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ABSTRACT

Large language models (LLMs) are commonly aligned with human preferences
using reinforcement learning from human feedback (RLHF). In this method, LLM
policies are generally optimized through reward maximization with Kullback-
Leibler (KL) divergence regularization of the reference policy. However, KL and its
f -divergence variants only compare token probabilities at identical indices, failing
to capture semantic similarity. We propose Wasserstein Policy Regularization
(WPR), a semantic-aware regularization for the RLHF framework based on the
entropy-regularized Wasserstein distance, which incorporates the geometry of the
token space. The dual formulation of the distance expresses the regularization
as penalty terms applied to the reward via optimal dual variables, which yield
a tractable objective compatible with standard RL algorithms. Empirically, our
method outperforms KL- and f -divergence-based baselines, demonstrating the
benefits of semantic-aware policy distances for alignment.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable progress in recent years, powering ap-
plications ranging from conversational agents to code generation (Touvron et al., 2023; Achiam
et al., 2023; Hui et al., 2024). A central challenge in their deployment is aligning model behavior
with human preferences. Reinforcement learning from human feedback (RLHF) has emerged as
the dominant paradigm for alignment, where models are optimized to produce responses that better
reflect user intent (Christiano et al., 2017; Bai et al., 2022; Ouyang et al., 2022). The standard RLHF
pipeline trains a reward model from human preference data and then optimizes the LLM policy to
maximize reward while remaining close to a supervised fine-tuned reference model (Ouyang et al.,
2022). Recent advances such as Direct Preference Optimization (DPO) (Rafailov et al., 2023) and its
variants (Azar et al., 2024; Ethayarajh et al., 2024) follow a similar principle, often reducing the pref-
erence learning to implicit reward maximization with reverse Kullback–Leibler (KL) regularization
to maintain the reference policy.

The policy regularization by the KL divergence is widely adopted because the KL divergence can
be computed directly from the token probabilities of the reference and the trained models, which is
implemented as a penalty on the reward. While KL-based regularization is effective in practice, it
exhibits known shortcomings; for example, the reverse KL tends to be mode-seeking, which reduces
output diversity. Recent works have addressed these issues by replacing reverse KL with alternative
f -divergences, such as f -DPO (Wang et al., 2024) and χPO (Huang et al., 2025). However, these f -
divergence-based constraints still measure policy discrepancy only by comparing token probabilities
at identical indices, thereby ignoring semantic relationships between tokens.

To illustrate this limitation, we introduce a simple example in Figure 1. We consider a vocabulary
{cat, kitten, dog, table} and compare a reference policy πref and two learned policies,
π1 and π2, in the context of next token selection when answering the question “What is in this image?”
given a small cat image. In this example, πref, π1, and π2 assign high probability mass to cat,
kitten, and table, respectively. Semantically, (cat, kitten) is more closely related than
(cat, table), so we would expect πref to be closer to π1 than π2. However, KL values diverge
due to the support mismatch, and other f -divergences such as Jensen-Shannon (JS) divergence assign
the same distance to π1 and π2, failing to reflect semantic proximity.
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Figure 1: Motivating example for the Wasserstein distance in LLM
policy comparison. (a-c) Probability distributions of the reference and
learned policies. (d) Semantic space among tokens. (e) Comparison
under different divergences, where Wasserstein distance captures se-
mantic relationships that KL and JS divergences fail to reflect.
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tures on dialogue generation
with Gemma-2B, compar-
ing f -divergences and our
Wasserstein distance.

To overcome this limitation, we introduce a new RLHF regularization framework based on Wasserstein
distances, which we refer to as Wasserstein Policy Regularization (WPR). Unlike the KL and other
f -divergences, the Wasserstein metric compares distributions by explicitly considering the geometry
of the underlying token space. This enables flexible, user-defined cost functions that naturally encode
semantic similarity between tokens. Additionally, it remains well-defined even when the support of
two distributions does not overlap. In the context of language modeling, these properties are crucial
because policies that assign high probability to semantically related tokens (e.g., cat and kitten)
could likewise be regarded as similar. As illustrated in Figure 1, the Wasserstein distance properly
identifies the reference policy πref as being closer to π1 than to π2, thereby capturing semantic
proximity that KL and other f -divergences fail to reflect. As a result, as shown in Figure 2, the policy
regularization with the Wasserstein distance achieves superior generation performance compared to
KL and other f -divergence-based approaches, with experimental details provided in Section 5.2.

Building on these properties, we propose a tractable optimization framework that leverages the
entropy-regularized Wasserstein distance, i.e., Sinkhorn distance, as a semantic-aware policy regular-
izer. Computing this distance requires solving an entropic optimal transport problem; we recast it
in the dual and show that the resulting optimal dual variables represent the regularization penalty.
Therefore, this penalty can be incorporated into the reward as token-wise adjustments, analogous
to standard KL-based regularization, making our formulation directly compatible with standard RL
algorithms such as PPO. The optimal dual variables can be obtained efficiently via the Sinkhorn algo-
rithm with modest overhead. Empirically, our approach outperforms KL- and f -divergence–based
baselines, highlighting the effectiveness of semantic-aware policy distances for RLHF.

2 RELATED WORKS

Aligning Large Language Models Traditional Supervised Fine-Tuning (SFT) methods have been
effective in language generation, but they have shown limitations in producing outputs that are
well-aligned with human preferences, in terms of sentiment (Maas et al., 2011), helpfulness (Askell
et al., 2021), harmlessness (Gehman et al., 2020), and truthfulness (Lin et al., 2022). Reinforcement
Learning from Human Feedback (RLHF) (Stiennon et al., 2020; Ouyang et al., 2022) has become the
standard approach for aligning LLMs with human preferences. It proceeds by training a reward model
on human preference datasets, and then using this reward model to perform reinforcement learning
to generate outputs that are better aligned with human preferences (Christiano et al., 2017; Ziegler
et al., 2019; Böhm et al., 2019). This approach has enabled the development of successful LLMs
such as ChatGPT (Achiam et al., 2023). Recent work has proposed alternatives that avoid explicit
reward models, such as RAFT (Dong et al., 2023), RRHF (Yuan et al., 2023), and DPO (Rafailov
et al., 2023), which reformulate preference alignment as direct policy optimization.

2
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Regularization for Policy Learning Methods such as RLHF and DPO incorporate regularization
by a reverse KL divergence during preference alignment to prevent the learned policy from deviating
significantly from a reference model trained via SFT. While this helps constrain the learning direction
to remain close to the behavior of the reference model, the mode-seeking nature of reverse KL tends
to limit the diversity of generated outputs (Wiher et al., 2022; Khalifa et al., 2021; Perez et al., 2022;
Glaese et al., 2022). To address this limitation, studies such as f -DPO (Wang et al., 2024) and χPO
(Huang et al., 2025) have been proposed. In parallel, other works (Han et al., 2025; Kim et al., 2025)
have explored alternative divergences for directly matching the optimal policy, though our focus in
this work is on regularization. However, f -divergence-based methods share a key limitation: they
measure the distributional discrepancy solely based on probability values at identical indices, without
reflecting the semantic relationships between tokens. In contrast, this paper proposes a novel approach
that leverages distance metrics from the Integral Probability Metric (IPM) (Müller, 1997), such as
Wasserstein distance (Adler & Lunz, 2018; Panaretos & Zemel, 2019), which enables semantic-aware
policy regularization.

Application of Wasserstein Distance The Wasserstein distance and its variants, such as the
Sinkhorn distance, have been widely applied across many machine learning domains, including
generative modeling, robust optimization, and reinforcement learning (Arjovsky et al., 2017; Sinha
et al., 2018; Moskovitz et al., 2021; Song et al., 2023; Cui et al., 2024). For example, in generative
modeling, Wasserstein GANs (Arjovsky et al., 2017) leverage the Wasserstein distance between
the generator distribution and the data distribution to improve training stability and mitigate mode
collapse. In robust optimization, adversarial training is formulated using a Wasserstein ball around
the data distribution, enabling certified robustness guarantees (Sinha et al., 2018). In reinforcement
learning, the Wasserstein natural gradient aligns policy updates with the local optimal-transport
geometry induced by Wasserstein regularization in behavioral policy optimization (Moskovitz et al.,
2021). Song et al. (2023) explore trust-region policy optimization based on Wasserstein and Sinkhorn
distance. Building on this line of work, we explore Wasserstein regularization for RLHF, enabling
semantic-aware policy alignment.

3 PRELIMINARY

3.1 WASSERSTEIN DISTANCE

The Wasserstein distance between two distributions π and π′ is defined as
DW(π||π′) := min

P∈U(π,π′)
E(y,y′)∼P

[
c(y, y′)

]
= min
P∈U(π,π′)

⟨P ,C⟩, (1)

where U(π, π′) := {P ∈ Rd×d+ |P1d = π,P⊤1d = π′} is the set of couplings between π and π′,
C ∈ Rd×d+ is the cost matrix with entries Cy,y′ := c(y, y′) ≥ 0, ⟨·, ·⟩ denotes the Frobenius inner
product, and d is the cardinality of the outcome space.

To obtain a smooth approximation, one may add an entropy regularization term to the Wasserstein
objective, yielding the entropy-regularized Wasserstein distance, also known as the Sinkhorn distance:

DW̃(π||π′) := min
P∈U(π,π′)

{
⟨P ,C⟩ − 1

λ
H(P )

}
, (2)

where λ is an entropy regularization hyperparameter, andH(P ) := −
∑d
i=1

∑d
j=1 Pij(logPij − 1)

is the entropy regularization term, equivalent to the Shannon entropy up to an additive constant.

While the Wasserstein distance directly relies on the Kantorovich dual formulation of optimal
transport, the Sinkhorn distance arises from the dual of its entropically regularized variant (Villani,
2008; Peyré et al., 2019):

DW(π||π′) = max
ϕ,ψ


d∑
i=1

ϕiπi +

d∑
j=1

ψjπ
′
j

∣∣∣∣∣ ϕi + ψj ≤ Cij ∀i, j

 , (3)

DW̃(π||π′) = max
ϕ,ψ


d∑
i=1

ϕiπi +

d∑
j=1

ψjπ
′
j −

1

λ

d∑
i=1

d∑
j=1

exp (λ(ϕi + ψj − Cij))

 , (4)

3
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where ϕ and ψ are the dual variables. In the Wasserstein case with the Euclidean cost, the dual vari-
ables reduce to a single 1-Lipschitz function, which is typically parameterized by a critic network and
optimized with gradient-based methods (Arjovsky et al., 2017). In contrast, the entropy-regularized
formulation yields dual optimality conditions corresponding to matrix scaling factors, which can be
computed efficiently by the Sinkhorn-Knopp algorithm (Sinkhorn & Knopp, 1967) as closed-form
iterations alternating between row and column normalization (Cuturi, 2013; Cuturi & Doucet, 2014).

The entropy-regularized Wasserstein distance produces smoother and denser couplings between
distributions, and it converges to the Wasserstein distance as λ → ∞. Moreover, compared to
the unregularized Wasserstein distance, the Sinkhorn distance can be computed more efficiently,
incurring substantially less computational overhead. Since our setting requires computing next-token
predictive distributions conditioned on various prompts and partial responses, we employ the entropic
regularization variant rather than the critic-based Wasserstein distance, as the former admits the
closed-form iterations.1

3.2 REINFORCEMENT LEARNING FROM HUMAN PREFERENCES (RLHF)

Our goal is to align an autoregressive LLM, denoted as πθ(y|x) where x is a user prompt and y
is a response, with human preferences through reinforcement learning (RL). The RLHF procedure
consists of three main stages. First, we perform supervised fine-tuning (SFT) to obtain a reference
model πref, which serves as the initial aligned model. Second, we train a reward model r(x,y) on a
preference dataset, enabling the estimation of scalar rewards for responses y given prompts x. Finally,
using both the reference model πref and the reward model r, we optimize the following objective to
fine-tune the language model πθ:

max
πθ

J (πθ;πref) :=Ex∼D
[
Ey∼πθ(y|x) [r(x,y)]− βD (πθ(y|x)||πref(y|x))

]
, (5)

where D denotes a policy divergence, β is a policy regularization hyperparameter, and D is the
prompt dataset. This objective encourages the policy to generate responses that maximize reward
while remaining close to the reference model.

In most of the previous works, the divergence D is instantiated as the (reverse) KL divergence:

max
πθ

JKL(πθ;πref) := Ex∼D
[
Ey∼πθ(y|x) [r(x,y)]− βDKL (πθ(y|x)||πref(y|x))

]
(6)

= Ex

[
N∑
n=1

Eyn∼πθ(yn|x,y1:n−1) [R(x,y1:n)]− β
N∑
n=1

DKL (πθ(yn|x,y1:n−1)||πref(yn|x,y1:n−1))

]
(7)

= Ex

[
N∑
n=1

Eyn∼πθ(yn|x,y1:n−1)

[
R(x,y1:n)− β log

πθ(yn|x,y1:n−1)

πref(yn|x,y1:n−1)

]]
, (8)

where DKL(π(yn)||π′(yn)) := Eyn∼π(yn)
[
log π(yn)

π′(yn)

]
, N is the sequence length of y, and

R(x,y1:n) = r(x,y1:N ) for n = N , and 0 otherwise. As shown in Eq. (8), the KL regular-
ization term DKL can be rewritten as the expectation of the log-ratio between the two policies,
which allows standard RL algorithms such as PPO to be applied for optimization. Furthermore,
several works (Wang et al., 2024; Huang et al., 2025) have generalized the KL divergence to other
f -divergences and developed tractable optimization formulations accordingly.

However, as mentioned in the Introduction, KL or other f -divergence measures compare policies
solely by token-level probability differences at identical indices, without accounting for the under-
lying semantic structure of tokens. This limitation prevents them from fully capturing meaningful
distributional differences in language generation. To address this, we replace the divergence term
with the Wasserstein distance, more precisely the Sinkhorn distance, which naturally incorporates
semantic information, and we develop a tractable optimization framework for this objective.

1In preliminary experiments, we explored the critic-based Wasserstein distance but found that the resulting
policy regularization was insufficient, leading to suboptimal performance.
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(a) RLHF with Policy Regularization (b) Wasserstein Policy Regularization (WPR)

+

Policy

Figure 3: Overview of RLHF with Wasserstein Policy Regularization. (a) Standard RLHF with a
policy regularization penalty. (b) Our proposed Wasserstein policy regularization, where the penalty
is computed from the optimal dual variables obtained via the Sinkhorn-Knopp algorithm.

4 METHOD: WASSERSTEIN POLICY REGULARIZATION

4.1 RLHF OBJECTIVE WITH WASSERSTEIN POLICY REGULARIZATION

In this section, we propose Wasserstein Policy Regularization (WPR), which regularizes LLM policies
in RLHF using the Wasserstein distance as the statistical distance between policies. We formulate the
Wasserstein-regularized RLHF objective by replacing the token-level KL divergence regularization
term in Eq. (7) with a Wasserstein regularization term:
max
πθ

JW(πθ;πref) := (9)

Ex∼D

[
N∑
n=1

Eyn∼πθ(yn|x,y1:n−1) [R(x,y1:n)]− β
N∑
n=1

DW (πθ(yn|x,y1:n−1)||πref(yn|x,y1:n−1))

]
Here, DW (πθ(yn|x,y1:n−1)||πref(yn|x,y1:n−1)) := minP (n)∼Un(πθ,πref) < P (n),C > where

Un(πθ, πref) :=
{
P (n) ∈ Rd×d+ |P (n)1d = πθ(·|x,y1:n−1),P

(n)⊤1d = πref(·|x,y1:n−1)
}

, C ∈
Rd×d+ is the cost matrix, d is the token dictionary size, and N is the sequence length of y.

The next step is to formulate the Wasserstein distance between two token-level discrete distributions
so as to obtain a tractable optimization objective for πθ. However, computing the exact Wasserstein
distance requires solving a linear program, which quickly becomes intractable when the distribu-
tional support is large (Kuhn et al., 2019). A widely used approximation is to introduce entropic
regularization into the transport problem, referred to as the entropy-regularized Wasserstein distance
or Sinkhorn distance (Cuturi, 2013):
max
πθ

JW̃(πθ;πref) := (10)

Ex∼D

[
N∑
n=1

Eyn∼πθ(yn|x,y1:n−1) [R(x,y1:n)]− β
N∑
n=1

Dλ
W̃ (πθ(yn|x,y1:n−1)||πref(yn|x,y1:n−1))

]

where Dλ
W̃ (πθ(·|x,y1:n−1)||πref(·|x,y1:n−1)) := min

P (n)∈Un

{
⟨P (n),C⟩ − 1

λ
H(P (n))

}
. (11)

We refer to this objective, JW̃(πθ;πref), as the entropic Wasserstein-regularized RLHF objective.
We now derive the dual problem from the regularized primal transportation problem in Eq. (11).
Specifically, we introduce the Lagrangian function L corresponding to Eq. (11).

L(P (n),ϕ,ψ) :=

d∑
i=1

d∑
j=1

(
P

(n)
ij Cij +

1

λ
P

(n)
ij (logP

(n)
ij − 1)

)

+

d∑
i=1

ϕi([πθ]i −
d∑
k=1

P
(n)
ik ) +

d∑
j=1

ψj([πref]j −
d∑
k=1

P
(n)
kj ), (12)

5
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Algorithm 1 Computation of Wasserstein Penalty via Sinkhorn-Knopp Algorithm

Input: Learned policy πθ(·|x,y1:n−1), Reference policy πref(·|x,y1:n−1), Cost matrix C
1: u← 1d, v← 1d,K ← exp(−λC)
2: while converged do
3: diag(u)← πθ ./K(diag(v))
4: diag(v)← πref ./K

⊤(diag(u))
5: end while
6: ϕ← − 1

λ log(u)
Output: Dual variable ϕ

where {ϕi}di=1 and {ψj}dj=1 are the Lagrange multipliers, introduced to enforce the marginal con-
straints in Un; specifically, they ensure that the row sums of P (n) match πθ(· | x,y1:n−1) and the
column sums match πref(· | x,y1:n−1). Here, P (n), ϕ, and ψ are functions of (x,y1:n−1), but
we omit their input terms for brevity unless this causes ambiguity. Based on this Lagrangian, the
corresponding dual problem is given by

max
ϕ,ψ

d∑
i=1

ϕi[πθ]i +

d∑
j=1

ψj [πref]j −
d∑
i=1

d∑
j=1

1

λ
exp(λ(ϕi + ψj − Cij)), (13)

which is derived in Appendix A.1. With strong duality and formulation of the primal solution, we can
find the optimal solutions by Proposition 1 (Cuturi & Doucet, 2014).

Proposition 1. (Cuturi & Doucet, 2014) There exists a pair of vectors (u,v) ∈ Rd+ × Rd+ such that
the optimal solutions of P (n), ϕ, and ψ are respectively given by

P (n)∗ = diag(u) exp(−λC)diag(v), ϕ∗ = − 1

λ
log(u), ψ∗ = − 1

λ
log(v). (14)

We present the proof in Appendix A.2. Note that for any real value t, the pair of dual variables,
(ϕ+ t1d,ψ − t1d) yields the same dual objective value. Hence, the dual optimal solutions are not
unique but are determined only up to an additive constant. However, as shown in Theorem 2, when
formulating the policy optimization problem based on this optimal solution, the additive term remains
constant with respect to the policy and can therefore be ignored, yielding an equivalent problem.

By strong duality, substituting the optimal primal and dual variables obtained in Proposition 1 into
the objective in Eq. (13) yields an expression of the entropy-regularized Wasserstein distance in terms
of the optimal variables. Plugging this result back into the RLHF formulation in Eq. (10), we obtain
a tractable optimization problem, as stated in Theorem 2.

Theorem 2. Let ϕ∗(x,y1:n−1) denote the optimal dual variables of the entropic optimal transport
problem in Eq. (13). Then, the entropic Wasserstein-regularized RLHF in Eq. (10) can be equivalently
written as a reward maximization problem with an additional penalty, induced by ϕ∗, i.e.,

JW̃(πθ;πref) = Ex∼D

[
N∑
n=1

Eyn∼πθ(yn|x,y1:n−1)

[
R(x,y1:n)− βϕ∗yn(x,y1:n−1)

]]
+ C, (15)

where C is a constant with respect to πθ.

The proof is provided in Appendix A.3. Since the objective JW̃ of Eq. (15) can be expressed as the
sum of token-wise rewards over sampled response sequences, the entropic Wasserstein-regularized
RLHF problem, Eq. (10), can be optimized using standard RL methods such as PPO (Schulman et al.,
2017). The full RLHF training algorithm is provided in Algorithm 2 of Appendix B.

4.2 COMPUTATION OF WASSERSTEIN PENALTY

As shown in the objective of Eq. (15), computing the Wasserstein penalty requires obtaining the
optimal dual solution ϕ of the entropic optimal transport problem. To this end, we need to compute
the vectors u and v introduced in Proposition 1. These can be efficiently obtained by applying the

6
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Table 1: Comparison of win rates for policy regularization with various divergences, compared to SFT
and RKL-regularized PPO on the TL;DR and the HH-RLHF datasets with the Gemma-2B model.

Divergence TL;DR HH-RLHF

vs. SFT vs. RKL vs. SFT vs. RKL

RKL 0.848 ± 0.021 - 0.828 ± 0.010 -
FKL 0.316 ± 0.026 0.040 ± 0.011 0.808 ± 0.048 0.564 ± 0.019

JS 0.540 ± 0.024 0.204 ± 0.029 0.744 ± 0.031 0.424 ± 0.024

α (α = 0.5) 0.724 ± 0.031 0.304 ± 0.016 0.792 ± 0.047 0.524 ± 0.046

TV 0.364 ± 0.039 0.052 ± 0.021 0.748 ± 0.038 0.376 ± 0.010

χ2 0.904 ± 0.026 0.540 ± 0.030 0.796 ± 0.039 0.344 ± 0.017

Wasserstein (ours) 0.924 ± 0.019 0.608 ± 0.029 0.852 ± 0.027 0.616 ± 0.039

Sinkhorn-Knopp algorithm (Sinkhorn & Knopp, 1967) for the matrix scaling problem, as described
in Algorithm 1 (Cuturi, 2013; Cuturi & Doucet, 2014).

Specifically, as shown in Proposition 1, the optimal primal solution, P (n)∗, can be expressed as the
product of the positive matrix, exp(−λC), and two diagonal matrices, diag(u) and diag(v), with
positive entries. Since P (n)∗ is a transportation map, it must be doubly stochastic. Consequently,
solving for u and v in Proposition 1 reduces to a matrix scaling problem, which can be solved using
the Sinkhorn-Knopp algorithm. This algorithm iteratively rescales the rows and columns of P (n)∗

to match the target marginals πθ and πref, respectively (lines 3-4 in Algorithm 1, where ./ denotes
element-wise division).

Practical Consideration In practice, the Sinkhorn-Knopp algorithm can be directly applied, but it
requires iterative matrix multiplications with the exponential of the cost matrixK := exp(−λC) ∈
Rd×d+ . This incurs O(d2) computational complexity with respect to the dictionary size d, leading to
increased time and memory consumption. To mitigate this, we employ two forms of truncation.

First, during the pre-computation of the cost matrix, we apply a nearest-k1 truncation. For each
token, distances are computed only to its k1 nearest neighbors. Entries outside this neighborhood are
set to zero inK, which is equivalent to assigning infinite distance. This yields a sparseK, enabling
sparse matrix multiplications that reduce both storage and computational cost. Second, during the
Sinkhorn-Knopp algorithm, we apply a top-k2 truncation. The distributions πθ and πref are truncated
to their top-k2 indices together with the actually sampled index, while the remaining probability mass
is collected into a dummy index. This reduces the effective support size from d to at most 2k2 + 2,
lowering the complexity from O(d2) to O(k22). Together, these truncations substantially reduce the
computational cost of the entropic Wasserstein distance, with training time per step increasing by
only 2.5% compared to standard KL regularization.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Tasks and Training Details To evaluate our Wasserstein policy regularization, we conduct open-
ended text generation experiments on two datasets: the TL;DR dataset (Völske et al., 2017) for text
summarization and the Anthropic Helpful and Harmless (HH-RLHF) dataset (Bai et al., 2022) for
dialogue generation. We follow the experimental setup of Chai et al. (2025)2, which provides open-
source implementations for RLHF research. Our base model is the pre-trained Gemma-2B (Team
et al., 2024), and we use identical training configurations across all baselines and our method, varying
only the regularization hyperparameters. For each method, the policy regularization hyperparameter
β is selected via grid search to identify the value at which training remained stable, and the best-
performing model is reported. For Wasserstein policy regularization, we define the cost function as
the Euclidean distance in the fixed token embedding space from the reference policy, set λ = 100,

2https://github.com/ernie-research/MA-RLHF
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and apply truncation hyperparameters k1 = 512 and k2 = 128. Further experimental details are
provided in Appendix C.

Baselines We compare regularization based on various divergences with the proposed entropic
Wasserstein-based regularization. Specifically, in addition to our approach using the entropic Wasser-
stein distance in Eq. (10), we evaluate reverse KL (RKL) divergence in Eq. (8), as well as token-level
divergence in Eq. (7) instantiated with alternative f -divergences, including forward KL (FKL), JS,
α-divergence with α = 0.5, total variation (TV), and χ2 divergence. Each f -divergence can be ex-
pressed in the form of a penalty on the reward through its defining function f , and the corresponding
functions for each divergence are summarized in Table 6 of Appendix C.2.

max
πθ

Jf (πθ;πref) (16)

= Ex∼D

[
N∑
n=1

Eyn∼πθ(yn|x,y1:n−1)

[
R(x,y1:n)− β

πref(yn|x,y1:n−1)

πθ(yn|x,y1:n−1)
f

(
πθ(yn|x,y1:n−1)

πref(yn|x,y1:n−1)

)]]
.

Evaluation We adopt GPT-4 win rate, a widely used evaluation metric in recent LLM studies (Zheng
et al., 2023; Chai et al., 2025), as our primary metric. For evaluation, we randomly sample 50
validation instances and generate model responses, repeating this procedure five times. Then, GPT-4
is asked to perform pairwise comparisons between model outputs and report a win rate. We use the
GPT-4 evaluation prompts from Chai et al. (2025), with the full prompt included in Appendix C.3.
For TL;DR, we assess relevance, coherence, consistency, and fluency; while for HH-RLHF we focus
on helpfulness. To reduce evaluation bias, we randomize the order of the responses.

5.2 QUANTITATIVE RESULTS

Comparison to Other Divergences Table 1 reports the performance of summarization and dialogue
generation tasks under different policy regularization methods. Additionally, Figure 2 presents win-
rate comparisons against RKL across varying sampling temperatures on the HH-RLHF dataset. As the
results demonstrate, our proposed Wasserstein policy regularization method achieves the best results
on both datasets. In contrast, f -divergence-based methods rely on probability ratios between policies,
which can produce exploding values and unstable training. This issue is evident in the particularly
poor TL;DR results of FKL and TV. By comparison, our method remains well-defined even under
support mismatch, enabling stable training and delivering superior performance consistently.

Table 2: MT-Bench score com-
parison on Gemma-2B trained
on HH-RLHF, evaluated with
GPT-4 single-answer grading.

Divergence Score

RKL 4.000
FKL 4.247
JS 4.197
α (α = 0.5) 4.256
TV 4.072
χ2 4.144

Wasserstein 4.272

MT-Bench Results To further empirically validate our approach,
we evaluate model performance using MT-Bench, a GPT-4 based
benchmark that achieves over 80% agreement with human prefer-
ence judgments on LLM outputs (Zheng et al., 2023). MT-Bench
is designed to assess LLM capabilities in multi-turn conversation
and instruction following, spanning diverse categories to provide a
comprehensive measure of alignment quality. We evaluate models
fine-tuned on HH-RLHF using the official MT-Bench implemen-
tation3, and we follow the recommended single-answer grading
protocol to compute scores for each method. As shown in Table 2,
our method achieves the highest performance among all baselines,
indicating that semantic-aware regularization also improves broader
conversational and instruction following capabilities.

5.3 ANALYSIS OF WASSERSTEIN POLICY REGULARIZATION

Ablation Study We conduct an ablation study to better understand the effect of components in our
Wasserstein policy regularization framework, with results summarized in Table 3. Changing the cost
function from the Euclidean to cosine distance yields slightly improved results, suggesting that the
framework is robust to the choice of token-level cost metric.

3https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
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Table 3: Ablation study of WPR on TL;DR.

Method Win rate

vs. SFT vs. RKL

Our default settings 0.924 ± 0.019 0.608 ± 0.029

Cost change (L2→ cosine) 0.932 ± 0.014 0.644 ± 0.047

Decreased k1 (512→ 256) 0.920 ± 0.006 0.572 ± 0.025

Decreased k2 (128→ 64) 0.864 ± 0.015 0.528 ± 0.032

Decreased λ (100→ 10) 0.868 ± 0.024 0.552 ± 0.010

Decreased Sinkhorn iterations (10→ 5) 0.708 ± 0.027 0.328 ± 0.026

Increased Sinkhorn iterations (10→ 30) 0.880 ± 0.021 0.536 ± 0.029

0.01 0.005 0.001 0.0005
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Figure 4: Sensitivity anal-
ysis of the policy regular-
ization hyperparameter β
on HH-RLHF.

Decreasing the truncation parameters k1 and k2 or the entropy regularization strength λ leads to a
slight drop in performance, though our method still consistently outperforms RKL. Smaller k1 and k2
introduce approximation errors in the distance computation, and a smaller λ produces overly sharp
couplings that reduce stability. In practice, we use the default settings, which provide consistently
robust performance across datasets and configurations.

The number of Sinkhorn iterations also affects the distance computation. Reducing iterations from 10
to 5 leads to a sharp drop in performance due to insufficient convergence, while increasing iterations
to 30 provides no additional benefit over the default setting. These results suggest that a moderate
number of iterations is sufficient for achieving a balance between accuracy and computational
efficiency.

Additionally, we analyze the sensitivity analysis of the policy regularization coefficient β in Figure 4.
Our Wasserstein-regularized approach achieves stable performance across a broad range of β values,
consistently outperforming the SFT baseline. In contrast, we observe that the f -divergence regular-
ized RLHF yields stable training only within narrow ranges of β, as also reported in the previous
work (Wang et al., 2024). While our method demonstrates robustness over a wider range of β, it
still requires selecting an appropriate β, highlighting a fundamental limitation of RLHF. Developing
approaches that reduce or remove this dependence is an important direction for future work.

Figure 5: Normalized KL vs.
Wasserstein penalty.

Wasserstein Penalty Figure 5 compares the KL and Wasserstein
penalties computed during training with our entropic Wasserstein-
regularized RLHF objective on the TL;DR dataset. For a fair com-
parison, each case is scaled by its optimal regularization coefficient
β, and both penalties are jointly normalized to the range [0, 1] using
a shared min-max range. Note that larger penalties correspond to
greater deviation from the reference policy. As shown in the fig-
ure, the two penalties exhibit a strong positive correlation, with a
Pearson correlation coefficient of 0.917. This result demonstrates
that our Wasserstein penalty, similar to the KL penalty, increases as
the learned policy differs from the reference policy. Moreover, the
fitted trend line has a slope of 0.579, which is less than 1, with a
substantial fraction of points lying below the line, indicating that the
Wasserstein penalty tends to be more lenient than KL.

6 CONCLUSION

In this work, we propose a semantic-aware policy regularization framework for RLHF based on
the entropy-regularized Wasserstein distance, which captures semantic similarity between tokens
beyond the limits of KL and other f -divergences. By formulating the regularization in the dual space,
our method yields tractable penalties compatible with standard RL algorithms, while remaining
computationally efficient via the Sinkhorn-Knopp algorithm. Experiments on summarization and
dialogue generation tasks demonstrate consistent improvements over KL- and f -divergence-based
baselines, with higher win rates and MT-Bench score. These results highlight the effectiveness of
semantic-aware policy distances for stable and robust alignment of large language models.
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A PROOFS AND DERIVATIONS

A.1 DERIVATION OF EQ. (13)

We derive the dual problem in Eq. (13) from the Lagrangian L in Eq. (12) constructed for the entropic
primal transportation problem in Eq. (11). First, we rewrite the Lagrangian as follows:

L(P (n),ϕ,ψ) (17)

:=

d∑
i=1

d∑
j=1

(
P

(n)
ij Cij +

1

λ
P

(n)
ij (logP

(n)
ij − 1)

)

+

d∑
i=1

ϕi([πθ]i −
d∑
k=1

P
(n)
ik ) +

d∑
j=1

ψj([πref]j −
d∑
k=1

P
(n)
kj ) (18)

=

d∑
i=1

d∑
j=1

P
(n)
ij

(
Cij − ϕi − ψj +

1

λ
(logP

(n)
ij − 1)

)
+

d∑
i=1

ϕi([πθ]i) +

d∑
j=1

ψj([πref]j), (19)

where {ϕi}di=1 and {ψj}dj=1 are the Lagrange multipliers. Based on this Lagrangian, the primal and
dual problem can be written as follows:

(Primal) min
P (n)

max
ϕ,ψ
L(P (n),ϕ,ψ), (20)

(Dual) max
ϕ,ψ

min
P (n)
L(P (n),ϕ,ψ). (21)

By differentiating the Lagrangian with respect to P (n)
ij , we derive the condition that the optimal P (n)

ij

∗

satisfy as follows:

Cij − ϕi − ψj +
1

λ
logP

(n)
ij

∗
= 0 ⇔ P

(n)
ij

∗
= exp (λ(ϕi + ψj − Cij)) . (22)

Therefore, by substituting the optimal P (n)
ij

∗
in Eq. (22) into Eq. (19), we can express the dual

problem of Eq. (21) as

max
ϕ,ψ

d∑
i=1

ϕi[πθ]i +

d∑
j=1

ψj [πref]j −
d∑
i=1

d∑
j=1

1

λ
exp(λ(ϕi + ψj − Cij)). (23)

A.2 PROOF OF PROPOSITION 1

Proposition 1. (Cuturi & Doucet, 2014) There exists a pair of vectors (u,v) ∈ Rd+ × Rd+ such that
the optimal solutions of P (n), ϕ, and ψ are respectively given by

P (n)∗ = diag(u) exp(−λC)diag(v), ϕ∗ = − 1

λ
log(u), ψ∗ = − 1

λ
log(v). (14)

Proof. From Eq. (22) in the derivation of Appendix A.1, the optimal P (n)
ij

∗
can be written as

P
(n)
ij

∗
= exp (λ(ϕi + ψj − Cij)) = exp(λϕi) exp(−λCij) exp(λψj). (24)

Defining the positive kernelK := exp(−λC), where the exponential is applied element-wise, and
the scaling vectors u := exp(λϕ) and v := exp(λψ), the optimal coupling admits the compact
representation

P (n) = diag(u)K diag(v). (25)

SinceK is strictly positive, the Sinkhorn-Knopp theorem (Sinkhorn & Knopp, 1967) guarantees the
existence and uniqueness (up to an additive constant) of strictly positive scaling vectors u,v ∈ Rd+
such that P (n) ∈ Un(πθ, πref). Hence, the primal optimum P (n) is unique and necessarily of the
form diag(u)K diag(v).
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Finally, by the definitions of u and v, the corresponding optimal dual variables are given by

ϕ∗ = − 1

λ
logu, ψ∗ = − 1

λ
logv, (26)

which yields the stated representation

P (n)∗ = diag(u) exp(−λC) diag(v), ϕ∗ = − 1

λ
logu, ψ∗ = − 1

λ
logv. (27)

A.3 PROOF OF THEOREM 2

Theorem 2. Let ϕ∗(x,y1:n−1) denote the optimal dual variables of the entropic optimal transport
problem in Eq. (13). Then, the entropic Wasserstein-regularized RLHF in Eq. (10) can be equivalently
written as a reward maximization problem with an additional penalty, induced by ϕ∗, i.e.,

JW̃(πθ;πref) = Ex∼D

[
N∑
n=1

Eyn∼πθ(yn|x,y1:n−1)

[
R(x,y1:n)− βϕ∗yn(x,y1:n−1)

]]
+ C, (15)

where C is a constant with respect to πθ.

Proof. First, the objective of Wasserstein-regularized RLHF can be written as

JW̃(πθ;πref) := (28)

Ex∼D

[
N∑
n=1

Eyn∼πθ(yn|x,y1:n−1) [R(x,y1:n)]− β
N∑
n=1

Dλ
W̃ (πθ(yn|x,y1:n−1)||πref(yn|x,y1:n−1))

]
.

By strong duality, the entopic Wasserstein distance Dλ
W̃

is equal to the optimal objective value of the
dual problem in Eq. (13). Substituting the optimal solutions from Proposition 1, we obtain

Dλ
W̃ (πθ(yn|x,y1:n−1)||πref(yn|x,y1:n−1)) (29)

=

d∑
i=1

ϕ∗i (x,y1:n−1)πθ(yn = i|x,y1:n−1) +

d∑
j=1

ψ∗
j (x,y1:n−1)πref(yn = j|x,y1:n−1)

−
d∑
i=1

d∑
j=1

1

λ
exp(λ(ϕ∗i (x,y1:n−1) + ψ∗

j (x,y1:n−1)− Cij)) (30)

=

d∑
i=1

ϕ∗i (x,y1:n−1)πθ(yn = i|x,y1:n−1) + C (31)

=Eyn∼πθ(yn|x,y1:n−1)

[
ϕ∗yn(x,y1:n−1)

]
+ C, (32)

where C denotes a constant with respect to πθ.

Substituting Eq. (32) into Eq. (28), the objective reduces to a reward maximization problem with an
additional penalty induced by the dual variables ϕ∗:

JW̃(πθ;πref)

= Ex∼D

[
N∑
n=1

Eyn∼πθ(yn|x,y1:n−1) [R(x,y1:n)]− β
N∑
n=1

Eyn∼πθ(yn|x,y1:n−1)

[
ϕ∗yn(x,y1:n−1)

]
+ C

]
(33)

= Ex∼D

[
N∑
n=1

Eyn∼πθ(yn|x,y1:n−1)

[
R(x,y1:n)− βϕ∗yn(x,y1:n−1)

]]
+ C (34)
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B TRAINING ALGORITHM OF RLHF WITH WASSERSTEIN POLICY
REGULARIZATION

Algorithm 2 RLHF with Wasserstein Policy Regularization

Input: Current policy πθ , Old policy πθ− , Reference policy πref, Reward model r(x,y), Cost matrix
C, Dataset D

1: for ttrain = 1 to Ttrain do
2: Sample y1:d ∼ πθ(·|x) for x ∼ D (Computation with Batch Samples)
3: Get R(x,y1:n) with reward model r for n = {1, 2, · · · , d}
4: Compute ϕ∗yn(x,y1:n−1) via Algorithm 1 using C for n = {1, 2, · · · , d}
5: Obtain Ân for n = {1, 2, · · · , d} via Eq. (35)
6: Compute∇θJW̃(θ) via Eq. (40)
7: Compute∇ψLV (ψ) via Eq. (38)
8: Update θ ← θ + ηπ∇θJW̃(θ), ψ ← ψ − ηV∇ψLV (ψ) and θ− ← θ
9: end for

Output: Learned policy πθ

In this section, we present the detailed training algorithm for RLHF with Wasserstein Policy
Regularization (WPR). As in conventional RLHF (Ouyang et al., 2022), we iteratively sample
response as yn ∼ πθ−(x,y1:n−1) to get y1:d. Here, πθ− is old policy whose parameters θ−
are periodically updated by that of the current policy, πθ. At each token generation step n, we
adopt Generalized Advantage Estimation (GAE) (Schulman et al., 2016) for penalized reward
R′(x,y1:n) = R(x,y1:n)− βϕ∗yn(x,y1:n−1) in Eq. (15).

Then, the advantage with GAE denoted as Ân at each step n can be expressed as

Ân =
∑
l≥0

(γλ)l δn+l, (35)

where

δn = R′(x,y1:n) + γVψ(x,y1:n)− Vψ(x,y1:n−1). (36)

Here, γ is a discount factor; λ is a hyperparameter for GAE; and Vψ is a value network, which
estimates the discounted cumulative reward or return of given state (x,y1:n), denoted as Ĝn. Thus,
the learning loss for Vψ is defined as

LV (ψ) = Ex∼D

[
N∑
n=1

Eyn∼πθ− (yn|x,y1:n−1)

[
(Vψ(x,y1:n)− Ĝn)2

]]
. (37)

Then, its gradient is expressed as follows.

∇ψLV (ψ) = Ex∼D

[
N∑
n=1

E yn∼πθ− (yn|x,y1:n−1)

[
2
(
Vψ(x,y1:n)− Ĝn

)
∇ψVψ(x,y1:n)

]]
(38)

In RLHF, Vψ and πθ are updated together. By substituting a step-wise penalized reward R′(x,y1:n)

with Ân, Eq. (15) is expressed as

JW̃(θ) = Ex∼D

[
N∑
n=1

Eyn∼πθ− (yn|x,y1:n−1)

[
πθ
πθ−

Ân

]]
+ C. (39)

Here, we denote JW̃(πθ;πθ− , πref) as JW̃(θ) for simplicity and πθ

πθ−
is an importance weight. Then,

the gradient of JW̃ is computed as

∇θJW̃(θ) = Ex∼D

[
N∑
n=1

Eyn∼πθ− (yn|x,y1:n−1)

[
(
πθ
πθ−

Ân)∇θ log πθ
]]
. (40)
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In practice, clipping mechanism for advantage computation (Schulman et al., 2017) is adopted for
Eq. (39) and Vψ(x,y1:n−1) in Eq. (38) is also clipped for a stable training. Algorithm 2 presents
the overall training framework for RLHF with Wasserstein Policy Regularization. In Algorithm 2,
ttrain and Ttrain are the training step and the maximum training step, respectively. At ttrain = 1, current
policy πθ , old policy πθ− , and reference policy πref are all initialized with SFT model. In Line # 8 in
Algorithm 2, we update θ− with updated θ at every training step, and ηπ and ηV are learning rate for
πθ and Vψ , respectively.

C ADDITIONAL EXPERIMENTAL SETTINGS

C.1 DATASETS

TL;DR For the summarization task, the policy is trained to generate concise summaries of Reddit
posts. The dataset includes 93K preference pairs for training and 86K pairs for validation. Training
data is derived from the Reddit TL;DR corpus (Völske et al., 2017). For validation, a subset of data
from CNN/Daily Mail is also used as an out-of-distribution test set. The dataset is downloaded from
Hugging Face.4

HH-RLHF For dialogue generation, we use the Anthropic HH-RLHF dataset (Bai et al., 2022),
where the policy is trained to produce responses that are both helpful and harmless in single-turn
and multi-turn dialogue settings. It comprises 112K preference-labeled instances for training and an
additional 12.5K instances for validation. The dataset can be downloaded from Hugging Face.5

C.2 MODEL TRAINING DETAILS

We follow the experimental setup of Chai et al. (2025), which provides open-source implementations
for RLHF research.6 This implementation is based on the Deepspeed-Chat package (Yao et al.,
2023), and we adopt its configuration as the default setting. Our base model is the pre-trained
Gemma-2B (Team et al., 2024), and we use identical training configurations across all baselines and
our method, varying only the regularization hyperparameters. All baselines and our proposed method,
including the SFT and reward model, are trained under our experimental environment.

Supervised Fine-Tuning (SFT) We split each dataset into three subsets and allocate 20% for
supervised fine-tuning. Prompts are paired with their preferred responses to construct instruction
data. In the TL;DR summarization task, posts are concatenated with their reference summaries, while
dialogue is formatted with a human–assistant chat template. For this stage, we employ the Gemma-2B
model as the backbone. The training configuration specifies a batch size of 512, a learning rate of
5× 10−5, a cosine learning rate scheduler with a warmup ratio of 0.1, and a total of 3 epochs.

Reward Model Training InstructGPT (Ouyang et al., 2022) mitigates distributional mismatch by
fine-tuning the reward model on the same dataset used for SFT. Following this approach, we also
train our reward model on the identical dataset. In this stage, 40% of the data is used for reward
model training. Preference annotations are processed in the same way as in SFT. The reward model is
initialized from the SFT checkpoint. The training configuration specifies a batch size of 64, a learning
rate of 1× 10−5, a cosine learning rate scheduler with a warmup ratio of 0.1, and a single epoch.

Policy Optimization with PPO The remaining 40% of the dataset is used for PPO training. The
policy is initialized from the SFT checkpoint, and the critic is initialized from the reward model.
We use the same SFT and reward model checkpoints for all baselines. The training configuration
uses a batch size of 256, learning rates of 1.5× 10−5 for both the policy and the critic, and runs for
one epoch. We follow the hyperparameters from the original implementation, except that we set the
maximum response length to 256. The hyperparameters are summarized in Table 4.

4https://huggingface.co/datasets/openai/summarize_from_feedback
5https://huggingface.co/datasets/Dahoas/full-hh-rlhf
6https://github.com/ernie-research/MA-RLHF
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Table 4: Hyperparameters for PPO training.

Hyperparameter Value

PPO epochs 1
Rollout 1
Clip ratio 0.2
λ in GAE 0.95
γ in GAE 1
Max prompt length 512
Max response length 256
Warmup steps 200
Temperature 0.8
Top-p 1.0
Top-k 50

Table 5: Policy regularization hyperparameter β
for each method.

Divergence TL;DR HH-RLHF

RKL 0.005 0.001
FKL 0.05 0.0001
JS 0.05 0.01
α (α = 0.5) 0.01 0.05
TV 0.01 0.01
χ2 0.001 0.001

Wasserstein 0.05 0.0005

Table 6: Corresponding functions for each f -divergences.

Divergence f(u)

RKL u log u
FKL − log u
JS u log u− (u+ 1) log(u+1

2 )
α 1

α(α−1) (u
1−α − (1− α)u− α)

TV 1
2 |u− 1|

χ2 (u− 1)2

Policy Regularization For each method, the policy regularization hyperparameter β is
selected via grid search to identify the value at which training remained stable, and
we report the best-performing model. Specifically, we perform a grid search over
{0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}. The resulting β values used for each baseline
are summarized in Table 5. Each f -divergence can be expressed in the form of a penalty on the
reward through its defining function f , and the corresponding functions for each divergence are
summarized in Table 6.

max
πθ

Jf (πθ;πref) (41)

= Ex∼D

[
N∑
n=1

Eyn∼πθ(yn|x,y1:n−1)

[
R(x,y1:n)− β

πref(yn|x,y1:n−1)

πθ(yn|x,y1:n−1)
f

(
πθ(yn|x,y1:n−1)

πref(yn|x,y1:n−1)

)]]
.

For WPR, we define the cost function as the Euclidean distance in the fixed token embedding space
from the SFT model, set λ = 100, and apply truncation hyperparameters k1 = 512 and k2 = 128.
The number of Sinkhorn iterations is set to 10 for TL;DR and 50 for HH-RLHF.

C.3 EVALUATION DETAILS

We adopt GPT-4 win rate, a widely used evaluation metric in recent LLM studies (Zheng et al.,
2023; Chai et al., 2025), as our main evaluation measure. For each comparison, we randomly sample
50 validation instances and generate model responses, repeating this procedure five times. Unless
otherwise noted, the sampling temperature is fixed at 0.5. Then, GPT-4 is asked to perform pairwise
comparisons between model outputs and compute the win rate. We use the gpt-4o-2024-05-13
model for all evaluations. We follow the GPT-4 evaluation prompts provided by Chai et al. (2025),
and for completeness, we include the full prompt below. For TL;DR, we assess relevance, coherence,
consistency, and fluency; while for HH-RLHF we focus on helpfulness. To reduce evaluation bias,
we randomize the order of the responses.
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GPT-4 Evaluation Prompt for TL;DR

You will be given two summaries written for an article. Your task is to pick the better one
between them, based on the four criteria. Please make sure you read and understand these
instructions very carefully.

Relevance - selection of important content from the source. The summary should include
only important information from the source document. Annotators were instructed to
penalize summaries that contained redundancies and excess information.

Coherence - the collective quality of all sentences. We align this dimension with the
DUC quality question of structure and coherence whereby “the summary should be
well-structured and well-organized. The summary should not just be a heap of related
information, but should build from a sentence to a coherent body of information about a topic.”

Consistency - the factual alignment between the summary and the summarized source.
A factually consistent summary contains only statements that are entailed by the source
document. Annotators were also asked to penalize summaries that contained hallucinated
facts.

Fluency - the quality of the summary in terms of grammar, spelling, punctuation, word
choice, and sentence structure.

You should output a single character to indicate which summary you think is better. ‘A’
stands for Summary A and ‘B’ stands for Summary B. If you think both summaries are
equally good, output ‘E’.

Article:
{article}

Summary A:
{summary_a}

Summary B:
{summary_b}

Your Choice (only a single character, you are allowed to think both summaries are equal and
output ‘E’):

GPT-4 Evaluation Prompt for HH-RLHF

For the following query to a chatbot assistant, which response is more helpful?

First provide a one-sentence comparison of the two responses and explain which you feel is
more helpful. Second, on a new line, state only ‘A’ or ‘B’ to indicate which response is more
helpful. If they are equally good or bad, state ‘E’. Your response should use the json format,
with “comparison” and “choice” as keys.

Query: dialogue

Response A: {resp_a}

Response B: {resp_b}

Your Judgment:
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D GENERATED EXAMPLES

We present qualitative comparisons of response generation outputs. Table 7 shows an example from
the TL;DR dataset, where we compare responses generated with reverse KL regularization and
with our proposed Wasserstein Policy Regularization. Similarly, Table 8 provides an example from
the HH-RLHF dataset under the same comparison. These examples illustrate that WPR produces
responses that are better aligned with the underlying prompt compared to RKL.

E LLM USAGE

We used ChatGPT as an assistive tool during the paper writing process, primarily for language
polishing and improving readability. Additionally, we employed GPT-4o API in the experimental
evaluation as an automatic judge to compare model responses and compute win rates, following
established evaluation protocols.

Table 7: Comparison of response generation outputs from the prompt on the TL;DR dataset with
RKL and WPR.

Prompt POST
Subreddit: r/pettyrevenge
I was driving home from work in San Antonio when I noticed this jerk
in a sports car tailgating, honking, flashing lights, and in general being a
major pest. We pulled up to a red light and he gunned it right through the
intersection, somehow managing to not cause a major accident. I fumed for
a bit but figured that was the end of it.

Ten minutes later I pulled into my apartment complex gate (it had
one of those bars that raises and lowers after you put in a code) and there he
was, idling next to it. I don’t know if he was just visiting so didn’t have the
right entry numbers or what, but he was just waiting for someone to come in
so he could slip by on their pass.

I pulled up to the gate, put my code in, and saw him inches from
my bumper waiting to race in behind me. The gate raised up, I went forward,
he followed intently, and I stopped with my rear bumper just barely in front
of where the gate would fall.

He fumed in his front seat while I waved, the gate lowered blocking
him out, and I pulled away happy.
TL;DR:

Responses
RKL (A) 26 year old male tailgating and harassing other motorists in San Antonio, TX

causing minor fender bender when attempting to sneak past gate with illegal
entry pass. Satisfied revenge taken by waving just in front of gate causing
blockage and subsequent departure.

WPR (ours) (B) jerk in sports car tailgating me, gunned it through intersection somehow
avoiding major accident. Pulled into apartment complex gate, saw him idling
next to bar waiting for someone to come in so could slip by on pass. Gate
raised up blocking him out and I pulled away happy.

GPT-4 Judgment B
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Table 8: Comparison of response generation outputs from the prompt on the HH-RLHF dataset with
RKL and WPR.

Prompt Human: I need some assistance writing. See I was adopted years ago, and I
am trying to meet my paternal mother. Can you write a letter asking if it is
possible for us to meet?

Assistant:

Responses
RKL (A) Yes, absolutely! Writing a letter to your biological mother asking for the

opportunity to meet is a great way to initiate the process of connecting with
your birth family. Explain why you want to meet and express your desire to
build a relationship with her. Be respectful and compassionate in your letter,
and make sure to include any relevant details about your upbringing and
relationship history. Once you receive a response, take the time to prepare
for your meeting and make it as positive and meaningful as possible.

WPR (ours) (B) Here is an example letter for requesting a meeting with your biological
mother:

Dear Mother,

I would like to request a meeting to reconnect with you after many
years of separation. I want to finally learn more about my biological family
and connect with the mother who gave me life. Please consider allowing
me to meet with you to discuss our shared past and begin our long-awaited
reunion. Thank you.

GPT-4 Judgment Response B is more helpful because it provides a concrete example of a
letter, which directly addresses the user’s request.

21


	Introduction
	Related Works
	Preliminary
	Wasserstein distance
	Reinforcement Learning from Human Preferences (RLHF)

	Method: Wasserstein Policy Regularization
	RLHF Objective with Wasserstein Policy Regularization
	Computation of Wasserstein Penalty

	Experiments
	Experimental Settings
	Quantitative Results
	Analysis of Wasserstein Policy Regularization

	Conclusion
	Proofs and Derivations
	Derivation of Eq. (12)
	Proof of Proposition 1
	Proof of Theorem 2

	Training Algorithm of RLHF with Wasserstein Policy Regularization
	Additional Experimental Settings
	Datasets
	Model Training Details
	Evaluation Details

	Generated Examples
	LLM Usage

