Radford et al., 2019) has focused on 128

scaling up model training. Initial work increases 129

model size to hundreds of billions of parameters 130

(Brown et al., 2020; Rae et al., 2021; Chowdhery 131

et al., 2023), along with explorations of the tradeoff 132

between model and training corpus size (Hoffmann 133

et al., 2022). Since the push towards large models, 134

work has shifted to increasing the amount of pre- 135

training data, with new models now reaching 15 136

trillion tokens (AI@Meta, 2024). Studies of model 137

performance on various tasks at different model 138

sizes introduced the idea of emergent model abil- 139

ities (Wei et al., 2022), with new model abilities 140

being revealed as model training grows. 141

We also recognize a particularly important trend 142

for this paper: model openness. Early LLMs were 143

proprietary models accessible only through an API. 144

The first large open model, Bloom (Bloom Ström 145

et al., 2023), allowed widespread evaluation of 146

these models. Subsequent open models, such as 147

OPT (Zhang et al., 2022), LLaMA (Touvron et al., 148

2023; Keles and Bayraklı, 2024) and others (Bi- 149

derman et al., 2023; Gururangan et al., 2023; Al- 150

mazrouei et al., 2023), have become the norm. In 151

this paper, we study OLMo (Groeneveld et al., 152

2024), which is one of the only models to release 153

individual pre-training checkpoints. 154

Fine-Tuning Early work on instruction fine- 155

tuning using reinforcement learning with human 156

feedback (RLHF) (Ziegler et al., 2019; Stiennon 157

et al., 2020; Ouyang et al., 2022) demonstrate the 158

dramatic effect that model alignment could have on 159

a pre-training model. When a specific task of inter- 160

est has been identified, supervised fine-tuning can 161

improve a pre-trained model. Task-agnostic tuning 162

became popularized with the advent of T5 models 163

Raffel et al., 2020, where a pre-trained LLM is 164

tuned using a general text-to-text solution. When 165

multiple tasks are given to the model, the model 166

is commonly given a task-specific prefix or an in- 167

struction along with the task input, leading to the 168

development of various methods of prefix tuning 169

(Li and Liang, 2021) and instruction tuning (Wei 170
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et al., 2021; Mishra et al., 2022; Victor et al., 2022).171

Instruction Fine-Tuning Instruction fine-tuning172

is preferred when more general model behaviors173

are desired. Popularized through reinforcement-174

learning with human feedback (RLHF) (Christiano175

et al., 2017; Ziegler et al., 2019; Stiennon et al.,176

2020; Ouyang et al., 2022) and reinforcement-177

learning with AI feedback (RLAIF) (Lee et al.,178

2023), these methods utilize a reward model to sim-179

ulate human feedback. Others explore human pref-180

erence tuning without a reward model (Rafailov181

et al., 2024; Song et al., 2024; Xu et al., 2024),182

or study the effects of these tuning methods (Shen183

et al., 2024; Perez et al., 2023). Sharma et al. (2024)184

show that supervised fine-tuning can lead to similar185

performance as RLAIF.186

In-Context Learning While not the subject of187

this paper since it does not make changes to model188

parameters, in-context learning utilizes a small189

amount of supervised data to improve model perfor-190

mance. ICL, also called few-shot learning, is also191

used as an evaluation strategy where the model is192

given a prompt composed of examples of tasks ex-193

pected to be solved. The underlying model is evalu-194

ated based on its response to the input. ICL can ben-195

efit from a larger context window that adds more196

examples, which can spur work on the development197

of model quantization techniques (Dettmers et al.,198

2022) and the alleviation of hardware constraints199

(Brown et al., 2020; Xie et al., 2021; Min et al.,200

2022).201

Fine-Tuning Techniques While model pre-202

training can be done by a few groups with large re-203

sources interested in developing new models, fine-204

tuning depends on the task and is of broad interest.205

Therefore, many techniques are developed to facili-206

tate time-, memory-, and data-efficient model train-207

ing through parameter-efficient fine-tuning (PEFT)208

(Hu et al., 2021), quantization (Jacob et al., 2018;209

Dettmers et al., 2022, 2024), and specialized data210

filtering (Xia et al., 2024; Zhou et al., 2024). This211

paper focuses specifically on full-parameter fine-212

tuning, while our findings suggest the potential213

for data-efficient and budget-friendly training by214

understanding the critical turning point of model215

training. Our findings are closely related to the216

recent study on phase transition of model training217

(Olsson et al., 2022; Wei et al., 2022; Chen et al.,218

2023).219

3 Experimental Setup 220

In this section, we introduce the model choice and 221

datasets used. The hyperparameter tuning proce- 222

dure and setup for each fine-tuning setting can be 223

found in Appendix A. 224

3.1 Model Choice 225

Our paper considers OLMo-1B (Groeneveld et al., 226

2024), a recently released high-performing open- 227

source large language models. Several factors mo- 228

tivate the selection of this model. First, OLMo is 229

one of the only models that released intermediate 230

checkpoints available, a prerequisite of this study 231
2 3. Second, the model is fully open, including 232

the training code and pre-training data. Full open- 233

ness allows future studies to consider related issues. 234

Third, this model size allows us to train a model ef- 235

ficiently on a single A100 GPU. This study requires 236

a large amount of GPU time, which would have 237

been prohibitive with a larger model. We select 238

model pre-training checkpoints uniformly from the 239

pre-training history and include the first and the 240

final checkpoints. 241

3.2 Training Procedure 242

We fine-tune each of the selected model check- 243

points using two different procedures to create 244

fine-tuned models: supervised fine-tuning and in- 245

struction tuning. The supervised fine-tuning is con- 246

ducted separately for each model checkpoint and 247

dataset, while the instructing fine-tuning is done 248

once using the instruction dataset. The instruction- 249

tuned model is evaluated on a suite of LLM bench- 250

marks. 251

Supervised Fine-tuning We adapt the dataset 252

choice from Yang et al., 2024 for supervised 253

fine-tuning. For each in-domain dataset, one to 254

two cross-domain evaluation datasets are supplied. 255

Each pre-training checkpoint is fully fine-tuned 256

for 3 epochs with a batch size of 8 and learning 257

rates resulting from minimal hyperparameter tun- 258

ing. Each task is formatted using a default prompt- 259

completion format (Table 3). 260

2https://github.com/allenai/OLMo/tree/main/checkpoints
3We also experimented with RedPajama-INCITE

(https://www.together.ai/blog/redpajama-models-v1), one
of the few, if not only, other models to release checkpoints.
After extensive experiments, we found it performed worse
than OLMo, given the training data available. Several other
models report that they release training checkpoints but have
not done so.
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Instruction Fine-Tuning We instruction-tune261

the model on TÜLU (Ivison et al., 2023), following262

the decision of Groeneveld et al., 2024. Each model263

checkpoint is fully fine-tuned for 5 epochs with a264

batch size of 8 and a learning rate of 2× 10−6.265

Supervised Fine-Tuning

Task Training ID Test OOD Test

Summary
Generation XSum XSum,

XLSum CNN

Question
Generation SocialIQa SocialIQA SciQ,

TweetQA

Natural Language
Inference MNLI MNLI1,

MNLI2
RTE,
GPT3NLI4

Paraphrase
Detection Paws Paws QQP,

STS-B

Instruction Tuning

Dataset Description

TÜLU-v2 A mixture of instruction datasets.
ARC Grade-school multiple-choice QA.
OpenbookQA Open book exam QA.
Hellaswag Commonsense inference.
BoolQ Reading comprehension.
SciQ Science exam multiple choice QA.

Table 1: Dataset information. For Generation tasks,
ROUGE-L is used as evaluation metric, and accuracy is
used for classification tasks.

3.3 Evaluation266

Our evaluation challenge is to select a representa-267

tive number of datasets for different types of tasks268

to test model abilities, recognizing that each dataset269

requires evaluating each model checkpoint and its270

fine-tuned counterparts. We also select datasets271

based on the availability of in-domain and out-of-272

domain samples.273

Datasets Our datasets are summarized in Table274

1. We evaluate the model with an in-domain test275

set and one or two out-of-domain test sets for each276

of the supervised fine-tuning tasks. We conduct277

experiments on the tasks of summary generation278

(Narayan et al., 2018; Hasan et al., 2021; Hermann279

et al., 2015), question generation (Sap et al., 2019;280

Xiong et al., 2019; Welbl et al., 2017), natural lan-281

guage inference (Williams et al., 2018; Wang et al.,282

2018; Dagan et al., 2006; Bar Haim et al., 2006;283

Giampiccolo et al., 2007; Bentivogli et al., 2009),284

and paraphrase detection (Zhang et al., 2019; Wang285

et al., 2018; Agirre et al., 2007). Each training set is286

sub-sampled to a size of 6,000 for fair comparisons.287

In instruction fine-tuning, we base our down- 288

stream evaluation settings on Groeneveld et al., 289

2024, as OLMo is found to have stable performance 290

on these datasets. The instruction-tuned models 291

are evaluated on ARC (both arc easy and arc 292

challenge) (Clark et al., 2018), OpenbookQA 293

(Mihaylov et al., 2018), Hellaswag (Zellers et al., 294

2019), BoolQ (Clark et al., 2019), and SciQ (Welbl 295

et al., 2017). In addition to the datasets above, the 296

instruction-tuned models are evaluated on LLM- 297

BAR (Zeng et al., 2024) to test for instruction- 298

following ability. 299

Metrics We use accuracy (Pedregosa et al., 2011) 300

for classification tasks and ROUGE-L (Lin, 2004) 301

for generation tasks. We set the maximum amount 302

of newly generated tokens to 5 for classification 303

tasks and 60 for generation tasks. Outputs are gen- 304

erated with greedy decoding. For classification 305

tasks, we experiment with both constrained decod- 306

ing and logit-based predictions. We find the best 307

performance by selecting the label with the highest 308

logit of its first subtoken. 309

4 How does the model change across 310

pre-training? 311

We begin our evaluation by considering how the 312

base model (no fine-tuning) changes with addi- 313

tional pre-training. Typically, researchers track 314

the value of the training or held-out loss during 315

training. However, performance improvements on 316

downstream tasks do not always track these loss 317

curves (Groeneveld et al., 2024). 318

We evaluate the pre-trained checkpoints using In- 319

Context Learning (few-shot examples), as models 320

without alignment tend to do poorly in a zero-shot 321

context. We verify this by initial evaluations of 322

the models in both zero-shot and few-shot settings. 323

Four shots are randomly sampled from the datasets, 324

which are selected based on the highest perfor- 325

mance shot amount reported in Yang et al., 2024. 326

The model’s performance at each pre-training step 327

is reported in Figure 2. 328

Broadly speaking, we find that all datasets fall 329

into one of two groups. For the first group of 330

datasets (Figure 2a), although the model shows 331

clear improvement during the early stages of pre- 332

training, performance levels off fairly early on and 333

remains consistent. The dramatic improvements 334

in the early stages of pre-training may partially 335

come from learning rate warm-up; OLMo’s learn- 336

ing rate is warmed up for the first 2000 steps for 337
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Figure 2: Few-shot performance on different pre-training steps.
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Figure 3: Example of few-shot performance on different
pre-training steps of the models that benefited (3a) and
did not benefit from fine-tuning (3b). The solid blue line
represents the fine-tuned checkpoint, and the dashed
orange line represents the base checkpoint. The results
of all datasets can be found in Figure 9 and Figure 8.

OLMo-1B of the training. We find improvements338

stop increasing past 342,000. The second group339

(Figure 2a) shows tasks that are never learned dur-340

ing pre-training. Performance remains constant341

throughout the whole pre-training process. These342

datasets include MNLI, XSum, and BoolQ, and343

we found no difference between zero-shot and few-344

shot evaluations.345

Overall, these results reveal an interesting di-346

chotomy. Some tasks can be learned during pre-347

training, while others are not. Next, we explore348

what exactly the model is learning regarding this349

second group of datasets during pre-training by350

exploring the fine-tuned models.351

5 Does more pre-training improve352

fine-tuning?353

Groeneveld et al., 2024 compares OLMo’s perfor-354

mance on several tasks before and after fine-tuning355
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Figure 4: Amount of increase after fine-tuning between
tasks that model can solve in pre-training (mandarin
orange) and tasks that the model could not solve until
fine-tuning (sage green). The exact number of mean
increase is shown in Appendix G.

the final checkpoint and finds that fine-tuning en- 356

ables the model to do well on tasks for which the 357

unaligned model does poorly. We observe (§4) that 358

while some datasets improved during pre-training, 359

there is a group of datasets for which a pre-trained 360

model does poorly. What exactly is happening with 361

the model on these datasets during pre-training? 362

Does the model learn anything, and is fine-tuning 363

required to do well on these tasks? Alternatively, 364

does the model learn useful information for these 365

tasks but cannot express it without fine-tuning? We 366

explore these questions by examining fine-tuned 367

checkpoints for each of the datasets. 368

Our results appear in Figure 3 and Figure 4. First, 369

we consider those datasets which do well with a pre- 370

trained model (Figure 2a). These datasets do not 371

improve with fine-tuning, suggesting whatever is 372

learned during fine-tuning, which we discuss below, 373

the model already gains the knowledge during pre- 374

training. We see this effect at all checkpoints; fine- 375

tuning simply does not help. 376

However, a different story is observed for 377

datasets that were not learned during pre-training. 378

For these, fine-tuning yields significant improve- 379

ments at every model checkpoint, with Figure 4 380
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showing the magnitude of improvement on these381

datasets compared to no improvement to the382

datasets learned during pre-training. Moreover, ear-383

lier checkpoints obtain more substantial gains from384

fine-tuning than later checkpoints. The benefit of385

fine-tuning continues to increase until a certain386

threshold in pre-training steps is reached (approxi-387

mately 424,000).388

Figure 3 shows representative plots comparing389

the performance of a pre-trained versus fine-tuned390

model at different checkpoints for two datasets (full391

list in Appendix D). For Hellaswag (learned dur-392

ing pre-training), fine-tuning does not benefit the393

model, even during early checkpoints when the394

model performs poorly on the task. Nevertheless,395

for MNLI (not learned during pre-training), fine-396

tuning dramatically improves the model. Interest-397

ingly, later checkpoints achieve better results after398

fine-tuning, even when the performance of the pre-399

trained model is unchanged. This suggests that400

the model is, in fact, learning important informa-401

tion during pre-training, but it cannot express that402

information without fine-tuning.403

Our findings suggest that early stopping in pre-404

training will not be detrimental to downstream405

fine-tuning performance, and the benefits of fine-406

tuning an LLM can exceed the benefits of contin-407

ued pretraining, which sheds light on the potential408

of cost-effective fine-tuning with less pre-training.409

However, it is difficult to directly identify such a410

stopping criteria without fine-tuning intermediate411

checkpoints; the improvement trend is invisible be-412

fore fine-tuning the checkpoints. Future work may413

reveal other signals of pre-training behavior that414

correlate with downstream task performance after415

fine-tuning. Overall, when resource-intensive pre-416

trained LLMs are not available, fine-tuning models417

on models with less pre-training may be a reason-418

able practical choice for obtaining a high-quality419

model.420

6 Supervised Fine-Tuning: What does the421

model learn and forget?422

What exactly is the model learning during fine-423

tuning such that it can reveal abilities in pre-trained424

models for some tasks but provide no benefit for425

other tasks? We analyze the supervised fine-tuning426

process to understand what is learned and what is427

forgotten. Specifically, we explore three dimen-428

sions: task format, task transfer, and domain429

knowledge.430

6.1 Task Format 431

Sclar et al., 2023 show that LLMs are extremely 432

sensitive to prompt perturbation in few-shot set- 433

tings. More broadly, extensive work on prompt en- 434

gineering reveals the sensitivity of models to task 435

format. We hypothesize that fine-tuning fits the 436

model to a specific task format, resulting in higher 437

performance when the evaluation set matches this 438

format. To test this hypothesis, we vary the task 439

format to either match the training format, use a dif- 440

ferent format, or rely on instructions. We carefully 441

construct three different prompt formats for the fol- 442

lowing settings. 1) Default is the same format 443

used for supervised fine-tuning, where we expect 444

the model to benefit from learning the task format; 445

2) In contrast, raw input-output IO format reflects a 446

common way of performing supervised fine-tuning 447

by incorporating only unprocessed input and out- 448

put; Instruct uses a human-readable instruction 449

template to format the input. Table 3 shows an 450

example of each format. 451

In the early pre-training steps, aligning the task 452

format with fine-tuning data seems to play a cru- 453

cial role. The model does not yet have enough 454

information to overcome differences between the 455

training and test format. However, when fine-tuned 456

on later pre-training checkpoints, the model gradu- 457

ally becomes more flexible with different task for- 458

mats, suggesting that model sensitivity to prompt 459

formatting observed may be resolvable with more 460

pre-training and a fine-tuning stage. In this view, 461

fine-tuning teaches the model how to format a re- 462

sponse for the task. 463

6.2 Task Transfer 464

Numerous studies examine model forgetting, 465

where further model training causes improvements 466

on some tasks but degradation on others (Mehta 467

et al., 2023). We evaluate model forgetfulness by 468

examining whether the model does worse on some 469

tasks after fine-tuning for other tasks. Specifically, 470

we divide our tasks into two types: classification 471

and generation. We notate the training datasets 472

as DT and the evaluation datasets as DE . We 473

represent the performance of a pre-trained model 474

(BASE) on checkpoint i as PerfiBASE(d) where 475

d ∈ DE , and performance of the i-th checkpoint 476

fine-tuned on t ∈ Dt be Perfit(d). To normalize 477

the effect caused by uneven performance across 478

different datasets, we compute the mean ratio of 479

change (MRC) in performance for each checkpoint 480
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Figure 5: Example of model performance with different task formats. The figure of all datasets can be found in
Figure 13.

as follows.481

MRC = 1
|DE\{t}|

∑
∀d∈DE ,d̸=t

Perfit(d)−PerfiBASE(d)

PerfiBASE(d)
482

Models fine-tuned on classification tasks and483

evaluated on generation tasks decrease on aver-484

age 61.4% compared to models that are never fine-485

tuned. In contrast, models fine-tuned on generation486

tasks can still perform the same as the BASE model487

on classification tasks, with a 0.3% MRC, which488

is not statistically significantly different from a 0%489

change. Our findings on all pre-training check-490

points align with the findings of Yang et al., 2024491

on the final checkpoint of LLAMA-7B.492

A model can maintain classification abilities493

when trained for generation, but it loses its genera-494

tion abilities when trained for classification. This495

is perhaps not surprising given that classification496

tasks can be seen as a subset of generation, while497

the reverse is not true. The model follows a simplic-498

ity bias and thus is more likely to memorize simple499

classification tasks than generation tasks with an ex-500

ponentially larger search space. Additionally, since501

we evaluate the classification tasks based on the out-502

put logits and the base model performs randomly503

on the classification tasks, it is much easier for the504

models to maintain the same performance as the505

BASE models. Fine-tuning can cause a model to506

lose abilities when the desired fine-tuning behavior507

does not support those abilities.508

6.3 Domain Knowledge509

Finally, we explore how a model’s generalization510

ability is affected by fine-tuning by inspecting511

whether the model forgets the domain knowledge512

it had before fine-tuning due to learning other abil-513

ities. An example of OOD model performance is514
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(a) Paws → QQP
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(b) MNLI → GPT3NLI

Figure 6: Example of out-of-domain performance for
fine-tuned models. The solid blue line represents the
fine-tuned checkpoint evaluated on an out-of-domain
dataset, and the dashed orange line represents the base
checkpoint where the model is not fine-tuned. Figure 6a
shows an example of fine-tuning hurting OOD perfor-
mance, while Figure 6b shows an example of fine-tuning
boosting OOD performance as pre-traininng proceeds.

shown in Figure 6, and the mean change ratio by 515

datasets is presented in Figure 7. 516

The model does not benefit equally from the in- 517

domain fine-tuning: all NLI datasets experience a 518

boost when fine-tuning on MNLI, while fine-tuning 519

on Paws is detrimental to other paraphrase detec- 520

tion datasets. This implies that both forgetting and 521

learning are happening: the model learns to per- 522

form the task with in-domain knowledge, but it 523

may, in turn, forget information more distant from 524

what is learned in fine-tuning. Questions remain, 525
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Figure 7: Ratio of out-of-domain performance change
for each task, averaged across checkpoints

however, about whether there are different stages526

of learning and forgetting during fine-tuning and527

whether the model picks up different tasks in var-528

ious stages, which requires further study of fine-529

tuning dynamics.530

Overall, across these three lenses, we find that531

fine-tuning, although teaches a model how to per-532

form a task, can sacrifice generalization abilities if533

such ability is not needed for the fine-tuned task.534

For some datasets learned with pre-training alone,535

the model can easily understand the task format,536

and the nature of the task is probably supported537

by the pre-training objective. For tasks that can538

only be learned with subsequent fine-tuning, the539

model may require additional examples to adapt540

to different task formats, or the task itself may be541

inconsistent with the pre-training objective.542

7 Discussion543

Our study uses fine-tuning of pre-training model544

checkpoints to understand the dynamics of pre-545

training and fine-tuning on model performance.546

While our insights suggest directions for future547

work, we note important limitations inherent in our548

experiments. This study considered a single, rela-549

tively small LLM on less than a dozen datasets, and550

still consumed thousands of hours of GPU training551

time at significant expense. Future work needs to552

confront these issues on larger models and more553

datasets.554

Some datasets can be learned without fine-555

tuning. We discover a dichotomy between datasets.556

Some are learned during model pre-training, while557

others show no improvements during pre-training.558

Furthermore, the datasets learned during pre-559

training do not benefit from fine-tuning. This ob-560

servation, combined with our study about what is561

learned during fine-tuning (Section 6) suggests that562

some tasks are presented in a manner that aligns563

with what the model sees during pre-training, and564

thus fine-tuning provides no additional informa- 565

tion. While we could identify what about the tasks 566

placed them in the learned or not learnable dur- 567

ing pre-training group, it may be possible to for- 568

mat tasks in a manner that better aligns with pre- 569

training and makes them learnable. 570

Pre-training models can improve in undetectable 571

ways without fine-tuning. Some datasets are not 572

learnable during pre-training but benefit signif- 573

icantly from fine-tuning (§4). However, these 574

datasets still benefited from additional pre-training, 575

even though those benefits were not revealed with- 576

out fine-tuning (§5). Clearly, the model is learning 577

important information about the task, even though 578

it cannot express that information. The identifica- 579

tion of a measure available during pre-training that 580

correlated with post-fine-tuning task performance 581

could be used to guide pre-training and produce 582

models that did better post-fine-tuning. Perhaps 583

there is a way in which information about these 584

tasks can be included in pre-training, allowing the 585

model to better utilize the massive amount of pre- 586

training data. For example, early stopping during 587

pre-training could lead to better utilization of lim- 588

ited training resources if we knew when to stop. 589

Fine-tuning teaches task format but leads to for- 590

getting unused abilities. Our results show that fine- 591

tuning guides the model to understand the format 592

and complete a given task. As this information 593

diminishes, the model’s overall ability improves. 594

However, fine-tuning comes at the expense of other 595

model abilities, such as the capability of perform- 596

ing on tasks or domains that are unrelated to the 597

fine-tuning task. This insight can be helpful in our 598

understanding of the multitask abilities of LLMs, 599

where certain tasks can introduce conflicts during 600

multi-task training (Mueller et al., 2022). 601

8 Conclusion 602

In this work, we conduct straightforward experi- 603

ments to understand the relationship between fine- 604

tuning and pre-training LLMs. Our findings span 605

from the latent benefits of pretraining to model 606

learning and forgetting during fine-tuning. Over- 607

all, our results demonstrate the value of analyzing 608

training dynamics, and we would like to call for 609

the release of pre-training checkpoints to aid future 610

studies. 611
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Limitations612

We discuss the weaknesses and limitations in the613

following section.614

Computing Resource Due to computational con-615

straints, we cannot explore larger models with616

richer data. The amount of GPU hours spent for617

each experiment in this study is listed in Table 2.618

Availbility of Pre-training Checkpoints This619

study would benefit significantly from including620

a broader spectrum of models, but the public pre-621

training checkpoint releases are limited. Open-622

source LLMs with intermediate checkpoint release623

include OLMo (Groeneveld et al., 2024), TinyL-624

LAMA, RedPajama-Incite, OpenLM, and Pythia.625

After a series of preliminary experiments, we select626

these models’ best-performing and robust families.627

Scaling Law Recent research shows that the628

model may resemble emergent capability (Wei629

et al., 2022) when scaled to a certain size. Our630

experiments are only conducted on the one-billion631

model, which may, therefore, conceal the emergent632

capability brought by larger models.633

Analysis Protocol Wu et al., 2023 show that the634

evaluation result may be affected by samples that635

have been memorized by the model during training636

instead of revealing the reasoning capability. We637

have only looked at downstream performance as638

an analysis protocol. More investigation should639

be done into model internals during pre-training640

dynamics and how they relate to the effects of fine-641

tuning.642

Training Paradigm Models are fine-tuned with a643

fixed amount of epochs. Further study can be done644

to study the effect of pre-training on different fine-645

tuning methods or fine-tuning dynamics in different646

pre-training stages. We only explored the scenario647

of full-parameter fine-tuning. Whether parameter-648

efficient fine-tuning or human preference tuning649

will lead to a different conclusion remains an open650

question.651

Randomness In this study, we only assess uncer-652

tainty with Bootstrap during evaluation. However,653

uncertainty may emerge during training, which654

poses optimizer initialization and data ordering.655

Due to the computational constraints, we cannot656

reduce the randomness factor on this angle.657
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A Hyperparameter Tuning1129

For both supervised fine-tuning and instruction tun-1130

ing, we pre-set the effective batch size to 8, and1131

tune the learning rate within {2× 10−5, 2× 10−6,1132

2× 10−7}. Each model is fine-tuned for 3 epochs1133

on the supervised fine-tuning tasks and 5 epochs1134

on Tulu for instruction tuning. In both settings, we1135

adopt an AdamW optimizer with a linear learning1136

rate scheduler. The optimizer is warmed up for the1137

first 3% of the training time.1138

B Task Format1139

We adopt the task format from (Yang et al., 2024),1140

with an additional task format of input-output.1141

C GPU Hours per-Experiment1142

We show a table of GPU hours spent for each exper-1143

iment in Table 2. The total number of GPU hours1144

spent in this project is approximately 1067 A1001145

hours. We lose track of the GPU hours spent on pre-1146

liminary experiments, so a lower-bound estimation1147

is reported.1148

D Per-dataset Figures1149

We show the model performance on each dataset1150

after supervised fine-tuning and instruction tuning1151

correspondingly in Figure 9 and Figure 8. The1152

datasets that already show improvement during pre-1153

training do not benefit from fine-tuning, while per-1154

formance improve drastically on the datasets that1155

the model has never learned during pre-training.1156

Out-of-domain Generalization The out-of-1157

domain performance for each dataset with respect1158

to pre-training steps is shown in Figure 10. Over-1159

all, the model generalizes well after fine-tuning on1160

NLI tasks, while its performance deteriorates when1161

evaluated on out-of-domain paraphrase detection1162

tasks.1163

Cross-task Generalization The cross-task per-1164

formance for each dataset with respect to pre-1165

training steps is shown in Figure 11 and Figure 12.1166

1167

Task-Format1168
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Prelinminary Experiments

Description GPU Hours

Instruction Tuning on LIMA, TULU, and NaturalInstructions ∼300
Model Performance Verification, Dataset Selection 120

Instruction Tuning

Instruction Tuning 360
Evaluation 10
Total 370

Fine-Tuning

XSum SocialIQa MNLI Paws

Training 12 6 4.6 5.3
Evaluation 8 5.3 3 2

OOD Evaluation 96 32 11 25.6
CrossTask Evauation 5.2 6.5 7.7 8.15

Task Format Evaluation 16 12.8 6 4
Total 137.2 + 62.6 + 32.3 + 45 = 277.1

Table 2: GPU hours for each experiment. The total amount of GPU hours spent in this project is approximately
1067 A100 hours.
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Figure 8: Model performance after instruction tuning on each pre-training step.
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Figure 9: Model performance after supervised fine-tuning on each pre-training step.
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(g) SocialIQA -> TweetQA

Figure 10: Out-of-domain performance after supervised fine-tuning on each pre-training step.

Task Default Prompt Instruction Prompt IO Prompt Expected Output

Summary
Generation

### Input: {document}
### Summary:

Please read the following text: {document}
Provide a summary: {document} {summary}

Question
Generation

### Input: {context}
### Answer: {answer}
### Question:

Given the context: {context}
And the answer: {answer}
Generate a suitable question:

{context}
{answer} {question}

Natural Language
Inference

### Input_1: {premise}
### Input_2: {hypothesis}
### Inference:

Consider the following texts: Text 1: {premise}
Text 2: {hypothesis} The relation is

{premise}
{hypothesis} {label}

Paraphrase Detection
### Input_1: {sentence1}
### Input_2: {sentence2}
### Paraphrase Classification:

Let’s compare the two sentences:
Sentence_1: {sentence1}
Sentence_2: {sentence2} Are they paraphrasing?:

{sentence1}
{sentence2} {label}

Table 3: Formatting of the prompts
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(f) XSum -> Paws

Figure 11: Cross-task performance after supervised fine-tuning on each pre-training step. The model is fine-tuned
on a classification task and evaluated on a generation task or a classification task with a different label set.
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(f) XSum -> SocialIQA

Figure 12: Cross-task performance after supervised fine-tuning on each pre-training step. The model is fine-tuned
on a generation task and evaluated on a classification task.

17



1000
18000

342000
424000

505000
592000

738000
main

0.3

0.4

0.5

0.6

0.7

0.8

Pe
rf

or
m

an
ce

(a) MNLI matched

1000
18000

342000
424000

505000
592000

738000
main

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rf

or
m

an
ce

(b) Paws

1000
18000

342000
424000

505000
592000

738000
main

0.00

0.05

0.10

0.15

0.20

Pe
rf

or
m

an
ce

(c) XSum

1000
18000

342000
424000

505000
592000

738000
main

0.0

0.2

0.4

0.6

0.8

Pe
rf

or
m

an
ce

Format Type
Default
Instruct
IO
Variant
Fine-Tuned
BASE

(d) SocialIQa

Figure 13: Model performance with different task formats.
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E Generalization Taxonomy1169

Following the generalization taxonomy in Hupkes1170

et al., 2023, the evaluation card is included in Ta-1171

ble E.1172
Motivation

Practical Cognitive Intrinsic Fairness
□ △

Generalisation type
Compositional Structural Cross Task Cross Language Cross Domain Robustness

△ □

Shift type
Covariate Label Full Assumed

□ △
Shift source

Naturally occuring Partitioned natural Generated shift Fully generated
□ △

Shift locus
Train–test Finetune train–test Pretrain–train Pretrain–test

□ △

1173

1174
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Name License Name License

OLMo-1b Apache 2.0 SocialIQa CC-BY
TULU ODC-BY CNN/DailyMail Apache 2.0
ARC CC BY-SA TweetQA CC BY-SA-4.0

OpenbookQA Apache 2.0 MNLI CC-BY-3.0
Hellaswag MIT GPT3NLI MIT

BoolQ Apache 2.0 RTE N/A
SciQ CC-BY-NC-3.0 Paws Free

XSum MIT QQP Non-Commercial
XLSum CC-BY-NC-SA 4.0 STS-B Other

Table 4: License of artifacts used in this paper.

F License of Artifacts1175

We include the license of artifacts used in this paper1176

in Table 41177

G Performance Numbers1178

Checkpoint Learned in
Pre-train

Learned in
Fine-Tune

1000 0.048 0.062
18000 0.048 0.149

342000 0.004 0.286
424000 0.01 0.297
505000 0.03 0.304
592000 0.027 0.297
738000 0.021 0.264

main -0.005 0.290

Table 5: Average performance change before and af-
ter fine-tuning for each checkpoint (Perf(Fine-tuned) -
Perf(BASE)). The group that is never learned during pre-
training is picked up by the model during fine-tuning.

H Full Performance Table1179

All the exact metric numbers are shown in Table.1180
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