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Abstract

In this paper, we study the quantitative convergence of shallow neural networks
trained via gradient descent to their associated Gaussian processes in the infinite-
width limit. While previous work has established qualitative convergence under
broad settings, precise, finite-width estimates remain limited, particularly during
training. We provide explicit upper bounds on the quadratic Wasserstein distance
between the network output and its Gaussian approximation at any training time ¢ >
0, demonstrating polynomial decay with network width. Our results quantify how
architectural parameters, such as width and input dimension, influence convergence,
and how training dynamics affect the approximation error.

1 Introduction

Deep neural networks have achieved remarkable success across a wide range of tasks in computer
vision, natural language processing, and scientific computing, often surpassing traditional models by
large margins LeCun et al. [2015], Goodfellow et al. [2016]. This empirical progress has sparked
substantial interest in understanding the theoretical principles underlying their behavior, particularly
in the overparameterized regime, where the number of parameters is larger than the one of training
samples.

A major avenue of theoretical investigation in this sense focuses on studying the properties of neural
networks in the infinite-width limit. For instance, when the network’s parameters at initialization are
sampled from a Gaussian distribution, it was shown Neal [1996], de G. Matthews et al. [2018] that
the network’s output converges to a Gaussian process as width tends to infinity, providing a tractable
framework for theoretical analysis.

This perspective was significantly extended by the introduction of the Neural Tangent Kernel (NTK)
framework Jacot et al. [2018], allowing to characterize the training dynamics of infinitely wide neural
networks under gradient descent in function space. In this limit, the network evolves approximately
linearly around its initialization, and training can be understood as kernel regression with a fixed
kernel which depends on the the architecture only, and is evaluated on input data. This linearization
dramatically simplifies the analysis of generalization and convergence, and has led to a large body of
theoretical work on the expressivity and limitations of infinitely wide networks.
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However, the practical relevance of NTK-based analyses hinges on the accuracy of their approximation
at finite width. While existing literature has established qualitative convergence of wide neural
networks in the NTK regime to Gaussian processes at positive training time Lee et al. [2020], rigorous
quantitative results — providing explicit finite-width error bounds — remain scarce. This gap limits
the applicability of NTK theory to realistic settings where network width is large but finite.

Indeed, quantitative convergence guarantees are crucial to bridge theory and practice. They allow one
to bound the discrepancy between the predictions of a finite-width network and its infinite-width NTK
counterpart, thus enabling quantitative uncertainty quantification estimates and the safe deployment
of theoretical insights to real-world architectures. Moreover, such estimates reveal how network
width, depth, initialization, and training hyperparameters impact the validity of linear approximations
during training. These insights are essential for developing principled training strategies and for
diagnosing when the NTK regime offers a reliable approximation, or when nonlinear effects beyond
NTK must be taken into account.

1.1 Our contributions

This paper provides rigorous quantitative estimates for the convergence of trained shallow neural
networks towards their Gaussian process counterparts, measured in terms of quadratic Wasserstein
distances. Specifically, we extend previously established convergence bounds at initialization obtained
by Basteri and Trevisan [2024], Favaro et al. [2025] and Trevisan [2023] to arbitrary positive training
times. Our results deliver explicit convergence rates that decay polynomially with network width,
clearly delineating how the approximation error evolves during training.

Concretely, we demonstrate that the distance of the distribution of a shallow neural network’s output
trained via gradient descent to its Gaussian process approximation at any training time ¢ > 0 satisfies
explicit quantitative bounds dependent on network width. Our main theorem (3.4) shows that for
any test point = , under mild assumptions on the hidden layer width n; and on the regularity of the
activation function we have:

WE(fu(a), Gula)) = O (log’“) |

ni

We also address long-term training dynamics explicitly, characterizing convergence rates as training
time diverges. Indeed, the above result continues to hold on timescales ¢ growing polynomially in the
network width n; , as discussed in Remark 3.5.

These results significantly refine prior qualitative statements, providing actionable quantitative
guidelines on how network parameters and training duration determine the extent to which finite
networks emulate their infinite-width limits.

1.2 Related work

The convergence of randomly initialized neural networks to Gaussian processes in the infinite-width
limit has been a foundational result in the theory of neural networks. This phenomenon was first
suggested by Neal [1996] and later formalized for deep architectures by de G. Matthews et al. [2018].
The key insight that this correspondence extends beyond initialization was introduced by Jacot et al.
[2018], who demonstrated that training dynamics in the infinite-width limit are governed by the
so-called Neural Tangent Kernel (NTK), a deterministic kernel that linearizes the training trajectory.
This sparked significant interest in the use of kernel methods to analyze deep learning models.

Following these developments, several works studied the convergence of finite-width neural networks
to their limiting Gaussian processes. In particular, Lee et al. [2020] established that gradient
descent dynamics in the NTK regime converge to those of a linearized model. More recently,
the works of Basteri and Trevisan [2024] and Trevisan [2023] provided quantitative convergence
rates at initialization, measured in Wasserstein distance, which laid the groundwork for a more
refined understanding of the finite-width behavior of neural networks. Moreover, in the also recent
work by Favaro et al. [2025], additional quantitative results were obtained for total variation and
convex distances. Complementary to these works, Bordino et al. [2025] used second-order Poincaré
inequalities to derive QCLTs for Gaussian neural networks, obtaining a general but suboptimal
convergence rate compared to the optimal n~*.



However, these results were largely confined to the initialization regime. To this day, extensions to
the full training trajectory remained limited, with few works addressing how approximation errors
evolve over time or depend on architectural features such as width and depth. The present work
builds on this gap by extending the quantitative convergence discussed above to trained networks,
providing explicit bounds on the Wasserstein distance between the network output and the associated
Gaussian process for any positive training time.

From a spectral perspective, the NTK’s conditioning plays a central role in understanding convergence
rates and generalization. Lower bounds on the smallest eigenvalue of the empirical NTK have been
derived under various conditions. For instance, Karhadkar et al. [2024] and Bombari et al. [2022]
provide sharp bounds in the context of ReLU and smooth activation functions, respectively.

Additionaly, Carvalho et al. [2025] showed that under very mild assumptions on the non-linearity
and non-proportionality of the training data, the analytic NTK is not degenerate. These results
are essential for establishing the stability of the gradient flow and, hence, for deriving quantitative
convergence guarantees.

Our results are closely related to the work of de G. Matthews et al. [2018], who proved weak
convergence of fully-connected BNNs at initialization to a Gaussian process under the metric
p(fs f)) = Y ien2 “min{1,|f(z;) — f'(2;)|}, defined on a countable input set. In our setting,
the input set is finite; considering the restriction pp, it follows that convergence in W, implies
convergence in pr. de G. Matthews et al. [2018] also analyzed convergence under the maximum mean
discrepancy (MMD). While MMD is not generally controlled by Wasserstein distances, connections
have been established via regularized OT divergences (Feydy et al. [2019], Nietert et al. [2021]).
Moreover, Vayer and Gribonval [2023] identified conditions on the RKHS kernel £z under which
MMD < Ws,. Consequently, our bounds also imply MMD convergence under these conditions.
The metric pr which offers a notion of pointwise convergence and is oblivious of the tails of the
distributions, which helps stablish the results in de G. Matthews et al. [2018]. On the other hand, W
captures the geometric structure and scaling of the output space. Finally, while de G. Matthews et al.
[2018] address the more general setting deep networks, our analysis focuses on the shallow case,
yielding new quantitative rates which improve previous ones in our setting.

A foundational stream of research has shown that, under sufficient overparameterization, gradient-
based training of neural networks converges to a global minimum. Seminal results by Du et al.
[2019] and Arora et al. [2019] established that for wide two-layer networks with ReLU activation, the
empirical NTK remains well-conditioned, enabling convergence via kernel regression. Subsequent
advances generalized these results to deep architectures in different directions, such as Allen-Zhu
et al. [2019], Zou and Gu [2019], Sankararaman et al. [2020], Wu et al. [2019], Wei et al. [2019], Zou
et al. [2020], which provide guarantees that hold with high probability over parameter initalization.
These works reinforce that in the NTK regime, the network trajectory stays close to its linearization
around initialization. Our contributions align with this body of work and further extend this literature
by providing novel finite-sample quantitative bounds on the Wasserstein-2 distance between neural
network outputs and their Gaussian process approximations.

1.3 Structure of the paper

Section 2 introduces our notation and mathematical preliminaries. In Section 3, we present our
primary theoretical contributions, including our main quantitative convergence theorem. The key
technical proofs and intermediate results are outlined succinctly, referring the reader to the relevant
lemmas in the Supplementary Material. Numerical experiments validating our theoretical predictions
appear in Section 4. Section 5 discusses implications and future research directions.

2 Notation

In the following, given a matrix A € RP*? we will denote by || A]| its Frobenius norm and by ||A||,,
its operator norm. A; € R? will denote the i-th row of A and A_; € RP will denote the j-th column
of A,for1 <i<pand1l < j < g. The symbol - denotes the usual matrix product. oyin(A), omax (A)
are the smallest and largest singular value of A; and if p = ¢, Anin(A4) and A\pax(A4) denote the
smallest and largest eigenvalue of A, respectively. For any vector-valued function f, f(z), denotes



the u-th coordinate of f(z). For any Polish metric space X, P(X) will denote the space of Borel
probability measures on X.

2.1 Shallow neural networks and associated Gaussian process

We consider a fully connected, shallow (i.e. single hidden layer) neural network of width n, and
input dimension ny. We assume the output dimension ns to be equal to 1 for simplicity. The output
of the neural network as a function of its parameters is given by:

= g (L0 g
f(z;0) = \/TTl(I) (\/TTOIH ) 0\ e R,
where (0) € R™0*™1 and §(1) € R™ denote the inner and outer (respectively) weights or parameters,
®(z) is the activation function, which acts entrywise on its input, and x € R™ from now on
denotes a test input. Note that our model implicitly covers neural networks with biases b(®)
R, b(1) e R, by substituting the input 2 with (z,1), using the parameters 6(©) = (90 b)) ¢
R(rotDxn1 g(1) — (9(1) p(1)) € R™+1 and using the activation function ®(z) = ((z),1). We
will denote by N = ngni + n; the total dimension of the parameters. For any ordered set of inputs
X = (z1,...,7q) € R"*4 we will use the notation f(X;0) = (f(z1:0),..., f(x4;0)) € Rmoxd,
In what follows, parameters 91@, 0<1), for1 <7 <mngpand1 < j < ny,are drawn independent and
identically distributed (i.i.d.) from standard Gaussian random variables at initialization.

We will denote by h; the preactivation of i-th hidden neuron, for 1 <17 < ny:

hi(x;0) = ixw(o))_i €R.

Vo

Now we introduce the Gaussian approximation G of the neural network f as the centered Gaussian
process associated to the covariance operator /C given by:

- 1
K(z,2') = —a'a,
no

K(z,z") = E(uo)~n(0,7(2,0)) [2(1) (V)]
e ) Rieo)
n_ (Kz,z) K(z,a'

Tea) = (K(x’,x) K(xﬁx')) |

Explicit convergence rates for the Gaussian approximation at initialization can be found in Basteri
and Trevisan [2024], Favaro et al. [2025].

2.2 Training, empirical NTK and limiting kernel

Let D = {(x;,y;)}7~; C R™ x R be a given dataset. Denote by X = (z1,...,%,) € R™0*™ the
vector of training inputs, and by y = (y1, .. .,¥yn) € R™ the vector of outputs. From now on, we will
consider the parameters 6§ = 6; to evolve on training time. Consider the empirical risk for the mean

squared error loss:
1
Rolf,0] = 5(f(X;0) = y) " (f(X:0) — ).
Continuous time gradient descent with respect to this objective function yields the following dynamics
for the parameters and the network:

2 0= ~VRolf, 0] = ~Va (X:6)(F(X:0) ).
D 1(2:0) =~V f (00T Vo F(X:0)((X:6.) — ), @
0

af(xé 0) = —Vof(z; Gt)TV(,f(X; 0:)(f(X;50:) —y).

In Lee et al. [2020] the authors showed that the dynamics in (2.1) converge to those of a linearized
network, which we now introduce.



Definition 2.1. Given a neural network f we define its associated linearized network:
Fi(w;6:) = f(x;60) + Vo f (a3 60) |90

with the change of parameters w; = 6; — 6. In the following, we will also consider the linearized
gradient flow, given by

o — . _

50t = VoS (X:60) - (f"(x;6:) — v).

The linearized network is known to approximate arbitrarily well the real training dynamics in the
wide limit under some stability conditions and positive-definiteness of the NTK (see Theorem 5.1 in
Bartlett et al. [2021] and Theorem 2.2 in Chizat et al. [2019]). In the Supplementary Material we
prove an analogue result (Proposition B.9) adapted to our setting, In particular, our result applies to
shallow networks with inner and outer weights and for the MSE loss without scaling over the number
of training points, as opposed to the cited results.

An alternative formulation of this asymptotic linearzation phenomenon is provided in Jacot et al.
[2018], where the neural tangent kernel (NTK) was introduced. The authors showed that under
Gaussian initialization, the dynamics (2.1) are governed by this operator which we now define in our
setting. Define the empirical kernel, or NTK k: R™ x R™ x RY — Ras:

k(z,2';0) = Vo f (2;0)Vof(a';0) T,
where 6 € RY denotes the matrix of parameters. The empirical kernel at the hidden layer can also
be defined as a function of R™ x R™ x RN — R71X71;

o (z,2'50) = Voo h(z;0) Voo h(z';0)), 1 <u,v<ni,

During training, the parameter 6, will be omitted when it is clear from the context and we will simply
write k¢ (x, 2') = ki(z, 2’5 0;) and ky(x, 2") = ke (x, 25 0,).

The convergence of the NTK to this limiting kernel was first proven by the authors of Jacot et al.
[2018]. Define the analytical, or limiting kernel k., as follows:

feoo (2, 7") = K(2,2") + K (2, 2)E (40 (0.7 (2,0 [ 2 (1) P (0)],
N C /
with T (z,2’) = ( ;@C ((Zj,’ a;)) ;g((xx,, xx,))) From now on, let koo = koo (X, X') denote the limiting

kernel valued on the training set.

Note that, in the linearized regime, Equation (2.1) can be solved analytically. In effect, letting kxxy =
Vof(X;00)Vafo(X;00)" and kyx = Vo f(2;00)Vof(X;60)", the gradient flow equations (2.1)
for fi" can be rewritten as:

D0 = Vo1 (:00)T(1(X:0) ~v),
%f““(x;?ﬁ = —hax (f"(X:0:) — y), 22)

S0 = e (X5 — ).

The inverse of matrix ky .y, which is random in the initialization of the network and may not be
positive definite for some 6, appears in the solution of Equation (2.2). Thus we introduce the following
auxiliary operator:

Definition 2.2. For any symmetric, invertible matrix B € R™*" and for any ¢ > 0, define the n X n
real matrix
I(B) = (1, —e 8B~

Note that I;(B) is invertible and symmetric since the matrix exponential of B is positive definite.
The operator I, can be extended to general symmetric matrices in the following way: define, for each
a€R,

a

t 1—e— 2t -
Ii(a) = / e Yds = a ¥fa 70,
0 t ifa =0.




Let B € R"*"™ be symmetric, not necesarily non-degenerate. Consider the eigenvalue decom-
position of B, B = UDU " with D = diag(as,...a,) and U orthogonal, then put I;(B) =
Udiag(Ii(a1), ... Ii(a,))UT.

Lemma A.1 shows some properties and well-posedness of the operator I; defined in Definition
2.2. The matrix I;(B) can be thought of as the analytic continuation of the matrix function (1,, —
e~ BY)B~1, for any B € R™*" symmetric. With this definition, the solution to (2.2) reads:

F™(X:0:) = exp(—kxxt) f(X;00) + (L — exp(—kxxt))y, 2.3)
Fi(w;00) = f(@;600) — koade(kaa) (f(360) = y)- 2.4)
The computation leading to this expression is contained in Supplementary Material A.

In Lee et al. [2020], the authors showed that when f is linear in its parameters, its output distribution
at a test point x € R™° converges weakly, as n; diverges, to a Gaussian process G; with mean and
covariance given by:

pe(2) = koo (2, X) I (koo )y,
Si(z,2") = K(z,2") — K(2, X) [ (koo ) koo (X, ') — koo (z, X) [ (koo )K(X,2")  (2.5)
+ koo (2, X)L (koo ) (X, X) I (Koo ) koo (X, 2),

for every positive training time ¢. For the sake of completeness we included a proof for the above
formula in Supplementary Material A.1.

The solution of (2.2) completely characterizes the dynamics of the Gaussian process G for any time
t > 0, as a consequence of the Central Limit Theorem. In the rest of the paper we will assume that
koo (X, X) is positive definite. This is a mild assumption and holds in a very general setting. Indeed,
the authors of Carvalho et al. [2025] showed that when the training data is in general position in R™°
and ® is not a polynomial the smallest eigenvalue of k., (X, X) is strictly greater than zero.

3 Assumptions and main result

In this section we state our assumptions and main result.

Assumption 1. The parameters 91@), 9(-1), for1 <1¢ <ngpand1 < j < ny,are drawn independent
and identically distributed (i.i.d.) from standard Gaussian random variables at initialization.

Assumption 2. The limiting kernel k.. (X, X') is positive definite.
Assumption 3. ® and &’ are Lipschitz continuous and bounded.
Assumption 4. For some fixed > 5 the following inequality holds:

4 X (V5o + llyll) AﬂLm@vrbgn{)<Ax
nl no \/,',TO min?

Remark 3.1. Note that these are rather mild assumptions. Assumption 2 is mild and holds in a very
general setting. Indeed, the authors of Carvalho et al. [2025] showed that when the training data is in
general position in R™ and @ is not a polynomial the smallest eigenvalue of ko, (X, X) is strictly
greater than zero. Assumption 3 is standard in literature and is satisfied by most activation functions,
such as the sigmoid function and other logistic activations, hyperbolic tangent, Gaussian activation or
sinusoid, among others. The ReLu family is a notable exception, although we expect our result to also
hold in that case. As for Assumption 4, notice that the left hand side tends to zero as min{ny, ng}
grows. This implies that our hypothesis is satisfied for sufficiently large ng or n;. In particular, it
holds for sufficiently overparametrized networks.

Remark 3.2. Assumption 4 may appear somewhat artificial, so we provide an informal intuition on
its use. This assumption is needed to control the fluctuations of ||kg — koo || with the (deterministic)
smallest eigenvalue of the limiting kernel. This enables the use of Proposition B.9, which provides a
quenched estimation of the L? distance between f and £, which in turn plays a central role in the
proof of Theorem 3.4. In particular, the L? norm of this difference is controlled with a function of
the Lipschitz constant of the Jacobian Vy f at initialization, and this Lipschitz constant is estimated
with an expression in terms of ||ko — koo|| bounded by the left-hand side in Assumption 4. This is the
content of Lemmas B.15 and B.16.

<||<1>’oo + Lip® +



To measure how well the Gaussian process (G; approximates the network f at time ¢, we will use a
well-known family of metrics between probability distributions, the Wasserstein distances:

Definition 3.3. Let p € [1, 00] and let i, v be two probability measures defined on a Polish space
(M, dyps) with finite p-moment. The p-Wasserstein distance between p and v is given by

=

Wp(u,v) = inf (E, [dm(X,Y)P])> ,

1
yeT'(p,v), X ~u,Y ~v

where I'(u, ) denotes the set of joint probability measures ~y defined on M x M with marginal laws
w and v. With a slight abuse of notation, we will often write W,,(X,Y) = W, (u, v) for any X ~
andY ~ v.

Now we can state our main theorem:

Theorem 3.4. Under Assumptions 1, 2, 3 and 4, for each test point x € R™ there exist positive
constants a1 and ag not depending on ng, ny nor t such that:

IOg ny asng
W2(f(z;0,),Ge(z)) < r o + 14+t%) ).
Q(f( t) t( )) = <(A;Oin)3n1n0 ()\gloin)rnl ( )

LR

Here r is the constant appearing in Assumption 4.

Remark 3.5. Note that our result is not limited to fixed training time ¢, but holds for values of ¢
growing polynomially on n;. Indeed, provided that £ grows at most polynomially in 71, the constant
r can be chosen arbitrarily big making the term dependent on time negligible. In particular, as long as
t grows polynomially on n1, a sufficiently big r can be chosen so that the right-hand side in Theorem
3.4 tends to zero as n; diverges.

The term ¢2 in the right hand side of the inequality is due to Lemma B.12 in Supplementary Material

B. Lemma B.12 provides upper bounds of the entries Gt(o) and 0,51) that account for perturbations that
occur on tail events with respect to the initalization distribution (i.e. in the “bad event" S). A finer
control is possible if one is interested in a result that holds S on only, which has high probability, such
as the ones in Bartlett et al. [2021], Chizat et al. [2019]. This finer control corresponds to Theorem
B.9.

3.1 Sketch of proof of Theorem 3.4

The proof of our main theorem is as follows: we bound by triangle inequality

Wa(f (3 61), Ge(x)) < Walf (23 0), [ (23 01)) + Wa (" (23 01), Ge(2)),
and proceed to control the two terms appearing in the right-hand side separately.

To bound the first summand, we partition RY into a “good" event S C R*, in which the assumptions
of Proposition B.9 hold, along some other concentration properties of the parameters, and a “bad"
event SC in which they do not; so the estimation of the first summand reduces to the estimation of
integrals over S and S, respectively. Moreover, as n; diverges, P(S) converges to 1. Proposition
B.9 consists on an upper bound of || f(z; ;) — f"(z;6,;)||? on this “good event”; which is a version
of Theorem 5.1 in Bartlett et al. [2021] adapted to our setting. This allows to bound the first integral.
In S the strategy is to show that the measure of S decreases faster than how the upper bounds
in Theorem B.10 grow. Theorem B.10 provides estimations for || f(z;6;) — fi"(x;,)||? that are
rougher than the ones in Proposition B.9 in the sense that do not vanish in the wide limit, but hold in
SC. We estimate the second integral by partitioning S into countably many discs parametrized by
v € N, and summing over -y while exploiting concentration inequalities that hold on each disc. The
result of this estimation is summarized in the following Theorem:

Proposition 3.6. On the hypothesis of Theorem 3.4, there exist positive constants a, and as not
depending on ng, ny nor t such that:

a1 logn asn
()\010 )fn; + 002 - z 1+t8)>'
min 1740 ()\m )Tnl

W3 (f(x:60,), [ (x:8,) < <



The dependence on time of the right-hand side of statement of the Theorem comes from Lemma B.12.
In particular, in the “bad” event S¢ a lower bound of the smallest eigenvalue of the random matrix
ko is not available, and hence by Definiton 2.2 the sharpest upper bound for || I;(ko)|| is ¢.

The second summand, instead, is estimated with the following result:

Proposition 3.7. Let f" be the linearization of f, and let x € R™ be a test point. Then, under
assumptions 1 and 3, there exist positive constants C, C, D not depending on ny nor t such that:

N 1 ~
W3 (F"(X:0:), Ge(X)) < n*lC(tJr e~ At

WA (@:00), G (@) < n%@@(t + 1)eAt),

The first statement in Proposition 3.7 is proven by bounding % | fin(X;0,) — G¢(X)|* with Young’s
inequality and gradient flow equations. Next, we apply Gronwall and Holder’s inequalities to
decompose the problem in some expected values of L? and L* norms of the differences between
kernels and between f lin and @G, both at initialization. Lastly, the main result in Basteri and Trevisan
[2024] and Proposition B.4 providing LP estimations for the difference between the empirical NTK
and the limiting kernel complete the proof. The proof for the second statement in Proposition 3.7
uses the bound for training points in a triangular system of differential inqualities, inherited by the
solution of Equation (2.2).

Theorem 3.4 and Propositions 3.6 and 3.7 are proven in full detail in the Supplementary Material C
and D.

4 Numerical Experiments

We conduct some numerical experiments in Figure 1 to support our theoretical results. In both
experiments, ¢ is taken as the product of the learning rate and the number of iterations or epochs.
For simplicity, we considered training and test inputs on the real line. The training set and test set
were drawn from a uniform distribution on a fixed interval, and the labels y of the training points
correspond to a sine function with additive noise. The code is available at https://github.com/
emosig/quantitative_gaussian_trainedNN.

4.1 Experiment 1: Gaussian approximation of f

The leftmost and center plots in Figure 1 represent 100 trained shallow neural networks with sigmoid
activation of width n; = 700 on the leftmost plot and n; = 1000 in the central plot. The networks
have been trained for 2 - 10* epochs with learning rates of ﬁ and T7OO (hence t ~ 28.571 on the
leftmost plot and ¢ = 140 in the central one) to fit two training points, corresponding to different
random seeds on each case. Together with the networks, the plot depicts the mean (in black) of G
and a 95% confidence interval (in grey) over 200 equally spaced test points on the interval [—10, 10].
The networks were programmed with PyTorch 2.6.0 Paszke et al. [2019], and the Gaussian process
G was constructed using the library neural tangents 0.6.5 Novak et al. [2020] for the kernels K and
ko, needed to construct p; and X in (2.5). The operator I;(B) was programmed by solving the
linear system of equations BX = 1,, — e~ B? with the linalg package of NumPy Harris et al. [2020].

4.2 Experiment 2: W5 (f(x;6;), Gi(x)) decays with n; for any x

In our second experiment (Figure 1, right), we compute the quadratic Wasserstein distance between
the trained shallow network and G for a variety of widths, ranging from 2 to 256. To do this we
drew 10* samples of G, given by the mean y; and covariance ¥; in (2.5), which were computed
with the neural tangents 0.6.5 library Novak et al. [2020]. Then, we trained indepently over a single
training point, for 100 epochs and with a learning rate of 0.1 (hence ¢ = 10), 10* neural networks for
each width and then calculated the empirical Wasserstein distance with the Python Optimal Transport
0.9.5 library Flamary et al. [2021]. As in Experiment 1, PyTorch was used to construct the neural
networks, and the activation chosen for f and G is once again the sigmoid.


https://github.com/emosig/quantitative_gaussian_trainedNN
https://github.com/emosig/quantitative_gaussian_trainedNN
https://download.pytorch.org/whl/cu124/torch-2.6.0%2Bcu124-cp311-cp311-linux_x86_64.whl
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Figure 1: The Gaussian process approximates the neural networks during training (left and center
images), and it converges in 2-Wasserstein space to f; (right image). On the rightmost image, the
blue points represent the empirical Wasserstein distance between f and G for increasing widths, and
the red plot is the power-law fit between the blue points.

Discussion on the choice of ; and the number of samples The authors of Fournier and Guillin
[2015] provide an estimation of the error between a probability measure 1 and its empirical counterpart
AN = ¥ Z ., 0x,, given an i.i.d. sequence (X;)N,, X; ~ u. More precisely, Theorem 1 in
Fournier and Guillin [2015], forp =2 and ng = 1, prov1ded that i has finite third moment, reads:

2 ~
EDV3 (1, fin)] < .
vN
for some constant ¢;. This estimation applied to f and G can be combined with our main result
to find a minimal ratio of samples per width needed for our numerical estimations to be noise-free.
There exist constants co, c3 not depending on nq, N nor ¢ such that:
— Co c3logng

WA (300), Gae)) = WE ([T 00 Gal)y) + = < =0

2
Hence our computations make sense when N > (loglm) . For N = 104, this means an upper

bound for the widths for which our experiments make sense is, approximately, 650.

5 Discussion

In this paper we provided quantitative convergence rates in 2-Wasserstein distance between trained
shallow neural networks with standard Gaussian initialization and an appropriate Gaussian process,
for any positive training time. This was proven for Lipschitz, bounded activations with bounded
derivative and for sufficiently large hidden layer width. We now address some limitations of our work
and possible future research directions:

1. Our main result is not uniform in time. Although the dependence on time can be minimized
at the price of including a sufficiently big multiplicative constant in the right-hand side of
our inequality as discussed in Remark 3.5, a general result holding uniformly in ¢ > 0, in
the limit when ¢ tends to infinity exponentially on n; is not available.

This dependence on time could be related to the transition from the NTK regime to a
feature-learning regime, as suggested by the work of Huang and Yau [2020]. Their analysis,
however, does not address the tails of the distributions, which in our proof correspond to
the set S¢ and are responsible for the ¢® scaling. Moreover, Yang and Hu [2021] show that
under standard and NTK parameterizations, wide networks cannot perform feature learning
in the infinite-width limit.

This suggests that our observed t® scaling might reflect the boundary of the NTK regime:
in the “bad event” S or for sufficiently large times, the training dynamics may drift into
feature-learning, where purely kernel-based control breaks down. Our main result remains
consistent with works such as Bartlett et al. [2021], Chizat et al. [2019], which hold with
high probability, whereas our analysis explicitly incorporates the contribution of the event
SC. At present, it is unclear whether the ¢® scaling is sharp.

We would like to address this problem in future work.



2. The bound in our Theorem 3.4 depends on the test point z. This dependence is explicitly
stated on the proof of the auxiliary results Proposition 3.7 and Theorem B.10 in the Supple-
mentary Material. Locally uniform bounds on the test point  might follow from functional
inequalities such as the ones found by Favaro et al. [2025] if extended to the NTK regime.

3. We conjecture that our main result remains valid even without Assumption 3, as suggested
by our numerical experiments with the ReLU activation. In this work, we deliberately
focused on a specialized setting with mild hypotheses to obtain a novel and technically
precise result while maintaining a clear exposition. Future research will aim to relax the
regularity assumptions on the activation and extend our analysis to a more general setting.

4. When Assumption 1 and 2 hold, ko, (X', X) is strictly positive definite and ® is Lipschitz, the
rate of convergence at initialization found in Trevisan [2023] for the squared 2-Wasserstein
distance is of n1_2. This fact suggests that, in the proof of our main Theorem, a better
estimation of Wy (f(z;6;), f(x;6;)) can be found; either by improving Proposition 3.6
or by improving the estimation of the Lipschitz constant and the norm of the Jacobian
Vo f(x;6p) in the “good event” of the proof of Theorem 3.4, possibly by choosing a more
restrictive “good event” that still makes the infinite sums in the proof of Theorem 3.4
converge. This last possibility calls for finer concentration inequalities for the parameters
and the difference between the empirical NTK and its infinite-width limit.

5. Our results could be extended to deep, fully connected neural networks, as done for ini-
tialization in Trevisan [2023], Basteri and Trevisan [2024] and Favaro et al. [2025]. We
hypothesize that Proposition 3.7 can be easily adapted to the deep setting exploiting recursive
characterizations of k; and k., as the ones available in Jacot et al. [2018], Nguyen et al.
[2021] or Lee et al. [2020]. The other half of our proof, though, relies in Proposition 3.6,
which would need a new proof for the deep setting.

6. Another desirable step could be to study how well our result extends to other architectures,
such as convolutional neural networks or the more modern attention-based architectures.
This approach is present in Yang and Littwin [2021] but to the best of our knowledge no
quantitative results in this direction are available.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: Our main result Theorem 3.4 is a precise statement of the compressed version
included in the introduction. Our abstract accurately reflects this result’s content and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .

Justification: Limitations of our work are presented together with possible future work
directions in Section 5.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes] .

Justification: Every new result stated as Theorem, Proposition or Lemma and is accompanied
by its proof in the supplementary material. An additional theorem environment was created
to present and cross-reference the assumptions in our results.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulae, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: In Section 4 we provide a detailed exposition of how our numerical experiments
were programmed and the Python libraries used on them.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .

Justification: The code used to produce the experiments in Figure 1 is available at an
anonymized repository.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .
Justification: A detailed description of all the hyperparameters is included in Section 5.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .

Justification: Our plot of the Gaussian process G in 1 includes a 95% confidence interval.
As for the plot involving the distance Wa(Gy, ft), a subsection discussing the approximation
error on the computation of the empirical Wasserstein distance has been included.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Our experiments were run on the author’s personal computer and do not require
any particular hardware specifications.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .
Justification: Our research follows NeurIPS code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .
Justification: The innovations our paper introduces are of a theoretical nature.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: No sensitive data is used in our article. The data used in our experiments in
Section 4 is artificially generated by our code and consists of points in R.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: The python libraries used in our experiments are adequately referenced in
Section 4.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are introduced in this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: Our paper does not involve human subjects in any way.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: Our paper does not involve human subjects in any way.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .
Justification: Our results do not regard LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Gradient flow of the feature function

In this section we provide a closed analytical solution to (2.2) when f = f!in,

Fix x € R™0 atest point. For thf sake of clearness, we will use the following notation for each ¢t > 0:
Yy = [z 0,), fi" = fi(X;0:), kxx = ko(X, X) and kyx = ko(z, X). Note that k; = ko for
each ¢ when f = flin,

We begin by stating a lemma that shows that our definition of I; is consistent and commutes with the
wide limit:

Lemma A.1. For any real symmetric matrix B € R"*"™ we have I;(B)B = BI;(B) = 1,, — e~ B%;
and for real symmetric matrix sequence (By,)nen with B, — B we have lim,,_,, It(By,) = I;(B).

The proof of this result follows from properties of the matrix exponential and is left to Supplementary
Material E.

Consider the system of ODE:s in (2.2) given by:

9 lin __ lin

ot = Exx(fi" —v), (A.D
0 — in

510 = ~hax (" = p)- (A2)

Recall that, in general, the solution to the initial value problem f'(t) = A(¢) f(¢), f(0) = fo can
be written as f(t) = exp(f(;5 A(s)ds) fo, where f(t): R — R™, A(t): R — R™>™ are integrable
functions, and ¢ > 0. Therefore in our case, by letting u; = fi™ — y:

t
U = exp <—/ k:Xde> ug = exp(—kxat)uo. (A.3)
0

Moreover, by letting v; = ¥, — y and substituting the solution for u;, we obtain the following
expression for vy:

%Ut = —kzx exp(—kaxt)(fo—y), vo=yo,
which, by integrating and by using Definition 2.2, becomes
vt — Vo =Yy — Yo (A4)
= —kpx /Ot exp (—kxxs)ds(fo—y) (A.5)
= —kexIli(kxx)(fo —y). (A.6)

Note that formulae (A.3) and (A.6) agree with the formulae found by the authors of Lee et al. [2020].

When ky x is not degenerate, taking the limit when ¢ tends to infinity, we get a prediction for the
output of the linearized network at the end of the training:

S(x) = lim G =Ty — kaxky (fo — v).

A.1 Proof of the characterization of G,

Here we prove the formulae in (2.5).

Define By = —kyxI:(kxx) and Cy = kyx It (kxx), so that J, — Y, = Bi fo + Cry. Also recall that
ki = ko for all ¢ > 0O since f is linear on . Note that f and 7, are centered Gaussian processes and
hence E[y, + B, fo] = 0. Therefore, taking the expected value of the wide limit yields:

E[ lim yt] = E[n}gnoo Cty] = koo(an)It(koc)ya (A7)

ni1—00

where koo = koo (X, X). This limit is well defined thanks to Lemma A.1.
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Now let 2/ € R™ and put y; = fi(2') and B} = —k, xI;(kxx) for each t > 0. Then,

Cov( lim ,, lim ;) =E[ lim (7, —E[5])(y; — Ely)) (A8)
=E[ lim (5o + B.fo)(yo + Befo)] (A9)

=E[ lim_%oyo] + E[ lim o foB] (A.10)

+E[ lim ygfoBi] +E[ lim _f§B,B)] (A.11)

=K(z,2") — Kz, X) I (koo ) koo (X, ') (A.12)

— koo (2, X) It (koo ) (X, 2") (A.13)

+ koo (2, X)L (koo ) (X, X) I (Koo ) koo (X, 7). (A.14)

Again, Lemma A.1 ensures the limit exists.

B Auxiliary and related results

In this Supplementary Material we state intermediate results in the proof of our main theorem and
recall some useful results. Throughout this section we will use the following notation for each ¢ > 0:
ye = f(x;04), fr = f(X;00), ke = ke(X, X) and koo = koo (X, X'). All the proofs are deferred to
Supplementary Material E.

In the next lemma we collect some well-known properties of the p-Wasserstein distance:

Lemma B.1. Letp € [1,00[ and let X, Y be random variables with values in R™ and Z be a random
variable with values in R™. Let P¢ denote the law of the random variable § for each § € {X,Y, Z}.
Then

1. If X, Y are defined on the same probability space, then W,,(X,Y) < E[|| X — Y||p]%.
2. If Z is independent from X andY then W,(X + Z,Y + Z) < W,(X,Y).
3. Convexity of W2: WE(X,Y) < [ WE(Px|z=2, Py )dPz(2).

4. Let A\ € R™ be a constant vector and consider the joint random variables X = (X,2), Y =
(Y, \). Then

~h

WE(X,Y) < WE(X,Y) + WE(Z,A) = WE(X,Y) + (/Rm |z — )\||de?’(2)> ’ ,

5. Let V be a random variable with values in R™ and consider the joint random variables

X =(X,2),Y =(Y,V). Then, forp > 2,
WX, T) <2871 (WE(X,Y) + WEL(Z, V).

»
Moreover, for p = 1,

W1(X,§~/) <WIH(X,Y) + Wi (Z,V).

The following result provides explicit formulae for the components of the Jacobian of f and the NTK:
Lemma B.2 (Gradients f and explicit formulae for k and k). The following hold for each x,x’ € R™:

1 I 1 0)\p(1) n,
Vo = d R™ B.1
oo f(x,0) nlnox (\/%xH JARES , (B.1)
1 1
Vo = —P(——z0©) e R™, B.2
o f(x,0) NG (\/TTOQUH )€ (B.2)

Moreover, k(z, ') is a diagonal ny X ny matrix with

1 &
kii(z,2") = - Z Ty T, (B.3)
u=1
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and k(x,x') is a real function given by:

ka,a') = — D wawy Y (hy(2))® (hy(2))(0V) + nil > (h()®(hy(a')). (B4
=1 v=1

ning ;=

v=1
B.1 Results at initialization

Throughout this subsection, we assume ¢ = ( and omit the subindex ¢ unless needed. Our results 3.7
and 3.4 aim to generalize Theorem 4.1 in Trevisan [2023] in different directions. For reference, we
reproduce the main result from Trevisan [2023] here in a simplified version:

Theorem B.3 (Trevisan). Then, for each p € N there exists a constant c;, not depending on the
network width nq such that:

Wp(fo(X), Go(X)) < cp\/%. (B.5)

Furthermore, if o: R — R is a Lipschitz function, then
Lipp +¢(0))*
14% X))®2, (G (X))®?) < (—
b (P((fo(X)))%%,0(Go(X))¥*) < ¢p N
Theorem B.3 provides a quantitative bound for the Gaussian approximation of the neural network f;.
This can be upgraded to a bound for the joint distribution of the empirical kernel and the output of
the neural network.

(B.6)

From now to the end of this subsection assume ® and ®’ are bounded and z, 2’ € R™ are fixed.
Also, we adopt the notation introduced in Supplementary Material A. We state a helpful estimation:

Proposition B.4 (L? bound for the kernel difference). Fix x,z’ in R™ and let ki = l;:u(x, x'),
kE=k(x,2"), K=K(x,2') and koo = koo(x,2"). There exists a constant C > 0 independent of nq
such that:

E(k; — K|P] =0, (B.7)
E[|k — kxo|?] < % (B.8)
ng

Remark B.5. Note that since ko, is deterministic, we have WP (k, ko) = E[||k — koo||?]. The
constant C' in B.4 depends on the constants produced by applications of Theorem B.3.

The proof of Proposition B.4 goes by triangle inequality combined with Theorem B.3, and by
exploiting the independence between the entries of #(1) and those of (°). An auxiliary result to prove
B.4 is the following:

Proposition B.6 (L? bounds for the empirical kernel). Let kij = kij(z, x'), for each 1 < i,j < n,
and k = k(x,x"). Then, the following inequalities hold.:

E[[k]] = || 2], (B.9)
E[[K["] < 2071 (2p — DI’ |32 [kua [P + 2P~ @|22. (B.10)
Now we are ready to show the following result:
Proposition B.7 (Joint distribution Basteri-Trevisan). There exist a positive constant C' such that:

C
WP ((k07 fO) 9 (kooa GO)) S \/771
with C not depending on the width n;.

The proof is by using Dudley’s lemma (also referred to as the gluing lemma from optimal transport) as
outlined in Villani [2008]. This lemma is used to decompose the Wasserstein distance into two terms.
The summand regarding the network and its Gaussian approximation is bounded with Theorem B.3,
and the other summand is bounded by Proposition B.4.

Lastly, the following lemma is used in the proof of Proposition 3.7.

Lemma B.8. The following inequalities hold:

E[l|fo — yll] < Vn|®| + |yl (B.11)
E[|lfo — yll*] < 3202%||®||%, + 8]ly[|*. (B.12)
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B.2 Approximation by linearization at training time ¢ > 0

In this subsection we state two results paramount to prove Proposition 3.6, along with all their
auxiliary lemmas. The following theorem resembles Theorem 5.4 in Bartlett et al. [2021], or Theorem
2.2 in Chizat et al. [2019], but we would like to remark that those result differ from ours since the first
applies to neural networks in which the training is restricted to 6(°) while keeping #(*) frozen, and
in both of them the loss function used for training is different than the one considered in our work.
The proof is similar to the one in Bartlett et al. [2021] and is carried in full detail in Supplementary
Material E.

In this result we prove quenched estimations for the dynamics of the parameters, the linearization
error both in the parameters and in the network valued on test points, and the convergence of the
network to the labels over the training set.

Assumption 5. The smallest eigenvalue of kg is bounded from below by:

4L(X)||f0 - y“ < Amin(ko);
where L(X) the Lipschitz constant of Vy f seen as a function of 6.

Theorem B.9. Let Apin = Amin(k0), Omin = Omin(ko) and omax = Omax (ko) and let Assumption 5
hold. Then the following hold for t > 0 and for any test point x € R™°:

2
10 — 0ol < — I.fo —yll, (B.13)
_ 8 + 2002, )L(X
6, — 7)) < EFZomIL ) e e B.14)
2 2 )\min

15 =l < o = vl exp (~250) (®.15)

. — 4L(x
17200 — )] < Dy~ fol? .16

8 4 2002, )L(X

B2 B 2ol )

Proposition B.9 relies on a strong assumption involving the Lipschitz constant of the Jacobian of the
network, the norm of the network at initialization and the positive-definiteness of the limiting kernel.
The following rougher estimations depend on ¢, but they do not require Assumption 5 and will be key
to prove our main theorem.

Theorem B.10. Assume that ® and ®' are bounded. Let L(X) be the Lipschitz constant of Vg fo,
seen as a function of 0, and let 1(6y) = || fo — y||. Then, for each t > 0 there exist positive constants
Ay, ..., A5,By,...,Bg,C1,...,Cg and Cy not depending on ny,ng nor t such that, P-almost
everywhere:

A At? A, ||o8M ||2¢4
_£112 < 20190 (1) 2 1 (0))12 2 211% 4 )
e = £l < 3166766717 4+ Zo 1667 14 B0)? + =31 (60) (B.18)
At At® ) Ast*]65) )12
+ 00)8 + 21|05 ||*4h(00)% + 020 4h(6p)4, B.19
n%nolﬁ( 0) nmo” o 1*0(6o) o ¥(6o) (B.19)
. B B
lin _ =112 < 0 9(0)0(1) 2 1 0(0)9(1) 2(6 4t4 B.20
Il f 7.ll° < nanH o 0|l +7n%n%|| o 05 117 (6o) ( )
By 0 1 B3 0) (1
+ = 0512108 14 4(00) 22 + 25110505 (12 (60) 282 (B.21)
ning ning
D0 20010 1+ D00 446242 (B.22)
ning 0 0 ning 0 0 )
1+ B0 124580282 1+ D700 245(6) ¢4 (B.23)
ning' ° 0 n3ng' ° 0 '
B B
1057 171106 170(80)* + 166" |*:(60)*”, (B.24)
1740 nino
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4 L(X)2 [ Crp(00)4|0SV 1262 Conp(00)51°  Cap ()4
o e < L) ( W) 067 PE | Cov (@)t | Cav(te) ©.25)
ni ning ning ning

1 1 1
L Callog 1t Csu@0)106” 17t Collog” It

B.26
n% nln% no ( )
Crp(00)2]1057 1264 Cap(60) 1
n 79(60)"]16 | + s (0o) + Cotp(Bo)%th |, (B.27)
ng ning

where 0(900() € R™ denotes the usual product of the matrices 09 and 0(%).

Remark B.11. The dependence on time of the right-hand side of the above formulae comes from
Lemma B.12. Indeed, by definition of the operator I;, the sharpest upper bound for the matrices
I;(k¢) and I; (ko) when no lower bound for Apin (k+) and Apin (ko) is available is 1,,¢.

The proof of the first two inequalities in this theorem is by exploiting an expression for the gradients
of the network, contained in Lemma B.2; together with an integral result describing the behaviour of
the parameters at time ¢ with respect to the parameters at initialization. This is the content of Lemma
B.12. The third inequality uses an integral argument together with the semipositive-definiteness of k;
to redirect the problem to studying ||k: — kol|. All the constants in Theorem B.10 are multiples of the
norms and Lipschitz constants of ® and ®’, and of the norms of = and X.

Now we state Lemma B.12 along with some concentration inequalities and related auxiliary results.

Lemma B.12 (Inequalities for 61‘@). Fixuand vwithl < u < ngand1 < v < ny and put
X, = ((3)u)?y € R™ Let Ain and N0 be the smallest eigenvalues of k; and ko, respectively.
Then the following inequalities hold:

Qoo fo — vl
9,(1) < (W) +”°°—I Amin ) s B.28
(0): < (0o e TtOmn) (B.28)
/ 2
0 < g, 4 1ol ¥llsollfo = w21 Xull ; (o -
(61”) )t = (au’u )0 + 277/1\/77(] t()\mm) ( . 9)
q)/ o) - Xu
+ 12 %”' L0t (v (B.30)
—(1) 1 ®looll fo — |
(@) < (00 + = me L), (B31)
—(0) (@] o |2’ [ oo | fo — yI?[| X
(o e < (00)0 + S/ L (\on)? (B.32)
(I>I oo - Xu

RVALSRL)
Remark B.13. Recall from the definition of I; that for ¢ > 0, I;(a) > 0, even if a = 0. Moreover,
I;(0) = t by definition. Hence I;(\2;,) < t and [;(\2, )2 < ¢2.
Recall the well known concentration inequality for x2-distributed random variables (see, for example,
Laurent and Massart [2000]). For each v > 0:

P(105V11? > 2y + 2771 +n1) < exp(—). (B.34)

The following is a concentration inequality for the sup-norm of 9(()1); and as a consequence we get an
estimation of the norm and Lipschitz constant of the Jacobian of f at initialization.

Lemma B.14. For any v > 0:

185V |0 < V/rylogna, (B.35)

with probability bigger or equal than 1 — —+—

71'
Pl
ny

This concentration inequality is proven using the fact that ||9((Jl) |lo is the supremum of 11 Gaussian
variables in absolute value.
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Lemma B.15 (Norm and Lipschitz constant of the Jacobian at ¢t = 0). Fix r > 1. Then for each

r € R™,
1212 loon/7  |P]]oo
v < B.36
Vo fo(z)ll < N + T (B.36)
, lz]|(||®'|| +Lip®) ||z||*Lip®’
LipV < log ny. B.37
ipVofolr) < e e Vg ®.37)

with probability greater or equal than 1 — —3+— —exp(—vyn1), where fo(x): RN — R is understood

nq

as a function of 0.

Now we state a concentration inequality controlling the norm of the difference between the NTK and
its limit.
Lemma B.16. Let k = ko(X, X) and koo = koo (X, X) and let v € N. Put Apin = Amin(k) and
A0 = Amin(Kkoo ). Then, for eachp € N,
A2
I — koo < Z5min 5 (B.38)

'min

P

with probability greater or equal than 1 — (q{ )\200 ) £ where C is a positive constant not depending
n 2
onni. !

Remark B.17. The previous lemma provides useful bounds for the smallest and largest eigenvalues
of the empirical kernel at initialization, with arbitrarily high probability when the width diverges.
Recall that the smallest eigenvalue of a matrix is a 1-Lipschitz function of the operator norm, which
is bounded by the Frobenius norm:

[Amin(A) = Amin(B)[ < [|A = Bllop < [|A = B]. (B.39)

In particular, the previous Lemma implies, for v = 1:

o0

A%
Amin = Ay — |15 — koo|| = % (B.40)

min

Conversely, an upper bound for the largest eigenvalue of a matrix using the operator norm is given by:

Amax (4) < Amax (B) + |4 = Bllop < Amax(B) + ||A — B. (B.41)
Again, taking v = 1 in the previous lemma yields:
A
Amax < Aoy + % (B.42)

o)

min

p
Both inequalities hold with probability greater or equal than 1 — (/\%)

= ol

n

C Proof of Theorems 3.4 and 3.6

Here we prove Theorems 3.4 and 3.6, which share some auxiliary lemmas. Throughout this and the
remaining appendices we will use the following notation for each ¢t > 0: y; = fi(x), fi = fi(X),
g, = fiN(x;0,), fir = fiN(X;0,) ke = ky(X, X) and koo = koo (X, X). The gradient V and the
expectation E will always be taken with respect to the parameters 6, unless otherwise indicated.

Let us begin by Proposition 3.6:
Proof of Proposition 3.6. Fix p,r € N. Consider the following subset of RV :

0))? A%
5=101 10 <510l < VrTogn, I~ bacl < 2501,
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By the inequality (B.34) and Lemmas B.14 and B.16, the probability of S is bounded from below by
1 —exp(—ny) — 7 1T_2 - o \C/m)p, for a positive constant ¢ not depending on n1, ng nor ¢. Then,

W3 (v, 5,) < inf Eglllye — 71 C.1)

=/ww—@wM+/\m—mww C2)
S SC

1 ¢
+ sup [lye — 7,l1*.
ny~?2 (Amnv/11)? | gesc '

< sup [lye = 7)1* + | exp(—na) +
0es

(C.3)

Let us begin by estimating the supremum over S. Note that by Lemma B.16, A\, > A;:o >0in S.
The hypothesis for Proposition B.9 are satisfied when n1, ng are large enough. In particular, thanks

to Lemma B.15, Assumption 4
4 XN (V5[ 2lloe + llyl)

X Lip® /7 Tog
(||<1>’||oo+Lip<I>+ |¥]|Lip®"y/r Og"1> <A@

/777,1’/7,0 /fno min
implies Assumption 5 for any 6 in S. Indeed, by Lemmas B.2 and B.15:
AL(X)[|.fo =yl (C4)
4\|x . X||Lip®’+/rlog ny
< 2L (o) + Lipe + 21RO (VBB + sl (€©5)
ning /o

Moreover, Lemma B.16 implies A, > %7‘0‘ in S. These two inequalities together show that
Assumption 4, which holds for sufficiently big nj, is a sufficient condition for Proposition B.9 to
hold.

On the other hand, by Lemmas B.16 and B.15, the following inequalities are satisfied in S, for
Z e {x,X}:

Z X||Lip®’/r1
1(2) < A2 (o) 4 Lip - X1 VITo8 T ) (o)
ning no
(XN oo [[Plloo
\Y < C.7
|| 9f0|| = \/TTO + \/n—la ( )
A
)\max S Amx + % (C8)

By substituting the estimations of L(z), L(X), V f(2;600), Amax and Ay, above in Proposition B.9,
foreach f € S:

lye — 7]l < 3 o T(\/i + 152 ) (C9)

2 (o)
min min

8wmmm+mm2ow+mW|

X||Lip®’ /7 T X9 e |P]loo
(191 + Lip . VXN VTToER (X[ e 2] .10
1/ o /o /11

rlogmn
_— C.11
< C“nmo(/\,;’ﬁn)?” (C.11)

where the constant c is independent of 7, ¢, ng and n; and can be determined explicitly:
¢ = 384 X[ (V5[ @l oo+ ]Iyl max{ (|, V2, 15AZ,, @' [loc, Lip®, ||X | Lip®", | X[|[|2 oo, | ]loc }-

Hence,
[ e = 500 < B(S)sup s - 5] (C.12)
S 6es

< sup [y — 7| (C.13)

0esS

c?rlogng

e C.14
~ (Agn)?nano (€19
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Put oy = 2.

Now it only remains to estimate the second summand in (C.2). Foreachy € Nlet4 = 2v+ /2y +1
and define the subsets:

91”2

— o IS 5 100 > oy Tog (C.15)

Also, define the subset

A
Q. =1{0] Ik — kool > ‘;‘“ , (C.16)
and let Q = Q. \ U,y 2

Intuitively, Q, and | +eN 2, are the events in which the lower bound for the smallest eigenvalue
of the empirical kernel and the upper bound of the Frobenius and sup-norm of the parameters at
initialization, respectively, do not hold. Notice that RN = S U QU |J, .y 2. We will use this

partition of R™V to finish the proof.
By Lemma B.14 and by (B.34) we have P(Q,) < exp(—yn1) + —4—
’I’le

vEN

and P(Q2) < P(2,) <

—1

W Moreover, the family (£2,),en is a descending filtration of S\ . Let D, = Q. \ 2441,
for each v € N. This allows us to write:

/ lys — 7126 < / e~ 720 + 3 / lye - 7l%do €17)

yeN
< (PO + D _P(D,) | sup [y -7l (C.18)
YEN 0eDy
< 3P(2) sup (lye = fell® + W1fe = 217 + 1 £ = 7017) (C.19)

+32P sup (lye = fel® + 1 fe = S0P+ 1F" = 71P)  (C.20)

~EN
< SZeXP —ynq) sup lye — fell —l—SZeXp —yny) sup £ — fim|?
~veN ~EN
(C.21)
+3) " exp(—ym) o I =P +3) —— sup lye — f2ll?
YEN ~vEN nl
(C.22)
33— s i = PP 433~ swp I =7 (€29
YEN TL1 YEN n1 ' oen
¢ 2 ¢ lin||2
—  swply— P 3 sup|fs — (C.24)
O O se 0~ S e g I I
¢ lm — 1|2
3= sup 11" =7l (C.25)
(Amln ) ¢

The 6 series in the previous expression are convergent. We compute an upper bound for each of
the 6 series in (C.21) with the aid of Theorem B.10, Lemma B.14 and the inequality (B.34). Let
A = max{A4;}, B=max{B;} and C = max{C;} the maximums among the constants in Theorem
B.10.

1. Let us estimate the first series. Observe that we can bound 'y/—i—\l < Tv. Moreover, since
A(Vy+ I+ |lyll) < 2A,/7 for v large enough, up to adding to the constant A a multiple
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of ||ly|| we can bound:

> " exp(—yna) sup [y — fil® (C.26)
ot 0eD,
<A Z exp(—yn1) ((V/Jr\l)zn?no Fy+ 1A+ L+ g2 (C.27)
~eN
YA+l (T |ly])5e
L0 (V7 Iyl +( v i lyll) (C.28)
ningo ning
S +1)2 T 2012 A+ 1 1 4p4
+(7+ ) (VY + 1+ lyll)*na s (Vy+T1+yll) (C.29)
No nino
<T7A Z exp(—yn1) (773n§n0 + 4722 (C.30)
~yeN
16734 64~3t6  28+3nq 2 16~3t?
L 16 72 L Loeymt by ) (C.31)
ning ming no n1Mo

Since the negative exponential function decraeases faster than any polynomial, for each
p € N there exists a positive constant N, such that 27 < exp(—%) for each z > N,,.
Therefore, up to a multiplicative constant not depending on ny, ng, ¢ nor -:

n
Zexp(—’ynl) sup |lye — fil|* < 7-64-6Ang(1 + %) Zexp(——’y;) (C.32)
6eD
vEN v vEN
7-64-6Ang(1 + %)~
< : "0(7; Je = (C.33)
— e

2. Now we estimate the second series. Using the bounds from the first series combined with
Theorem B.10:

> exp(—yna) swp [ fi" =7, (C34)
YEN 0eDy
1129%  1969*n t2  28+3n,t?
< 7Bny Y exp(—ym1) (7727114— TRy mt | 2P (e3s)
ny no no
vEN

167314 284312 4422
DAL A 0 +1673t4n0+2873t2+4fy2t2> (C.36)

n1Nno No No
< 7-196-9Bny(1+19) Y eXp(—%) (C.37)

~eN

7-196-9Bn, (14 t* -
_ mal n)leXp( 2) (C38)
1 —exp(—75)

3. Now we estimate the third series in the same fashion as we did with the preceding series.
For an upper bound of L(X'), recall Lemma B.15, which reads

d r(y+ 1) logn,
L(X) < NG <1 + NS > ,
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for # € D,, and d a constant not depending on 71, 1o, ¢ nor y. For n; large enough, we can
r(y+1)logn rylogn
suppose 1 + \/ ” L < 2\/ ™ L. Then,

Zexp (=yn1) sup £ — fm01? (C.39)
vEN
4Cdrlogn 1129312 649318 1672%t°
71 Z'yexp ’an) < 3 55 T (C.40)
ning = ng ning ning
4992n3tt 28420 Tynt®  28+y%ngtt 1642t°
R B LR LTS LE L AL L +4’yt4> (C.41)
ng ng o L nino
4-112-9Cdrlogni (1 + %) yny
< o > exp(——5) (C.42)
vEN
4-112-9Cdr(1 + t3)e™ 2
_ SCdr(L+ e ¥ (C43)
ning(l —e=2)
4. Now we estimate the fourth series. Following the reasoning from the first series:
1 1673t4
> = bUP lye = Fill? <TAY | —— ( vPning +4v°t% + nvn (C.44)
~veN Ny YEN n1 1o
64935 28v3myt? 164t
T M ) (C45)
ning ng ning

Recall that we can choose 7 large enough so that all the summands have n; on the denomi-
nator. In particular, it is enough to choose r > 5 in this case. Moreover, by reasoning like in

2

the proof of the first series, up to a multiplicative constant the terms of the form vn, 2 are

bounded from above by n; * . Therefore, up to a multiplicative constant not depending on
71,M0,t NOT 7y:

1
Zexp —ynq) sup lys — fil|> < 7-64- 6An0(1+t6)z — (C.46)
~eN 'yENn14
- 64 - 6Ang(14t%)n, *
_ 7-64-6 n0<,j )nq (A7)
1—mny*®

5. Now we estimate the fifth series. Using the bounds from the first series combined with
Theorem B.10, up to a multiplicative constant:

1 A
Z? sup H l _ytH2 (C.48)
~eNTY 0eb
11294 1967*n 2 28+3n 12
<TBm ) —= ( L 2T (C.49)
veEN nl " "o "o
16731 28v3% 44212
T A +1673t4no+2873t2+472t2>~ (C.50)
ni1ng no no

As we did for the fourth series, we can choose r large enough so that the previous series is
convergent. r > 5 is sufficient. Up to a multiplicative constant:

1 1
> —5— sup llye — fil> <196 -7-9Bng(1 +14) Y —= (C.51)
NeN ny® - 0EDy yen ny’
196 - 7-9Bngo(1 + t*)n, *
_ 19679 no(_;r )1, ©52)
1—n;*
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6. Now we estimate the sixth and last series. Following the reasoning in the third and fourth
series, up to a multiplicative constant:

1 .
> = sw |lfe— S0 (C.53)
’YEan2 feD,
4Cdr1 1129382 6493t 16+%t7
< Cd?;OQg’I’LlZ 1 ( 'yzt +6;y§ N 62t (C.54)
ning g n3 n3in3 ning

49v2n3tt 28420 TyngtS  284%mgtt 16426
+ 2 + 2 + - + +
0 0 0 no ning

+ 47t4> . (C.55)

In this case, any > 3 makes the series converge.

1 in
> swp Ife — AP (C.56)
wean 0eD,
. . 8
ning Yen TL14

4.112-9Cdr(1 + t8)n, &
_ 9Cdr( +T ny ' (C.58)

nind(l—ng )

Now we finish the proof by estimating the last 3 terms in (C.21). Recall that, by definition of €2, the

bounds for the Frobenius and the sup-norms of the parameters at initialization used in the estimation
of [4 ||yt — ;/|d6 hold also for § € ©; and recall that P(£2) < W Let Ry = z=7- Then it
suffices to choose p large enough to counterattack the biggest exponent of 71 in each of the bounds
given by Theorem B.10. In particular, as seen while choosing » when computing the six series, it is

enough to take p = r > 5. Then, up to multiplicative constants,

Ry 2 6y 1
—su — < ARing(1 +t%)—, (C.59)
nf 968 ||Z/t ft|| 1 0( )\/771
L} sup || f¢||* < RiBno(1 + t4)—1 (C.60)
n? 0e R Vi '
R, 9 gy logmng
—su — <CdrRi(1+t°)—— (C.61)
nlf Geg ||yt ft” 1( )nl\/,rTlng
1
< CdrRy(1 +1t%) o (C.62)
ning

Grouping the estimations for the nine summands in (C.21) and taking oy = Ry max{A, B, Cd}, up

to a multiplicative constant,
[ e —ieae <
SC

This concludes the proof. O

Q2T

T
(Amin) 11

(1+1%). (C.63)

Then, our main result, Theorem 3.4, is a direct application of Propositions 3.6 and 3.7:

Proof of Theorem 3.4. By triangle inequality and the elementary inequality (a + b)? < 2a? + 2b?
for a,b > 0 decompose:

W3 (e, Ge) < 2W5 (41, 7,) + 2W3 (T, Go). (C.64)

Then the thesis follows estimating the first summand with Proposition 3.6 and the second one with
Proposition 3.7. For large enough ny we can take the constants a; and as to be a multiple of ay
and as in Proposition 3.6; since the right-hand side in the statement in that result decreases as

loﬁ% + %, which is strictly slower than the right-hand side of the statement in Proposition 3.7 for
LY

any ni > 2. O

31



D Proof of Proposition 3.7

Proof of Proposition 3.7. Fix x € R™ a test point. Let G¥ = Gy(z) and Gi¥ = G(X).

First we show the result for the training set. With the aid of Equation (2.2), we derive a closed ODE
for | f — G|?. By Cauchy-Schwarz’s inquality and Young’s inequality

2(,%Hft GEI? = (exaey = fi) = hooly = G7), (i = GT)) (D.1)
= (kxx — koo)(y — fi)(ft — GF) — koo|| fr — G |I? (D.2)
S ||kXX - koo”Hy_ ftHHft _GZYH mmet Gf||2 (D3)

IN

1 €
?€||kXX — koolPlly = fell” + §||ft — GFIP = Agllfe = GEI2. (D4

S

Note that, by gradient flow equation we have || f; —y|| < e~

| fo — y|| for each ¢ > 0. Choosing

e = A3, and putting b, = &2 [k x — kool lly — foll? yields:
Ellft = GEIP < b= ARl fe = G, (D.5)
Gronwall’s inequality applied to (D.5) implies:
t
15~ GalP < 5 (1o = GolP + [ obaas) ®6
0
oo k — koo 2 _ Qt
=€ )\mint (” XX >\(|>|O ||f0 yH + Hf() _ G0||2> . (D7)
min

Recall the definition of 2-Wasserstein distance. Taking the expected value of the previous equation
and taking the infimum on all the couplings between f; and G; we can bound by Holder’s inequality:

W2 (£, Gr) < E[|| fr — Gi||*] (D.8)
o0 t
< e (xerHlkXX = koell*lLfo = vl + Efl fo - G0||2]) (D.9)
oo t 1 1
< et ( v Elllkxx — keolI'12El fo — yI")2 +Ell fo - Go||2]) . (D.10)

Now we can take the infimum on the couplings between f and G to apply Theorem B.3, Proposition
B.4 and Lemma B.8 to estimate the right-hand side of (D.10). There are positive constants c¢; and cy
not depending on n; such that:

oo cit
WA G < 5 (L2 /BT TSI + 2 ) .11
min’? nq
Apot
<G i, (D.12)
n1

with C = max{ 2oy \/8n2||(I>H4 + 2||y||4, e}
Now we show the result for an arbitrary test point z € R™. Let k%, = ko (z, X'). We can bound, by
Equation (2.2),

0

E(yt — GP)? =2kax(y — fo) — k2 (y — GF))(ye — GY).

By the formula for the derivative of the product and Cauchy-Schwarz’s inequality, the preceding
equation implies:

0 . : .
i We = GO < ke (y = fo) = ko(y = GF) = llkaae = K llly = fill = kS (fe = GF). (D.13)
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Put \ = ming <;<n koo (2, z;). The last summand can be further estimated with the first result in this
theorem. There exists a positive constants C' not depending on n; such that:

o XCe "Bt
e~ 2
a(@/t—Gf) < kzx — ks llly = fell +T\/t+1~ (D.14)

oy

Again, we use || f — y|| < e 2

| fo — y||. Integrating we obtain:

. . <, AC [ 2
(v = G2) < (0 = G§) + e — Klly = foll (1 = 30 + 22 [ /T Te Foas
1 0
(D.15)
<, ACD At
< (yo — G%) + || ko — k= 1 — e Amnt 2 -Vt 4 lem737),
(0 = GE) + e = K2y = fol )+ 22 )
(D.16)

for a positive constant D, Wthh explicit computation we now show separately. First we compute an
antiderivative of v/t + le~ g,

/ Vs+ le” "2“"5ds (D.17)

o r?uon 2 _)\mmu2
=2e2 [ u‘e du (D.18)
oo _ Aming,2 _ Aming,2
min 2 2
T +/“6 ——du|+cC (D.19)
)\mm )\mm
Anolfn 2 \/» 2 2
Ain ue” 2 ¢ s e v
=272 | — + dv | +C (D.20)
Amin V20553 ) v
A2
A;?n mmu f
_gpmn [ _Ue _ vmerfv (D.21)
)‘min ()\;cm)
A0 erf V mm(‘s—"_1
b vV Te— 3" (s+1) VT ( V2
—getp | _VEFE I +C (D.22)
AIT'IlI'l (Ar?'ﬁn)
Anol?n S 1)
m.,. V2re 2 erf <“““(+>
_2¢/s+le” V2
= + 3 +C. (D.23)

P (N

min) 2
. . . . . [ oo .
where in the first step we substituted v = /s + 1, in the third step we substituted v = |/ =2« and in

the fourth step we used the definition of Gauss error function erf(z); and C' denotes the integration
constant. Therefore,

¢ Ao oVi T Te
/ Vo Te By = 2 rtie (D.24)
0

Amin
2776%"' (erf (“‘\/(;m) —erf ( \;\2;0))
+ . (D.25)
(A%)?

Since erf(t) €] — 1, 1], we can bound:

t Az 2 At 2 A%
/ Vs+lem 2 fds < —— (1 —Vt+le 72 + ie‘ 2 ) (D.26)
0

)‘min Ami

min

A9 ¢
<D2—-Vt+1le %), (D.27)
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A2
with D = 1% max{1, \/£Ze~ 3" }.
Turning back to (D.16), we can finish by applying the elementary inequality (a + b + ¢)? <
3a2 + 3b% + 3¢ for a,b,c > 1 and Holder’s inequality. After that, Theorem B.3, Proposition B.4 and
Lemma B.8 can be applied in the same fashion as in the proof of the training case, yielding positive
constants dy, do and d3 such that:

W3 (e, G7) = E[lys — G7 ] (D.28)
< 3E[lyo — G5 1] + 3E[|lkox — KZ[*1?Elly — foll ]2 (1 — e ") (D.29)
oo .
+ 3ACD)] (2 - ViT Te 32 (D.30)
ni
3d 6d oo
< L 22 Bn2|[f[4 + 2[ly[[F(1 + e Pty (D.31)
ny ny
AC D)2 oo
+ MM + (t + 1)eAmnt), (D.32)
ny

By putting C' = max{3d;, 12(ACD)?} and D = max{6da/8n2[®[|%, + 2[y[|*, 3(ACD)?*} we
obtain the thesis.

Note that C, C' and D do not depend neither on 7, nor ¢. 0O

E Proofs of the auxiliary results

We present here all the remaining proofs. For clearness, we will use the following notation: X, =
h(z), and X = h(z'), for each 1 < v < nq, for any z,z’ € R™.

Proof of Lemma A.1. 1tis trivial when B is nonsingular. Let A1, ..., A, be the (possible repeated)
ordered eigenvalues of B and suppose A; = 0. Then, by using the eigenvalue decomposition of B
and elementary properties of the matrix exponential:

lfe_klt

N A1
I(B)B=U t U'u 0 U’ (ED
1—e *nt )\n
1—e Mt

—U 0 U’ (E.2)

1 — e At

e—>\1t

=UU"-U 0 U’ (E.3)

e_)‘"t
=1, —e Bt (E.4)

The converse equality is proven in an analogous way.

As for the limit property, it is enough to show it for real numbers. Let (a,,),cn be a real sequence
converging to a € R. If a # 0, of if a = a,, = 0 for each n the result is trivial. Thus, assume a = 0
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and, up to taking a subsequence, that a,, # 0. Then

1— —ant
lim I(a,) = lim —— =t = [,(0).

n— 00 n—00 (075

O

Proof of Lemma B.1. For the proof of the first three points we refer to any monograph on the
Wasserstein distance such as Villani [2008]. In order to show (4), let 7XY be an optimal transport
plan between X and Y, let 7X% be the law of X and let u~X = Px be the marginal law of X.
Applying the gluing lemma of optimal transport produces a probability measure m on R” x R™ x R"
given by

Y (@, y) (2, y)n (2, 2)

_ 7TXZ(
e R & R

x,z) T

Note that integrating with respect to y yields 7% % and integrating with respect to z yields 7XY. Note
also that there is a unique coupling between Y and A, which is given by Py x ), hence,

we (X, if) < / / I1X (2, 2) — ¥ (y, w)|[P6x(dw)dr (dz, dz, dy) (E.5)
R1L+m+n m
:/ | X (x, 2) — Y (y, \)||Pdr (d, dz, dy) (E.6)
Rrtm+n
< [ XY ey + [ 2P @D
Rn+n R™
= WP (X,Y) +WE(Z,\), (E.8)

where 1# is the marginal probability on Z.

On the other hand, to show (5) fix 1 € P(R™) and v € P(R™) two probability measures, and denote
1 % v the product measure on R™+™ with the tensor product o-algebra. Then

WE(X,Y) < B [|| X = Y] (E.9)
<Esol(|X - Y2+ Z - V|?)E] (E.10)
<2571 (E,[|X - Y] +E,[|Z - V|*), (E.11)

where in the last step we applied the elementary inequality (a + b)? < 2P~ (aP? + bP), for a,b > 0
and p > 1. For the 1-Wasserstein distance instead, we apply the elementary inequality va + b <

Va+ Vb

Wi(X,Y) < Euxn[|I X = Y] (E.12)
1
<SEu[(IX =YI?+ 112 = VI*)?] (E.13)
SELIX =Y+ E[[Z - VI]]. (E.14)
Lastly, taking the infimum over (p, v) € P(R™) x P(R™) finishes the proof. O

Proof of Lemma B.2. The computation of the gradients is by chain rule and definition of f. The
claims about the kernels follow from taking the dot product on the gradients we just calculated, for
each1 <i,5 < ng:

kij(x,2") = (Vo Xi) (Voo Xj) (E.15)
1 9 O
= — (z0%;") (x'0%) (E.16)
no :12 o 0057 T00l)
U*L’ :711
1
o, 2, T ®17
v:l:...:nl
1 & ,
=— ) T,2,0. (E.18)
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Lastly,

k(z,2') = (v9<o>f(2>(x)) (ngf@) (:c’)) n (vem f<2>(z)) (vem f<2>(z’)) (E.19)

1 0 1 0
= — — (®(——=20)eM)) — (B (—— 909 E.20
o uﬂE .... . 891(3)( ( = ) )897(}3?( (o= )0+) (E.20)
v=1,...,nm1
1<~ 0 1 ) 1
+ =Y — 5 (@(——=20) " (——2'0)pW E.21
1 &' / (1)\2 1 S /
= 22, ® (X)) (X)) (02 + — 5 ®(X.)D(X)). E22
P, u:1§,....no (X0)®'(Xo)(6,) o ;:1 (X2)®(X7) (E22)
v=1,. n1
O

E.1 Proof of results at initialization

In this subsection we prove the useful Proposition B.4, which generalises the second part of Theorem
B.3. This step is paramount for the proof of the rest of our results. From now to the end of this
subsection assume ® and @’ are bounded and x, v’ € R™° are fixed.

Proof of Proposition B.6. Note that, from Lemma B.2, k can be written as:
1511 Z (X (692 Z (X
v=1

and recall that k is deterministic, for any fixed inputs x, z’. Hence, by boundedness of ® and ®’, and
independence of #(1) and #(©),

E[|k]] < (||<I>’H2 uimu+ 19]12) = 1912, E€.23)
< 2,7,1”@ ||Z£E[|kn|p1 E[(6}")] + 2”*1||<I>||Z£ (£29)
<2071 (2p — |2 kn P + 272122, (E26)

where in the last inequality we used that the 2p-th moment of a standard Gaussian variable is equal to
(2p — 1)L
O

Proof of Proposition B.4. We will use the notation instroduced in Proposition B.6. The first claim is
trivial since £ coincides with /C. To show the second claim, we split:

E[lk11 — koo "] = IfkuZ@ 7)(65)? i (E.27)
— KEg[® (G(w))¢’(G(w))]—Ec[¢>(G( )_<I>(G( MNIF] (E.28)

< 21)-11@[!%/%11 3 @(X,) ' (X0)(00)? - KEG[®'(G(2) @' (G
v=t (E.29)

+ 2P~ IE[— Z d(X — Eg[®(G(x)®(G(z")]P]. (E.30)
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To bound the first summand in (E.29) we split again by adding and substracting an auxiliary term:

\fkn Z '( X,)(059)? — KEa[®' (G(x))®' (G(2))]"] (E31)
< 27’_1]E[|n—11511 Z (X, (X)(6))> IC Z P'( X2)(0V)%P]  (E32)
+ 2P IE]| /c Z o' X1)(05D)? — KEG[®' (G (2)) @' (G(z"))] 7] (E.33)

= 2P~ 1E] |7 (k1 — Zcp X)) (05D)2[P] (E.34)
+ 21"1(16)’”IE[|;1 Z_: O'(X,)®'(X})(65))? — Eg[®(G(2)) ¥ (Gl (E33)

The first summand in (E.34) vanishes since k equals /C. We estimate the second summand in (E.34),
once again by adding and substracting an auxiliary term:

|771 Z @'( X)) (65)? — Bg[®(G(2) ' (G(a")][] (E.36)
< 2P| Z P X)) ((00)2 —1)J7] (E.37)
+ 2P ]| — Z@ — Eq[®'(G(2)@"(G(2")][7). (E.38)

v=1

The first summand in (E.37) vanishes, by boundedness of ®' and independence of the parameters
91(,1):

ni

|n—124> X)((059)2 — 1)|P] < 1,1,||<1> 2] S (00)2 — 177 (E.39)

v=1

_ 1 12 (1
7771)||<I>|\0g Z H]E0 —1]  (B.40)

ar,.,op=1j=1

—0. (E41)

As for the second summand in (E.37), by Theorem B.3 there exists a constant c¢; not depending on nq
such that:

- Z @ 1) Eal®'(G())®' (G())) (E42)
~ B 30009 () — Bl (@)@ G (E43)
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It remains only to bound the second summand in (E.29). This is done by using again Theorem B.3.
There exists a constant ¢y not depending on n; such that:

WICE 3 08X, Eel2(G@)2(G0) (E45)
=B 8(X,)8(X) - Bo[®(G) @G )] (546
< (LipCIi/—Ln:b(O))p. (E.47)

Putting together all the preceding estimations we obtain:

1
E[[k11 — kool?] < C—, (E.48)

ny
with C' = 2P~1 max{22P=2¢, (Lip®' + ®'(0)), c2(Lip® + ®(0))}. O

These results suffice to prove Proposition B.7.

Proof of Proposition B.7. Consider the joint random variables X = (kyx,f(X)) and ¥ =
(koo (X, X),G(X)). Then Lemma B.1.4 together with Proposition B.4 and Theorem B.3 yield

-~ C+D
Wy(X,T) € Wk b (X, X)) + Wy (£(X), G(X)) < 7 (E49)
VAL
where C' is the constant in Proposition B.4 and D the one in Theorem B.3. Both constants do not
depend on n;. O

Lastly, we prove Lemma B.8.

Proof of Lemma B.8. Let 9%)) denote the 7j-th entry of 9(()0) € R™0*™ “and let 0§1) denote the j-th

component of 96” € R™. By Jensen’s inequality and independence of the parameters and x1, . .. x,:

1 (0)y9(1)
E <A E[||—=2(X0; )6, ||? E.50
[Ilfo]_\/[llwTl (X65")6 " [1°] (E.50)
< Viy/El|o(@,09)PIE[6 2 (E1)
< V| oo (E.52)
As for the fourth moment,
o\ 2
n 1 ni 0 1
Ellfol*] =E Z n Z‘I’(l‘ﬂg))% ) (E.53)
i=1 j=1
4
el (% 051
< TT%E pr(xleﬁj )0; (E.54)
j=1
P 4 2
< 1®leen™ a4 2y (E.55)
ny
< 4n?| @4, (E.56)
Triangular inequality finishes the proof. O
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E.2 Approximation of the network by linearization

In this subsection we prove the results involved in the proof of Proposition 3.6.

With a slight abuse of notation, we will denote by ||z — X'|| the positive quantity sup; <;<,, ||z — ]|
Also, given any matrix A = (a;;) 1<i<n We will denote by %f the matrix V4 f = (%) 1<i<n -
1<j<m 971555m
We will consider the linearized gradient flow, given by
9 lin 0
5t = =V fo(f™(X;0:) —y).
For this subsection introduce the following notations: fi" = fi*(X;0;) and g, = f"(z;0,).

Proof of Lemma B.12. Let Amin be the smallest eigenvalue of ;. By gradient flow equations for the
parameters 6, and 6;:

£ —yll < e it fo —yll, (B.57)
‘ N
1 =yl < e mnt|| fo — y]. (E.58)

On the other hand, Lemma B.2 combined with Cauchy-Schwarz’s inequality and the gradient flow
equations produces the following system of differential inequalities:

0 1 .

10 < —=l@llscllfo = ylle™ ", (E.59)
0 1 .

—(0Q), < 19| ool fo — yll[|Xul (B g™ At (E.60)
ot N O

The previous is a triangular system of differential inequalities of the form

Yl
—
B
S~
o
o
=
=

t < Blef/\mint
%(91(3)% < B()(el(,l))te*/\mint’

with By = —=[|®]|w| fo — yll and By = =9’ [|oc [l.fo — ylll| Xull.

By integration on [0, ] and substitution we get:,

(05)e < (03)0 + Brly(Amin) (E.61)
D] [l fo — vl
< (W ”—I Amin E.62
< (050 + S t(Amin) (E.62)
t
09, < (09)y + BoBy / T Ovain)ds + Bo 011 It vmin) (E.63)
0
B oo |9 flsol fo — w12l X
< (09)y + | I; (Amin)? E.64
= <9uv )0 + 2711\/770 t()\mm) ( 6 )
/ J—

A/ M1Ng
Note that in the last inequality, we used fg I,(b)ds < LQI))Z, for any b > 0.

Thanks to (E.57), the linearised parameters 6, also satisfy the preceding inequalities, and hence the
thesis holds. O

Proof of Lemma B.14. Let ® denote the CDF of a standard Gaussian variable. For each a > 0, since
the entries of 9(()1) are np 1.1.d. standard Gaussian variables,

P05 ]l < @) = (1 — 2(1 — ®(a)))™. (E.66)
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Bernouilli’s inequality and standard estimations for Gaussian tails yield

(|05 |l < @) > 1 — 20, (1 — ®(a)) (E.67)
2
>1—nyexp (_(12> . (E.68)
Letr > 1 and put a = +/rylogn;. Then:
1
PGS e < 0) 2 1 mexp (- 7HE™) (E.69)
—1—nyexp (1og n;%> (E.70)
1

1 (E71)

=

U3t

O

Proof of Lemma B.15. We will write f for short of fy(x)(6). By Lemma B.2 and Cauchy-Schwarz’s
inequality,

IV flI* =1

89(0 f||2 (E.72)

1
< iy 0<1> 24 2. E.73
S — [EN IIDOII | +an ll5 (E.73)

Then the first claim follows by (B.34) and the elementary inequality va + b < \/a+ Vb, fora,b > 0.

Now we prove the second inequality. Let 6, 0 € RN, then,

0 0 o -
IV6£(0) = Vol O = 1l 5557/ 0) = 55 <>||2+||89(1 10) = 5o O

Let us estimate the first summand in the previous expression. By Lemma B.2, foreach 1 < u <
no,1 < v <mny,

(E.74)

0 0 ~
|89(O) HOE 89(0) f(6)] (E.75)
<— ng o0 ij o) ©76
7’L1TLO
Ty, 1 & Oy pH _ gt
Tt (i e 2t &)
9(1) no ) 0 ~(0)
P’ 00 _ ¢ _ 0\ E.78
\/m (\/770]2211‘] ]v) (\/%;z] ]v)) ( )
Ty @, oo _é’l()l) qul ¢/5’L()1) s N
< 22l F(uno '+ e~ 2400 =), (E79)
j=1
Hence,
55677 ~ 55 f( )2 (E.80)
06(0) 50(0)
Uzl,’:::;:i;’
216112 119(1) _ 41|12 4(Lip®" 2|18V 12 ||9® _ §(0))|2
< [EdIIKS IIOZIIZ | N [|=]*(Lip®’) ||9n n||200||9 | (E.82)
110 170
2019/112_[l9(1) — g(»)|2 4(Lip®d’)2]|6(® — §(0)||2
< [z @"[|5 164 — 6] N [=]*(Lip®’) ||92 o™ vy log i, (E.83)

ning

ning
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with probability greater or equal than 1 — m —, where in the last step we used Lemma B.14.

Similarly, the second summand can be estlmated as follows. First compute the partial derivatives by
using Lemma B.2, foreach 1 < v < ny:

0 o -
‘80751) f(0) - Wf(eﬂ (E.84)
f TZ ) Z 705.) (E85)
1
0) FIQ)
mz; v )- (E.86)
Therefore,
0 o -
155 f0) = 25 f(9)||2 (E.87)
o -
= Z 89(1 WWNQ (E.88)
v=1,.
sﬁ&??%lfﬂwem> B €59)
170
1o 3y

The preceding estimations, together with < 1lfor:=0,1,yield:

ll6—012

IVof(6) = Vo (9)I

(E.90)
16— 6]
2 @/2 41; @/2 Lip® 2 2
eIV | e (i)l Eon)
nino ning ning
Taking the square root in the last inequality yields the thisis. O

Proof of Lemma B.16. Fix v € N. The probability of Z = ||k — kwo|| > 7’\2:‘?" can be estimated with
Markov’s inequality and Proposition B.4. There exists a constant C' > 0 not depending on n; such
that:

A% A% \P
P(Z > %) =P <Zp > (”;) ) (E.92)
2 p
<|——) E[|Z]||F (E.93)
(5=) EllZP
2 p
WE(k, koo E.94
<7Amm > P ( ’ ) ( )
2 p
< <Oo> % (E.95)
VAmm nf
Note that Proposition B.4 holds for every natural p. This concludes the proof. O

Now are ready to prove Proposition B.9:

Proof of Proposition B.9. For the sake of clearness we introduce the following abbreviations for the
remainder of the proof. Let y; = f(2;0;),7, = f™(;04), fr = f(X;60;) and fi" = flin(x;0,).
Also, let k; = k(X, X;0;), V = Vg and let L(X") denote the Lipschitz constant of V f, seen as a
function of 6.

Consider the empirical risk for the quadratic loss Rp (6;) = 3 S, (f ) (z4:6;) — y)2.
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From gradient flow equations we have:
2 fi= kilh ) (E.96)
ottt = t\Jt —Y), .
0
Sillfe = ull* = =2(fi =y ke(f = v)). (E97)

Let t, = inf{¢t | ||0: — 00| > 22&)} Then for each ¢ < t,, by 1-Lipschitzianity of the smallest

eigenvalue with respect to the operator norm, and by definition of ¢,, we obtain an upper bound for

)\min (kt):

|)\min(kt) - >\min| S Hkt - kOHOp S ||kt - kO

Omin
< L@~ b < 7

which implies:
Omin Amin
. > R .
Amm (kt) = >\m1n 2 jtl 4
This estimation combined with Gronwall’s inequality applied to (E.97) yield:

Amin
1=l < fo = 1P exp (~252¢). (£99)

From (E.97) and Cauchy-Schwarz we deduce:

9 vat<ft - y)||2
=yl =——7—7— (E.99)
sl vl ==
Omin
< = IVAlfe =yl (E.100)
Hence,
8 Omin 3 Omin 3
a3 - - < e — —6; <0. .
o (16 =yl + 22200~ 0] ) < 15—yl + T3 o <0. (B10D)
forallt < t,.
Thus, for all ¢ < ¢,:
2
16¢ = Ooll < —[Ifo —yll. (E.102)

Let us show that this property holds for all £ > 0. By contradiction assume ¢, < oo. (E.102) with
Assumption 5 implies

161, — ]| < i (E.103)
B i AL(X) ‘
Omin
= . E.104
2L(X) ( )
In particular the last inequality holds for ¢, which contradicts its definition. Hence ¢, = oo.
Let us now prove the rest of the inequalities in the theorem.
The gradient flow equation for the linearised network reads:
9 piin _ —ko(flim — ). (E.105)
o't K
Define the difference ; = f; — f/". Then
0 in
57t = kilfi =)+ ko(fi" —v) (E.106)
= —kre — (ke — ko) (fi™ — y). (E.107)
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Then, by Cauchy-Schwarz and (E.98) combined with (E.105),
10

5 875””” —(re, kure) — (re, (ke — ko) (fi™ — v)) (E.108)
S—Amm(kt)llmll2+HrtHIIkt koll L/ = vl (E.109)
< =2 2 el e Roll o~ wlexp (< 220). Ba10)

Hence,
Sl < =22+ = o =yl exp (— 222 ©111)

Now let us bound separately the different factors in the previous equation. The norm of the difference
between the kernels can be estimated as:

ke — kol < IVFVET — VoV (E.112)
<2V£llIVfe = Vol + IV.fr — Vfoll? (E.113)
< 20max L(X)||0; — o] + L(X)?||0; — o] (E.114)
< 20w L(X) |0: — b + L(X)6: — 0| 75" (E.115)
< gamaxL(X)HHt — 6o, (E.116)

where in (E.115) we applied the definition of ¢,.

Moreover, by Gronwall and Cauchy-Schwarz inequalities we have

>\mint ¢
Ire]l < exp (— ) 1 fo—yll / ks — kol|ds (E.117)
0
/\mlnt
< exp 1) o=yl supllk — kol (E.118)
Amint \ 5
<e ( T ) 5 max L(X)||fo = yll sup [0 — o (E.119)
s>0
)\mlnt 5 2
< exp ( > S Omax L(X)][ fo — yl| su yl| (E.120)
4 2 s>0 Omin
>\mmt 5 m X
<oxp (-2 ) 2 ) 2 (E.121)
Omin
(E.122)

Moreover, by taking the difference of the gradient flow equations for #; and ; we obtain:

o160 =8l < IV.5 — Vol 5o~ + IV 5ol 15— F2°] (E.123)
L) 0: = 00l 15: = 91l + sl 1 = £2°] (E.124)

< 228 gy e (—Aj’f) 129

+ 20 () o — e (22 (B.126)

< wllh —yl* exp (— /\"Z“t> . (E.127)

where in (E.125) we used (E.102), (E.98) and E.121.
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Integrating the previous inequality we obtain:

o~ < & 50“"‘“) 1o - yl? / exp ( “““S> ds (E.128)
2 5 X )\min

Schs Uém) ( )Hfo -yl (1 — exp <— 0 S>) (E.129)

< B 200”‘“) &) 1 fo—yll*. (E.130)

Now we are ready to prove the last inequality in the thesis. Decompose by triangle inequality:
lye = Fell < llye = (@3 001 + 1 (@3 00) = G- (E.131)

First, let us focus on the first summand of (E.131). Denote by L(x) the Lipschitz constant of Vyg
seen as a function of 8. Then, by Lemma B.15,

t
) 0
lye — fi(2;0,)|| = H/ (Vf(z;05) — Vf(z;ﬁo))aﬂsdsﬂ (E.132)
0
Lo
< L) sup6:—tol] [ 11570.]ds (8133
tZ() 0 (915
2
< L(x) sup [|0; — 6ol - [ (E.134)
t>0 Omin
4 _ 2
< L(w)iuy/\ ‘fO” : (E.135)
where in the third inequality we used (E.101) and (E.102) on the last one.
As for the second summand of (E.131), by (E.130) and Lemma B.15:
£ (3 60) = 7ol = IV f (3 60) (8 — 8| (E.136)
8+ 20074 L
< B2 L) I f@ol. E13D)
Combining the two preceding estimations, we obtain the thesis.
O

Lastly, we prove Theorem B.10.

Proof of Theorem B.10. We prove the three inequalities separately. Let Ap, denote the smallest
eigenvalue of k.

* By Lemma B.2 and Cauchy-Schwarz’s inequality,

lye = foll < ———Lip®]z - x||[16 6. (E.138)
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Recall that I} (Apmin) < t. Then the norm ||9t(0)9,§1) ||? can be estimated with the aid of Lemma
B.12:

no ni 2
6”012 =" (Z(Hfﬁ))t(e,ﬁl))t) (E.139)

S~ (3 o) ao(0:)
< 00)0 (0 1+ W0 )o gy @00 Jo 22
_u_1<;(v)(w)o it (o) m%w )
(E.140)
(1)y2 / (1) 2
aopai 3,3 , a0 )g agai(0y)o 2,2
+— 00)%t> + “ L2040 (0)t + 0o)%t
n;ﬁow( o) o (o) o Y(6o)
(E.141)
<Zn ONZ + a3 (09)30(00)%¢> + & 561 )Ow( f0)'t" (E.142)
0 ny
2 12/n(1)\4 12 2/p(1)\2
+ aoal ¢(9())6t6 + a 0(9v )01/)(90)2152 + a0a1(6‘ )()w(Q(])4t4 (E.143)
nino no ning
()2
< ma 65706 + a3 1657 P (60t (’”Tuw(eo)‘*t“ (E.144)
a?a? /2a2 9(1) 2
+ D000+ 30 02 + T2 gyt
(E.145)
with ag = 5[ @00 |9’ [|oc [ Xull, ap = |9 ]lc || X || and ay = [|®]|sc.
Hence,
Lip®)?|lz — X
Iy — > < BRI =2 porg e (E.146)
oni
A Aqt? A0 1244
< 20100001 + 215 o a0y + 2Ly gaan
Nnonq ningo
At Ayt? Astt(|o{M )12
AT 008 1+ g0 e, + AT e (B 1ag)
’I’Llno ning n1n0

2

with 4y = (Lip®)?|lz — X||%, A1 = a?, Ay = a3, A3 = a}ad, Ay = a’g and A5 = a’gal.

* We follow a similar strategy to prove the second inequality in the Theorem. Put w; = 6; — 6.
By the triangle inequality and Cauchy-Schwarz we decompose:

I = 7,017 < 201 fo — woll® + 2/1Ve fo — Vool *|[we |- (E.149)

The first summand in (E.149) is bounded exactly as the first summand in (E.138) by setting
t=0:

(Lip®)*||lz — X|]?
nino

1fo = woll* <

A
[ n—oneé")eé”H?. (E.150)
1Mo
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As for the second summand in (E.149), we decompose by Lemma B.2. Factoring out

max;{(6 (1))} ||9(1)||ooperm1ts us to write:
2 a 2 2
IVofo— Voyol* < Hiae@) (fo— yo)H +”39(1 (fo—vo)ll (E.151)
1
AT (0 — 2T (20 @)DV (E.152)
—nmoH( '(— X0 ) (\/7,70 0 )0 |l
1 (0) 1 (0)y 12
e X0 — o 20 (E.153)
m” ( =X ) (wTO o )l
1 1
< AT (——x0) — X7 (——20))0V |12 (E.154)
_WLOH( ( =% ) (WTO 0 )0 |l
72 Loy Tar L 0y 02
T X7 20y — 2T d 20())0 (E.155)
H( (WTOO) (ﬁnoo))oll
e [ (E.156)
n no
2 .
< 5 (Lip® )2 [ Xl — X2 [165” 05" || (E.157)
ning
2 A
+ |9 % e — 205711 + 165" |1 (E.158)
1Mo ning

Moreover we can bound the norm of w; with Lemma B.12:

0 1
||wt||2 < ”9( ) (o)Hg 4 ||t9( ) (1)H2 (E.159)
12 p(1)\2
- Z 2ap 28 et + m¢, 242 +Z % 0o)? (E.160)
1 nn
2a2 2a 9(1) 2
< Tfi/}(%)‘lﬁ + O|7|~Ll ” ¥(00)°t* + aiyp(bo)*t>. (E.161)

Hence, (E.149) can be written as:

. B, B
lin — 0 (0) (1) 1 (0) (1) 4
177 =l < 1050671 e 166760 1P 60) e (E.162)
B, 0 1 B3 0) (1
+ 2 105121080 140 (00) 28 + —25 110050 120(00)%¢>  (E.163)
110 ning
B B
+ o [0V 20 (B0) 1 + 52— 057 (|40 (6) ¢ (E.164)
no o
B B
+ 105 120 (00)%4 + —5— (108 |[(00) ¢ (E.165)
no 1o

B B
o [0S 1211650 120(80) %% + 211687 [P (60)%¢%,  (E.166)
no ning

where the constants in the last inequality are, explicitly, By = 240, B1 = 8(Lip®’||X|| ||z —
Xlag)’, Ba = S(Lipd| X||x — X]|ay)%, By ~ A(Lipd|¥[[|x — Xllay)?, By =
8([@"lscllz — Xllao)®, Bs = 8([|2']|ocllz — Xllag)?. Bs = A([®'[|cllz — Xlla)?,
Br = 4Aga2, Bs = 4Agd’;, and By = 2Aga?.
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« It remains to estimate the last inequality. Consider A(t) = ||f; — fi|| Then by gradient
flow equations and Cauchy-Schwarz,

0

57 (A®)?) = (ke fe = y) = ko(fi" = ), i = fi") (E.167)
= > ke, X)(f = y) = kol X)(f" = ) (Felwi) = £"(2:)) (E.168)

= > (ke ®) = kols, X)) (fo = 9)(fola) = £ (a2)) (E.169)

— ko(zi, X)(fe = [ (fe(:) — fi™(2)) (E.170)

= [I(ke — ko) (fe — ) (fe = SI") Tl — ko (fe = fi™) (e = fi™) T 1 (BATD)
By equivalence of the 1-norm and the euclidean norm for v € R? we have |[v|| < [|v|; <
V/d|[v||. Then, by Cauchy-Schwarz’s inequality,

0
3¢ 80 = nllk = kollllfe =yl = AnnA(#) (E172)
< nl|ky — kol|v(8g)e Mt — X0 A(t) (E.173)
Let us bound the norm of k; — kop:
ke = koll = Vo fe(X)Vofi(X)T = Vo fo(X)Vofo(X)T]| (E.174)
< | Vo fe(X) 4 Vo fo(X) || L(X)]|0: — 0ol (E.175)
(E.176)
From Lemmas B.2 and B.12, we have:
IVafi(X))1? = IV fi(X)* + (Vg f1 (X)) (E.177)
2116112 119 12 2
B S 7Sl G E178)
ning i
211%/ 112 0 2 2
ning \/E ni
Analogously,
Vo fo(X)1* = Voo fo(X)[I* + [V fo(X)]? (E.180)
211612 11112 2
B Nl T E151)
ning ny

Moreover, again by Lemma B.12,

16— 6oll” = 16 — 06”11 + 165" — 6511 (182
9 9 9 ;2 2 90 2
< 25 gyt 4 20 g0 g 4 SO (189
ning ni1ng ni
(E.184)

Inequalities (E.179),(E.181) and (E.183) allow us to estimate:

L(X 2119(1) 3,3 2,42
ke — ko] < (X) [ c1yp(00)* 116"l n c2t(bo)°t N csp(0o)7t (E.185)
niy /N1Nng ning /N1Ng
call 05V 1%t | esw(80) 105V [1£ | cll6S" It
n n i (E.186)
no A/N1Ng /1o
crp(00)||057 ][t csth(60)*t
+ + + coth(Bp)t |, E.187
N o 0t(6o) ( )

47



with ¢; = 2v2a0||X|||®[lce> 2 = V2a0||®|locs €3 = 2v20a0||P|loos €4 =

2v2a0 | X[ |9']|oo, ¢5 = V2a5][®]lc0r c6 = 2V200]|Ploos €7 = 2a1[| X[ P[00 €5 =

a1]|?||0o and cg = 2a1||P|| 0. Let C(nq,no,t,0y) be the right hand side of (E.185). Then,
the reight-hand side of (E.173) can be P-almost surely bounded from above with:

0 A(W) < nilke — Roll (@)= — X, A1) (E.188)

S ’I’LC(nl,n(),t79()). (E189)

In the previous inequality we used that the event A\, = 0 has null measure. Integrating,
and using that A(0) = 0:

2119(1) 344 243
At) < nL(X) (erb®o) N0 "It | c2¥(B0)”t” | csth(0o)"t (E.190)
nm \/TTan 2n1ng \/W
Ll esv)leg” 1, colld” |1 (E.191)
2ng 3\/7T1n0 2\/TT0 .
(1)1 42 243 2
L er@)l67 18 es(60)*t | cot(Bo)t (E.192)
2,/o 3y/ning 2

Taking the square, applying the elementary inequality (Y7, a;)? <n ;" a?,fora;, > 0,
and adjusting the constants yields the desired result.
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