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Abstract

The development of large language models
leads to the formation of a pre-train-then-align
paradigm, in which the model is typically pre-
trained on a large text corpus and undergoes
a tuning stage to align the model with human
preference or downstream tasks. In this work,
we investigate the relationship between pre-
training and fine-tuning by fine-tuning multiple
intermediate pre-trained model checkpoints, we
find that i) continual pre-training improves the
model in a latent way that unveils after fine-
tuning; ii) with extra fine-tuning, the datasets
that the model does not demonstrate capabil-
ity gain much more than those that the model
performs well during the pre-training stage; iii)
although model benefits significantly through
supervised fine-tuning, it may forget previously
known domain knowledge and the tasks that are
not seen during fine-tuning; iv) the supervised
fine-tuned model resembles high sensitivity to
few-shot evaluation prompts, but this sensitiv-
ity can be alleviated by more pre-training. !

1 Introduction

The rise of large language models (LLMs) as a
general-purpose tool for a diverse range of nat-
ural language processing tasks has dramatically
transformed the field, introducing new paradigms
for data collection and model training (Brown
et al., 2020, Biderman et al., 2023, Touvron et al.,
2023, Jiang et al., 2023, Chowdhery et al., 2023,
Groeneveld et al., 2024, Wang et al., 2024, in-
ter alia). Numerous models, training methods,
datasets, and evaluation methods continue to be
developed on an ongoing basis. Nevertheless, a
unified paradigm has emerged for training LLMs:
pre-train on an enormous corpus of diverse docu-
ments, ranging from 250B (Biderman et al., 2023)
to 15T (Al@Meta, 2024) tokens, followed by an
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Figure 1: Ilustration of the experimental scheme.

alignment stage to make the model more useful and
performative for various tasks.

Based on this paradigm, work has focused on
improving each of these two stages. For better
pre-trained models, exploration is done on larger
training sets (Hoffmann et al., 2022; Al@Meta,
2024; Touvron et al., 2023), different data selec-
tion mechanisms (Xia et al., 2024), higher qual-
ity data (Zhou et al., 2024), and various model
architectures (Su et al., 2024; Touvron et al., 2023).
Meanwhile, research on model alignment includes
different training objectives (Rafailov et al., 2024;
Schulman et al., 2017), new datasets (Narayanan
and Aepli, 2024), more efficient training (Hu et al.,
2021; Dettmers et al., 2024), safety tuning (Bianchi
et al., 2023), among other approaches. The align-
ment stage usually involves either supervised fine-
tuning for specific tasks or instruction fine-tuning
for general-purpose usage. Regardless, fine-tuning
(almost always) comes at the end of pre-training
and yields remarkable improvements on down-
stream tasks (Touvron et al., 2023; Groeneveld
et al., 2024). However, the benefits of each stage
are largely explored independently, with improve-
ments to pretraining being orthogonal to benefits
from model alignment. Fine-tuning starts with the
final pretraining model checkpoint.

Rather than explore these two training regimes
independently, we question: how do model pre-
training and fine-tuning interact to affect the
resulting abilities of the model? Does more pre-
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training hinder better fine-tuning results? What
does the model learn during pre-training, and
what does it forget during fine-tuning? To an-
swer these questions, we fine-tune multiple pre-
training checkpoints of a large language model
(Figure 1), evaluating each checkpoint and its fine-
tuned version on downstream evaluation sets. We
track model abilities during pre-training and com-
pare them to improvements achievable after fine-
tuning at each pre-training stage. We explore both
supervised fine-tuning and instruction fine-tuning,
testing the models’ memorization and forgetting
when learning specific tasks and serving as general-
purpose language-Al tools. To the best of our
knowledge, we are the first to explore fine-tuning
intermediate model checkpoints.

Our experiments yield novel insights into LLM
training. We find that (1) continued pre-training
can improve a model in ways that are only revealed
after fine-tuning (§5); (2) tasks for which the model
performs well during pre-training benefit much less
from fine-tuning than datasets where the model
does not demonstrate capabilities (§4, §5); (3) al-
though supervised fine-tuning can improve perfor-
mance on in-distribution tasks, it can also cause the
model to forget tasks that it was previously able
to solve or domain knowledge (§6); (4) fine-tuned
models show high sensitivity to few-shot evaluation
prompts, but this sensitivity can be alleviated by
more pre-training (§6). Our findings provide useful
insights into model training and can inform meth-
ods for both pre-training and fine-tuning. Further-
more, our work shows the value of testing multiple
model checkpoints, and we encourage model de-
velopers to release these checkpoints to aid future
studies.

2 Background: Model Training

We begin with a brief survey of the core compo-
nents of LLM training: pre-training, fine-tuning,
and instruction fine-tuning. We also discuss the
related topic of in-context learning as well as dif-
ferent efficient fine-tuning strategies.

In this work, “model alignment” is referred to as
a general term that refers to aligning the model with
a desired behavior, which can be accomplished by
fine-tuning models after pretraining. The term is
associated with other definitions (Shen et al., 2024).
We also note several related studies that explore
training dynamics to understand model behavior
(Tirumala et al., 2022; Chen et al., 2023; Tian et al.,

2023). With this in mind, we conduct an empirical
study on how the amount of pre-training affects the
effectiveness of fine-tuning.

Pre-training The first step of training a LLM
is pre-training on a massive text corpus (Achiam
et al., 2023; Touvron et al., 2023; Groeneveld et al.,
2024). For decoder-only models in the GPT family,
the subject of our paper, work since the introduc-
tion of GPT-2 (Radford et al., 2019) has focused on
scaling up model training. Initial work increases
model size to hundreds of billions of parameters
(Brown et al., 2020; Rae et al., 2021; Chowdhery
et al., 2023), along with explorations of the tradeoff
between model and training corpus size (Hoffmann
et al., 2022). Since the push towards large models,
work has shifted to increasing the amount of pre-
training data, with new models now reaching 15
trillion tokens (Al@Meta, 2024). Studies of model
performance on various tasks at different model
sizes introduced the idea of emergent model abil-
ities (Wei et al., 2022), with new model abilities
being revealed as model training grows.

We also recognize a particularly important trend
for this paper: model openness. Early LLMs were
proprietary models accessible only through an APL
The first large open model, Bloom (Bloom Strom
et al., 2023), allowed widespread evaluation of
these models. Subsequent open models, such as
OPT (Zhang et al., 2022), LLaMA (Touvron et al.,
2023; Keles and Bayrakli, 2024) and others (Bi-
derman et al., 2023; Gururangan et al., 2023; Al-
mazrouei et al., 2023), have become the norm. In
this paper, we study OLMo (Groeneveld et al.,
2024), which is one of the only models to release
individual pre-training checkpoints.

Fine-Tuning Early work on instruction fine-
tuning using reinforcement learning with human
feedback (RLHF) (Ziegler et al., 2019; Stiennon
et al., 2020; Ouyang et al., 2022) demonstrate the
dramatic effect that model alignment could have on
a pre-training model. When a specific task of inter-
est has been identified, supervised fine-tuning can
improve a pre-trained model. Task-agnostic tuning
became popularized with the advent of TS models
Raffel et al., 2020, where a pre-trained LLM is
tuned using a general text-to-text solution. When
multiple tasks are given to the model, the model
is commonly given a task-specific prefix or an in-
struction along with the task input, leading to the
development of various methods of prefix tuning
(Li and Liang, 2021) and instruction tuning (Wei



et al., 2021; Mishra et al., 2022; Victor et al., 2022).

Instruction Fine-Tuning Instruction fine-tuning
is preferred when more general model behaviors
are desired. Popularized through reinforcement-
learning with human feedback (RLHF) (Christiano
et al., 2017; Ziegler et al., 2019; Stiennon et al.,
2020; Ouyang et al., 2022) and reinforcement-
learning with AI feedback (RLAIF) (Lee et al.,
2023), these methods utilize a reward model to sim-
ulate human feedback. Others explore human pref-
erence tuning without a reward model (Rafailov
et al., 2024; Song et al., 2024; Xu et al., 2024),
or study the effects of these tuning methods (Shen
etal., 2024; Perez et al., 2023). Sharma et al. (2024)
show that supervised fine-tuning can lead to similar
performance as RLAIF.

In-Context Learning While not the subject of
this paper since it does not make changes to model
parameters, in-context learning utilizes a small
amount of supervised data to improve model perfor-
mance. ICL, also called few-shot learning, is also
used as an evaluation strategy where the model is
given a prompt composed of examples of tasks ex-
pected to be solved. The underlying model is evalu-
ated based on its response to the input. ICL can ben-
efit from a larger context window that adds more
examples, which can spur work on the development
of model quantization techniques (Dettmers et al.,
2022) and the alleviation of hardware constraints
(Brown et al., 2020; Xie et al., 2021; Min et al.,
2022).

Fine-Tuning Techniques While model pre-
training can be done by a few groups with large re-
sources interested in developing new models, fine-
tuning depends on the task and is of broad interest.
Therefore, many techniques are developed to facili-
tate time-, memory-, and data-efficient model train-
ing through parameter-efficient fine-tuning (PEFT)
(Hu et al., 2021), quantization (Jacob et al., 2018;
Dettmers et al., 2022, 2024), and specialized data
filtering (Xia et al., 2024; Zhou et al., 2024). This
paper focuses specifically on full-parameter fine-
tuning, while our findings suggest the potential
for data-efficient and budget-friendly training by
understanding the critical turning point of model
training. Our findings are closely related to the
recent study on phase transition of model training
(Olsson et al., 2022; Wei et al., 2022; Chen et al.,
2023).

3 Experimental Setup

In this section, we introduce the model choice and
datasets used. The hyperparameter tuning proce-
dure and setup for each fine-tuning setting can be
found in Appendix A.

3.1 Model Choice

Our paper considers OLMo-1B (Groeneveld et al.,
2024), a recently released high-performing open-
source large language models. Several factors mo-
tivate the selection of this model. First, OLMo is
one of the only models that released intermediate
checkpoints available, a prerequisite of this study
2 3. Second, the model is fully open, including
the training code and pre-training data. Full open-
ness allows future studies to consider related issues.
Third, this model size allows us to train a model ef-
ficiently on a single A100 GPU. This study requires
a large amount of GPU time, which would have
been prohibitive with a larger model. We select
model pre-training checkpoints uniformly from the
pre-training history and include the first and the
final checkpoints.

3.2 Training Procedure

We fine-tune each of the selected model check-
points using two different procedures to create
fine-tuned models: supervised fine-tuning and in-
struction tuning. The supervised fine-tuning is con-
ducted separately for each model checkpoint and
dataset, while the instructing fine-tuning is done
once using the instruction dataset. The instruction-
tuned model is evaluated on a suite of LLM bench-
marks.

Supervised Fine-tuning We adapt the dataset
choice from Yang et al., 2024 for supervised
fine-tuning. For each in-domain dataset, one to
two cross-domain evaluation datasets are supplied.
Each pre-training checkpoint is fully fine-tuned
for 3 epochs with a batch size of 8 and learning
rates resulting from minimal hyperparameter tun-
ing. Each task is formatted using a default prompt-
completion format (Table 3).

Zhttps://github.com/allenai/OLMol/tree/main/checkpoints

*We also experimented with RedPajama-INCITE
(https://www.together.ai/blog/redpajama-models-vl), one
of the few, if not only, other models to release checkpoints.
After extensive experiments, we found it performed worse
than OLMo, given the training data available. Several other
models report that they release training checkpoints but have
not done so.
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Instruction Fine-Tuning We instruction-tune
the model on TULU (Ivison et al., 2023), following
the decision of Groeneveld et al., 2024. Each model
checkpoint is fully fine-tuned for 5 epochs with a
batch size of 8 and a learning rate of 2 x 1076,

Supervised Fine-Tuning

Task Training  ID Test OOD Test

Summary XSum,

Generation XSum XLSum CNN

Question . . SciQ,

Generation SociallQa  SociallQA TweetQA

Natural Language MNLI MNLII, RTE,

Inference MNLI2 GPT3NLI

Paraphrase QQP,

Detection Paws Paws STS-B
Instruction Tuning

Dataset Description

TULU-v2 A mixture of instruction datasets.

ARC Grade-school multiple-choice QA.

OpenbookQA Open book exam QA.

Hellaswag Commonsense inference.

BoolQ Reading comprehension.

SciQ Science exam multiple choice QA.

Table 1: Dataset information. For Generation tasks,
ROUGE-L is used as evaluation metric, and accuracy is
used for classification tasks.

3.3 Evaluation

Our evaluation challenge is to select a representa-
tive number of datasets for different types of tasks
to test model abilities, recognizing that each dataset
requires evaluating each model checkpoint and its
fine-tuned counterparts. We also select datasets
based on the availability of in-domain and out-of-
domain samples.

Datasets Our datasets are summarized in Table
1. We evaluate the model with an in-domain test
set and one or two out-of-domain test sets for each
of the supervised fine-tuning tasks. We conduct
experiments on the tasks of summary generation
(Narayan et al., 2018; Hasan et al., 2021; Hermann
et al., 2015), question generation (Sap et al., 2019;
Xiong et al., 2019; Welbl et al., 2017), natural lan-
guage inference (Williams et al., 2018; Wang et al.,
2018; Dagan et al., 2006; Bar Haim et al., 2006;
Giampiccolo et al., 2007; Bentivogli et al., 2009),
and paraphrase detection (Zhang et al., 2019; Wang
etal., 2018; Agirre et al., 2007). Each training set is
sub-sampled to a size of 6,000 for fair comparisons.

In instruction fine-tuning, we base our down-
stream evaluation settings on Groeneveld et al.,
2024, as OLMo is found to have stable performance
on these datasets. The instruction-tuned models
are evaluated on ARC (both arc easy and arc
challenge) (Clark et al., 2018), OpenbookQA
(Mihaylov et al., 2018), Hellaswag (Zellers et al.,
2019), BoolQ (Clark et al., 2019), and SciQ (Welbl
et al., 2017). In addition to the datasets above, the
instruction-tuned models are evaluated on LLM-
BAR (Zeng et al., 2024) to test for instruction-
following ability.

Metrics We use accuracy (Pedregosa et al., 2011)
for classification tasks and ROUGE-L (Lin, 2004)
for generation tasks. We set the maximum amount
of newly generated tokens to 5 for classification
tasks and 60 for generation tasks. Outputs are gen-
erated with greedy decoding. For classification
tasks, we experiment with both constrained decod-
ing and logit-based predictions. We find the best
performance by selecting the label with the highest
logit of its first subtoken.

4 How does the model change across
pre-training?

We begin our evaluation by considering how the
base model (no fine-tuning) changes with addi-
tional pre-training. Typically, researchers track
the value of the training or held-out loss during
training. However, performance improvements on
downstream tasks do not always track these loss
curves (Groeneveld et al., 2024).

We evaluate the pre-trained checkpoints using In-
Context Learning (few-shot examples), as models
without alignment tend to do poorly in a zero-shot
context. We verify this by initial evaluations of
the models in both zero-shot and few-shot settings.
Four shots are randomly sampled from the datasets,
which are selected based on the highest perfor-
mance shot amount reported in Yang et al., 2024.
The model’s performance at each pre-training step
is reported in Figure 2.

Broadly speaking, we find that all datasets fall
into one of two groups. For the first group of
datasets (Figure 2a), although the model shows
clear improvement during the early stages of pre-
training, performance levels off fairly early on and
remains consistent. The dramatic improvements
in the early stages of pre-training may partially
come from learning rate warm-up; OLMo’s learn-
ing rate is warmed up for the first 2000 steps for
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Figure 3: Example of few-shot performance on different
pre-training steps of the models that benefited (3a) and
did not benefit from fine-tuning (3b). The solid blue line
represents the fine-tuned checkpoint, and the

line represents the base checkpoint. The results
of all datasets can be found in Figure 9 and Figure 8.

OLMo-1B of the training. We find improvements
stop increasing past 342,000. The second group
(Figure 2a) shows tasks that are never learned dur-
ing pre-training. Performance remains constant
throughout the whole pre-training process. These
datasets include MNLI, XSum, and BoolQ, and
we found no difference between zero-shot and few-
shot evaluations.

Overall, these results reveal an interesting di-
chotomy. Some tasks can be learned during pre-
training, while others are not. Next, we explore
what exactly the model is learning regarding this
second group of datasets during pre-training by
exploring the fine-tuned models.

5 Does more pre-training improve
fine-tuning?

Groeneveld et al., 2024 compares OLMo’s perfor-
mance on several tasks before and after fine-tuning
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Figure 4: Amount of increase after fine-tuning between
tasks that model can solve in pre-training (

) and tasks that the model could not solve until
fine-tuning ( ). The exact number of mean
increase is shown in Appendix G.

the final checkpoint and finds that fine-tuning en-
ables the model to do well on tasks for which the
unaligned model does poorly. We observe (§4) that
while some datasets improved during pre-training,
there is a group of datasets for which a pre-trained
model does poorly. What exactly is happening with
the model on these datasets during pre-training?
Does the model learn anything, and is fine-tuning
required to do well on these tasks? Alternatively,
does the model learn useful information for these
tasks but cannot express it without fine-tuning? We
explore these questions by examining fine-tuned
checkpoints for each of the datasets.

Our results appear in Figure 3 and Figure 4. First,
we consider those datasets which do well with a pre-
trained model (Figure 2a). These datasets do not
improve with fine-tuning, suggesting whatever is
learned during fine-tuning, which we discuss below,
the model already gains the knowledge during pre-
training. We see this effect at all checkpoints; fine-
tuning simply does not help.

However, a different story is observed for
datasets that were not learned during pre-training.
For these, fine-tuning yields significant improve-
ments at every model checkpoint, with Figure 4



showing the magnitude of improvement on these
datasets compared to no improvement to the
datasets learned during pre-training. Moreover, ear-
lier checkpoints obtain more substantial gains from
fine-tuning than later checkpoints. The benefit of
fine-tuning continues to increase until a certain
threshold in pre-training steps is reached (approxi-
mately 424,000).

Figure 3 shows representative plots comparing
the performance of a pre-trained versus fine-tuned
model at different checkpoints for two datasets (full
list in Appendix D). For Hellaswag (learned dur-
ing pre-training), fine-tuning does not benefit the
model, even during early checkpoints when the
model performs poorly on the task. Nevertheless,
for MNLI (not learned during pre-training), fine-
tuning dramatically improves the model. Interest-
ingly, later checkpoints achieve better results after
fine-tuning, even when the performance of the pre-
trained model is unchanged. This suggests that
the model is, in fact, learning important informa-
tion during pre-training, but it cannot express that
information without fine-tuning.

Our findings suggest that early stopping in pre-
training will not be detrimental to downstream
fine-tuning performance, and the benefits of fine-
tuning an LLM can exceed the benefits of contin-
ued pretraining, which sheds light on the potential
of cost-effective fine-tuning with less pre-training.
However, it is difficult to directly identify such a
stopping criteria without fine-tuning intermediate
checkpoints; the improvement trend is invisible be-
fore fine-tuning the checkpoints. Future work may
reveal other signals of pre-training behavior that
correlate with downstream task performance after
fine-tuning. Overall, when resource-intensive pre-
trained LLLMs are not available, fine-tuning models
on models with less pre-training may be a reason-
able practical choice for obtaining a high-quality
model.

6 Supervised Fine-Tuning: What does the
model learn and forget?

What exactly is the model learning during fine-
tuning such that it can reveal abilities in pre-trained
models for some tasks but provide no benefit for
other tasks? We analyze the supervised fine-tuning
process to understand what is learned and what is
forgotten. Specifically, we explore three dimen-
sions: task format, task transfer, and domain
knowledge.

6.1 Task Format

Sclar et al., 2023 show that LLMs are extremely
sensitive to prompt perturbation in few-shot set-
tings. More broadly, extensive work on prompt en-
gineering reveals the sensitivity of models to task
format. We hypothesize that fine-tuning fits the
model to a specific task format, resulting in higher
performance when the evaluation set matches this
format. To test this hypothesis, we vary the task
format to either match the training format, use a dif-
ferent format, or rely on instructions. We carefully
construct three different prompt formats for the fol-
lowing settings. 1) Default is the same format
used for supervised fine-tuning, where we expect
the model to benefit from learning the task format;
2) In contrast, raw input-output I0 format reflects a
common way of performing supervised fine-tuning
by incorporating only unprocessed input and out-
put; Instruct uses a human-readable instruction
template to format the input. Table 3 shows an
example of each format.

In the early pre-training steps, aligning the task
format with fine-tuning data seems to play a cru-
cial role. The model does not yet have enough
information to overcome differences between the
training and test format. However, when fine-tuned
on later pre-training checkpoints, the model gradu-
ally becomes more flexible with different task for-
mats, suggesting that model sensitivity to prompt
formatting observed may be resolvable with more
pre-training and a fine-tuning stage. In this view,
fine-tuning teaches the model how to format a re-
sponse for the task.

6.2 Task Transfer

Numerous studies examine model forgetting,
where further model training causes improvements
on some tasks but degradation on others (Mehta
et al., 2023). We evaluate model forgetfulness by
examining whether the model does worse on some
tasks after fine-tuning for other tasks. Specifically,
we divide our tasks into two types: classification
and generation. We notate the training datasets
as Dr and the evaluation datasets as Dp. We
represent the performance of a pre-trained model
(BASE) on checkpoint i as Perfl 44 (d) where
d € Dg, and performance of the i-th checkpoint
fine-tuned on ¢ € Dy be Perfi(d). To normalize
the effect caused by uneven performance across
different datasets, we compute the mean ratio of
change (MRC) in performance for each checkpoint
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Figure 5: Example of model performance with different task formats. The figure of all datasets can be found in

Figure 13.
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Models fine-tuned on classification tasks and
evaluated on generation tasks decrease on aver-
age 61.4% compared to models that are never fine-
tuned. In contrast, models fine-tuned on generation
tasks can still perform the same as the BASE model
on classification tasks, with a 0.3% MRC, which
is not statistically significantly different from a 0%
change. Our findings on all pre-training check-
points align with the findings of Yang et al., 2024
on the final checkpoint of LLAMA-7B.

A model can maintain classification abilities
when trained for generation, but it loses its genera-
tion abilities when trained for classification. This
is perhaps not surprising given that classification
tasks can be seen as a subset of generation, while
the reverse is not true. The model follows a simplic-
ity bias and thus is more likely to memorize simple
classification tasks than generation tasks with an ex-
ponentially larger search space. Additionally, since
we evaluate the classification tasks based on the out-
put logits and the base model performs randomly
on the classification tasks, it is much easier for the
models to maintain the same performance as the
BASE models. Fine-tuning can cause a model to
lose abilities when the desired fine-tuning behavior
does not support those abilities.

6.3 Domain Knowledge

Finally, we explore how a model’s generalization
ability is affected by fine-tuning by inspecting
whether the model forgets the domain knowledge
it had before fine-tuning due to learning other abil-
ities. An example of OOD model performance is
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Figure 6: Example of out-of-domain performance for
fine-tuned models. The solid blue line represents the
fine-tuned checkpoint evaluated on an out-of-domain
dataset, and the line represents the base
checkpoint where the model is not fine-tuned. Figure 6a
shows an example of fine-tuning hurting OOD perfor-
mance, while Figure 6b shows an example of fine-tuning
boosting OOD performance as pre-traininng proceeds.

shown in Figure 6, and the mean change ratio by
datasets is presented in Figure 7.

The model does not benefit equally from the in-
domain fine-tuning: all NLI datasets experience a
boost when fine-tuning on MNLI, while fine-tuning
on Paws is detrimental to other paraphrase detec-
tion datasets. This implies that both forgetting and
learning are happening: the model learns to per-
form the task with in-domain knowledge, but it
may, in turn, forget information more distant from
what is learned in fine-tuning. Questions remain,
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Figure 7: Ratio of out-of-domain performance change
for each task, averaged across checkpoints

however, about whether there are different stages
of learning and forgetting during fine-tuning and
whether the model picks up different tasks in var-
ious stages, which requires further study of fine-
tuning dynamics.

Overall, across these three lenses, we find that
fine-tuning, although teaches a model how to per-
form a task, can sacrifice generalization abilities if
such ability is not needed for the fine-tuned task.
For some datasets learned with pre-training alone,
the model can easily understand the task format,
and the nature of the task is probably supported
by the pre-training objective. For tasks that can
only be learned with subsequent fine-tuning, the
model may require additional examples to adapt
to different task formats, or the task itself may be
inconsistent with the pre-training objective.

7 Discussion

Our study uses fine-tuning of pre-training model
checkpoints to understand the dynamics of pre-
training and fine-tuning on model performance.
While our insights suggest directions for future
work, we note important limitations inherent in our
experiments. This study considered a single, rela-
tively small LLM on less than a dozen datasets, and
still consumed thousands of hours of GPU training
time at significant expense. Future work needs to
confront these issues on larger models and more
datasets.

Some datasets can be learned without fine-
tuning. We discover a dichotomy between datasets.
Some are learned during model pre-training, while
others show no improvements during pre-training.
Furthermore, the datasets learned during pre-
training do not benefit from fine-tuning. This ob-
servation, combined with our study about what is
learned during fine-tuning (Section 6) suggests that
some tasks are presented in a manner that aligns
with what the model sees during pre-training, and

thus fine-tuning provides no additional informa-
tion. While we could identify what about the tasks
placed them in the learned or not learnable dur-
ing pre-training group, it may be possible to for-
mat tasks in a manner that better aligns with pre-
training and makes them learnable.

Pre-training models can improve in undetectable
ways without fine-tuning. Some datasets are not
learnable during pre-training but benefit signif-
icantly from fine-tuning (§4). However, these
datasets still benefited from additional pre-training,
even though those benefits were not revealed with-
out fine-tuning (§5). Clearly, the model is learning
important information about the task, even though
it cannot express that information. The identifica-
tion of a measure available during pre-training that
correlated with post-fine-tuning task performance
could be used to guide pre-training and produce
models that did better post-fine-tuning. Perhaps
there is a way in which information about these
tasks can be included in pre-training, allowing the
model to better utilize the massive amount of pre-
training data. For example, early stopping during
pre-training could lead to better utilization of lim-
ited training resources if we knew when to stop.

Fine-tuning teaches task format but leads to for-
getting unused abilities. Our results show that fine-
tuning guides the model to understand the format
and complete a given task. As this information
diminishes, the model’s overall ability improves.
However, fine-tuning comes at the expense of other
model abilities, such as the capability of perform-
ing on tasks or domains that are unrelated to the
fine-tuning task. This insight can be helpful in our
understanding of the multitask abilities of LLMs,
where certain tasks can introduce conflicts during
multi-task training (Mueller et al., 2022).

8 Conclusion

In this work, we conduct straightforward experi-
ments to understand the relationship between fine-
tuning and pre-training LLMs. Our findings span
from the latent benefits of pretraining to model
learning and forgetting during fine-tuning. Over-
all, our results demonstrate the value of analyzing
training dynamics, and we would like to call for
the release of pre-training checkpoints to aid future
studies.



Limitations

‘We discuss the weaknesses and limitations in the
following section.

Computing Resource Due to computational con-
straints, we cannot explore larger models with
richer data. The amount of GPU hours spent for
each experiment in this study is listed in Table 2.

Availbility of Pre-training Checkpoints This
study would benefit significantly from including
a broader spectrum of models, but the public pre-
training checkpoint releases are limited. Open-
source LL.Ms with intermediate checkpoint release
include OLMo (Groeneveld et al., 2024), TinyL-
LAMA, RedPajama-Incite, OpenLLM, and Pythia.
After a series of preliminary experiments, we select
these models’ best-performing and robust families.

Scaling Law Recent research shows that the
model may resemble emergent capability (Wei
et al., 2022) when scaled to a certain size. Our
experiments are only conducted on the one-billion
model, which may, therefore, conceal the emergent
capability brought by larger models.

Analysis Protocol Wau et al., 2023 show that the
evaluation result may be affected by samples that
have been memorized by the model during training
instead of revealing the reasoning capability. We
have only looked at downstream performance as
an analysis protocol. More investigation should
be done into model internals during pre-training
dynamics and how they relate to the effects of fine-
tuning.

Training Paradigm Models are fine-tuned with a
fixed amount of epochs. Further study can be done
to study the effect of pre-training on different fine-
tuning methods or fine-tuning dynamics in different
pre-training stages. We only explored the scenario
of full-parameter fine-tuning. Whether parameter-
efficient fine-tuning or human preference tuning
will lead to a different conclusion remains an open
question.

Randomness In this study, we only assess uncer-
tainty with Bootstrap during evaluation. However,
uncertainty may emerge during training, which
poses optimizer initialization and data ordering.
Due to the computational constraints, we cannot
reduce the randomness factor on this angle.
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A Hyperparameter Tuning

For both supervised fine-tuning and instruction tun-
ing, we pre-set the effective batch size to 8, and
tune the learning rate within {2 x 1075, 2 x 1079,
2 x 10~"}. Each model is fine-tuned for 3 epochs
on the supervised fine-tuning tasks and 5 epochs
on Tulu for instruction tuning. In both settings, we
adopt an AdamW optimizer with a linear learning
rate scheduler. The optimizer is warmed up for the
first 3% of the training time.

B Task Format

We adopt the task format from (Yang et al., 2024),
with an additional task format of input-output.

C GPU Hours per-Experiment

We show a table of GPU hours spent for each exper-
iment in Table 2. The total number of GPU hours
spent in this project is approximately 1067 A100
hours. We lose track of the GPU hours spent on pre-
liminary experiments, so a lower-bound estimation
is reported.

D Per-dataset Figures

We show the model performance on each dataset
after supervised fine-tuning and instruction tuning
correspondingly in Figure 9 and Figure 8. The
datasets that already show improvement during pre-
training do not benefit from fine-tuning, while per-
formance improve drastically on the datasets that
the model has never learned during pre-training.

Out-of-domain Generalization The out-of-
domain performance for each dataset with respect
to pre-training steps is shown in Figure 10. Over-
all, the model generalizes well after fine-tuning on
NLI tasks, while its performance deteriorates when
evaluated on out-of-domain paraphrase detection
tasks.

Cross-task Generalization The cross-task per-
formance for each dataset with respect to pre-
training steps is shown in Figure 11 and Figure 12.

Task-Format
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Prelinminary Experiments

Description GPU Hours
Instruction Tuning on LIMA, TULU, and Naturallnstructions ~300
Model Performance Verification, Dataset Selection 120

Instruction Tuning

Instruction Tuning 360
Evaluation 10
Total 370
Fine-Tuning
XSum SociallQa MNLI Paws
Training 12 6 4.6 5.3
Evaluation 8 5.3 3 2
OOD Evaluation 96 32 11 25.6
CrossTask Evauation 52 6.5 7.7 8.15
Task Format Evaluation 16 12.8 6 4
Total 1372+ 62.6 +32.3+45=277.1

Table 2: GPU hours for each experiment. The total amount of GPU hours spent in this project is approximately
1067 A100 hours.
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Figure 10: Out-of-domain performance after supervised fine-tuning on each pre-training step.

Task Default Prompt Instruction Prompt 10 Prompt Expected Output
Summary ### Input: {document} Please read the following text: {document} {document} {summary}
Generation ### Summary: Provide a summary: u u y
Question H#iHt f:pul: {.corlllexl} gl\fnhth’e cwonlef(l: {context} {context} )
Generation H#it# nswer: {answer} nd the answer: {answer_} {answer} {question}
#i## Question: Generate a suitable question:
Natural Language it Input_lf {preml;e}A Consider the following texts: Text 1: {premise} {premise}
Inference ### Input_2: {hypothesis} Text 2: {hypothesis} The relation is {hypothesis} {Tabel}
### Inference: ’
### Input_1: {sentencel } Let’s compare the two sentences: (sentencel}
Paraphrase Detection  ### Input_2: {sentence2} Sentence_1: {sentencel } {label}

### Paraphrase Classification:

Sentence_2: {sentence2} Are they paraphrasing?:

{sentence2}

Table 3: Formatting of the prompts
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Figure 11: Cross-task performance after supervised fine-tuning on each pre-training step. The model is fine-tuned
on a classification task and evaluated on a generation task or a classification task with a different label set.
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Figure 12: Cross-task performance after supervised fine-tuning on each pre-training step. The model is fine-tuned
on a generation task and evaluated on a classification task.
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1170
1171
1172

1173

1174

E Generalization Taxonomy

Following the generalization taxonomy in Hupkes
et al., 2023, the evaluation card is included in Ta-
ble E.

Practical Cognitive Intrinsic Fairness
oA

Compositional Structural Cross Task  Cross Language Cross Domain Robustness

>
]

Covariate Label Full Assumed

d
>

Naturally occuring Partitioned natural Generated shift Fully generated
oA
Train—test Finetune train—test Pretrain—train Pretrain—test
oA
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Name License Name License

OLMo-1b Apache 2.0 SociallQa CC-BY
TULU ODC-BY CNN/DailyMail ~ Apache 2.0
ARC CC BY-SA TweetQA CC BY-SA-4.0
OpenbookQA Apache 2.0 MNLI CC-BY-3.0
Hellaswag MIT GPT3NLI MIT
BoolQ Apache 2.0 RTE N/A
SciQ CC-BY-NC-3.0 Paws Free
XSum MIT QQP Non-Commercial
XLSum CC-BY-NC-SA 4.0 STS-B Other

Table 4: License of artifacts used in this paper.

F License of Artifacts

We include the license of artifacts used in this paper
in Table 4

G Performance Numbers

Learned in Learned in

Checkpoint Pre-train Fine-Tune
1000 0.048 0.062

18000 0.048 0.149
342000 0.004 0.286
424000 0.01 0.297
505000 0.03 0.304
592000 0.027 0.297
738000 0.021 0.264
main -0.005 0.290

Table 5: Average performance change before and af-
ter fine-tuning for each checkpoint (Perf(Fine-tuned) -
Perf(BASE)). The group that is never learned during pre-
training is picked up by the model during fine-tuning.

H Full Performance Table

All the exact metric numbers are shown in Table.

20



	Introduction
	Background: Model Training
	Experimental Setup
	Model Choice
	Training Procedure
	Evaluation

	How does the model change across pre-training?
	Does more pre-training improve fine-tuning?
	Supervised Fine-Tuning: What does the model learn and forget?
	Task Format
	Task Transfer
	Domain Knowledge

	Discussion
	Conclusion
	Hyperparameter Tuning
	Task Format
	GPU Hours per-Experiment
	Per-dataset Figures
	Generalization Taxonomy
	License of Artifacts
	Performance Numbers
	Full Performance Table

