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ABSTRACT

How can we enhance the node features acquired from Pretrained
Models (PMs) to better suit downstream graph learning tasks?
Graph Neural Networks (GNNs) have become the state-of-the-art
approach for many high-impact, real-world graph applications. For
feature-rich graphs, a prevalent practice involves directly utilizing
a PM to generate features. Nevertheless, this practice is subopti-
mal as the node features extracted from PMs are graph-agnostic
and prevent GNNs from fully utilizing the potential correlations
between the graph structure and node features, leading to a de-
cline in GNN performance. In this work, we seek to improve the
node features obtained from a PM for graph tasks and introduce
TouchUp-G, a "Detect & Correct" approach for refining node fea-
tures extracted from PMs. TouchUp-G detects the alignment using
a novel feature homophily metric and corrects the misalignment
through a simple touchup on the PM. It is (a) General: applicable
to any downstream graph task; (b)Multi-modal: able to improve
raw features of any modality; (c) Principled: it is closely related
to a novel metric, feature homophily, which we propose to quan-
tify the alignment between the graph structure and node features;
(d) Effective: achieving state-of-the-art results on four real-world
datasets spanning different tasks and modalities.
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Figure 1: TouchUp-G wins: (a) Compared with features ob-

tained directly from PMs (BERT [6] or ViT [8]), TouchUp-G

improves the quantitative performance by more than 25%
across datasets and modalities. (b) Examples from the Ama-

zon co-purchasing graph (Amazon-CP) show that TouchUp-G

correctly predicts the ground truth while ViT+ fails.

Graph-Centric Finetuning. In Proceedings of the 47th International ACM
SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’24), July 14–18, 2024, Washington, DC, USA. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3626772.3657978

1 INTRODUCTION

Graphs or networks serve as fundamental representations for re-
lational structures, and their analysis is useful in many scientific
and industrial applications. Various tasks, ranging from recom-
mendation and molecule property prediction to knowledge graph
completion, can be formulated as graph learning endeavors.

Pretrained Models (PMs), such as BERT, GPT, and ViT [3, 6,
8] have demonstrated remarkable performance across a range of
natural language and computer vision tasks, including question
answering and image classification. These models have become the
foundations of modern ML systems. In real-world applications, it is
common practice to utilize pretrained models for generating node
features, and subsequently integrating these derived features into
GNNs for graph learning tasks, encompassing link prediction and
node classification [4, 12, 13, 16, 38]. Nonetheless, employing node
features from PMs without any domain adaptation is suboptimal,
as features generated from PMs are unaware of the graph structure
and prevents GNNs from fully exploiting the relation between node
features and the graph structure.

An illustrative real-world example is shown in Fig. 2, where
we leverage a co-purchasing graph to predict products frequently
purchased together. Utilizing image features directly from PMs

https://doi.org/10.1145/3626772.3657978
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results in distinct feature representations for each product, causing
GNNs to falter in predicting products that tend to be purchased
together. This is a widespread issue that persists whenever a PM is
leveraged to generate node features and the pretraining objective
does not take graph structure into account [4]. Existing methods
to overcome this issue suffer from two drawbacks. First, they do
not measure the quality of node features from PMs, which decides
whether finetuning is necessary. Second, they use text-specific
features and only work on text-rich graphs. To address these issues,
we introduce a principled and general solution, which improves
node features obtained from any PM, so that GNNs can achieve
better performance in any downstream graph task.

Specifically, we propose TouchUp-G, a "Detect & Correct" ap-
proach for refining node features extracted from PMs. To detect

the alignment between the node features and the graph structure,
we introduce a novel feature homophily metric that quantifies the
potential correlations between graph structure and node features.
Our proposed feature homophily metric accommodates vectorized
features and is bounded in the range of [-1,1] so as to allow com-
parison between graphs. To correct the node features obtained
from PMs, we propose graph-centric finetuning, a simple TouchUp
enhancement technique that improves Graph’s node features from
any PM.

Figure 2:Why pretrained featuresmay

fail: We show a subgraph of Amazon

Co-purchasing graph (Amazon-CP).

Products possessing disparate visual

features are often bought together.

TouchUp-G is
simple, adaptable
to a variety of
PMs in multiple
domains. The node
features obtained
from TouchUp-G
show a strong align-
mentwith the graph
structure and at-
tain state-of-the-
art performance
for downstream graph
tasks. A summary
of our results is
shown in Fig. 1. Our contributions are summarized as follows:

• General:TouchUp-G can be applied to various graph tasks.
• Multi-modal: TouchUp-G can be applied to any PM from
any modality, e.g., texts, images. To the best of our knowl-
edge, we are the first to propose finetuning vision transform-
ers for graph tasks.

• Principled: We propose a novel metric called feature ho-
mophily, (Eq. ( 1), § 3.2), to measure the correlation between
node features and graph structure.

• Effective:TouchUp-G achieves state-of-the-art performance
on four real datasets across various tasks and modalities.

2 RELATEDWORK

Pretrained Models as Feature Embeddings. Pretrained mod-
els, have been widely used to acquire broad language and visual
representations [6, 8, 18–21, 26, 28, 35]. For transformers in the
language and vision domain, we refer to the survey for more de-
tails [17]. The typical approach of learning text-rich graphs adopts

Table 1: Qualitative comparison of finetuning frameworks.

TouchUp-G is General–it can be applied on any graph tasks–

, Multi-modal (applicable to features from any modality),

Principled and Effective.

Property
Method GLEM [38] GIANT [4] Patton [15] BERT+ [6] TouchUp-G (ours)

General-NC ✓ ✓ ✓ ✓ ✓

General-LP ✓ ✓ ✓

Multi-modal ✓

Principled ✓ ✓

Effective ✓ ✓ ✓ ? ✓

a “cascaded architecture” where features are extracted via a PM
and incorporated into GNNs. But this approach is suboptimal and
several works have been proposed to better adapt features from
PMs to GNNs [4, 14, 15, 32, 38]. A comparative analysis between
TouchUp-G and previous methods is outlined Table 1. Here, we aim
to design a general approach that works for any source of modality,
such as images, and any graph downstream task. Moreover, we
measure how misaligned the node features and graph structure are,
which is important to decide whether enhancement is needed.
Feature Homophily in GNNs. Existing GNN models heavily
rely on the feature homophily assumption. Yoo et al. highlight the
inability of GNN models to effectively leverage the graph struc-
ture in the presence of noisy node features, primarily due to their
strong dependence on the feature matrix [36]. Yang et al. show
that GNNs penalize deviations between the embeddings of two
nodes sharing an edge [33, 34]. However, what is a good metric
for feature homophily remains unclear. Newman introduced as-
sortativity as a measure to assess the similarity of scalar features
along edges [23, 24], but it cannot be applied to vectorized features.
Feature smoothness is another candidate metric [11], but it is un-
bounded in magnitude, making it hard to compare against graphs
with varying sizes. In contrast, our proposed feature homophily
score accommodates vectorized features and allows comparison
across graphs of different sizes.

3 TOUCHUP-G

3.1 Preliminaries

Graphs. We consider a graph 𝐺 = (𝑉 , 𝐸, 𝑆), where 𝑉 is the set of
vertices, 𝐸 is the set of edges, 𝑆 is the set of raw node features, (e.g.
raw text, images), and A ∈ R |𝑉 |× |𝑉 | is the adjacency matrix.
Node FeaturesX from PMs. Denote T as a pretained model of any
modality, and X = T(𝑆). X ∈ R |𝑉 |×𝑑 is the extracted 𝑑-dimensional
node feature embedding from the pretrained model T. We use X ∈
R |𝑉 |×𝑑 as features in GNNs.
Link Prediction. Predict whether there will be a future link 𝑒𝑖 𝑗
between a pair of nodes 𝑖 and 𝑗 , where 𝑖, 𝑗 ∈ 𝑉 and 𝑒𝑖 𝑗 ∉ 𝐸.
Node Classification. Given the labels of 𝑙 nodes in 𝐺 , where 𝑙 ≪
|𝑉 |, predict the unknown classes of |𝑉 | − 𝑙 test nodes.
3.2 Detection: Proposed Homophily Measure

How can we detect the discrepancy between features and structure?
An intuitive approach is to use cosine similarity between nodes
or measure the feature smoothness over nodes. However, these
methods have several drawbacks, which we outline next.
Intuitive Measures & their Limitations. The most intuitive way
to measure node similarity over connected edges is to measure the
cosine similarity between nodes, which is not ideal. As shown in
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Figure 3: Example graphs that exhibit (a) strong positive

and (b) strong negative correlation between features and

structure. (a): All linked nodes have the same features; (b):

All linked nodes have complementary features.

Figure 3(b), the graph’s cosine similarity is 0 and fails to differentiate
random features from negatively correlated features.

Another candidate measure is feature smoothness [11]. It is de-

fined as 𝜆𝑓 =
| |∑𝑣∈𝑉 (∑𝑣′ ∈𝑁𝑣

(𝑥𝑣−𝑥𝑣′ ) )2 | |1
|𝐸 | ·𝑑 , where 𝑁𝑣 are neighbors

of node 𝑣 and 𝜆𝑓 ∈ [0, +∞). However, this metric suffers from two
drawbacks. First, the magnitude of 𝜆𝑓 is unbounded and depends on
the number of edges. Thus, feature smoothness cannot be compared
across graphs of varying sizes. Second, similar to cosine similar-
ity, feature smoothness fails to differentiate between random and
negatively correlated features, as both generate a large 𝜆𝑓 .
Proposed Feature HomophilyMeasure.Motivated by the limita-
tions of the above-mentioned intuitive metrics, we now introduce a
new feature homophily measure ℎ𝑓 , which can effectively quantify
the alignment between the node features and graph structure.

Definition 1 (Feature homophily). Given a graph 𝐺 = (𝑉 , 𝐸)
and the feature embeddings 𝑥𝑖 , 𝑥 𝑗 of nodes i,j where 𝑒𝑖 𝑗 ∈ 𝐸, the
feature homophily ratio ℎ𝑓 is defined as follows:

ℎ𝑓 =

∑
𝑒𝑖 𝑗 ∈𝐸 (𝑥𝑖 − 𝑥) · (𝑥 𝑗 − 𝑥)√︃∑

𝑒𝑖 𝑗 ∈𝐸 (𝑥𝑖 − 𝑥) · (𝑥𝑖 − 𝑥) ·
√︃∑

𝑒𝑖 𝑗 ∈𝐸 (𝑥 𝑗 − 𝑥) · (𝑥 𝑗 − 𝑥)
(1)

where 𝑥 =

∑
𝑒𝑖 𝑗 ∈𝐸 (𝑥𝑖+𝑥 𝑗 )

2 |𝐸 | .
The feature homophily score ℎ𝑓 effectively measures the cor-

relation between nodes over edges. Its range is confined between
[−1, 1]. In various real-world cases, most graphs exhibit a feature
homophily where ℎ > 0. Figure 3 illustrates that when ℎ = 1, every
connected node pair possesses the exact same feature, and when
ℎ = −1, each connected node pair exhibits the exact opposite feature.
When ℎ = 0, the linked nodes showcase random features with no
correlation with the graph connectivity.
Difference between Feature Homophily vs. Label Homophily.

In the GNN literature, the most popular notion of homophily is
label homophily [22, 39, 40]. While label homophily is related to
feature homophily, they are inherently different. Label homophily
captures the label similarity between nodes and their immediate
neighbors, so it is contingent on the availability of node labels. In
this work, we tackle different graph learning tasks, including but
not limited to link prediction, wherein nodes lack class labels.

3.3 Correction: Graph-Centric Finetuning

Wepropose graph-centric finetuning,TouchUp-G, a simpleTouchUp
enhancement that refines node features from any PM. Given:

• an undirected graph 𝐺 = (𝑉 , 𝐸) and its adjacency matrix
A ∈ R |𝑉 |× |𝑉 | ;

• the set 𝑆 of raw node features for all nodes 𝑛 ∈ 𝑉 ; and
• a pretrained model T that transforms raw node features to
node feature embeddings, X = T(𝑆), X ∈ R |𝑉 |×𝑑 ;
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Figure 4: Overview of TouchUp-G. [Top, ] A PM [6, 8] is

used to extract features from raw text or images, and then

GNNs are trained upon the extracted features. [Bottom, ]

We propose graph-centric finetuning on PMs to correct the

discrepancy between features and the structure.

Table 2: Datasets used in TouchUp-G LP = Link Prediction.

NC = Node Classification.

Name Nodes Edges Node Features Pretrained Model Downstream Task

Ogb-Products[13] 2,449,029 61,859,140 Text BERT [6] LP & NC
Books [29, 30] 1,098,672 33,619,434 Text BERT [6] LP
Amazon-CP [25] 379,770 4,102,444 Image ViT [8] LP
Ogb-Arxiv [13] 169,343 1,166,243 Text SciBERT [1] NC

We fine-tune T to minimize 𝐿struct using negative sampling:
𝐿struct = − 1

|𝐸 |
∑︁

(𝑢,𝑣) ∈𝐸
(log(𝑥𝑢 · 𝑥𝑣) + log(1 − 𝑥𝑢 · 𝑥𝑣′ )), (2)

where 𝑣 ′ ∈ 𝑉 is a randomly sampled negative and (𝑢, 𝑣) ∉ 𝐸.
An illustrative example is provided in Fig. 4.We note that, for link

prediction, edges used for validation and testing are unobserved,
and thus are not used for finetuning.
Non-specific Loss for PMs. Unlike previous works that hinge on
the domain-specific knowledge of text [15], TouchUp-G does not
rely on prior assumptions about the pretrained models or the source
of node features. It can be readily adapted to any PM from any
modality. In our experiments, we demonstrate that its effectiveness
on both text and image-rich graphs.

4 EXPERIMENTS

We aim to answer the following research questions:
• (RQ1) Multi-modal: Can TouchUp-G handle any modality
such as text, images on link prediction?

• (RQ2) General: Can TouchUp-G handle other downstream
tasks such as node classification?

• (RQ3)Principled: According to the feature homophily score
ℎ𝑓 , how correlated are the features from PMs vs. the feature
from TouchUp-G?

Data.Weuse four public datasets: Ogb-Products, Books, Amazon-CP,
Ogb-Arxiv. The details of these datasets are shown in Table 2.
Books is constructed following [27]. Amazon-CP is constructed from
Amazon-Review [25] by extracting the co-purchasing links and
each product’s image as the raw node features. Nodes with missing
images or insufficient density (i.e., degree< 5) are eliminated.
PretrainedModels. For Ogb-Products and Books , we use BERT [6].
For Ogb-Arxiv, we use SciBERT [1]. For BERT and SciBERT, the last
layer is dropped when generating representations. For Amazon-CP,
we adapt the ImageNet pretrained ViT [8]. We drop the last layer
and add a linear layer to project the embeddings to 256 dimensions.
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Table 3: TouchUp-G is multi-modal: TouchUp-G has the best

overall performance across all datasets and modalities. We

do not report Patton [15] on Amazon-CP as it only works for

text features. OOM = Out of Memory.

SAGE GATv2

Datasets Methods MRR ↑ H@10 ↑ MRR ↑ H@10 ↑

Books

Degree+ 15.58 ± 0.60 29.45 ± 0.93 OOM OOM
Deepwalk+ 19.52 ± 0.11 30.28 ± 0.20 OOM OOM
BERT+ 47.05 ± 0.43 73.30 ± 0.38 OOM OOM
Patton 65.55 ± 0.08 86.00 ± 0.02 OOM OOM
TouchUp-G 69.61 ± 0.38 89.09 ± 0.61 OOM OOM

Ogb-Products

Degree+ 10.37 ± 0.42 22.62 ± 1.16 OOM OOM
Deepwalk+ 21.14 ± 0.15 32.90 ± 0.06 OOM OOM
BERT+ 68.65 ± 0.14 76.73 ± 0.02 OOM OOM
Patton 71.70 ± 0.01 77.66 ± 0.04 OOM OOM
TouchUp-G 73.66 ± 0.31 80.40 ± 0.76 OOM OOM

Amazon-CP

Degree+ 30.03 ± 0.53 74.15 ± 0.01 30.71 ± 0.82 72.89 ± 0.53
Deepwalk+ 36.05 ± 0.01 96.41 ± 0.01 35.99 ± 0.31 89.57 ± 0.01
ViT+ 36.08 ± 0.01 96.41 ± 0.01 40.14 ± 0.09 97.81 ± 0.01
TouchUp-G 41.19 ± 0.07 97.35 ± 0.01 42.84 ± 0.08 97.05 ± 0.07

TouchUp-G Variants. As shown in Table 4, we detect that, for
all four datasets, ℎ𝑓 is close to 0 when using PMs directly, thus we
do correction on all the datasets. We consider two GNN backbones:
SAGE [9] and GATv2 [2].
Metrics.We evaluate the performance on link prediction and node
classification. For link prediction, we report MRR, Hits@10, the
two most commonly-used evaluation metrics [13, 37]. For node
classification, we report accuracy, following [12]. For all evaluation
metrics, the higher the number is, the better. We perform hyperpa-
rameter tuning using grid search and choose the best performing
ones on validation sets. Results are reported on test sets.
Baselines. As in [5], we use Degree+ and Deepwalk+ as embedding-
based baselines. For PMs, wemainly consider BERT+[6], andViT+[8].
We also report Patton [15], the most recent framework that captures
the dependency between textual attributes and structure. For node
classification,we compare against Ogb+: the original features [13],
BERT+, SciBERT+and DeBERTa+ [10]. We also report results for
two methods that finetune LLMs, GIANT and GLEM [4, 38].

4.1 (RQ1) Multi-modal: Link Prediction Results

Setup & Evaluation. We first evaluate TouchUp-G’s effectiveness
on link prediction for feature-rich graphs. Here, we consider text
and image—due to the lack of data, we leave other modalities for
future study. We report the performance of two widely-used GNN
backbones: SAGE and GATv2.
Results. The quantitative results are shown in Table 3. TouchUp-G
achieves state-of-the-art performance at most times with different
GNN backbones, even compared with Patton. Especially, there is
more than 20% MRR boost compared with BERT+. This indicates
that structure-fused features are more effective than any feature
or structure alone. In Fig. 1b, we also provide a qualitative co-
purchasing example in Amazon-CP during test. Given the query
"shower head", our goal is to predict "bath towel hanger" (ground
truth) as a co-purchased item. While ViT+ fails, TouchUp-G cor-
rectly predicts the ground truth in the top-2 predictions. Moreover,
the "tissue hanger" that TouchUp-G predicts is also related to bath-
room equipment and is likely to be purchased together with shower
heads. This qualitative example shows that TouchUp-G yields more
meaningful co-purchasing predictions compared with ViT+ alone,
and showcases TouchUp-G’s multimodal ability.

Figure 5: TouchUp-G is General: Node classification Results.

TouchUp-G does not use any node label information during
training. However, we obtain comparable performance com-

pared with baselines explicitly finetuned on node labels [38].

Table 4: Principled: TouchUp-G wins. Feature homophily

ℎ𝑓 on various methods. TouchUp-G gives more than 2× in-

crease in feature homophily and indicates better correlation

between node features and graph structure. Gain↑ denotes
the improvements of TouchUp-G over the same PMs.

Dataset BERT+ [6] SciBERT+ [1] ViT+ [8] Patton [15] TouchUp-G Gain ↑
Books 0.137 - - 0.2373 0.579 (4.2x) 47%
Ogb-Products 0.223 - - 0.4595 0.762 (3.4x) 7%
Amazon-CP - - 0.173 - 0.622 (3.6x) 14%
Ogb-Arxiv - 0.194 - - 0.408 (2.1x) 9%

4.2 (RQ2) General: Node Classification Results

Setup & Evaluation. We report the node classification perfor-
mance on Ogb-Arxiv and Ogb-Products. Results for DeBERTa+,
GIANT, GLEM are directly adapted from [38], and the Ogb+results
are directly adapted from [31].
Results. The results are shown in Fig. 5. TouchUp-G is compa-
rable with GIANT and GLEM. This observation is noteworthy as
we do not use any node label information in TouchUp-G. Our
method surpasses all SciBERT+ and BERT+, indicating the general-
ity of TouchUp-G across backbones. Moreover, Ogb+ consistently
outperforms PM baselines. This further supports our argument
that directly utilizing contextualized features from PMs without
domain adaptation can negatively impact the performance when
the contextualization is irrelevant, and highlights the necessity of
TouchUp-G.

4.3 (RQ3) Principled: Feature Homophily Score

Setup & Evaluation. For each dataset in Table 2, we compute ℎ𝑓
using the representations derived from both the PMs and TouchUp-
G, before training a GNN.
Results. The results are shown in Table 4. All datasets exhibit
low feature homophily scores prior to fine-tuning. This suggests
a lack of alignment between the node features and graph struc-
ture across all datasets. However, upon applying TouchUp-G, all
datasets witness more than 2× increase in ℎ𝑓 , and the state-of-the-
art performance on downstream graph tasks. Patton also shows
increase in ℎ𝑓 when compared with BERT+, which suggests that
GNNs’ performance can be improved by increasing ℎ𝑓 .

5 CONCLUSION

We have presented TouchUp-G, a simple "Detect & Correct" ap-
proach for refining node features extracted from PMs. TouchUp-G
is General, Multi-modal, Principled and Effective. As future
work, we envision that the finetuning part of TouchUp-G can be
done more efficiently using delta finetuning [7].
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