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Abstract

Pruning neural networks reduces inference time and memory cost, as well as accel-1

erates training when done at initialization. On standard hardware, these benefits2

will be especially prominent if coarse-grained structures, like feature maps, are3

pruned. We devise global saliency-based methods for second-order structured prun-4

ing (SOSP) which include correlations among structures, whereas highest efficiency5

is achieved by saliency approximations using fast Hessian-vector products. We6

achieve state-of-the-art results for various object classification benchmarks, espe-7

cially for large pruning rates highly relevant for resource-constrained applications.8

We showcase that our approach scales to large-scale vision tasks, even though it9

captures correlations across all layers of the network. Further, we highlight two10

outstanding features of our methods. First, to reduce training costs our pruning11

objectives can also be applied at initialization with no or only minor degradation in12

accuracy compared to pruning after pretraining. Second, our structured pruning13

methods allow to reveal architectural bottlenecks, which we remove to further14

increase the accuracy of the networks.15

1 Introduction16

Deep neural networks have consistently grown in size over the last years with increasing performance.17

However, this increase in size leads to slower inference, higher computational requirements and18

higher cost. To reduce the size of the networks without affecting their performance, a large number19

of pruning algorithms have been proposed (e.g., LeCun et al., 1990; Hassibi et al., 1993; Reed, 1993;20

Han et al., 2015; Blalock et al., 2020). Pruning can either be unstructured, i.e. removing individual21

weights, or structured, i.e. removing entire substructures like nodes or channels. Single-shot pruning22

methods, as investigated in this work, usually consist of three steps: 1) training, 2) pruning, 3) another23

training step often referred to as fine-tuning.24

Unstructured pruning can significantly reduce the number of parameters of a neural network with25

only little loss in the accuracy, but the resulting networks often show only a marginal improvement in26

training and inference time, unless specialized hardware is used (He et al., 2017). In contrast, struc-27

tured pruning can directly reduce inference time and even training time when applied at initialization28

(Lee et al., 2018). To exploit these advantages, in this work, we focus on structured pruning.29

Most sensitivity-based pruning methods such as OBD (e.g., LeCun et al., 1990) or C-OBD (Wang30

et al., 2019a) evaluate the effect of removing a single weight or structure on the loss of the neural31

network, while neglecting possible correlations between different structures and within the structures32

themselves. This can significantly harm the estimation of the sensitivities. We take these correlations33

into account by applying efficient second-order estimations that not only consider the diagonal terms34

of the Hessian, but also all off-diagonal terms.35

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



Global pruning removes structure by structure from all available structures of a network until a36

predefined percentage of pruned structures is reached. Recent examples for global structured pruning37

methods are NN Slimming (Liu et al., 2017), C-OBD and EigenGamage (Wang et al., 2019a). Local38

pruning, on the other hand, first subdivides all global structures into subsets (e.g. layers) and removes39

a percentage of structures of each subset. Recent examples for local pruning methods are HRank40

(Lin et al., 2019), CCP (Peng et al., 2019), FPGM (He et al., 2019) and Variational Pruning (Zhao41

et al., 2019). Most local pruning schemes use a predefined layer-wise pruning ratio, which fixes the42

percentage of structures removed per layer. While this approach prevents the layers from collapsing,43

it also reduces some of the degrees of freedom, since some layers may be less important than others.44

Our main goal in this work is to devise a simple and efficient second-order pruning method, which45

considers all global correlations for structured sensitivity pruning. In addition, we want to highlight46

the benefits that such methods may have over other structured global and local pruning schemes.47

Our contributions are as follows:48

• We introduce two novel saliency-based methods for second-order structured pruning (SOSP),49

which consider all correlations across structures and layers. We benchmark our SOSP50

methods against a variety of state-of-the-art pruning methods on several networks and51

datasets and achieve comparable or better results at low computational costs.52

• We show that our pruning methods can also be applied at initialization almost matching the53

performance of pruning after training and significantly reducing the cost of network training.54

• We exploit the structure of the pruning masks found by our SOSP methods to remove55

architectural bottlenecks, which further improves the performance of the pruned networks.56

In this work, we consider layers with disproportionally low pruning ratios architectural57

bottlenecks.58

PyTorch code implementing our method is attached in the Supplementary Material and we will59

publish the code upon acceptance of this manuscript.60

2 SOSP: Second-order structured pruning61

A neural network (NN) maps an input x ∈ Rd to an output fθ(x) ∈ RD, where θ ∈ RP are its62

P parameters. NN training proceeds, after random initialization θ = θ0 of the weights, by mini-63

batch stochastic gradient descent on the empirical loss L(θ) := 1
N

∑N
n=1 ` (fθ(xn), yn), given the64

training dataset {(x1, y1), . . . , (xN , yN )}. In the classification case, y ∈ {1, . . . , D} is a discrete65

ground-truth label and `(fθ(x), y) := − log σ (fθ(x))y the cross-entropy loss, with σ : RD → RD66

the softmax-function. For regression, y ∈ RD and `(fθ(x), y) = 1
2 ‖fθ(x)− y‖

2 is the squared loss.67

Structured pruning aims to remove weights or rather entire structures from a NN fθ with parameters68

θ. A structure can be a filter (channel) in a convolutional layer, a neuron in a fully-connected layer, or69

an entire layer in a parallel architecture. We assume the NN in question has been segmented into70

S structures s = 1, . . . , S, which can potentially be pruned. We define the notation θs ∈ RP as the71

vector whose only nonzero components are those weights from θ that belong to structure s.1 Then, a72

pruning mask is a set M = {s1, . . . , sm} of structures. Applying a mask M to a NN fθ means to73

consider the NN with parameter vector θ\M := θ −
∑
s∈M θs.274

We now develop our pruning methods that incorporate global correlations into their saliency as-75

sessment by efficiently including the second-order loss terms. The first method (SOSP-I) admits a76

direct interpretation in terms of individual loss sensitivities, while the second (SOSP-H) remains very77

efficient for the largest networks due to its Hessian-vector product approximation.78

The basic idea behind both our pruning methods is to select the pruning mask M so as to (approxi-79

mately) minimize the joint effect on the network loss80

λ(M) :=
∣∣L(θ)− L(θ\M )

∣∣
1We require that each weight is assigned to at most one structure. In practice, we associate with each structure

those weights that go into the structure, rather than those that leave it.
2Note, a mask M learned on θ can be applied to a different θ′ 6= θ on the same NN architecture.
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of removing all structures in M , subject to a constraint on the overall pruning ratio. To circumvent81

this exponentially large search space, we approximate the loss up to second order, so that82

λ2(M) =

∣∣∣∣∣∣
∑
s∈M

θTs
dL(θ)
dθ

− 1

2

∑
s,s′∈M

θTs
d2L(θ)
dθ dθT

θs′

∣∣∣∣∣∣ (1)

collapses to single-structure contributions plus pairwise correlations; note that the latter include83

interactions among the weights within a single s = s′, which can be sizeable for large structures.84

The first-order terms λ1(s) := θs · dL(θ)/dθ ∈ RP in (1) are efficient to evaluate by computing the85

gradient dL(θ)/dθ ∈ RP once and then a (sparse) dot product for every s. In contrast to these first-86

order terms, the network Hessian H(θ) := d2L(θ)/dθ2 ∈ RP×P in (1) is prohibitively expensive to87

compute or store in full. We therefore propose two different schemes to efficiently overcome this88

obstacle. Each scheme entails its own way to select the pruning mask. We name the full methods89

SOSP-I (individual sensitivities) and SOSP-H (Hessian-vector product).90

2.1 SOSP-I: Saliency from individual sensitivities91

SOSP-I approximates each individual term θTs H(θ)θs′ in (1) efficiently, as we will show in Eq. (6).92

We can therefore consider a modification of Eq. (1) in which the sensitivity is judged by considering93

all single and pairwise sensitivities individually:94

λI2(M) =
∑
s∈M

∣∣∣∣θTs dL(θ)dθ

∣∣∣∣+ 1

2

∑
s,s′∈M

∣∣θTs H(θ)θs′
∣∣ . (2)

To avoid cancellations between signed contributions, we take absolute values because this measures95

the strengths of the individual sensitivities λ1(s) and pairwise correlations θTs H(θ)θs′ . While96

objectives other than λI2 are equally possible in the method, including λ2 and modifications with the97

absolute value not pulled in all the way, we found empirically that λI2 performs best overall.98

Then, SOSP-I iteratively selects the structures to prune, based on the objective (2): Starting from99

an empty pruning mask M = {}, we iteratively add to M the structure s /∈ M that minimizes the100

overall sensitivity λI2(M ∪ {s}). In practice, the algorithm pre-computes the matrix Q ∈ RS×S ,101

Qs,s′ :=
1

2

∣∣θTs H(θ)θs′
∣∣+ ∣∣∣∣θTs dL(θ)dθ

∣∣∣∣ · δs=s′ , (3)

and selects at each iteration a structure s /∈M to prune by102

argmin
s/∈M

λI2(M ∪ s)− λI2(M) = argmin
s/∈M

(
Qs,s + 2

∑
s′∈M

Qs,s′
)
, (4)

terminating at the desired pruning ratio.103

In order to approximate the Hessian terms θTs H(θ)θs′ efficiently, we omit from H(θ) =104
1
N

∑
n∇2

θ`(fθ(xn), yn) those terms that involve the expensive second-order derivatives∇2
θfθ(xn)105

of the NN outputs, while including second-order couplings due to `. This is equivalent to approx-106

imating H(θ) ≈ H(f linθ ) := 1
N

∑
n∇2

θ`(f
lin
θ (xn), yn) for the linearized fθ′(x) ≈ f linθ′ (x) :=107

fθ(x) + φ(x) · (θ′ − θ) with φ(x) := ∇θfθ(x) ∈ RD×P , which is well motivated by the NTK limit108

(Jacot et al., 2018) for large NNs at both initialization and after training. The terms in the sum become109

∇2
θ`
(
f linθ (xn), yn

)
= φ(xn)

TRnφ(xn), (5)

where Rn ∈ RD×D is diagonal for squared loss, and has an additional rank-1 contribution for110

cross-entropy (see App. B). Similar Hessian approximations were employed before in NNs (Hassibi111

et al., 1993; Wang et al., 2019a; Peng et al., 2019) and also in the Gauss-Newton optimization method112

(Fletcher, 2013). Our final approximation is to use a random subsample of N ′ < N data points:113

θTs H(θ)θs′ ≈
1

N ′

N ′∑
n=1

(φ(xn)θs)
T
Rn (φ(xn)θs′) . (6)

In practice, one pre-computes all (sparse) products φ(xn)θs ∈ RD starting from the efficient gradient114

φ(xn), before aggregating a batch onto the terms θTs H(θ)θs′ . Eq. (6) also has an interpretation as115

output correlations between certain network modifications, without using derivatives (App. C).116
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2.2 SOSP-H: Saliency from Hessian-vector product117

SOSP-H treats the second-order terms in (1) in a way that is motivated by the limit of large pruning118

ratios: At high pruning ratios, the sum
∑
s′∈M θs′ in (1) can be approximated by

∑S
s′=1 θs′ =:119

θstruc (this equals θ if every NN weight belongs to some structure s). The second-order term120 ∑
s,s′∈M θTs H(θ)θs′ ≈

(∑
s∈M θTs

)(
H(θ)θstruc

)
thus becomes tractable since the Hessian-vector121

product H(θ)θstruc is efficiently computable by a variant of the backpropagation algorithm. To122

account for each structure s and for the first- and second-order contributions separately, as above, we123

place absolute value signes in (1) so as to arrive at the final objective λH2 (M) :=
∑
s∈M λH2 (s) with124

λH2 (s) :=

∣∣∣∣θTs dL(θ)dθ

∣∣∣∣+ 1

2

∣∣θTs (H(θ)θstruc
)∣∣ . (7)

The last term measures the correlations between one structure s and all other prunable structures,125

although some of these may cancel unlike for SOSP-I. To minimize λH2 (M), SOSP-H starts from an126

empty pruning mask M = {}, and successively adds to M a structure s /∈M with smallest λH2 (s).127

Unlike the Gauss-Newton approximation in SOSP-I, SOSP-H uses the exact Hessian H(θ), but can128

therefore not account for individual absolute s-s′-correlations, see Eq. (7) vs. (2). Both methods129

reduce to the same first-order pruning method when neglecting the second order (i.e. H(θ) := 0).130

2.3 Computational complexity131

We detail here the computational complexities of our methods (for the experimental evaluation see132

Sec. 3.2). The approximation of Q in (3) requires complexity O (N ′D(F + P )) = O(N ′DF ) for133

computing all φ(xn)θs, where F ≥ P denotes the cost of one forward pass through the network134

(F ≈ P for fully-connected NNs), plus O(N ′DS2) for the sum in (6). This is tractable for modern135

NNs, while including the exact H(θ) would have complexity at least O(N ′DSF ). Once Q has been136

computed, the selection procedure based on (4) has overall complexity O(S3), which is feasible for137

most modern convolutional NNs (Sec. 3.2). The total complexity of the SOSP-I method is thus138

O(N ′DF ) +O(N ′DS2) +O(S3). (8)

SOSP-H has computational complexity O(N ′DF ) to compute the sensitivities (7), which is com-139

parable to computing the sensitivities Q in SOSP-I when the number of structures is low (S2 . F ).140

Together with the sorting of the saliency values λH2 (s), the overall complexity of SOSP-H is thus141

O(N ′DF ) +O(S log(S)). (9)
Due to its weak dependency on S, in practice, SOSP-H efficiently scales to large modern networks142

and may even be used for unstructured second-order pruning, where S = P .143

Both of our methods scale much better than naively including all off-diagonal Hessian terms, which144

is intractable for modern NNs due to its O(N ′DSF ) scaling. Since SOSP-I builds on individual145

absolute sensitivities and the established Gauss-Newton approximation, we use SOSP-I in the146

following in particular to validate the more efficient SOSP-H method.147

3 Results148

To evaluate our methods, we train and prune VGGs (Simonyan & Zisserman, 2014), ResNets (He149

et al., 2016), and DenseNets (Huang et al., 2017) on the Cifar10/100 (Krizhevsky et al., 2009) and150

ImageNet (Deng et al., 2009) datasets. Stochastic gradient descent with an initial learning rate of 0.1,151

a momentum of 0.9 and weight decay of 10−4 is used to train these networks. For ResNet-32/56 and152

VGG-Net on Cifar10/100, we use a batch size of 128, train for 200 epochs and reduce the learning rate153

by a factor of 10 after 120 and 160 epochs. To fine-tune the network after pruning, we exactly repeat154

this learning rate schedule. For DenseNet-40 on Cifar10/100, we train for 300 epochs and reduce155

the learning rate after 150 and 225 epochs. For ResNets on ImageNet, we use a batch size of 256,156

train for 128 epochs and use a cosine learning rate decay. For all networks, we prune feature maps157

(i.e. channels) from all layers except the last fully-connected layer; for ResNets, we also exclude the158

downsampling-path from pruning. We approximate the Hessians by a subsample of size N ′ = 1000159

(see Sec. 2.1). We report the best or average final test accuracy over 3 trials if not noted otherwise.160

The experiments were run on an internal cluster with Nvidia Tesla V100 GPUs. Reproducing the161

results presented in this paper would take about 60 days of GPU run-time.162
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Table 1: Comparison of SOSP to other global pruning methods for high pruning ratios. The compari-
son for moderate pruning ratios is defered to the appendix (see App. A.1). We tuned our pruning
ratios to similar values as reported by the referred methods. To ensure identical implementations of
the network models in PyTorch, reference numbers are taken from Wang et al. (2019a) and (Mingjie
& Zhuang, 2018). In accordance with all referred methods, we report the mean and standard deviation
of the best accuracies observed during fine-tuning. For final accuracies after fine-tuning see App.
A.3. * denotes the baseline model. Both SOSP methods perform either on par or outperform the
competing global pruning methods.

Dataset Cifar10 Cifar100

Method Test acc. Reduct. in Reduct. in Test acc. Reduct. in Reduct. in
(%) weights (%) MACs (%) (%) weights (%) MACs (%)

VGG-Net* 94.18 - - 73.45 - -
NN Slimming 85.01 97.85 97.89 58.69 97.76 94.09
NN Slim. +L1 91.99 97.93 86.00 57.07 97.59 93.86
C-OBD 92.34 ± 0.18 97.68 ± 0.02 77.39 ± 0.36 58.07 ± 0.60 97.97 ± 0.04 77.55 ± 0.25
EigenDamage 92.29 ± 0.21 97.15 ± 0.04 86.51 ± 0.26 65.18 ± 0.10 97.31 ± 0.01 88.63 ± 0.12
SOSP-I (ours) 92.62 ± 0.14 97.79 ± 0.02 83.52 ± 0.29 64.20 ± 0.23 97.83 ± 0.04 87.02 ± 0.20
SOSP-H (ours) 92.71 ± 0.19 97.81 ± 0.01 86.32 ± 0.29 64.59 ± 0.35 97.81 ± 0.01 86.32 ± 0.29
ResNet-32* 95.30 - - 76.8 - -
C-OBD 91.75 ± 0.42 97.30 ± 0.06 93.50 ± 0.37 59.52 ± 0.24 97.74 ± 0.08 94.88 ± 0.08
EigenDamage 93.05 ± 0.23 96.05 ± 0.03 94.74 ± 0.02 65.72 ± 0.04 95.21 ± 0.04 94.62 ± 0.06
SOSP-I (ours) 92.43 ± 0.09 95.47 ± 0.33 94.07 ± 0.66 67.36 ± 0.46 92.69 ± 0.07 95.63 ± 0.13
SOSP-H (ours) 92.23 ± 0.12 95.26 ± 0.10 94.45 ± 0.40 68.42 ± 0.21 94.08 ± 0.21 95.06 ± 0.14
DenseNet-40* 94.58 - - 74.11 - -
NN Slim. + L1 94.22 54.21 - 73.19 54.21 -
SOSP-I (ours) 94.21 ± 0.04 47.00 ± 0.10 36.35 ± 0.12 73.05 ± 0.11 45.22 ± 0.10 42.05 ± 1.16
SOSP-H (ours) 94.23 ± 0.05 49.39 ± 0.65 38.86 ± 0.70 73.05 ± 0.24 48.58 ± 0.22 42.05 ± 0.35
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Figure 1: Comparison of SOSP to local, i.e. layer-wise, pruning methods on Cifar10. The best final
test accuracy is plotted over the effective number of model parameters (a, c) and MACs (b, d). A
tabular representation as well as statistics across trials are shown in App. A.4. SOSP outperforms all
competing layer-wise pruning methods, especially over the number of effective parameters.

3.1 Comparison to Literature163

Here we benchmark the performance of our SOSP methods against existing pruning algorithms on164

different datasets and networks. First, we compare against other recent global pruning methods,165

then against local structured pruning methods, i.e. with pre-specified layer-wise pruning rates. In all166

comparisons we report the achieved test accuracy, the number of parameters of the pruned network167

and the MACs (often referred to as FLOPs). To facilitate direct comparisons, we report test accuracies168

in the same way as the competing methods (e.g. best trial or average over trials), but additionally169

report mean and standard deviation of the test error for our models in App. A. Our count of the170

network parameters and MACs is based on the actual pruned network architecture (cf. App. D), even171

though our saliency measure associates with each structure only the weights into this structure.172

We first compare our SOSP methods with global pruning methods on VGG-Net, ResNet-32 and173

DenseNet-40. We use the same variants and implementations of these networks as used by Neural174

Network Slimming (NN Slimming; Liu et al., 2017) as well as EigenDamage and C-OBD (Wang175

et al., 2019a), e.g. capping the layer-wise ratio of removed structures at 95% for VGGs to prevent176

layer collapse and increasing the width of ResNet-32 by a factor 4. C-OBD is a structured variant of177
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Figure 2: Runtime to calculate the
pruning masks for ResNet-56 on Ci-
far10 over the width of the network
for SOSP-I and SOSP-H. We vary
the width of the network by increas-
ing the width of each layer by a mul-
tiplicative factor.

Table 2: Best final test accuracies and pruning ratios (PR) across
2 trials on ImageNet. For comparison to CCP, we also provide
their alternative MAC count (for details, see App. D). * denotes
SOSP with kernel scaling (see main text). SOSP outperforms
all three competing methods.

Model Top-1% (Gap) Parameters (PR) MACs (PR) Alt. MACs (PR)

ResNet-18 69.76 (0.0) 11.7M (0%) 1.82B (0%) 1.82B (0%)
SOSP (ours) 69.63 (0.13) 7.12M (39%) 1.37B (24%) 1.31B (28%)

FPGM 68.41 (1.87) 7.10M (39%) 1.06B (41%) -
SOSP (ours) 68.78 (0.98) 6.42M (45%) 1.29B (29%) 1.20B (34%)

ResNet-50 76.15 (0.0) 25.5M (0%) 3.85B (0%) 3.85B (0%)
SOSP (ours) 76.56(-0.41) 19.9M(22%) 3.06B(21%) 2.72B(29%)

SOSP* (ours) 76.60 (-0.45) 17.9M (30%) 2.79B (28%) 2.47B (36%)
HRank 74.98 (1.17) 16.2M (36%) 2.30B (44%) -
FPGM 75.59 (0.56) 15.9M (37%) 2.36B (42%) -

SOSP (ours) 75.85 (0.30) 15.4M (40%) 2.44B (27%) 1.97B (49%)
HRank 71.98 (4.17) 13.8M (46%) 1.55B (62%) -
CCP 75.21 (0.94) - - 1.77B (54%)

SOSP* (ours) 75.21 (0.94) 13.0M (49%) 2.13B (45%) 1.68B (56%)
SOSP (ours) 74.39 (1.76) 11.8M (54%) 1.89B (51%) 1.38B (64%)

SOSP* (ours) 73.38 (2.77) 9.9M (61%) 1.58B (59%) 1.10B (72%)

the original OBD algorithm (Hassibi et al., 1993), which neglects all cross-structure correlations that,178

in contrast, SOSP takes into account. The results over three trials for high pruning ratios are shown in179

Tab. 1 and for moderate pruning ratios in App. A.1. To enable the comparison to NN Slimming on180

an already pretrained VGG, we included the results of NN Slimming applied to a baseline network181

obtained without modifications to its initial training, i.e. without L1-regularization on the batch-182

normalization parameters. For moderate pruning rates, all pruning schemes approximately retain the183

baseline performance for VGG-Net and ResNet-32 on Cifar10 and VGG-Net on Cifar100 (see Tab.184

3). The only exception is the accuracy for C-OBD applied to VGG-Net on Cifar100, which drops by185

approximately 1%. For ResNet-32 on Cifar100 the accuracy after pruning is approximately 1% lower186

than the baseline, for all pruning schemes. In the regime of larger pruning ratios of approximately 97%,187

SOSP and EigenDamage significantly outperform NN Slimming and C-OBD. SOSP performs on par188

with EigenDamage, except for ResNet-32 on Cifar100, where SOSP outperforms EigenDamage by189

almost 3%. This result indicates that SOSP outperforms all other methods especially in the regime of190

baseline networks that have relatively few parameters already and on difficult datasets most relevant191

for applications. For DenseNet-40, we achieve similar results compared to NN Slimming. However,192

note that NN Slimming requires the modification of network pretraining.193

Next, we compare our SOSP methods against four recently published local, i.e. layer-wise, pruning194

algorithms: FPGM He et al. (2019), GAL (Lin et al., 2019), CCP (Peng et al., 2019), Variational195

Pruning (VP; Zhao et al., 2019) and HRank (Lin et al., 2020). For ResNet-56, our SOSP methods196

outperform all other methods across all pruning ratios (see Fig. 1a and b). For DenseNet-40, SOSP197

achieves better accuracies when compared over parameters (Fig. 1c) and is on par with the best other198

methods over MACs (Fig. 1d). The reason for this discrepancy is probably that the SOSP objective is199

agnostic to the number of MACs (image size) in each individual structure.200

3.2 Scalability and application to large-scale datasets201

Before going to large datasets, we compare the scalability of our methods SOSP-I and SOSP-H.202

As the preceding section shows, both methods perform basically on par with each other in terms203

of accuracy. This confirms that SOSP-H is not degraded by the approximations leading to the204

efficient Hessian-vector product, or is helped by use of the exact Hessian. In terms of efficiency,205

however, SOSP-H shows clear advantages compared to SOSP-I, for which the algorithm to select the206

structures to be pruned scales with O(S3) (see Sec. 2.3) potentially dominating the overall runtime207

for large-scale networks. Measurements of the actual runtimes show that already for medium-sized208

networks SOSP-H is more efficient than SOSP-I (Fig. 2). Since SOSP-I becomes impractical for209

large-scale networks, for the ImageNet dataset we will only evaluate SOSP-H and refer to it as SOSP.210

On ImageNet, we compare our results to literature for ResNet-18 and ResNet-50, see Tab. 2. Because211

SOSP assesses the sensitivity of each structure independently of the contributed MACs, it has a212

bias towards pruning small-scale structures. This tendency is strongest for ResNet-50, due to its213

1× 1-convolutions. Since these 1× 1-convolutions tend to contribute disproportionately little to the214
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Figure 3: Comparison between pruning after training and at initialization on Cifar10. Both pruning
schemes, train-pruning (a) and init-pruning (b), train the network for the same overall number of
epochs, but generate and apply the pruning masks at different point in times. The average and standard
deviation of the test accuracy across 3 trials is plotted against the number of model parameters for
ResNet-56 (top row; c) and VGG (bottom row; f). For a single trial, in which overall 50% of the
structures are pruned, we visualize the pruning masks of train-pruning and init-pruning by showing
the layer-wise pruning ratios in (d, g) and (e, h), respectively.

overall number of MACs, we devised a scaled variant of SOSP, which divides the saliency of every215

structure by the kernel size (e.g. 1, 3 or 7). Compared to the vanilla SOSP, the scaled variant of SOSP216

is able to remove larger percentages of MACs with similar drops in accuracy (see Tab. 2).217

For both networks SOSP outperforms HRank and FPGM, especially when considering the main218

objective of SOSP, which is to reduce the number of parameters or structures. Since CCP uses a219

different way of calculating the MACs, which leads to consistently higher pruning ratios, we added220

an alternative MAC count to enable a fair comparison (for details, see App. D). Since HRank and221

FPGM do not mention their MAC counting convention, we assume they use the same convention222

as we do. Taking this into account, our scaled SOSP variant is able to prune more MACs than CCP,223

while having the same final accuracy.224

3.3 Pruning at Initialization225

Traditionally, pruning methods are applied to pretrained networks, as also done in the previous226

sections, but recently there has been growing attention on pruning at initialization following the227

works of Lee et al. (2018) and Frankle & Carbin (2018). Since SOSP employs the absolute value of228

the sensitivities, it can also be applied to a randomly initialized network without any modifications.229

Thus, SOSP can also be seen as an efficient second-order generalization of SNIP (Lee et al., 2018;230

van Amersfoort et al., 2020). While EigenDamage can in principle be modified and applied to a231

randomly initialized network, NN Slimming can not be applied at initialization.232

Usually pruning at initialization leads to worse accuracies than pruning after training (Liu et al.,233

2018). However, pruning an already trained network is often followed by fine-tuning effectively234

training the network twice (Fig. 3a). For comparability with pruning at initialization, we unify the235

overall training schedule between these two settings and consequently apply two training cycles after236

pruning the randomly initialized network (Fig. 3b; for further discussion, see App. A.5).237

We observe that applying SOSP at initialization performs almost equally well than applying SOSP238

after training (see ResNet-56 and VGG in Fig. 3c and f, respectively). In conclusion, applying SOSP239

at initialization can significantly reduce the time and resources required for network training with no240

or only minor degradation in accuracy.241

3.4 Identifying & Removing Architectural Bottlenecks242

Even though the previous section highlighted that applying SOSP after training and at initialization243

results in comparable accuracies, the pruning masks differ between these two scenarios (compare Fig.244
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Figure 4: We remove architectural bottlenecks found by SOSP using the expand-pruning scheme
(a) on Cifar10. The width of blocks and layers with low pruning ratios in the train-pruning scheme
(Fig. 3d and g) are expanded by a width multiplier of 2 (c, f). As a baseline, we uniformly expand all
layers in the network by a factor 1.1 (d, g). The layer-wise pruning ratios of the enlarged network
models are shown as bar plots in (c, d, f, g). The average and standard deviation of the test accuracy
across 3 trials are shown over the number of model parameters (b, e). Note that the full ResNet-56
and VGG models have 0.86 · 106 and 20 · 106 parameters, respectively.

3d and g to e and h, resp.). Despite this difference a common feature of all masks is that some layers245

are barely pruned or not pruned at all while others are pruned by up to 80%. This could indicate246

towards architectural bottlenecks. We consider a layer an architectural bottleneck if the respective247

layer has a considerably lower pruning ratio compared to the other layers. The low pruning ratio of248

bottleneck layers indicates that the substructures (e.g. filters) have a high sensitivity. Thus, widening249

these layers could improve the overall performance and allow for even smaller models with higher250

accuracies.251

To utilize this insight we device a procedure that we call expand-pruning. The idea is to first calculate252

the pruning ratios of a trained network and then to identify architectural bottlenecks, i.e. the layers253

with the lowest pruning ratios. Next, we widen these layers by a factor of two, which has been254

empirically shown to work well. Finally, we randomly initialize, train, prune, and fine-tune the255

expanded network (for a schematic, see Fig. 4a). As a naive baseline that we call the widen-pruning256

procedure, we widen all layers in the network with a constant factor instead of widening specific257

layers. We choose the constant factor such that the overall number of parameters matches that of the258

expand-prune procedure (see width multiplier in Fig. 4).259

We evaluate the expand-pruning procedure for ResNet-56 and VGG on Cifar10, for which we expand260

the least pruned of the three main building blocks and the five least pruned layers, respectively (e.g.,261

see width multipliers in Fig. 4c and f selected on the basis of the pruning masks shown in Fig. 3d and262

g, resp.). Note that for ResNet-56 a more fine-grained removal of bottlenecks, e.g. on layer level,263

is not possible without changing the overall ResNet architecture. In summary, a selective removal264

of bottlenecks results in smaller network models with higher accuracy than pruning the vanilla265

network or unselectively increasing the network size (compare expand-pruning to train-pruning and266

widen-pruning in Fig. 4b and e). While in principle any global pruning method could be used for267

the expand-pruning procedure, SOSP is especially suited since it does not require to modify the268

network architecture like EigenDamage and can also be applied at initialization unlike NN Slimming,269

allowing for a similar expand scheme directly at initialization (see App. A.6).270

4 Discussion271

In this work we have demonstrated the effectiveness and scalability of our second-order structured272

pruning algorithms (SOSP). While both algorithms perform similarly well, SOSP-H is more easily273

scalable to large scale networks and datasets. We highlighted two major features of our method. Firstly,274

SOSP can be applied at initialization with only minor degradation in accuracy, which drastically275

reduces the required time and resources for training. Secondly, we showed that the pruning masks276
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found by SOSP can be used to systematically detect and remove architectural bottlenecks, further277

improving the performance of pruned networks.278

Compared to other global pruning methods, SOSP captures correlations between structures by a sim-279

ple, effective and scalable algorithm that neither requires to modify the training nor the architecture of280

the to be pruned network model and achieves comparable or better accuracies on benchmark datasets.281

The C-OBD algorithm (Wang et al., 2019a) is a structured generalization of the original unstructured282

OBD algorithm (LeCun et al., 1990). In contrast to OBD, C-OBD accounts for correlations within283

each structure, but does not capture correlations between different structures within and across layers.284

We show that considering these global correlations consistently improve the performance, especially285

for large pruning ratios (Tab. 1). This observation is further confirmed by an ablation study in which286

we neglect all cross-structure correlations significantly decreasing the performance under otherwise287

identical experimental settings (App. A.2). The objective of EigenDamage (Wang et al., 2019a) to288

include second order correlations is similar to ours, but the approaches are significantly different.289

EigenDamage uses the Fisher-approximation, which is similar to the Gauss-Newton approximation290

used for SOSP-I, and then, in addition to further approximations, apply low rank approximations291

that require the substitution of each layer by a bottleneck-block structure. Our SOSP method is292

simpler, easier to implement and does not require to modify the network architecture, but nevertheless293

performs on par with EigenDamage. The approach of NN Slimming (Liu et al., 2017) is more294

heuristic than SOSP and is easy to implement. However, networks need to be pretrained with L1295

regularization on the batch-normalization parameters, otherwise the performance is severly harmed296

(Tab. 1 and 3). SOSP does not require any modifications to the network training and can be applied297

to any pretrained network. A recent variant of NN Slimming was developed by Zhuang et al. (2020)298

who optimize their hyperparameters to reduce the number of MACs. Using the number MACs as an299

objective for SOSP is left for future studies.300

In addition to the above comparison to other global pruning methods, we also compared our methods301

to simpler local pruning methods that keep the pruning ratios constant for each layer and, consequently,302

scale well to large-scale datasets. The pruning method closest to our SOSP-I method is the one by303

Peng et al. (2019). While both works consider second-order correlations between structures, theirs is304

based on a pruning objective different from our absolute sensitivites in λI2 and considers only intra-305

layer correlations. Furthermore, they employ an auxiliary classifier with a hyperparameter, yielding306

accuracy improvements that are difficult to disentangle from the effect of second-order pruning. Going307

beyond a constant pruning ratio for each layer Su et al. (2020) discovered, for ResNets, that pruning308

at initialization seems to preferentially prune initial layers and thus proposed a pruning scheme based309

on a “keep-ratio” per layer which increases with the depth of the network. Our experiments confirm310

some of the findings of Su et al. (2020), but we also show that the specific network architectures found311

by pruning can drastically vary between different networks and especially between initialization and312

after training (histograms in Fig. 3). While all local pruning methods specify pruning ratios for each313

layer, our method performs automatic selection across layers (histograms in Fig. 3).314

This automatic selection allows us to identify and remove architectural bottlenecks. However, our315

global pruning method has a bias towards pruning small structures, absent from local pruning methods,316

as the size of structures is usually identical within layers. We propose a simple solution by scaling317

each structure by the inverse of the kernel size which helps to remove some of the bias. Alternatively,318

to better reflect the computational costs in real-world applications, each structure could also be319

normalized by the number of its required MACs (like done by van Amersfoort et al., 2020).320

Recently, unstructured (Lee et al., 2018; Wang et al., 2019b; Tanaka et al., 2020) and structured321

(van Amersfoort et al., 2020; Hayou et al., 2021) pruning schemes that are applicable to networks322

at initialization were proposed. While these methods fail to achieve similar accuracies compared to323

pruning after training, our SOSP method in the init-pruning setting achieves accuracies comparable324

to pruning after training.325

In accordance with Elsken et al. (2019), our results suggest that pruning can be used to optimize the326

architectural hyperparameters of established networks (Liu et al., 2018) or super-graphs (Noy et al.,327

2020). Instead of formulating this optimization as a pruning process, we envision our second-order328

sensitivity analysis to be a valuable tool to identify and remove bottlenecks to find good neural329

architectures more quickly. For example, whenever a building block of the neural network cannot330

be compressed, this building block may be considered a bottleneck of the architecture and could be331

inflated to improve the overall trade-off between accuracy and computational cost.332
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