
Predicting the Susceptibility of Examples to Catastrophic Forgetting

Guy Hacohen 1 Tinne Tuytelaars 1

Abstract
Catastrophic forgetting – the tendency of neural
networks to forget previously learned data when
learning new information – remains a central chal-
lenge in continual learning. In this work, we adopt
a behavioral approach, observing a connection be-
tween learning speed and forgetting: examples
learned more quickly are less prone to forgetting.
Focusing on replay-based continual learning, we
show that the composition of the replay buffer –
specifically, whether it contains quickly or slowly
learned examples – has a significant effect on for-
getting. Motivated by this insight, we introduce
Speed-Based Sampling (SBS), a simple yet gen-
eral strategy that selects replay examples based
on their learning speed. SBS integrates easily
into existing buffer-based methods and improves
performance across a wide range of competitive
continual learning benchmarks, advancing state-
of-the-art results. Our findings underscore the
value of accounting for the forgetting dynamics
when designing continual learning algorithms.

1. Introduction
Recent years have seen a surge in the practical applications
of deep learning, yet our mathematical and theoretical un-
derstanding of these models remains limited. While many
advances are supported by some theoretical insights, the
mechanisms behind key phenomena often remain elusive.

One such phenomenon is catastrophic forgetting (French,
1999; Kemker et al., 2018; McCloskey & Cohen, 1989),
a core challenge in continual learning (CL) (see reviews:
De Lange et al., 2021; Hadsell et al., 2020; Parisi et al.,
2019). When models are exposed to new data, their perfor-
mance on previously learned tasks often degrades. Despite
extensive theoretical efforts, a full mathematical understand-
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ing of this behavior is still lacking.

In this work, we adopt a behavioral perspective, inspired by
psychology and neuroscience, where internal mechanisms
are often inaccessible. We train deep networks in various CL
settings, observe their forgetting behavior, and infer insights
from the resulting patterns.

Our key observation is a last-in-first-out forgetting pattern:
examples learned later are more prone to forgetting, while
earlier-learned ones are preserved. This aligns with the sim-
plicity bias of neural networks (Shah et al., 2020; Szegedy
et al., 2014), where simpler examples are learned first. As a
result, simple examples are consistently remembered, while
more complex ones are forgotten as new data arrives. This
pattern holds across a wide range of architectures, datasets,
and training configurations – including variations in learn-
ing rates, optimizers, schedulers, epochs, and regularization
strategies (see §2, App. D). Fig. 1 visualizes remembered
vs. forgotten examples in CIFAR-100.

We further explore how this effect changes as the model’s
ability to remember examples improves. This improvement
is achieved by either expanding the buffer size (§2.4), in-
creasing the network size (App.C.3), or reducing dataset
complexity (Fig.11). As memory improves, even slower-
learned examples are remembered, leaving only the most
complex ones susceptible to forgetting. Nonetheless, the
core principle remains consistent: the slower an example is
learned, the more likely it is to be forgotten.

Next, we examine how selective replay affects catastrophic
forgetting. We rank examples based on their learning speed,
and construct different buffer compositions by focusing on
examples from a specific range of speeds. We find that
selecting moderately fast-learning examples – the simplest
and quickest to learn, which are still complex enough to ben-
efit from replay – is particularly effective. As the model’s
ability to remember improves, so does the optimal buffer
focus shift progressively toward slower-to-learn examples.

Most competitive buffer-based methods rely on random sam-
pling to fill the replay buffer, treating all examples from the
old task equally. To demonstrate the potential of accounting
for the susceptibility of examples to forgetting, we intro-
duce a simple sampling strategy for replay buffers called
speed-based sampling (SBS). SBS tracks the speed at which

1



Predicting the Susceptibility of Examples to Catastrophic Forgetting

Figure 1: Test examples that networks tend to either re-
member or forget. Networks were trained on 2 tasks from
CIFAR-100. We show the examples that were learned quick-
est (left) and slowest (right). Slowest examples were often
forgotten, while the quickest were rarely forgotten.

each example is learned during the old task training and
prioritizes sampling the quickest-to-learn examples that are
still prone to forgetting (details in §3.1). This approach is
computationally and memory-efficient, requiring just one
float per example computed during the forward pass, and
integrates easily with any replay-based CL method. De-
spite its simplicity, SBS consistently improves performance
across datasets and buffer sizes, demonstrating the practical
value of our insights.

1.1. Our Contribution

• Observing a connection between an example’s learning
speed and its susceptibility to catastrophic forgetting.

• We show that this observed relationship also persists
across CL settings, even as models become more capa-
ble of remembering.

• Demonstrating that this phenomenon is robust across
diverse datasets and hyperparameters.

• Showing that restricting the replay buffer to examples
of specific learning speeds significantly affects forget-
ting across different continual learning scenarios.

• Proposing a practical application of the observed phe-
nomena, by introducing a novel sampling strategy for
replay buffers, called speed-based sampling (SBS).
SBS integrates with existing continual learning al-
gorithms, significantly improving their performance
across a wide range of methods and advancing the state
of the art.

1.2. Related Work

Catastrophic forgetting. Most existing work on catas-
trophic forgetting focuses on mitigation (Kirkpatrick et al.,
2017; Lee et al., 2017; Li et al., 2019; Ritter et al., 2018;
Serra et al., 2018; Verwimp et al., 2025), rather than its
characterization. Some works have explored catastrophic

forgetting from a model-centric perspective: Nguyen et al.
(2020); Ramasesh et al. (2021) showed differences in for-
getting patterns across model layers, while Mirzadeh et al.
(2020); Pfülb & Gepperth (2019) demonstrated the impact
of training hyper-parameters. Nguyen et al. (2019) identi-
fied task complexity as a factor influencing forgetting rates.
In contrast, our approach is data-centric and behavioral –
we link forgetting to the speed at which individual examples
are learned

Simplicity Bias and Selective replay. Previous studies have
shown that neural networks tend to learn simple patterns
before more complex ones (Cao et al., 2021; Gissin et al.,
2020; Gunasekar et al., 2018; Heckel & Soltanolkotabi,
2020; Hu et al., 2020; Jin & Montúfar, 2023; Kalimeris
et al., 2019; Pérez et al., 2019; Soudry et al., 2018; Ulyanov
et al., 2018) – a phenomenon known as simplicity bias
(Dingle et al., 2018; Shah et al., 2020). Our work extends
this concept to catastrophic forgetting, revealing a reverse
simplicity bias – complex examples are more likely to be
forgotten than simple ones.

Our method leverages this insight by selectively replaying
examples based on learning speed, indirectly controlling for
complexity. Related paradigms such as curriculum learn-
ing (Bengio et al., 2009; Hacohen & Weinshall, 2019) and
self-paced learning (Kumar et al., 2010), structure train-
ing around example complexity, demonstrating that such
structure can improve generalization. However, unlike these
approaches, we operate in a continual learning setting. We
do not modify the original data or training sequence. In-
stead, we influence learning solely through selective replay,
using example complexity as the criterion and observing its
effect on catastrophic forgetting.

Our work also aligns with insights from semi-supervised
learning, transfer learning, and active learning, where the
complexity of the limited labeled data significantly affects
algorithm design and performance (Hacohen et al., 2022;
Yehuda et al., 2022; Hacohen & Weinshall, 2023a;b; Fluss
et al., 2023; Chen et al., 2024). In all these settings, under-
standing and leveraging the distribution of example com-
plexity can be key to effective learning.

Forgetting Dynamics. Several studies investigate forget-
ting dynamics during training. Maini et al. (2022); Toneva
et al. (2019) show that, in non-continual learning settings,
certain examples are inherently less prone to forgetting dur-
ing training. Millunzi et al. (2023) highlighted distinct
forgetting behaviors for noisy versus clean labels, proposing
adjustments to the rehearsal process to account for these
differences. Our findings build on this body of work by
further identifying which examples are most susceptible
to forgetting, linking catastrophic forgetting to simplicity
bias. We propose a method to proactively identify examples
susceptible to forgetting and demonstrate how these insights
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can be applied to optimize replay buffer sampling across
various CL methods.

Replay buffer sampling functions. Replay-based methods
mitigate forgetting by storing past examples in a fixed-size
buffer. While numerous sampling strategies have been pro-
posed (Aljundi et al., 2019; Benkő, 2024; Buzzega et al.,
2021; Rebuffi et al., 2017; Tiwari et al., 2022; Wiewel &
Yang, 2021), many are limited to specific conditions or
methods. As a result, uniform sampling remains common
(Buzzega et al., 2020; Guo et al., 2020; Kirkpatrick et al.,
2017; Lopez-Paz & Ranzato, 2017; Prabhu et al., 2020;
Ramesh & Chaudhari, 2022; Rolnick et al., 2019). In con-
trast, our proposed SBS offers a lightweight, general ap-
proach that consistently enhances replay-based methods
across tasks, datasets, and buffer sizes.

2. Catastrophic Forgetting Vs. Learning Speed
In this section, we observe the behavior of neural models
when they exhibit catastrophic forgetting under different
settings, drawing a connection between the speed at which
a model learns examples, and its likelihood to forget them.

2.1. Definitions

We examine the CL classification setting, where the training
dataset D = {X ,Y} consists of examples x ∈ X and
their corresponding labels y ∈ Y . This dataset is divided
into T > 1 tasks, with each task t ∈ [T ] represented as
Dt = {Xt,Yt}, and D =

⋃T
t=1 Dt. There is no overlap

between data of different tasks. A deep model f : X → Y
is sequentially trained on each task Dt from t = 1 to t = T ,
with E ∈ N epochs per task. Each task also has a separate
test set from the same distribution. During training on a
task Dt, the model f is provided with a replay buffer B
of fixed-memory size, containing examples from previous
tasks 1, ..., t− 1. Notably, |B| ≪ |D|, meaning only a
fraction of the data can be stored in the replay buffer. Note
that the buffer may be empty (B = ∅), representing training
f without a replay buffer.

Learning speed. Neural networks demonstrate a trend in
learning examples, where certain examples are consistently
learned before others across various deep neural models
(Baldock et al., 2021; Choshen et al., 2022; Hacohen et al.,
2020). This orderliness is often connected to the simplicity
bias phenomenon (Shah et al., 2020; Hacohen & Weinshall,
2022), as examples learned earlier are generally simpler
than those learned later. Here, we measure the speed at
which an example is learned, which also serves as a proxy
for the example’s complexity. Formally, given a model f
and an example (x, y) from either the training or test data,
we define the learning speed of the example (x, y) as:

learning_speed(x, y) =
1

E

E∑
e=1

1[fe
t (x) = y] (1)

Here, fe
t denotes the intermediate model f after training

for e ∈ [E] epochs on task Dt. This definition is based
on the accessibility score introduced by Hacohen et al.
(2020), which we adapt for computation using a single
model instead of an ensemble, facilitating efficient eval-
uation throughout the training of f . Intuitively, this score
correlates with how quickly the model learns an example: if
an example is correctly classified from the early stages of
learning, it will sustain fe

t (x) = y for more epochs, result-
ing in a higher learning speed. A discussion of alternative
metrics to learning speed can be found in App. G. A de-
tailed explanation of the relationship between the example’s
learning speed and this score is provided in Hacohen et al.
(2020), and thus is not repeated here.

Computing learning speed. To calculate the learning speed
of each example, we maintain a boolean matrix, called
the epoch-wise classification matrix, M ∈ {0, 1}E×|Dt|

throughout the training on task Dt, indicating whether the
model correctly classified each example during learning.
Specifically, for example (xi, yi) ∈ Dt, we have Me,i =
1[fe

t (xi) = yi]. An example’s learning speed is the average
of the M across epochs. This matrix can be computed
during the forward pass of the network, incurring minimal
computation overhead. Furthermore, memory usage can be
reduced by directly computing the matrix’s mean during
training, maintaining a single float for each example.

2.2. Preliminaries

Class Incremental vs. Task Incremental Learning. Al-
though similar, task incremental learning differs (TIL) from
class incremental learning (CIL) by providing the task iden-
tity for each example during testing, allowing the use of the
specific classifier for the classes within the task. We con-
ducted experiments for both TIL and CIL. Our qualitative
results across all experiments were consistent for both TIL
and CIL. Therefore, to avoid redundancy, we present in the
main paper results only for TIL setting, and repeat all the
figures and experiments for CIL in App. B.

Datasets. We investigated various image continual learn-
ing classification tasks using split versions of several im-
age datasets, including CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009), and TinyImageNet (Le & Yang, 2015). The
data is split into T tasks by partitioning the classes into T
equal-sized subsets. This partitioning is denoted as dataset-
T. For example, splitting CIFAR-10 into 5 classes is denoted
as CIFAR-10-5, comprising 5 tasks, each with 2 distinct
classes. Unless otherwise specified, classes are divided into
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tasks according to the original order they appeared in the
dataset (often alphabetically).

For detailed implementation details, including the architec-
tures and hyper-parameters used, please see App. A.

2.3. Learning Speed vs. Catastrophic Forgetting

We begin by exploring catastrophic forgetting in a simplistic
case, without using replay buffer (B = ∅), and with only
T = 2 tasks. In Fig. 2a, we plot the mean test accuracy of
each task when training 10 networks on CIFAR-100-2. The
dashed black line marks the transition from the first to the
second task. Consistent with prior research, the networks
exhibit significant catastrophic forgetting, evidenced by a
sharp decline in the accuracy of the first task during training
on the second task. Our objective is to characterize those
examples where the network successfully classified after the
first task but failed after the second task.

To simultaneously track learning speed and forgetting, we
maintain the epoch-wise boolean classification matrix M
for each network (formally defined in §2.2). Throughout the
training of both tasks, we record, for each epoch, whether
the network correctly classified each example from the first
task. The initial 100 epochs represent classification during
the first task, enabling us to observe the learning speed of
the different examples, while the subsequent 100 epochs
allow us to monitor the forgetting of the first task during the
training of the second task.

In Figs. 2(b-c), we examine the epoch-wise classification
matrices for the train and test sets, respectively. To aid
visualization, instead of plotting the epoch-wise classifica-
tion matrix for each network, we aggregate the networks
from all runs using majority voting. The examples in the
matrix are sorted by their learning speed. We observe a cor-
relation between learning speed and catastrophic forgetting:
examples learned more quickly during the first task tend
to remain correctly classified throughout the second task,
whereas slower-learned examples are prone to immediate
misclassification upon task transition, making them suscep-
tible to forgetting. Essentially, slower learning speeds of
examples correlate with a higher probability of forgetting
by deep models. Additional classification matrices, for dif-
ferent datasets and different amounts of tasks, can be found
in App. C and Fig. 15.

To quantify this relationship, we define an example in the
first task as "remembered" by the network if it is classified
correctly at the conclusion of both the first and second tasks.
In Fig. 2d, we plot, for each example in the test set, the %
of networks that remembered it vs. its mean learning speed
across all 10 networks. For visualization, we group exam-
ples remembered by a similar percentage of networks and
average their mean learning speeds. We observe a strong cor-

relation (r = 0.995, p ≤ 10−10), indicating that networks
are more likely to remember quickly learned examples.

While the results presented here pertain to a simplified case,
this phenomenon is robust across diverse datasets, archi-
tectures, and hyperparameters. For additional experiments,
please refer to App. C, D.

2.4. Adding a Replay Buffer of Different Sizes

To evaluate replay-based methods, we incorporate a replay
buffer in our experiments. Similarly to §2.3, we trained 10
networks on CIFAR-100-2, with replay buffers of varying
sizes (1k, 3k, 10k). In Figs. 3(a-c), we plot the epoch-wise
classification matrix of the test data for each case. The ex-
amples appear in each matrix in the order of their learning
speed, from slow (bottom) to quick (top). As expected, inte-
grating a replay buffer mitigates some catastrophic forget-
ting, boosting the model performance on the first task, with
larger buffers yielding better results. Nevertheless, similar
to the scenario without a replay buffer B = ∅, a relationship
exists between learning speed and catastrophic forgetting:
networks tend to remember fast-learned examples while for-
getting those learned later even when using a replay buffer.
Notably, models with larger buffer sizes remember most
of the examples that models with smaller buffer sizes do,
while additionally remembering gradually slower-learned
examples. Similar results occur when changing the network
architecture, and when decreasing the dataset complexity
(see App. C, D).

We quantify the relationship between the buffer size and re-
membered examples’ learning speed. Training 10 networks
on CIFAR-100-2 with various buffer sizes, we plot the mean
learning speed of the remembered examples for each buffer
size. A strong correlation emerges (r = 0.966, p ≤ 10−6):
models with smaller buffer sizes remember quickly-learned
examples, whereas larger models with larger buffers en-
able the model also to remember slower-learned. These
results are plotted in Fig. 3d. Similar results were achieved
across diverse datasets, architectures, hyperparameters, and
continual learning algorithms, see App. C, D.

2.5. Different Buffer Compositions and Sizes

Replay-based continual learning methods often sample
the replay buffer uniformly, treating quickly and slowly
learned examples equally. Here, we analyze different re-
play buffer compositions, focused on examples learned at
specific speeds. To focus the buffer on examples learned
at a certain speed, we set 2 threshold, quick and slow, and
sample the buffer uniformly from all the examples that were
learned slower than the quick threshold and faster and the
slow threshold. This allows us to bias the replay buffer
toward examples learned at certain speeds.
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(a) Test accuracy (b) M train (c) M test (d) Speed vs. forgetting

Figure 2: Forgetting as a function of the learning speed. We trained 10 networks on CIFAR-100-2, without a replay
buffer. (a) Mean test accuracy of each task, where the dashed line marks the task switch. The models forget much of the
first task after the switch. (b-c), the first task’s binary epoch-wise classification matrices M for train and test data. The
y-axis corresponds to different examples, and the x-axis corresponds to different epochs, showing if the examples were
classified correctly in each epoch. The order in which the examples are plotted is sorted by the examples’ learning speed.
Faster-learned examples from the first task are less likely to be forgotten at the end of the second task. (d) The mean learning
speed of examples in the first task vs. the % of networks that remember them at the end of the second task. Networks forget
more examples learned slowly.

(a) Small buffer (b) Medium buffer (c) Large buffer (d) Buffer size vs. speed

Figure 3: Impact of the buffer size on forgetting dynamics. (a-c) Similarly to Fig. 2c, the first task’s binary matrices M ,
when adding replay buffer of varying buffer sizes: small (1k), medium (3k), and large (12k). The y-axes denote examples,
and the x-axes denote epochs, indicating if the example has been classified correctly by the model at that epoch. The order
in which examples appear is sorted by the examples’ learning speed. In all cases, examples that were learned faster are more
likely to be remembered. With bigger buffers, the networks can remember gradually slower-to-learn examples. (d) The
mean learning speed of remembered examples of models with different buffer sizes. Models with bigger replay buffers
remember slower-to-learn examples.

We compare replay buffer compositions for CIFAR-100-2
across different buffer sizes. Figs.4(a-b) show the mean
final accuracy difference relative to uniform sampling, av-
eraged over 10 runs. Compositions outperforming uniform
sampling are in red, while those reducing performance are
in blue. The black-boxed point (quick, slow) = (0, 0) rep-
resents the uniform baseline. Standard errors are plotted
separately (App.E). In both cases, a wide range of buffer
compositions (marked in red) significantly improves the fi-
nal accuracy, suggesting that uniform sampling of the replay
buffer is suboptimal.

While many buffer compositions are beneficial for both
cases, we see that when the buffer size is smaller, it is
more beneficial to remove slowly-learned examples, focus-
ing mainly on the easier examples learned quickly by the
models. In contrast, with larger buffers, the optimal focus

in the buffer shifts towards harder, slowly-learned examples,
where quickly-learned examples are removed.

In Fig. 4c, we replicate this experiment on TinyImageNet-2,
with a large buffer of size 20k. Similar to CIFAR-100-2,
focusing on examples learned midway through learning
yields the best performances. Notably, across all cases, the
range of thresholds that enhance performance is broad and
continuous, indicating that improvements are not limited to
specific hyperparameter sets. Similar results are achieved in
the multi-task case, see App. C.5.

To assess the robustness of these results, we repeat the exper-
iment from Fig. 4 under various learning settings, including
changes to optimizers, architectures, learning rates, training
durations, fine-tuning parameters, regularization techniques,
and data splits. Across all cases, we observe consistent qual-
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itative results. These experiments can be found in App. D.

2.6. How Subsequent Tasks Affect Buffer Composition

We empirically examine how subsequent tasks impact the
ideal composition of a replay buffer for a given task. We
find that regardless of the similarity or dissimilarity between
subsequent tasks and the original task, the optimal replay
buffer composition remains largely independent and con-
sistent. We conduct experiments with three distinct tasks
denoted A, B, and C. By training the model on task A and
subsequently introducing either task B or task C while keep-
ing the original task unchanged, we analyze the ideal replay
buffer composition under varying subsequent tasks.

We initially focus on tasks from the same datasets. We pick
task A to be the first 25 classes of CIFAR-100, task B to be
classes 26 to 50, and task C to be classes 51 to 75. In Fig. 5,
we train various replay buffer compositions when either task
B or task C is after task A. We plot the difference between
the mean final accuracy of each buffer composition to a
uniformly sampled buffer. Each composition was repeated
10 times. The consistent qualitative results indicate that
good buffer compositions for one case are also good for the
other, and vice versa. These results suggest that the ideal
replay buffer composition of task A is robust to differences
between tasks B and C in this context.

Further, we explore scenarios involving either changing the
classification task or replacing it with memorization by train-
ing on random labels. We adopt the RotNet approach (Gi-
daris et al., 2018) to change the classification task. We pick
tasks A and B to be different subsets of CIFAR-100, while
task C involves a rotation classification task, where each
example in task A is randomly rotated between 90◦, 180◦,
or 270◦ degrees, with the task being to classify these rota-
tions regardless of the original label. For the random case,
tasks A and B remain unchanged, while task C involves
the same subset of task B, but with labels chosen uniformly
at random, as suggested in Zhang et al. (2021). In both
scenarios, we observe consistent results: the ideal replay
buffer composition of task A remains robust to differences
between tasks B and C in both contexts. Further details and
heatmaps for the results are available in App. F.

3. Speed-Based Sampling (SBS)
Above, we observed a distinctive behavior of neural net-
works trained in a continual learning setting: when exposed
to new data, networks tend to forget previously learned data,
with examples that were learned more quickly being the
least likely to be forgotten. This section demonstrates that
this behavior has practical implications and can be leveraged
to mitigate catastrophic forgetting in CL.

We propose Speed-Based Sampling (SBS), a novel sampling

strategy for replay buffers that replaces traditional random
sampling which is common in various CL methods. SBS
prioritizes examples with specific learning speeds, allowing
the replay buffer to account for the susceptibility of exam-
ples to forgetting. This allows the underlying CL algorithm
to focus on the most relevant examples, effectively reducing
catastrophic forgetting.

3.1. Method Definition

Speed-Based Sampling (SBS) is a sampling strategy for the
replay buffers in buffer-based CL at the end of each task. It
is compatible with any buffer-based CL algorithm.

During training on task t, SBS calculates the classification
matrix (defined in §2.1) of task t, computing at the end of the
task the learning speed of each example in Dt. Once train-
ing on task t is completed, SBS creates a filtered dataset D′

t

by removing the q quickest-learned examples and s slowest-
learned examples from Dt. Examples for the replay buffer
are then sampled uniformly from D′

t.

The hyperparameters q and s can be adjusted based on the
user’s requirements (see below). In scenarios where the
buffer size is limited and examples need to be removed (e.g.,
when handling multiple tasks), examples from previous
tasks can be removed from the buffer at random.

Pseudocode for integrating SBS with any buffer-based CL
method is provided in Algorithm 1.

Choosing q and s. The choice of q and s is crucial for the
performance of SBS. In our experiments, we determined
these hyperparameters by training a RotNet auxiliary task
on the same dataset, without using additional data points.
Specifically, after training the CL method on Dt, we created
a rotated version of the dataset by randomly rotating each
image by 0◦, 90◦, 180◦, or 270◦. Then we trained the
network to classify the rotation of each example. A coarse
grid search was performed over q and s values, selecting the
ones that yielded the best performance on this task.

While effective in practice, this approach requires training
the model multiple times, which can be computationally
expensive for larger datasets. However, the smoothness of
the parameter space (see Fig.4) enables a coarse grid search
to be sufficient. Moreover, since the auxiliary task is rela-
tively simple, each training run is significantly faster than
training the model from scratch on the full dataset Dt, as
fewer epochs are needed. In addition, the method is robust
to hyperparameter choices: a broad range of values for q
and s tend to yield improvements, making heuristic settings
often adequate. For example, setting q = s = 20% consis-
tently enhances performance across all evaluated datasets
and generalizes well to unseen ones. This is evident in
Figs. 4(a–c), 9(a–b), 16(a–b), 17(a–b), 18(a–c), 19(a–c),
20(a–c), 21(a–c), and 24(a–c), where the point correspond-
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(a) CIFAR-100-2, small buffer (b) CIFAR-100-2, big buffer (c) TinyImageNet-2, big buffer

Figure 4: Comparison of buffer compositions for various buffer sizes, removing slowly and quickly learned examples (see
§3.1). The mean final accuracy difference between each composition and a randomly sampled buffer is shown, averaged
over 10 runs. Red shades indicate improved performance over uniform sampling, while blue indicates worse performance.
The baseline (uniformly sampled buffer) appears at (0%, 0%), marked with a black box. (a) CIFAR-100-2 with a small
1k buffer: removing slower-to-learn examples is more beneficial. (b) CIFAR-100-2 with a large 10k buffer: removing
faster-to-learn examples is more beneficial. (c) TinyImageNet-2 with a 20k buffer. Across all scenarios, diverse buffer
compositions are beneficial, with smaller buffers benefiting more from faster-to-learn examples.

(a) (A)→(B) (b) (A)→(C)

Figure 5: Buffer compositions when training on the same
initial task, followed by different subsequent tasks. We use
three subsets of CIFAR-100: A, B, and C (see §2.6). (a)
Task A followed by B. (b) A followed by C. Despite the
differences in subsequent tasks, the buffer compositions for
the original task similarly mitigate catastrophic forgetting.

ing to q = s = 20% consistently significantly outperforms
random sampling, even if it does not always achieve the
optimal result. Table 1 further compares the performance
of SBS with and without hyperparameter tuning. Even in
the fixed setting (SBS-fix, with q = s = 20%), the method
consistently improves performance across all datasets and
buffer sizes tested.

Further refinements can also be guided by task-specific rules.
Based on the results of §2.5, if the task is relatively easy
for the model (resulting in less catastrophic forgetting), it
is beneficial to focus more on slower-to-learn examples,
increasing q and decreasing s. Conversely, for more chal-
lenging tasks where forgetting is pronounced, decreasing q
and increasing s is more appropriate.

Running time. Given a set of q and s parameters, SBS

Algorithm 1 Training CL method with SBS.
Input: Dt, |B|, E, amount of quick/slow to remove q, s.
Output: buffer of size |B|

Classification_Matrix← 0E×|Dt|

for e = 1, ..., E do
Train the model f one epoch using the CL method
for (xi, yi) ∈ Dt do

Classification_Matrix[e, i]← 1[f(xi) = yi]
end for

end for
Speed←Mean(Classification_Matrix, axis=0)
D′

t ← remove q% quickest and s% slowest from Dt

return |B| examples sampled uniformly from D′

t

introduces minimal computational overhead to the underly-
ing CL method. The classification matrix required by SBS
is computed using the classifications of each example dur-
ing each epoch, which are already part of the forward pass.
While the matrix has a size of E × |Dt|, potentially large
for many epochs, this memory cost can be reduced by main-
taining only a running mean for each example, lowering the
storage requirement to |Dt|. Additionally, as SBS samples
examples randomly from a smaller data pool, the sampling
process has a similar runtime to standard random sampling.

3.2. SBS Improves Various CL Algorithms

Many replay-based CL algorithms rely on uniform sampling
for their replay buffers. Here, we evaluate the impact of re-
placing uniform sampling with SBS across such algorithms,
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(a) CIFAR-100-5 (b) CIFAR-10-5 (c) TinyImageNet-10

Figure 6: SBS vs. uniform sampling with various continual
learning methods. Bars show the mean final test accuracy
across all tasks, with random sampling in blue, and SBS in
orange. Error bars denote the standard error. (a) CIFAR-
100-5 (b) TinyImageNet-10, with a buffer of 500 examples.
SBS improves performance across all methods and datasets.

including DER, DER++ (Buzzega et al., 2020), X-DER
(Boschini et al., 2022), AGEM (Chaudhry et al., 2019), ER
(Rolnick et al., 2019), GEM (Lopez-Paz & Ranzato, 2017),
RPC (Pernici et al., 2021), and FDR (Titsias et al., 2020).
Our results show that SBS consistently improves the per-
formance of all tested continual algorithms, advancing the
state of the art in multiple image classification tasks.

We compared the mean final test accuracy across tasks for
each method trained with either uniform sampling (as in
the original works) or SBS. While not all methods perform
equally well in every scenario, SBS significantly improves
accuracy compared to random sampling in all cases. We
focused on small buffer sizes, as these are the primary use
cases addressed in the original works.

Fig. 6 shows results on CIFAR-10-5, CIFAR-100-5, and
TinyImageNet-10 with a fixed buffer size of 500. Each
task was trained for 50 epochs. As the buffer size is fixed,
examples were removed starting from the second task to
accommodate new data. For SBS, examples were removed
at random, while uniform sampling employed either random
or reservoir sampling, following the strategies outlined in
each method’s original implementation. The q and s hy-
perparameters for SBS were determined using the RotNet
auxiliary task, as detailed in §3.1.

When training with multiple tasks, different q and s hy-
perparameters could be used for each task. However, to
reduce computational cost and for simplicity, we apply the
same q and s values across all tasks in multi-task scenarios.
While choosing separate q and s for each task would likely
improve performance further, we observe that SBS’s perfor-
mance boost is especially pronounced in multi-task settings
(see App. C.5), indicating its particular effectiveness in such
scenarios.

3.3. SBS Vs. Other Replay Buffer Sampling Methods

While numerous replay buffer sampling methods have been
proposed over the years, uniform sampling remains preva-

Table 1: Comparison of replay buffer sampling methods.
Each entry represents the mean test accuracy across all tasks
for 10 networks trained with experience replay using dif-
ferent sampling methods. The highest accuracy in each
scenario is in bold. For visualization, standard errors are
reported separately in Table 4. While certain methods, such
as Herding (small buffers) and GSS (large buffers), perform
well in specific cases, they fail to consistently outperform
random sampling across all scenarios. In contrast, SBS con-
sistently achieves the highest accuracy across all scenarios.

CIFAR-100-20 CIFAR-10-5 TinyImageN-2

Buffer 1k 10k 1k 10k 1k 10k

Random 51.75 71.25 79.48 82.4 49.81 61.48
Max Ent 48.3 69.83 77.28 81.72 44.49 57.88
IPM 49.91 71.7 79.3 80.57 48.58 61.97
GSS 48.13 72.9 76.71 84.13 49.36 62.89
Herding 54.0 73.51 81.8 81.03 51.17 62.44
LARS 51.82 71.41 79.17 84.93 50.22 62.78
SBS-fix 54.65 73.72 82.24 86.15 52.15 63.12
SBS 55.43 74.80 83.59 89.17 52.15 63.16

lent in practical implementation within CL algorithms. This
preference may stem from the specific settings or algorith-
mic modifications required for other sampling methods to
work well. These methods do not consistently improve dif-
ferent CL algorithms across datasets and buffer sizes. In
contrast, SBS improves a wide range of continual learning
algorithms across various buffer sizes and datasets.

We explored various replay buffer sampling strategies, in-
cluding uniform sampling, max entropy, IPM (Zaeemzadeh
et al., 2019), GSS (Aljundi et al., 2019), Herding (Re-
buffi et al., 2017), and LARS (Buzzega et al., 2021). We
trained 10 networks on TinyImageNet-2, CIFAR-100-20,
and CIFAR-10-5 datasets with buffer sizes of 1k and 10k
using experience replay. Table 1 presents the mean test ac-
curacy across all tasks for each case. Additional results on
CIFAR-10-2 and CIFAR-100-2 can be found in App. C.5.

SBS consistently outperforms all other sampling strategies
across all evaluated scenarios. In contrast, alternative meth-
ods show effectiveness only in specific settings. For exam-
ple, Herding – favoring examples whose features are close
to the class mean – surpasses uniform sampling at smaller
buffer sizes but underperforms with larger ones. This likely
reflects its bias toward typical examples, which are learned
early and thus more useful when the replay buffer is small.
Conversely, GSS, which prioritizes examples with large
gradient distances, excels with larger buffers but lags with
smaller ones, as its preference for slowly learned exam-
ples becomes more beneficial when a larger replay buffer
is available. Table 1 also includes SBS-fix, a variant of
SBS that uses default hyperparameters (q = s = 20%, as

8



Predicting the Susceptibility of Examples to Catastrophic Forgetting

recommended in §3.1) without fine-tuning. While SBS-fix
underperforms SBS, it still consistently outperforms other
sampling methods, indicating that extensive hyperparameter
tuning is often unnecessary.

3.4. Limitations

One limitation of SBS is that the learning speed score is
based on the number of training epochs. With a small num-
ber of epochs, the score becomes overly discrete, which
reduces the precision of the evaluation. However, as shown
in App. D and Fig. 20, SBS remains effective even with a
small number of epochs, as long as the network converges,
although with increased noise. Nonetheless, many continual
learning scenarios emphasize stream-like settings, which
typically involve only a single epoch. These scenarios are
not well-supported by SBS, as the learning speed fails to
adequately capture how different examples are learned over
time. Alternative methods for approximating example com-
plexity are needed, which we leave as future work.

3.5. Discussion

This paper takes an observational approach to catastrophic
forgetting, identifying a link between the speed at which
examples are learned and their likelihood of being forgotten
– examples learned more quickly are less prone to forgetting
when new data is introduced. SBS was proposed as a simple
sampling function that demonstrates the practical utility of
this observation. By modifying the contents of the replay
buffer, SBS encourages algorithms to focus on examples
learned at varying speeds. Indeed, integrating SBS into a
wide range of continual learning algorithms across diverse
settings yields significant improvements, suggesting that
this link is an important factor in mitigating catastrophic for-
getting. This insight opens avenues for future work, such as
designing more sophisticated sampling strategies or incorpo-
rating learning speed more directly into continual learning
methods.

The simplicity of SBS also brings practical advantages: it is
computationally efficient, easy to implement, and compati-
ble with any buffer-based continual learning approach. As
continual learning methods evolve, SBS remains relevant
due to its ease of integration and broad applicability.
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Appendix

A. Implementation Details

Architectures and hyper-parameters. In our experiments, unless stated otherwise, we trained ResNet-18 for E = 100
epochs per task. We employed a base learning rate of 0.1 with a cosine scheduler, SGD optimizer, momentum of 0.9, and
weight decay of 0.0005. All networks were trained on NVIDIA TITAN X. These hyperparameters were chosen arbitrarily
based on their performance during joint dataset training and were consistent across all experiments. We anticipate consistent
qualitative results despite potential variations in these hyperparameters. When introducing a replay buffer, we employed an
experience replay strategy (Rolnick et al., 2019), alternating batches of data from the new task and the replay buffer. When
integrating with other continual learning algorithms, we evaluated all methods within the framework of (Boschini et al.,
2022; Buzzega et al., 2020), using the hyperparameters suggested in the original papers, changing only the replay buffer
sampling to SBS, keeping the rest of the method intact.

B. Class Incremental Learning
There are two primary paradigms in continual learning: class incremental learning (CIL) and task incremental learning
(TIL). The distinction lies in how tasks are handled. In TIL, task identities are known during inference, enabling the use
of specialized classifiers within each task, whereas in CIL, the model must infer both the task and class identity without
prior knowledge, often leading to lower performance. These paradigms address different real-world scenarios, and methods
optimized for one sometimes underperform on the other, necessitating separate evaluations in continual learning research.

Our work examines the relationship between the speed at which examples are learned and their susceptibility to forgetting in
continual learning. Despite the differences between CIL and TIL, our study reveals that the same qualitative results and the
same conclusions can be made in both cases. Therefore, to avoid repetition in the main text, we focus there on TIL only,
as it isolates forgetting at the model level rather than conflating it with final-layer interference. To complement this, we
reproduce all key experiments under CIL settings in this appendix, highlighting similar conclusions despite the inherent
challenges of CIL.

Figs. 7, 8, 9, 10, 17 present CIL counterparts to the main text’s results, Figs. 2, 3, 4, 6, 16 respectively. While CIL results
exhibit lower overall performance, the trends remain consistent: examples learned faster are less likely to be forgotten, and
the correlations between the buffer size and forgetting and the correlation between the learning speed and forgetting are
strong. Notably, optimal buffer composition in CIL scenarios (Figs. 9, 17) slightly favors keeping more quickly learned
examples compared to TIL, reflecting the added complexity of task inference in CIL.

Fig. 10 reproduces results from Fig. 6, demonstrating the impact SBS sampling strategy across CIL datasets and algorithms.
SBS consistently yields significant performance gains, reaffirming its effectiveness across diverse continual learning
challenges.

Finally, Table 2 shows the results of the experiments in Table 1 in the CIL settings, showing similar qualitative behavior.

Table 2: The same table as Table 1, when doing class-incremental learning instead of task-incremental. Each entry represents
the mean test accuracy across all tasks for 10 networks trained with experience replay using different sampling methods.
The highest accuracy in each scenario is in bold.

CIFAR-100-20 CIFAR-10-5 TinyImageN-2

Buffer 1k 10k 1k 10k 1k 10k

Random 42.9 48.5 57.74 79.47 9.99 27.4
Max Ent 41.76 47.82 57.11 69.13 9.47 27.2
IPM 42.94 49.51 57.6 80.87 9.96 27.48
GSS 41.63 49.12 57.73 71.27 9.19 27.73
Herding 44.65 48.47 58.02 79.02 9.38 28.43
LARS 43.55 49.73 57.32 79.96 10.21 28.1
SBS-fix 44.87 50.39 58.89 81.16 12.78 29.37
SBS 45.64 53.71 61.13 82.22 12.78 29.41
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(a) Test accuracy (b) M train (c) M test (d) Speed vs. forgetting

Figure 7: Repeating Fig. 2 in class incremental settings. All results are trained on CIFAR-100-2, without a replay buffer. (a)
Mean test accuracy of each task. (b-c) first task’s binary epoch-wise classification matrices M for train and test data. (d) The
mean learning speed of examples in the first task vs. the % of networks that remember them at the end of the second task.

(a) Small buffer (b) Medium buffer (c) Large buffer (d) Buffer size vs. speed

Figure 8: Repeating Fig. 3 for class incremental learning. Impact of the buffer size on forgetting dynamics. (a-c) The first
task’s binary matrices M , when adding replay buffers of varying buffer sizes. (d) The mean learning speed of remembered
examples of models with different buffer sizes. Models with bigger replay buffers remember slower-to-learn examples.

C. Correlations Between Learning Speed and Catastrophic Forgetting in Different Datasets
In Section 2, we established a link between the learning speed of examples and catastrophic forgetting, primarily utilizing
ResNet-18 networks trained on CIFAR-100-2. Here, we expand upon these findings by demonstrating similar phenomena
across different datasets, architectures, and task numbers.

C.1. Other Datasets

We first explore other datasets using the experimental setup detailed in Fig. 2. We extend our analysis to CIFAR-10-2,
CIFAR-100-2, and a subset of TinyImageNet-2 (comprising the initial 40 classes). The extended epoch-wise classification
matrices for each task and the correlation between learning speed and the percentage of networks remembering each
example are plotted in Fig. 11. Consistently across all three datasets, we observe a robust correlation between learning
speed and the likelihood of example retention during continual training. Notably, faster-learned examples exhibit lower rates
of catastrophic forgetting, as evidenced by both quantitative correlations and visual inspection of the extended epoch-wise
classification matrices.

Further, in Fig. 12, we expand upon Fig. 3 to include CIFAR-10-2. This extension reveals that as the buffer size increases,
continual models tend to retain slower-to-learn examples. Analogous to the results observed in CIFAR-100-2, as depicted
in Fig. 3, we also observe a near-perfect negative correlation between the buffer size and the mean learning speed of
remembered examples in CIFAR-10-2.

C.2. Classification Matrices of Different Datasets

In Section 2, we analyze epoch-wise classification matrices, which indicate whether each example was classified correctly
or incorrectly at each epoch during training. Figs. 2 and 3 plot these matrices for CIFAR-100-2 and CIFAR-10-2, revealing a
clear correlation between learning speed and catastrophic forgetting: examples learned quickly are less likely to be forgotten
during task switches.
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(a) CIFAR-100-2, small buffer (b) CIFAR-100-2, big buffer

Figure 9: Repeating Fig. 4 for class incremental learning. Comparison of buffer compositions for various buffer sizes. (a)
CIFAR-100-2 with a small 1k buffer. (b) CIFAR-100-2 with a large 10k buffer. Note that since class incremental learning is
harder than task incremental learning, it is beneficial to remove fewer "quick" examples in this case.

(a) CIFAR-100-5 (b) CIFAR-10-5 (c) TinyImageNet-10

Figure 10: SBS vs. uniform sampling with various continual learning methods, in class-incremental settings. Each bar
shows the mean final test accuracy across all tasks for each method, with a uniform sampled buffer (traditionally done) in
blue, and SBS in orange. Error bars denote the standard error.

In Fig. 15, we extend this analysis to the classification matrices of the first task of TinyImageNet-2, CIFAR-100-20, and
CIFAR-10-5. For these datasets, which involve more than two tasks, the x-axis includes multiple task switches, marked by
vertical dashed black lines. The same correlation is observed and becomes even more pronounced: examples from the first
task are increasingly forgotten as additional tasks are introduced. With each new task, the newly forgotten examples are
increasingly those learned earlier in training. Notably, examples learned fastest remain robust to forgetting, even after a long
sequence of tasks, while those learned more slowly are more vulnerable.

C.3. Other Architectures

We extend the results from Fig. 2 to architectures beyond ResNet-18 by creating two new, smaller variants: Small-ResNet
and Tiny-ResNet, which can be found in Fig. 13. These are formed by reducing both the width and depth of ResNet-18 by a
factor of 2 and 4 respectively. We replicate the experimental setup from Fig. 2, training 10 models of each architecture on
CIFAR-100-2 without a replay buffer, and storing the extended epoch-wise classification matrix. The order examples appear
in the matrix is sorted by the learning speed of the examples. All matrices depict the classification of the test dataset. In all
architectures, learning speed is highly correlated with catastrophic forgetting: networks forget more examples learned later
in training while retaining an almost perfect recollection of those learned early on. Additionally, stronger architectures,
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(a) CIFAR-100-2 (b) CIFAR-10-2 (c) TinyImageNet-2

(d) CIFAR-100-2 (e) CIFAR-10-2 (f) TinyImageNet-2

Figure 11: Extendeing Fig. 2 to CIFAR-100-2, Cifar-10-2 and a subset of TinyImageNet-2. (top) The first task’s binary
epoch-wise classification matrices M for the test data of each dataset. The y-axis denotes examples, and the x-axis denotes
epochs, indicating if an example is correctly classified by the model at the given epoch. The order in which examples appear
is sorted by learning speed. Faster-learned examples from the first task are less likely to be forgotten at the end of the second
task. (bottom) The mean learning speed of examples in the first task vs. the percentage of networks that remember them at
the end of the second task. Networks forget more examples learned slowly across all 3 datasets.

similar to larger buffers, can remember slower-to-learn examples. This reinforces the motivation for SBS, as it shows that
the examples selected by SBS are those the model could learn independently if it had a stronger architecture.

C.4. Other Continual Learning Algorithms

In §3.2, we demonstrated the benefits of non-uniform buffer compositions for various continual learning methods. We
extend these findings to additional algorithms including DER, DER++, GEM, A-GEM, RPC, and X-DER. For each
algorithm, we trained 10 networks with different buffer compositions by varying the quick and slow hyperparameters of
SBS. For each algorithm, we trained 10 networks on different buffer compositions, achieved by varying the quick and slow
hyperparameters of SBS. In all cases, we used the hyperparameters and architectures suggested in the original works. We
used a buffer of size 500, due to its popularity in previous works. Consistent with the GEM results, we found that replay
buffers focused on examples learned mid-way through the training process were most beneficial. Additionally, in all cases,
removing slower-to-learn examples proved advantageous, given the small buffer size. These results can be found in Fig. 14.

C.5. Two Tasks Vs. Multi-Task

In the behavioral analysis, we focused on a two-task setting as it provides a simple and controlled environment. However,
SBS was introduced in multi-task scenarios, which are standard in the CL literature and allow for more meaningful
comparisons. For completeness, we now extend our SBS results to the two-task setting and the behavioral results to
multi-task scenarios, aligning them with each other.

Fig.4 expands on Fig.6 by showcasing a broader range of SBS hyperparameters, hence including the results of SBS on
these datasets. Using the RotNet auxiliary task to pick the hyperparameter in those cases obtains the hyperparameters that
maximize performance across all three cases.
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(a) CIFAR-10-2

Figure 12: Extending Fig. 3d to CIFAR-10-2. We plot the mean learning speed of remembered examples by 10 models
trained with different buffer sizes. Models with bigger replay buffers remember slower-to-learn examples.

Table 3 extends Table 1 with results on CIFAR-10-2 and CIFAR-100-2, showing trends consistent with the multi-task
setting. Additionally, Figs.16 and 17 extend Fig.4 to CIFAR-100-20 and CIFAR-10-5 (buffer size 5k) in both class- and
task-incremental settings, showing similar qualitative trends.

Notably, while SBS improves performance in both two- and multi-task scenarios, its impact is even more pronounced in
multi-task settings, further highlighting its practical value.

D. The Effects of Different Learning Hyper-Parameters
In this section, we investigate how varying learning hyperparameters influences the optimal composition of examples in
the replay buffer. We replicate the experiment shown in Fig. 4a, training networks on CIFAR-100-2 with a buffer size of
1000, while modifying factors such as network architecture, optimizer choice, learning rate, regularization strength, and the
number of training epochs.

Across all configurations, we observe consistent qualitative trends similar to those in Fig. 4a: a wide range of buffer
compositions significantly improves performance and alleviates catastrophic forgetting. These findings suggest that the
conclusions drawn in the main paper are robust and generalizable, extending to continual learning scenarios under different
hyperparameter settings.

Optimizers. In Fig. 18, we compare the performance of different buffer compositions when training ResNet-18 on CIFAR-
100-2 using three optimizers: SGD, Adam, and Adagrad. For SGD, we used a momentum of 0.9, a weight decay of 0.0005,
and a learning rate of 0.1, as is common for CIFAR-100 training. For Adagrad, we employed a learning rate of 0.01 and
a weight decay of 0.0001. For Adam, we used a learning rate of 0.001, a weight decay of 0.0001, and (0.9, 0.999) betas.
These hyperparameters were tuned to optimize ResNet-18’s performance on CIFAR-100 without considering continual
learning, as the optimal settings vary by optimizer due to their differing update mechanisms.

Our results indicate that similar buffer compositions consistently enhance performance across all three optimizers. This con-
sistency suggests that the benefits of our analysis are robust to the choice of optimizer, further supporting the generalizability
of our findings.

Architectures. In Fig. 19a, we evaluate the impact of buffer composition on the performance of three different architectures:
ResNet-18, VGG-16, and a smaller version of ResNet, tiny-ResNet. All models were trained on CIFAR-100-2 under
identical conditions. Our results show that similar buffer compositions consistently improve learning performance across
these diverse architectures. This finding suggests that our analysis is not specific to any single architecture.
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(a) ResNet-18 (b) Small ResNet (c) Tiny ResNet

Figure 13: Comparing the extended epoch-wise classification matrix for different architectures, the y-axis represents
examples, and the x-axis represents epochs, indicating if an example is correctly classified by the model in a given epoch. In
(a), we train ResNet-18. In (b), we train ResNet-18 with both width and depth reduced by half. In (c), we train ResNet-18
with both width and depth reduced by a factor of four. In all cases, the order examples appear is sorted by learning speed.
Examples learned quickly in the first task are less likely to be forgotten after the second task.

Training epochs. In Fig. 20, we compare the performance of models trained for different numbers of epochs per task,
all using a cosine learning rate scheduler to ensure exposure to both large and small learning rates throughout training.
While reducing the number of epochs leads to a general drop in performance, we observe that similar buffer compositions
consistently yield strong results, even under shorter training schedules. It is worth noting that the accuracy of determining the
learning speed of each example may decrease with fewer epochs, as there is less time for the model to adapt. Nonetheless,
the qualitative trends remain robust, with specific buffer compositions consistently outperforming or underperforming the
random baseline across all tested epoch counts.

Learning Rates. We examine the impact of learning rates on model performance using SGD with rates of 0.05 and 0.2
(Figs. 21a, 21b). While the final accuracies differ across these configurations, the qualitative behavior remains consistent:
the same buffer composition consistently achieves strong results.

Fine-Tuning. In multi-task training, it is common to reduce the learning rate for subsequent tasks to fine-tune the network
on the next task. To investigate this, we replicate the experiment in Fig. 4a, lowering the learning rate for the second task
by a factor of 10. The results align closely with those in Fig. 4a, indicating that our findings are robust and not solely
attributable to the specific learning rates used in the original experiments. These results can be found in Fig. 21c.

Regularization. All ResNet-18 experiments in the main paper were conducted with a small weight decay of 0.0005. To
assess the impact of this regularization, we replicate the experiment from Fig. 4a in Fig. 19b where we remove the weight
decay entirely. The results remain qualitatively consistent, indicating that the conclusions from our analysis are not sensitive
to this specific regularization choice.

Different splits of CIFAR. We repeated the experiment from Fig. 4a using a different split of CIFAR-100, where classes
were randomly assigned to tasks. The results, shown in Fig. 19c, remain consistent with those in Fig. 4a. Importantly, all
task splits in our experiments were across the paper chosen arbitrarily, ensuring unbiased evaluations.

E. Standard Errors
In the main paper, we omitted the standard errors for visualization porpuses from Figs. 4,5 and Table 1. In all cases, these
were usually very small and did not affect the qualitative results. For completeness, we report the omitted values in this
section. The standard error for Figs. 4,5 can be found in Figs. 22,23 respectively. The standard errors of Table 1 can be
found in Table 4.
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(a) DER (b) DER++ (c) GEM

(d) AGEM (e) RPC (f) X-DER

Figure 14: Comparing different replay buffer compositions for various continual learning methods, with a buffer of size 500.
The experimental setup replicates the one done in Fig. 4. Like the experience replay case, focusing on examples learned
midway through the learning process is most beneficial. Due to the smaller buffer, removing slower examples is better.

F. Independency of the Optimal Buffer Composition When Changing the Subsequent Tasks
We empirically examine how subsequent tasks impact the ideal composition of a replay buffer for a given task. We find
that regardless of the similarity or dissimilarity between subsequent tasks and the original task, the optimal replay buffer
composition remains largely independent and consistent. To show this, we conduct experiments with three distinct tasks
denoted A, B, and C. By training the model on task A and subsequently introducing either task B or task C while keeping
the original task unchanged, we analyze the ideal replay buffer composition under varying subsequent tasks.

In Section 2.6, we demonstrate that when selecting tasks A, B, and C from the same dataset, the optimal buffer composition
of task A remains unaffected by tasks B or C. We observe consistent quantitative behavior across different quick and slow
parameters. We further explore task variations by setting A as the first 50 classes of CIFAR-100, B as the last 50 classes
of CIFAR-100, and C as a rotation classification (Gidaris et al., 2018) task. In the rotation classification task, examples
from A are randomly rotated by angles of {90◦, 180◦, 270◦}, with labels adjusted accordingly. We evaluate the performance
of 10 networks trained continuously with different buffer compositions first on task A and then on task B (Fig. 24a), and
on task A followed by task C (rotation) (Fig. 24b). Consistent with previous findings, the performance of various buffer
compositions remains consistent, independent of the choice of B or C. This property enables us to utilize the rotation task
for hyper-parameter grid search without requiring additional label data.

We further modify task C to comprise examples from the last 50 classes of CIFAR-100 but with random labels (Zhang et al.,
2021). Training on random labels forces the network to memorize the examples, as no generalization is possible, eliminating
any potential overlap between the subsequent tasks. The results of training on task A followed by the random label task are
depicted in Fig. 24c. Analogous to the rotation classification scenario, we observe that the same buffer compositions of task
A remain effective, further suggesting that the optimal buffer composition of A does not depend on the subsequent task.
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(a) TinyImageNet-2 (b) CIFAR-10-5 (c) CIFAR-100-20

Figure 15: Repeating Fig. 2c with different datasets and task counts: (a) TinyImageNet with 2 tasks, (b) CIFAR-10 with 5
tasks, and (c) CIFAR-100 with 20 tasks. Dashed black lines indicate the introduction of a new task. Consistent with Fig. 2c,
examples learned more slowly are more prone to forgetting after task transitions. As the number of tasks increases, even
examples learned relatively quickly become susceptible to forgetting.

Table 3: Extended results from Table 1 for CIFAR-10-2 and CIFAR-100-2. For convenience, the original results from
Table 1 are included. Standard errors are reported separately in Table 4.

CIFAR-10-2 CIFAR-100-2 CIFAR-100-20 CIFAR-10-5 TinyImageNet-2

Buffer size 1k 10k 1k 10k 1k 10k 1k 10k 1k 10k

Random 87.67 95.03 69.03 79.24 51.75 71.25 79.48 82.4 49.81 61.48
Max entropy 84.44 94.63 64.27 77.91 48.3 69.83 77.28 81.72 44.49 57.88
IPM 85.9 94.76 64.16 75.73 49.91 71.7 79.3 80.57 48.58 61.97
GSS 85.28 95.55 64.15 80.11 48.13 72.9 76.71 84.13 49.36 62.89
Herding 88.41 94.53 71.07 78.97 54.0 73.51 81.8 81.03 51.17 62.44
LARS 87.43 95.43 69.53 79.92 51.82 71.41 79.17 84.93 50.22 62.78
SBS-fix 88.11 95.56 70.29 80.2 54.65 73.72 82.24 86.15 52.15 63.12
SBS 88.99 96.03 71.71 80.62 55.43 74.80 83.59 89.17 52.15 63.16

G. Relationship Between Other Scoring Methods and the Learning Speed
To analyze catastrophic forgetting, we focus on its relationship with learning speed (Eq.1). While other metrics exist—such
as uncertainty score (Bang et al., 2021), which evaluates classification consistency under augmentations, and c-score (Jiang
et al., 2020), which measures expected accuracy on held-out instances – they incur higher computational costs. Using
per-example loss as a score is computationally simpler but shows a weak correlation with catastrophic forgetting. As shown
in Fig.25, examples sorted by uncertainty and c-score show a moderate correlation with forgetting, while learning speed
provides the strongest correlation. Therefore, we adopt learning speed throughout this work for its computational efficiency
and strong alignment with catastrophic forgetting.
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(a) CIFAR-100-20 (b) CIFAR-10-5

Figure 16: Comparison of buffer compositions in multi-task training scenarios: (a) CIFAR-100-20, (b) CIFAR-10-5, both
trained with a 5k buffer. Similarly to the 2-task case, a wide range of buffer compositions significantly improves performance,
helping to mitigate catastrophic forgetting. The performance gains of Goldilocks tend to get bigger in the multi-task case.

(a) CIFAR-100-20 (b) CIFAR-10-5

Figure 17: Repeating Fig. 16 for class incremental learning. (a) CIFAR-100-20, (b) CIFAR-10-5, both with a 5k buffer.
Similar to the 2-task case, a wide range of buffer compositions significantly improves performance, helping to mitigate
catastrophic forgetting.

(a) SGD (b) Adam (c) AdaGrad

Figure 18: Repeating Fig. 4a using different optimizers: (a) SGD, (b) Adam, and (c) AdaGrad. Across all optimizers, a wide
range of buffer compositions consistently enhances performance, yielding similar qualitative results to the experiment in the
main text.
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(a) VGG-16 (b) No regularization (c) Different CIFAR Split

Figure 19: Repeating Fig. 4a under different learning settings: (a) replacing the ResNet-18 architecture with VGG-16, (b)
removing weight decay from ResNet-18, and (c) using a random class-to-task split of CIFAR-100-2. In all cases, the results
remain qualitatively similar, highlighting the robustness of the analysis.

(a) 20 epochs (b) 50 epochs (c) 100 epochs

Figure 20: Repeating Fig. 4a with varying training epochs: (a) 20 epochs, (b) 50 epochs, and (c) 100 epochs per task. Despite
shorter training durations, the qualitative results remain consistent, with a wide range of buffer compositions significantly
improving performance.

(a) Smaller learning rate (b) Larger learning rate (c) Finetune

Figure 21: Repeating Fig. 4a with varying learning rates: (a) doubling the learning rate, (b) halving the learning rate, and (c)
keeping the first task’s learning rate unchanged while reducing the second task’s by a factor of 10. These scenarios, common
in continual learning research, yield consistent qualitative results, indicating that our analysis is not dependent on a specific
learning rate.
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(a) CIFAR-100-2, 1k buffer (b) CIFAR-100-2, 10k buffer (c) TinyImageNet-2, 1k buffer

Figure 22: Standard errors for Fig. 4. The error is taken over 10 repetitions in each experiment.

(a) (A)–>(B) (b) (A)–>(C)

Figure 23: Standard errors for Fig. 5. The error is taken over 10 repetitions in each experiment.

Table 4: Standard error of Table 1.

CIFAR-10-2 CIFAR-100-2 CIFAR-100-20 CIFAR-10-5 TinyImageNet-2

Buffer size 1k 10k 1k 10k 1k 10k 1k 10k 1k 10k

Random 0.06 0.05 0.22 0.12 0.18 0.04 0.1 0.11 0.15 0.07
Max entropy 0.23 0.06 0.23 0.15 0.12 0.02 0.1 0.03 0.2 0.13
IPM 0.16 0.13 0.29 0.16 0.17 0.06 0.15 0.06 0.15 0.13
GSS 0.13 0.08 0.29 0.16 0.15 0.01 0.11 0.04 0.13 0.07
Herding 0.09 0.12 0.24 0.14 0.11 0.1 0.14 0.06 0.16 0.11
LARS 0.15 0.12 0.27 0.18 0.16 0.04 0.11 0.05 0.13 0.08
SBS-fix 0.08 0.1 0.25 0.11 0.08 0.07 0.13 0.11 0.19 0.1
SBS 0.03 0.1 0.22 0.1 0.1 0.02 0.1 0.12 0.16 0.1
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(a) CIFAR-100 –> CIFAR-100 (b) CIFAR-100 –> rotated (c) CIFAR-100 –> random labels

Figure 24: Comparing replay buffer compositions when training the same original task, followed by different subsequent
tasks. Each entry in the matrices denotes the difference in final accuracy between each buffer composition and a buffer
sampled uniformly at random. Each composition is repeated 10 times. Networks are trained using experience replay on 2
tasks, with a buffer size of 10k. This Figure replicated the same experimental setup as Fig. 5. In (a) we train the models on
the 50 first classes of CIFAR-100, followed by the last 50 classes of CIFAR-100. In (b) we train the models on the 50 first
classes of CIFAR-100, followed by a rotation classification task on the same examples (see text). In (c) we train the models
on the 50 first classes of CIFAR-100, followed by the last 50 classes of CIFAR-100, but with random labels. In all cases, the
same buffer compositions of the first task give the same qualitative results, suggesting that the optimal composition of the
buffer of the first task is independent of the subsequent task.

(a) learning speed (b) uncertainty score

(c) loss score (d) c-score

Figure 25: Comparison of the extended epoch-wise classification matrix for CIFAR-100-2, sorted by different example-level
scoring functions (see App. G). (a) Learning speed (used throughout the paper), (b) Uncertainty measure from Bang et al.
(2021), (c) Final loss, (d) c-score from Jiang et al. (2020). While all scores show some correlation with forgetting, as more
complex examples tend to be forgotten more, learning speed shows the strongest, suggesting it is most suitable for our
analysis.
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