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Abstract

Recent advances in multi-modal representation learning have led to unified em-
bedding spaces that align modalities such as images, text, audio, and vision. How-
ever, human motion sequences, a modality that is fundamental for understanding
dynamic human activities, remains largely unrepresented in these frameworks.
Semantic understanding of actions requires multi-modal grounding: text conveys
descriptive semantics, vision provides visual context, and audio provides environ-
mental cues. To bridge this gap, we propose MotionBind, a novel architecture that
extends the LanguageBind embedding space to incorporate human motion. Motion-
Bind has two major components. The first one is a Multi-Scale Temporal Motion
Transformer (MuTMoT) that maps motion sequences to semantically meaningful
embeddings. Multimodal alignment is achieved via diverse cross-modal supervi-
sion, including motion-text pairs from HumanML3D and KIT-ML, motion-video
pairs rendered from AMASS, and motion-video-audio triplets from AIST++. The
second component is a Retrieval-Augmented Latent diffusion Model (REALM)
that can generate motion sequences conditioned on many modalities. MotionBind
achieves state-of-the-art or competitive performance across motion reconstruction,
cross-modal retrieval, zero-shot action recognition, and text-to-motion generation
benchmarks. The code is available at: |https://github.com/vidal-lab/MotionBind|

1 Introduction

Recent advances in multi-modal representation learning have led to unified embedding spaces
that bridge diverse data modalities. Vision-language models like CLIP [[1] and ALIGN [2]] first
demonstrated that aligning images with natural language enables powerful zero-shot visual recognition
capabilities. Building on this idea, more comprehensive models have emerged to simultaneously
bind multiple modalities. For example, ImageBind [3] aligns six different modalities (images, video,
text, audio, depth, and inertial motion (IMU) data) into a shared embedding space. By training on
naturally co-occurring data (e.g., images with captions or videos with audio), ImageBind [3] can
relate modalities that were never explicitly paired during training, exhibiting “emergent” cross-modal
alignment. Similarly, LanguageBind [4] further generalizes this idea by using language as the central
bind to align multiple modalities via contrastive learning, mapping all inputs into a common semantic
space. This progress underscores the promise of joint embeddings that connect vision, language,
audio, and more to facilitate tasks ranging from cross-modal retrieval to zero-shot recognition.

While prior work [5H8]] has explored learning joint representations between human motion and
language, human motion remains notably absent from general-purpose multi-modal frameworks.
Here, “human motion” refers to the sequence of 3D human poses, which conveys rich information
about human movements that are critical for understanding actions, behaviors, and intent. Integrating
motion into these multi-modal embedding spaces is vital for grounding action semantics in a broader
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Figure 1: Overview of our framework. (a) We align human motion with text, vision, and audio by projecting
modality-specific embeddings (from frozen LanguageBind) and motion embeddings (from MuTMoT) into a
shared space via lightweight adapters and a contrastive learning. (b) REALM enables any-to-motion generation
through a latent diffusion in the MuTMOoT space, using temporal conditioning where learnable frame tokens
attend to conditioning input and reference motion via time-aware cross-attention. Together, these components
form a unified framework for cross-modal retrieval, recognition, and generation.

context. Effective understanding of human actions requires alignment between motion and other
modalities: text conveys descriptions of intent or style, vision (images or video) provides visual cues,
and audio can indicate associated sounds or rhythm (e.g., in a dance). Aligning motion with these
modalities could enable rich semantic motion representations that would be useful for a more holistic
understanding of human motion.

Beyond motion understanding, shared representation spaces have been shown to support “any-to-any”
generation, where a single model can generate data like images conditioned on a wide range of
modalities [9H11]. Extending this paradigm to motion would allow translating visual cues, musical
rhythm, or textual instructions into plausible human motion sequences, opening the door to several
applications, including embodied Al and virtual character animation. However, most prior work on
motion generation has focused primarily on text-to-motion synthesis [8} [12H15]].

In this work, we address these gaps by proposing MotionBind, which aligns human motion with
multi-modal embeddings in a unified space for multi-modal motion understanding and synthesis.
Building on the LanguageBind framework, we extend its modality set to include human motion,
enabling joint reasoning across text, vision, audio, and motion. More specifically, MotionBind makes
the following contributions.

1. We introduce a Multi-Scale Temporal Motion Transformer (MuTMoT) encoder-decoder archi-
tecture designed to encode human motion sequences into semantically meaningful embeddings
aligned with other modalities. The MuTMoT encoder captures motion dynamics at multiple tem-
poral resolutions, producing compact representations that reflect both fine-grained pose transitions
and high-level action semantics. The MuTMoT decoder reconstructs motion from the motion
latent space, enabling both self-supervised learning and downstream generation.

2. We extend LanguageBind with MuTMoT to unify human motion, text, vision, and audio within
a shared embedding space that enables joint cross-modal reasoning and retrieval. The model is
trained on a diverse suite of cross-modal datasets, including HumanML3D [[16] and KIT-ML [17]
for language alignment, AMASS [18] for visual alignment, and AIST++ [[19] for joint visual-audio
alignment.



3. We present a Retrieval-Augmented Latent Diffusion Model (REALM) that can generate mo-
tion sequences conditioned on many modalities by leveraging the multi-modal embeddings of
MuTMoT’s shared latent space. To improve realism and controllability, REALM retrieves a
semantically similar motion from a large database and incorporates it as a reference signal during
generation. The generated latent representation is then decoded by MuTMoT to produce the final
motion sequence.

4. Extensive experiments on motion reconstruction, cross-modal retrieval, zero-shot action recogni-
tion, and text-to-motion synthesis demonstrate that our methods achieve state-of-the-art perfor-
mance across five benchmarks.

2 Related Work

Multi-Modal Representation Learning. Recent advances in multi-modal representation learning
have led to unified embedding spaces that align diverse modalities through large-scale contrastive
training. Early efforts like CLIP [1] and ALIGN [2]] established strong image-text alignment by
training dual encoders on hundreds of millions of (image, text) pairs, enabling zero-shot recognition
and retrieval. Subsequent “foundation” models [20-H22]] expanded to richer visual inputs, including
videos and depth maps. ImageBind [3] extended the paradigm to six modalities (vision, text, audio,
depth, thermal, and IMU) by treating images as the central alignment modality. However, this
image-centric strategy limits semantic grounding for modalities not naturally paired with vision.
LanguageBind [4] addresses this by using a frozen language encoder as the universal anchor and
aligning all other modality encoders to language via contrastive learning, yielding improved zero-shot
performance on tasks requiring semantic understanding. Despite these advances, human motion
remains absent from current multimodal frameworks.

Motion-Language Representation Learning. Parallel to the advances in multi-modal models,
there has been extensive research on learning joint representations of human motion and language.
MotionCLIP [6] introduced a transformer-based motion autoencoder that maps motion sequences
into the CLIP embedding space, leveraging both text and image supervision to inherit CLIP’s
semantic structure and enabling plausible motion generations for text prompts. TM2T [7] proposed
a bidirectional framework that tokenizes motion into discrete units and employs a neural machine
translation model to facilitate reciprocal generation between text and motion, promoting a shared
latent space for both modalities. Building on these foundations, MotionGPT [23]] and its successor
MotionGPT-2 [§]] integrated motion tokens into large language models, creating a unified vocabulary
that allows for diverse motion-language tasks, including generation and captioning, within a single
framework. Despite these developments, existing models primarily focus on text-motion alignment
and often overlook integration with other modalities like audio or vision.

Motion Retrieval and Action Recognition. Recent advancements in human motion understanding
have emphasized the importance of embedding motion data into semantically rich latent spaces to
facilitate tasks such as text-to-motion retrieval and action recognition. Text-to-motion retrieval has
evolved from being a mere evaluation metric in text-to-motion synthesis to a primary objective, with
models like TMR [J3] introducing contrastive learning to align motion and text embeddings effectively.
By extending a generative model (TEMOS [13]), TMR demonstrates that combining contrastive
and reconstruction losses improves retrieval performance on benchmarks such as HumanML3D and
KIT-ML. In parallel, action recognition has benefited from integrating language supervision, as seen
in ActionCLIP [24], which models video-text alignment to enable zero-shot recognition without
additional labeled data. Despite these advancements, existing approaches often focus on a specific
pair of modalities and lack a unified framework that encompasses multiple modalities.

Text-to-Motion Synthesis. Text-to-motion synthesis has evolved from early GAN-based approaches,
such as Text2Action [25]], which generated short and simple actions from natural language, to more
expressive and diverse generative models. Variational methods such as T2M [16]] and TEMOS [13]
modeled probabilistic mappings from text to motion. Autoregressive models [8} 12} [14} 23] intro-
duced discrete motion representations through vector quantization and employed transformer-based
sequence models to generate coherent and compositional motion. More recently, diffusion models
have emerged as state-of-the-art methods. For instance, MDM [26]] and MotionDiffuse [27] adapted
denoising diffusion models to motion synthesis, improving generation fidelity. ReMoDiffuse [[15]]
introduced a retrieval-augmented diffusion that incorporates similar motion samples during denoising,
and MLD [28]] utilized a latent diffusion model to improve efficiency. In our work, we train a



retrieval-augmented latent diffusion model on motion-text pairs but, through alignment with a shared
embedding space, we generalize motion synthesis to inputs from text, image, audio, or video.

3 Methods

In this work, we present MotionBind, which learns a unified embedding space that aligns human
motion with other modalities, specifically text, vision, and audio, to enable cross-modal retrieval,
action recognition, and motion generation. In Section [3.1} we introduce a motion autoencoder
architecture, MuTMoT, that encodes motion sequences into this shared space. In Section[3.2] we
discuss the multi-modal representation learning paradigm. In Section we present REALM,
a retrieval-augmented latent diffusion model capable of synthesizing realistic motion sequences
conditioned on any modality. Together, MuTMoT and REALM form MotionBind, a framework that
unifies multi-modal alignment and generation, enabling applications such as cross-modal retrieval,
zero-shot action recognition, and any-to-motion synthesis from a shared semantic space. We present
the overall architecture of our approach in Figure[I}

3.1 Multi-Scale Temporal Motion Transformer

In this section, we present our Multi-Scale Temporal Motion Transformer (MuTMoT), a transformer-
based hierarchical architecture designed to encode motion sequences into compact embeddings
aligned with a shared multi-modal space, and to decode them back for motion reconstruction or
generation. As illustrated in Figure|lc] it consists of a modular encoder-decoder design, supporting
both representation learning and generation across several motion benchmarks.

3.1.1 Motion Encoding

Dataset-Specific Embedding. Since our approach integrates multiple heterogeneous datasets
(AMASS [18]], HumanML3D [16]], KIT-ML [17], and AIST++ [[19]), the number of joints in the
pose representations varies across datasets. To handle these discrepancies, we use a dataset-specific
embedding module that maps raw motion sequences into a unified representation space. Given a
motion sequence X € RT*%4s where T denotes the sequence length and Cy;, is the dataset-specific
input dimension, we project the motion features to a shared latent space of dimension D. Next, we
prepend a learnable motion embedding token z € R'*? to the motion sequence. To inject temporal
order information, we add sinusoidal positional encodings P € R(T+1*D to the token sequence.

E=X+P, where X ¢« [z;X]eRT+UxD, (1)

Feature-wise Linear Modulation (FiLM). To further accommodate dataset-specific characteristics
and improve generalization, we leverage Feature-wise Linear Modulation (FILM) [29]. FiLM applies
an affine transformation to feature activations, conditioning on the dataset source. Formally, given
the embedding E, FiILM modulation is applied as:

E < v4s ©E + B4s, 2
where 45, Bas € RP are dataset-specific scaling and bias parameters learned during training,

allowing the model to flexibly adapt to dataset-specific distributional differences without disrupting
shared representations. The resulting embedding E is then used as the input to the Encoder blocks.

Hierarchical Encoding Blocks. The MuTMoT encoder is a multi-layer transformer architecture
designed to hierarchically encode motion sequences across multiple temporal scales, capturing both
local and global dependencies. Given the motion embedding E, the encoder processes the sequence
through a series of encoder blocks consisting of transformer encoders interleaved with temporal
downsampling operations. After each encoder block, all tokens except for the first (the learnable
motion embedding token) are passed through a 1D convolutional downsampling layer with kernel
size k = 4, stride s = 2, and padding p = 1. This reduces the temporal resolution by a factor of 2.

Motion Embedding. At each block b, the motion embedding token E(()b) € R1*D is stored, resulting
in a stack of B motion embedding tokens across scales. At the end of the final block, these motion
embedding tokens are fused using a learnable softmax-weighted average:

B
z70%n = 3" B with  a = softmax(w) € RP. A3)
b=1



This fused embedding z™°%°" € RY serves as the motion representation in the shared multimodal
embedding space.

3.1.2 Motion Decoding

Hierarchical Decoding Blocks. The MuTMoT decoder is symmetric to the MuTMoT encoder,
consisting of Decoder blocks that contain transformer encoders followed by temporal upsampling.
Starting from a low-resolution latent sequence (either from the encoder or the latent diffusion model
as discussed in Section [3.3), the decoder progressively restores temporal detail at each block.

Dataset-Specific Head. After the last block, feature-wise linear modulation is again applied to
dataset-specific styles. Finally, the decoded latent sequence is passed through a dataset-specific head,
implemented as a lightweight convolutional stack, to map the shared hidden representation back to
the original motion format. This modular design ensures generalizability and compatibility with
varying motion representations across datasets.

3.2 Multi-Modal Representation Learning

Our goal is to learn a unified multi-modal embedding space that semantically aligns human motion
data with textual, visual, and audio modalities via contrastive learning. As shown in Figure[Ia] we
build on the frozen multi-modal encoders from LanguageBind and extend the modality set by utilizing
MuTMoT for motion encoding. To enable effective alignment between human motion and other
modalities, without forcing motion embeddings to conform directly to the frozen LanguageBind space,
which may lack the capacity to fully capture motion-specific semantics, we introduce lightweight
adapters on both sides. Specifically, given paired motion sequences {X;}¥ ; and corresponding
non-motion inputs {Y;}¥ ;, where each Y; may be text, images, audio or video, we compute motion
and non-motion embeddings as:

2" = fun(emm(X3)), 27" = frp(eLs(Yy)), )
where epy and epp denote the MuTMoT and LanguageBind encoders, and fyy and fpp are
lightweight adapters that project embeddings to a common semantic space.

To align the modalities, we use a contrastive InfoNCE loss [30]], encouraging embeddings from corre-
sponding (positive) pairs to lie closer in the embedding space while pushing apart non-corresponding
(negative) pairs. The contrastive loss Ly, for a given pair (z[°%°", zormot) jg defined as:

exp(s;/7)
+ — )
exp(sj;/7) + D ien; Wi eXP((Sij —m;)/7)
where s;’; and s;; denote the cosine similarities of positive and negative embedding pairs, respectively;

7 is a temperature hyperparameter, \V; denotes the set of negative pairs for sample ¢, w;; is a motion-
length-aware weighting term, and m;; is a dynamic semantic margin. The weighting factor w;;
accounts for differences in motion duration between samples. For a normalized length difference
Ay, we set

Loy = —log &)

ij
(6)

where \ and § are hyperparameters controlling the strength and threshold of the length-based penalty,
respectively. This helps the model better discriminate between motions differing significantly in
temporal dynamics, improving the semantic granularity of the embedding space.

Wi — 1+)\'A§j, ifAij>5
Y1, otherwise,

In addition to temporal penalties, we introduce a semantic margin m;; to modulate the influence of
negative pairs based on the similarity between their associated non-motion inputs. Specifically, the
margin is defined as:

. 1 — cos (eLB(Yi); eL,B (Y])) , if cos (eLB(Yi), eLB(Yj)) <p
0, otherwise,

where p € [0, 1] is a similarity threshold. If two inputs Y; and Y ; are semantically dissimilar in the

LanguageBind embedding space (i.e., below the threshold p), the corresponding motion-modality pair

is penalized more heavily. This encourages the learned motion embeddings to respect the semantic

distinctions already encoded in the pre-trained multi-modal space, improving cross-modal alignment

quality and retrieval discriminability.



3.3 Retrieval-Augmented Latent Diffusion Model for Motion Generation

To generate realistic human motion sequences conditioned on multimodal inputs, we introduce a
Retrieval-Augmented Latent Diffusion Model (REALM). Unlike conventional motion diffusion mod-
els that directly generate raw motion data [15} 26} 27], REALM operates in the compact latent space
defined by the MuTMoT encoder. Specifically, given a conditioning modality (text, video, or audio),
REALM synthesizes motion by performing the diffusion process on latent motion representations,
effectively leveraging the semantic coherence and expressivity of the MuTMoT embedding space.
An overview of the REALM architecture is shown in Figure @} In what follows, we describe the
overall latent diffusion framework and our retrieval-augmented temporal conditioning module.

3.3.1 Latent Diffusion Framework

Let X € RT*Cn and z = ey (X) € REXP denote, respectively, a raw motion sequence and
its corresponding latent embedding obtained from the MuTMoT encoder, where L = T'/4 is the
temporally downsampled frame length. We adopt a standard denoising diffusion probabilistic model
(DDPM [31]) in this latent space. The forward process corrupts the latent zg = z over S steps with
Gaussian noise:

Q(Zs | Zt—l) = N(Zs§ V 1- Bszs—laBSI)a (8)
S

q(z1:5 | 20) = [ [ a(zs | 26-1), ©)

s=1

where [ is a fixed noise schedule. The denoising model learns the reverse process:

Po(zs—1 | 25, ¢) = N(2s—1; po(2s, ¢, 5), Lo (s)), (10

where c is the fused conditioning signal derived from a multi-modal condition yc and a retrieved
reference motion yr (see Section [3.3.3), and s is the current timestep. We use a parameterized
transformer as in [27] to learn pp via a noise prediction objective.

3.3.2 Reference Motion Retrieval

To enhance the generation process, we incorporate a retrieval mechanism that selects semantically
relevant motion sequences from a database. Given a condition embedding z¢ € R” derived from the
multimodal encoder, we first retrieve a set of relevant motion sequences from a large-scale motion
database. Retrieval is performed by measuring cosine similarity between the query embedding and
the embeddings of candidate motions previously encoded by MuTMoT and stored offline:

Zr = arg max sim(zc, Zum), 11
ZMEM
where M represents the set of candidate motion embeddings, and zr, denotes the selected reference
embeddings. These retrieved reference samples provide semantic and structural context for the
diffusion model, enhancing realism and consistency during generation.

3.3.3 Temporal Conditioning with Learnable Frame Tokens

A main contribution of REALM lies in its temporal conditioning module, designed to inject frame-
specific and timestep-adaptive conditioning context into the diffusion process. This module introduces
a set of learnable latent tokens, one for each frame in the latent motion sequence, that dynamically
attend to context throughout the denoising trajectory. Formally, for a latent motion sequence of
length L, we define a set of L learnable temporal tokens y;, € RE*P_ where each token y; € R
corresponds to the ¢-th frame. These tokens are initialized independently and updated at each
denoising step s via a series of cross-attention layers applied to the conditioning context. Let the
conditioning input be denoted by ¢ = [y¢; y r], where y¢ is the embedding of the condition modality
(e.g., text, video, or audio), and y R is the latent representation of a retrieved reference motion. At
each timestep s, the frame tokens y? are updated via a Time-Conditioned Cross-Attention (TCC)
block, resulting in a temporally contextualized conditioning y;, € REXP,

Each TCC block consists of a cross-attention module that infuses contextual information into the
frame tokens, followed by a feedforward network, both modulated by the current timestep embedding



#(s) € RP. Prior to each transformation, both frame tokens and context tokens are normalized using
adaptive layer normalization, which injects the timestep-specific modulation via a learned affine
transformation.

h—u(h
AdALN(h,0(5)) = 9(5)- A4 B9). 1(s),6(6)] = MLP(o(5). (12
The update for frame tokens at timestep s proceeds as follows:
y1 = MHA (AdaLN(y}”, 6(s)), AdaLN(c, 6(s)), AdaLN(c, 6(s)) ) (13)
y7, =i + Dropout(y.), (14)
¥y =y}, + Dropout (MLP(AdaLN(y}, 6(s)))) . (15)

By stacking Ltcc such blocks, the frame tokens evolve to encode temporally localized semantic
cues, adapting their attention to different aspects of the conditioning modality and the retrieved
reference motion as the denoising progresses. This temporal condition mechanism allows REALM to
dynamically integrate multi-modal semantics at each denoising step, resulting in motion generations
that are both contextually grounded and temporally coherent.

3.3.4 Training and Inference

As mentioned above, we follow a standard denoising diffusion probabilistic model (DDPM [31]])
objective in the MuTMoT latent space, predicting the noise added at each timestep and minimizing
the predicted and actual noise. To improve robustness and support flexible conditioning, we adopt the
classifier-free guidance technique [32]. During training, we randomly drop 9% of the conditioning
embeddings for the input modality and 9% of the retrieved motion reference independently. This
encourages the model to learn to generate plausible motion both with and without conditioning input
or reference motion. The diffusion process during training uses 1,000 timesteps to allow fine-grained
and stable learning. However, at inference time, we accelerate sampling by reducing the number of
diffusion steps to 50 using a linear timestep schedule for efficient generation without compromising
motion quality. We apply classifier-free guidance by running two parallel forward passes: one with
full conditioning and reference motion, and one with null conditioning. We then interpolate the output
using a guidance scale that controls the contribution of each output. This encourages the generation
to be loyal to the conditioning input and reference motion and improves the fidelity of the generation
motion as a result. The final denoised latent representation is decoded by the MuTMoT decoder into
a full motion sequence. See Appendix [A.2.2]for more details.

4 Experiments

Experimental Setup. We evaluate our models on four core tasks: motion reconstruction, cross-
modal retrieval, zero-shot action recognition, and text-to-motion synthesis. Training is conducted
using four diverse human motion datasets: (1) AMASS [18} 33H55]], a large-scale motion capture
corpus rendered into synthetic video to create motion-video pairs; (2) HumanML3D [[16] and (3)
KIT-ML [17], both of which provide paired motion and text descriptions covering a wide range of
everyday actions; and (4) AIST++ [[19], a dance-oriented dataset offering synchronized motion, video,
and audio for tri-modal alignment. All four datasets are used to train the MuTMoT encoder-decoder.
The REALM generation model is trained specifically on HumanML3D and KIT-ML.

Motion Reconstruction. We evaluate reconstruction quality using the Fréchet Inception Distance
(FID) and the Mean Per Joint Position Error (MPJPE), which respectively measure the distributional
similarity and the per-frame positional accuracy between reconstructed and ground truth motions. As
shown in Table [T} MuTMoT achieves the lowest FID and MPJPE on both KIT-ML and HumanML3D
test sets, outperforming prior autoencoding approaches such as M2DM, T2M-GPT, and MoMask,
thereby validating the effectiveness of our multi-scale transformer architecture.

Cross-Modal Retrieval. We assess cross-modal retrieval performance on all datasets using Recall
attop-k (R@1, R@2, R@3, R@5) in both directions: modality-to-motion and motion-to-modality.
Table E] shows that MuTMoT outperforms previous models such as TEMOS [13] and TMR [5]],
achieving higher recall across all ranks. This demonstrates the quality of the shared embedding



Table 1: Reconstruction results on KIT-ML and HumanML3D test sets. Lower is better for FID, MPJPE, and
ACCL. + indicates a 95% confidence interval. Bold indicates the best, and underline indicates the second-best.

Method KIT-ML HumanML3D
ctho FID| MPJPE| ACCL|| FID| MPJPE| ACCL |
ACTOR [58] - - - 0.341¥001 653 7.0
MLD-1 [28] - - - 0.247%001 54.4 8.3
T2M-GPT [[4] 0.472+011 - - 0.070:%1 580 -
MotionGPT [8] - - - 0.067%001 55.8 7.5
M2DM [559] 0.413+009 - - 0.063+00!1 - -
MoMask [12] 0.112¢002 372 - 0.019:%! 295 -
MuTMoT (Ours) | 0.0775%! 235 10.8 | 0.031*%" 256 4.7

space in capturing fine-grained semantic correspondence between motion and other modalities. For
AMASS, which lacks an official split, we constructed a 70/30 train-test split for evaluation.

Zero-Shot and Few-Shot Action Recognition. We evaluate MuTMoT on BABEL-60 and BABEL-
120 [56]] under zero-shot, few-shot, and supervised settings. In the zero-shot setting, action labels
are converted into natural language descriptions using GPT-4 [S7] and encoded by the text encoder,
and motion samples are encoded by MuTMoT and compared with these text embeddings via cosine
similarity. In the few-shot setting (N = 10), class prototypes are computed by averaging embeddings
of 10 labeled motions per class, and predictions combine few-shot and zero-shot logits as scores =
&-FS+ (1—-¢)-ZS with £ = 0.7. A supervised linear probe further trains a linear classifier on top of
the frozen MuTMoT embeddings. In cases where a motion sample has multiple ground-truth labels
(as common in BABEL), the prediction is considered correct if any of these labels appears within the
Top-1 or Top-5 results. As shown in Table 3] MuTMoT (N = 0) yields over 50% Top-5 accuracy
in zero-shot classification, while the linear probe matches the performance of a fully supervised
state-of-the-art method. This demonstrates robust language-motion alignment even for fine-grained
or overlapping categories (e.g., walk vs. forward movement).

Text-to-Motion Generation. We evaluate the generative quality of REALM against state-of-the-art
methods using R-Precision, FID, multimodality, and diversity, following HumanML3D and KIT-ML
protocols. As it can be seen in Table[d] MuTMoT achieves competitive performance across all metrics,
while additionally supporting conditioning from non-text modalities such as audio and video.

We also present qualitative examples that illustrate the semantic fidelity, diversity, and modality
flexibility of our model. Figure 2] shows results for the text-to-motion synthesis task. The generated
motions accurately capture the fine-grained semantics of input prompts, such as “a person climbs up
a ladder” and “a man picks up an object using his left hand”, demonstrating smooth transitions and
coherent articulation consistent with natural human movement.

Due to page limits, we have included additional results, ablation studies, more qualitative results, and
architectural and implementation details, in the Appendix.

Altogether, our experiments demonstrate that the proposed methods not only perform strongly on
standard motion-language benchmarks but also extend effectively to broader multi-modal settings,
showing generalization in retrieval, recognition, and generation tasks.

5 Limitations

While our framework demonstrates strong performance across a range of benchmarks and introduces
new capabilities for multi-modal motion generation, several limitations remain. First, although
REALM supports any-to-motion generation by conditioning on embeddings from arbitrary modalities
(e.g., text, image, video, audio), our quantitative evaluation is currently limited to text-conditioned
generation. As such, while qualitative results indicate promising generalization, further work is needed
to robustly assess generation quality across all modalities. Second, our model relies on the assumption
that modality-specific encoders from LanguageBind provide sufficiently expressive representations.
This assumption may not hold in cases where these encoders fail to capture the nuances of the
input, potentially limiting the effectiveness of motion retrieval or generation. Third, the performance



Table 2: Cross-modal retrieval results on HumanML3D (Text), KIT-ML (Text), AMASS (Video), and AIST++
(Video+Audio) test sets. Recall@k metrics are shown for both input-to-motion and motion-to-input retrieval
directions. Bold indicates the best, and underline indicates the second-best.

| Input-to-Motion Retrieval | Motion-to-Input Retrieval
Dataset Method | R@1t R@27 R@3t R@5t MedR| | R@IT R@2f R@3t R@57T MedR|
TEMOS [13] 4049 5352 61.14  70.96 2.33 3996 5349 61.79 7240 2.33
HumanML3D Guoetal. [16] | 5248 71.05 80.65 89.66 1.39 52.00 7121 8L.11  89.87 1.38
TMR [5] 67.16 8132 86.81 9143 1.04 67.97 8120 8635 91.70 1.03
MuTMoT 69.56 85.00 90.45 94.86 1.00 70.65 86.92 9142 96.26 1.00
TEMOS [13] 4388 5825 67.00 74.00 2.06 41.88 55.88 6562 7525 2.25
KIT-ML Guoetal. [16] | 4225 6252 75.12 87.56 1.88 39.75 6275 73.62 86.88 1.95
TMR [5] 49.25 69.75 7825 87.88 1.50 50.12  67.12 76.88  88.88 153
MuTMoT 51.36 7044 79.56  88.83 1.43 50.59 69.62 80.25 89.37 1.47
AMASS MuTMoT | 97.16 99.61 99.77 99.84 1.00 | 96.96 9927 9975  99.89 1.00
AIST++ MuTMoT | 70.00 87.50 90.00 95.00 1.00 | 62.50 82.50 90.00 95.00 1.15

Table 3: Top-1 and Top-5 classification accuracy on BABEL-60 and BABEL-120. MuTMoT (N = 0) denotes
zero-shot classification; MuTMoT (N = 10) combines zero-shot alignment with 10-shot support via prototype-
based classification. MuTMoT (BABEL) is trained using a linear classifier on frozen embeddings. Bold indicates
the best, and underline indicates the second-best in the supervised setting.

Method Training BABEL-60 BABEL-120
Data Top-11t Top-51 | Top-11T Top-51

2s-AGCN [56]160] CE BABEL 41.14 73.18 38.41 70.49
2s-AGCN [56/160] Focal BABEL 3341 67.83 2791 57.96
MotionCLIP [6] BABEL 40.90 57.71 - -

MuTMoT (BABEL) BABEL 42.30 72.40 40.10 70.70
MuTMoT (N = 10) HumanML3D | 28.07 56.89 24.10 49.62
MuTMoT (N = 0) HumanML3D | 21.24 53.48 20.01 51.10

of REALM is influenced by the quality and coverage of the retrieved reference motions. While
retrieval improves realism and control, the absence of semantically relevant references, especially
in out-of-distribution scenarios, may lead to suboptimal or generic outputs. Finally, although we
train on four diverse motion datasets and evaluate on multiple tasks, broader evaluations on diverse
movement types and environmental context remains an important area for future exploration. We
believe addressing these limitations will further enhance the generality, robustness, and applicability
of multi-modal motion models in future works.

6 Conclusion

In this work, we presented MotionBind, a unified framework for integrating human motion into multi-
modal representation learning and generation. Our approach extends the LanguageBind embedding
space to incorporate human motion alongside text, images, audio and video. Central to our framework
is the Multi-Scale Temporal Motion Transformer (MuTMOoT), a transformer-based encoder-decoder
architecture that captures fine-grained and long-range motion dynamics while enabling alignment
with other modalities through lightweight adapters and contrastive learning. To support motion
generation in this shared space, we introduced REALM, a retrieval-augmented latent diffusion model
that operates in the latent space of MuTMoT. REALM conditions on multi-modal embeddings and
semantically retrieved reference motions, and employs a novel temporal conditioning mechanism
with learnable frame-wise tokens to generate realistic, context-aware motion sequences. Extensive
experiments across motion reconstruction, cross-modal retrieval, zero-shot action recognition, and
text-to-motion synthesis demonstrated that our approach achieves state-of-the-art or competitive
performance, while simultaneously enabling “emergent” capabilities such as multi-modal retrieval
and any-to-motion generation.



Table 4: Text-to-motion generation evaluation on the HumanML3D and KIT-ML test sets. &+ indicates a 95%
confidence interval. Bold indicates the best, and underline indicates the second-best.

Dataset Method R@1 1 R@2 1 R@31 | FID| MM Dist | MModality 1
TM2T [7] 0.424%:003 0,618+:003  729%:002 | | 501017 3 467E-011 2 424+.093
T2M [16] 0.455+003  0,636+:003 (07361002 | 10871021 3347+008 2 9jg+.074
MDM [26] - - 0.611F007 | 0,544+044  5566+027 3 799+.072
MLD [28] 0.481%:003  (,673+:008 (7724002 | (473+.013 3 196+010 2 4134079

HumanML3D  MotionDiffuse 0.491+001  (,681+:001  (782%:001 | (630+:001 3 113+001 1.553+:042
T2M-GPT [14] 0.492%003  (,679+:002 (7754002 | ( 141+:005 3 121+:009 1.831+:048

MotionGPT [23] 0.492+003  (,681%:003 (778002 | (232008 3 09a+008 2 pg+-084
ReMoDiffuse [15]  0.510%:095  0.698+006  (,795+:004 | 103+006 2 974+.016 1.795%043

MoMask [12] 0.521+002  ,713+:002 (807002 | (,045+:002  ,958+008 1.241%:040
REALM (Olll‘S) mi.OO:} mi.OOZ mi.otn 0.2041.004 2.980i'008 Mimo
TM2T (7] 0.280%005  (0.463+:006 (0 587+:005 | 3 599+.153 4 501+.026 3 2gp+.081
T2M ﬂm 0.361i'005 0'559j;007 0.681i‘007 3‘022j:.107 3.488i‘028 24052j;107
MDM|[28] - - 0.396+004 | 0497+021  919]+022 1.907+214
MLD 0.390j:.008 0.609i‘008 0.734j:,007 0‘404j:.027 3.204j:027 Miﬂ?l
KIT-ML MotionDiffuse [27] ~ 0.417%:004  0,621+:00¢  ,739£:004 | 1,954£.062 2 958+.005 (730013
T2M-GPT [14] 0.416%006  (,627%:006 () 745%:055 | (514026 3 o7+012 1.570%039
ReMoDiffuse [15]  0.427%:01% 0641+ 014 0.7655006 | 0,155+ 026 2 814+029 1.239+:028
MoMask [12] 0.433+007  (,656+:006  (,781%:005 | 0204+ 011 779+ 022 1.131%:043

REALM (Ours) 0435009 0.661%010  (.785+:008 | 0.264+:010  2,718+029 0.881+:079

Figure 2: Text-to-motion generation results from six different prompts. The generated motions closely follow
the semantics of the input descriptions.

(a) A person walks in a circle. (b) A person does a cartwheel. (c) A person climbs up a ladder.

(e) A man picks up an object using  (f) A person crosses his arms and
(d) Making a left turn. left hand, cleans it and puts it back.  squats down twice.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction clearly state the main contributions.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a dedicated limitations section in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper is primarily empirical and does not present formal theoretical results
or proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides sufficient detail on the model architectures (MuTMoT and
REALM), training procedures, datasets used, evaluation metrics, and experimental setup in
Figure 1, Section 3, and the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: The code is not currently provided, but we intend to release it upon acceptance.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides sufficient training and test details to support the reported
results. Section 4 outlines the basic experimental setup, while additional details are provided
in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars (£) indicating 95% confidence intervals for key
metrics such as FID, R-Precision, and MM Dist across multiple benchmarks (see Tables 1
and 3).

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides details on computing resources, including hardware
specifications and training configurations, in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research aligns with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is foundational research and therefore has no direct societal impact
within the scope of this study.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The models and datasets used in this work do not pose high risks for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original papers that produced code packages or datasets we used in this
work are cited.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The paper describes, in the appendix, the use of GPT-4 for paraphrasing textual
descriptions from HumanML3D and KIT-ML during training, as well as for converting
BABEL action categories into natural language descriptions for zero-shot action recognition.
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Appendix

A Architectural and Implementation Details

In this section, we provide comprehensive details on the architectural and implementation aspects
of our proposed methods, Multi-Scale Temporal Motion Transformer (MuTMoT) and Retrieval-
Augmented Latent Diffusion Model (REALM).

A.1 Dataset Preparation and Preprocessing

As outlined in the main paper, we use four publicly available human motion datasets in our experi-
ments: AMASS [18]], HumanML3D [16], KIT-ML [17]], and AIST++ [19]]. These datasets vary in
motion diversity, sequence length, joint representation formats, and available modality pairs:

* AMASS is a large-scale motion capture dataset aggregated from multiple sources. It is used
to generate synthetic motion-video pairs by rendering 3D motion sequences to RGB videos
using the SMPL mesh.

* HumanML3D and KIT-ML provide natural language descriptions paired with 3D human
motion sequences, making them well-suited for text-to-motion synthesis and cross-modal
retrieval tasks.

* AIST++ consists of synchronized 3D motion, video, and audio data, primarily focused on
dance sequences, enabling tri-modal learning across motion, vision, and music.

To ensure consistency across datasets, all motion data are standardized following the preprocessing
pipeline of HumanML3D. In particular, we convert SMPL pose parameters to a unified 22-joint
skeleton representation, except for KIT-ML, which uses a 21-joint configuration. The root joint of
each sequence is centered at the origin to achieve translation invariance, and the motion is normalized
to maintain consistent orientation and scale. Temporal normalization is also applied: sequences
longer than 196 frames (at 20 FPS) are segmented into fixed-length clips, while shorter sequences are
zero-padded to ensure consistent input dimensionality across the training pipeline.

To augment the textual diversity and improve robustness in cross-modal training, we generate five
paraphrases for each description in HumanML3D and KIT-ML using the GPT-40 model. These
paraphrases are generated in a consistent style with the original annotations and enable improved
generalization in text-to-motion synthesis and retrieval. The prompt used to generate paraphrases is
as follows:

You are a skilled technical writer trained to generate diverse
and natural paraphrases for human action descriptions. Given
a sentence describing a human motion, output 5 distinct
alternative phrasings that preserve the exact human action
description but differ in wording and phrasing. Avoid
redundancy or trivial rewordings. Make sure each paraphrase
is fluent and consistent with the HumanML3D annotation style.

A.2 Model Architectures
A.2.1 Multi-Scale Temporal Motion Transformer (MuTMoT)

MuTMoT is a hierarchical transformer-based encoder-decoder designed to represent human motion
sequences at multiple temporal scales. This section details its four primary modules: (i) Dataset-
specific Embedding, (ii)) MuTMoT Encoder, (iii) MuTMoT Decoder, and (iv) Dataset-specific Output
Head.

Dataset-Specific Embedding. Given the diversity in input dimensionality across datasets, we
standardize input motions into a uniform hidden dimension D = 512. Specifically, an input motion
sequence X € R7*C4 undergoes a dataset-specific 1D convolution with kernel size 3, stride 1,
and padding 1. Subsequently, a learnable motion embedding token z € R'*? is prepended to the
projected sequence, resulting in:

X ¢+ [z;X] € RT+DXD where X < ConvID(X). (16)
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To inject temporal order information, we add sinusoidal positional encodings P € R(T+1)*D to the
token sequence. The resulting embedding is then normalized with LayerNorm (LN) and regularized
with dropout rate of 0.1:

E = Dropout(LN(X)) where X «+ X+ P. (17)

To accommodate dataset-specific distributional differences without compromising shared representa-
tional learning, Feature-wise Linear Modulation (FiLM) [29] is applied:

E < 745 © E + Bys, (18)

where 7,45, B4s € R are dataset-specific scaling and bias parameters learned during training. The
resulting embedding E is then used as the input to the MuTMoT encoder.

Motion Encoding. The MuTMoT encoder comprises B = 3 hierarchical transformer blocks,
designed to capture both fine-grained and long-range temporal dynamics. Each transformer block
includes multi-head self-attention (MHSA) with 4 heads and a feed-forward network (FFN) with an
intermediate dimension of 1024, each wrapped by residual connections and LayerNorm and dropout
regularization (with dropout rate 0.1): Formally, at layer b, the input E() € R(T+1)xD i ypdated as:

EC+) — FEN (LN2 ( A(b))) +A®  where A® = MHSA (LN1 (E(b))> +E®, (19

where E® e R(T»+1DxD denotes embeddings at the b-th layer, and T}, represents the sequence
length at scale b. After each transformer block, all tokens except for the first (the learnable motion
embedding token) are passed through a 1D convolutional downsampling layer with kernel size 4,
stride 2, and padding 1. This reduces the temporal resolution by a factor of 2:

E""7Y + ConvID(EVSY). (20)

The first token, a learnable motion embedding Egb) € R™P is preserved across all blocks to
accumulate global sequence information. At the final block, motion embedding tokens from each
scale are fused via learned softmax-weighted aggregation:

B
Zmotion = Z abE(()b) where « = softmax(w) € R5, 21
b=1

where w € RB are learnable weights. The resulting compact embedding Zy,oion represents the entire
motion sequence within the unified multimodal embedding space.

Motion Decoding. The decoder reconstructs motion sequences from latent embeddings provided by
either the encoder or the latent diffusion model. Mirroring the encoder architecture, the decoder also
contains B = 3 transformer blocks, each composed of MHSA and FFN sub-blocks with residual and
normalization layers:

ZO+H) = FFN (LN, (A®)) + A® where  A®) = MHSA (LN, (2)) +20,  (22)

where Z(®) € RT»*P_ The decoder employs temporal upsampling between layers (except the final
layer) using nearest-neighbor interpolation followed by 1D convolution (kernel size 3, padding 1),
doubling the temporal resolution progressively at each stage until the original sequence length 7' is
recovered:

Z(+Y = ConviD (Upsample (Z(H'l))) . (23)
Dataset-Specific Head. After the decoder reconstructs the motion embeddings at full temporal
resolution, a dataset-specific FILM layer and a convolutional output head map embed the motion

embeddings back to the original dataset-specific dimensions. The output head consists of three
convolutional layers, each with kernel size 3, stride 1, and padding 1, formally expressed as:

X = ConviDy, (Conle (COHVlD (Xd))) and Xy, =+, 0ZE) 1+ B, (24)

where 7/, 3, € RP are learned dataset-specific FILM parameters. The resulting output X recon-
structs the motion sequence in the appropriate format for the original dataset.
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Training Objectives. MuTMOoT is trained using a hybrid objective that combines a reconstruction loss
and a cross-modal contrastive loss to simultaneously enforce input fidelity and semantic alignment. To
ensure that the latent embeddings produced by MuTMoT retain sufficient information to reconstruct
the original motion sequence, we employ a dataset-specific reconstruction loss at the output of
the decoder. Specifically, we use a Smooth L1 loss (also known as Huber loss []) between the
reconstructed motion sequence X and the ground truth motion X. This loss is computed independently
for each dataset d € D based on its skeletal structure, with the joint dimensionality set to 22 for
HumanML3D, AMASS, and AIST++, and 21 for KIT-ML. The loss is applied element-wise across
the joint dimensions and timesteps, and then averaged over the sequence. Formally, the reconstruction
loss is defined as:

T Cgs
1 d

Y — Smoothy 1 (X; i, X, ). 25
- >

The overall reconstruction loss is the sum across all datasets:

Erecon = Z Eg-ilon- (26)

deD

To align motion embeddings with those of other modalities (e.g.text, audio, video), we adopt a
contrastive learning framework based on the InfoNCE loss. This objective encourages paired samples
from different modalities to lie close in the shared embedding space, while unpaired samples are
pushed apart. Specifically, for each motion input X;, we compute an embedding z™" € R via
the MuTMoT encoder egm(-), where D = 512. This embedding is projected to a higher-dimensional
space R76® via a learned linear projection layer:

irinotion _ Wprojzfinolion (27)
where Wi € R7%8. We then apply a lightweight residual-style adapter module to modulate this
embedding while preserving expressivity. The adapter is a two-layer MLP with ReLU non-linearity
and dropout, followed by a residual connection:

iznotion _ fHM(zgnotion) (28)
fram(zMeon) = gmetion L W, (Dropout(ReLU(W))), (29)

7

with W1, Wy € R758%768 and a dropout probability of 0.1. An identical adapter architecture is used
for the frozen LanguageBind modality-specific embeddings, denoted z;"**"".

We optimize the following contrastive loss over a batch of N motion-modality pairs:

n
N Sig

1 exp(T)
£CL = —NZIOg

; (30)
1 st S, Mij
= €Xp | = + ZjeNi Wij €Xp | ———

where s and s,; denote the cosine similarities of positive and negative embedding pairs, respectively;
T is a temperature hyperparameter, \V; denotes the set of negative pairs for sample i. The weighting
factor w;; and margin m;; are adaptive, modulated by motion length differences and inter-modality
semantic similarity as detailed in Section 3.2 of the main paper. In our experiments, we set § = 0.5,
A = 1.0, and p = 0.4. The total training objective is:

[ftolal = £recon + ACL‘CCLa (31)

where A\cp controls the relative weighting of the contrastive objective. In our experiments, we
set Ac. = 1.0. This dual objective enforces that the latent space preserves input fidelity while
semantically aligning the motion with other modalities.

Through these modules, MuTMOoT effectively captures motion dynamics at multiple temporal scales,
producing semantically expressive embeddings that integrate seamlessly into the unified multimodal
embedding space.
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A.2.2 Retrieval-Augmented Latent Diffusion Model (REALM)

REALM is composed of three key components: a latent diffusion transformer, a retrieval mecha-
nism for semantic grounding, and a temporal conditioning module designed to adaptively inject
conditioning signals at each denoising timestep.

Latent Diffusion Transformer. Let z, € RX*? denote the initial motion latent representation,
where L is the sequence length in latent space and D = 512 is the motion embedding dimension
obtained from the MuTMoT encoder. The forward diffusion process is modeled as a Markov chain:

q(Zs | Zt—l) = N(Zs; V 1- ﬁszs—laﬁsI)a (32)
(33)

for s = 1,...,5, with a linear noise schedule 3, € [107*,0.02] and S = 1000 steps during training.
The denoising model py(zs—1 | zs, yf)) predicts the noise added at each step by minimizing the

standard denoising score-matching objective with mean squared error:
Lait = Bago.c | I119(7e 5. 557) — ell?] (34)

where € ~ N(0,1), and S,(LS) denotes the timestep-adaptive conditioning computed by the temporal
attention mechanism. The denoising model is implemented as a 6-layer transformer with latent
dimension D = 512, feedforward layer width of 1024, 4 attention heads, and sinusoidal timestep
embeddings. Dropout with a probability of 0.1 is applied at each transformer block.

To enhance the semantic fidelity of generated motions, REALM adopts a classifier-free guidance
(CFG) mechanism during inference. This technique enables the generation process to go towards more
semantically meaningful outputs by interpolating between conditional and unconditional predictions.

Formally, at each denoising step s, two parallel forward passes are performed through the denoising

network p,: (i) a conditional pass that uses the full condition context y<;‘>, (i1) an unconditional pass
with null conditioning (i.e., the conditioning tokens masked out). These are computed as follows:

€cond = Mg (Z57 S, }A’S))a €uncond = Mg (Z37 S, @) (35)

The final noise prediction is obtained via classifier-free guidance as a linear interpolation between the
two estimates:

6guided = €uncond + W * (Econd - 6uncond)» (36)
where w = 2.75 is the guidance scale used in our experiments determined via grid search.

Reference Motion Retrieval and Temporal Conditioning. For retrieval, we select the top-k = 2
most semantically similar motions from a large reference database using cosine similarity between
conditioning embeddings (from LanguageBind) and precomputed MuTMoT motion embeddings.
These retrieved sequences, along with their global latent representations, are included as reference
signals for generation. To integrate conditioning information throughout the denoising process, we
use a temporal conditioning module composed of learnable frame-wise tokens refined by a stack
of Ltcc = 3 Time-Conditioned Cross-Attention (TCC) blocks. Each TCC block employs 4-head
attention, a feedforward network of width 1024 with SquaredReLU activation, and adaptive layer
normalization modulated by timestep embeddings. Dropout with probability 0.1 is applied after both
attention and MLP layers. The output of the TCC stack is used to condition each step of the diffusion
model, enabling temporally localized semantic grounding from both the retrieved references and the
conditioning modality.

A.3 Computational Resources and Training Configuration

All experiments were conducted using 8 NVIDIA RTX A5000 GPUs (each with 24 GB of memory)
distributed across a single node. Model training and inference were implemented in PyTorch and
MMCY, leveraging mixed-precision training (via PyTorch AMP) and distributed data parallelism
using the NCCL backend for efficiency and scalability. Data loading was parallelized with prefetching,
and all models were trained using synchronized batch normalization across GPUs.

We used the AdamW optimizer with cosine annealing and linear warmup for both MuTMoT and
REALM. Gradient clipping with a maximum norm of 1.0 was applied to stabilize training. For
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MuTMoT, the model was trained for 20 epochs with a batch size of 384 on each GPU, distributed
across GPUs with gradient accumulation to ensure stable optimization. REALM was trained for up to
50 epochs using a 1000-step diffusion schedule during training and a reduced 50-step schedule during
inference. Typical training time for MuTMOoT is approximately 8 hours, while REALM training takes
roughly 5 days to converge. The main training hyperparameters are summarized in Table 5]

Table 5: Training hyperparameters used for MuTMoT and REALM models.

Parameter \ MuTMoT \ REALM
Number of GPUs 8 x RTX A5000 8 x RTX A5000
Batch Size (Each) 384 160
Optimizer AdamW AdamW
Learning Rate 1x1074 2x 1074
Weight Decay 1 x 1072 1x 1072

LR Schedule Cosine w/ Warmup | Cosine w/ Warmup
Gradient Clipping | 1.0 (global norm) 1.0 (global norm)
Epochs 20 50
Diffusion Steps - 1000 (train), 50 (test)

B Additional Experiments and Ablation Studies

B.1 Evaluation Metrics

To assess the effectiveness of our approach across different tasks, we employ a comprehensive set
of evaluation metrics that measure semantic alignment, generation quality, motion reconstruction
fidelity, and diversity. Below, we define the metrics used in our evaluations.

Fréchet Inception Distance (FID). FID measures the distributional difference between generated
and real motion sequences. It computes the Fréchet distance between the Gaussian distributions fitted
to the features, extracted from the official pretrained motion encoders for HumanML3D and KIT-ML
as in [16]], of generated and ground-truth motions:

FID = ||ty — 1|2 + Tr (zg . 2(29&)1/2) , (37)

where (g, 2,) and (41, X,) denote the means and covariances of the generated and real motion fea-
tures, respectively. Lower values indicate closer alignment between generated and real distributions.

Mean Per Joint Position Error (MPJPE). MPJPE evaluates the reconstruction accuracy of the
predicted motion by computing the average L2 distance between predicted and ground-truth 3D joint
positions over all frames and joints:

1 T J
MPJPE:TXJZZ‘

where T is the sequence length and J is the number of joints.

) (38)

Acceleration Consistency Loss (ACCL). ACCL evaluates temporal smoothness by computing the
mean squared difference between predicted and ground-truth accelerations:

T-1

1
Z H(xt-l-l — 2Xt + xt_l)pred - (Xt+1 — 2Xt + Xt_l)gt’|2 . (39)
t=2

ACCL = ——
T-2

R-Precision (Top-K). R-Precision evaluates text-motion alignment. Given one motion sample and
N text candidates (one ground-truth and /N —1 negatives), it computes whether the ground-truth text
appears in the top-K closest matches:

N
1
R@K = Zl I[GT; € Top-K(ranked;)], (40)
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where I is the indicator function and N is the number of queries. N = 32 is used in our experiments
as in the standard evaluations [16]]. MedR reports the median position of the ground-truth match in
the retrieval ranking list. Lower is better, indicating the true match appears closer to the top.

Multimodal Distance (MM-Dist). MM-Dist quantifies the alignment between the embeddings of
the conditioning modality (e.g., text) and the generated motion. It is computed as:

(41)

1 :
MM-Dist = N Z HZ;ext _ Z;notlon H2 ,
i=1

where z! and z™!°" are the embeddings of the text and the generated motion extracted from the

pretrained encoders in [[16]].

Multimodality (MModality). MModality evaluates the intra-conditioning diversity of generated
motions, i.e., how much variation exists among motions generated from the same input (e.g.textual
description). In our text-to-motion setting, we randomly sample C' conditioning texts, and for
each text, we randomly sample two sets of / motion sequences. Let {zﬂj‘i‘ion, e ,z‘c‘:‘}‘io“} and

! [Cnfiﬁon, Y 2‘}&0“} denote the extracted embeddings from the two sets conditioned on the c-th

text. MModality is computed as:

. T
MModality = vl Z Z '

c=1i=1

motion ymotion
Z c,t Z c,1

. (42)
2

The embeddings are extracted using the pretrained encoders from [[16]]. Higher values indicate greater
diversity among outputs conditioned on the same input.

B.2 Ablation Studies

To evaluate the effectiveness of the proposed architectural choices and training objectives, we conduct
a series of ablation studies on both components of our framework: MuTMoT and REALM.

To better understand the contribution of individual components in the MuTMoT architecture, we
conduct a comprehensive set of ablation studies. We evaluate five key aspects: (i) the use of
lightweight adapter modules, (ii) dataset-specific FILM layers, (iii) soft-gated multi-scale fusion
for motion encoding, (iv) variants of contrastive loss, and (v) the impact of augmenting textual
annotations through paraphrasing. All experiments are performed on the HumanML3D dataset using
standard cross-modal retrieval evaluation protocols. Performance is reported in terms of Recall@K
and Median Rank (MedR) for both text-to-motion and motion-to-text directions.

Impact of Textual Paraphrasing. To improve the diversity and generalization of text-based align-
ment, our final model augments each original motion caption with five paraphrased variants generated
using GPT-40. Removing this augmentation leads to a notable performance drop, particularly in
Recall@1 and Recall@2, indicating that paraphrased descriptions enrich the semantic representation
and improve retrieval robustness.

Adapter vs. No Adapter. Removing both the motion and modality-side adapter modules ( fum, fvm)
significantly reduces retrieval performance. This suggests that the adapters are essential in aligning
heterogeneous embeddings across modalities while preserving modality-specific semantics.

FiLM Modulation. The dataset-specific FiLM layers play a critical role in adapting the model to the
distributional shifts among different datasets. Ablating FILM results in a consistent drop in retrieval
scores, validating its importance in generalizing to multi-dataset training setups.

Multi-Scale Fusion Strategy. To capture motion dynamics across varying temporal scales, MuTMoT
aggregates the motion embedding tokens across layers via a softmax-weighted sum. When replaced
with a simple use of the final layer’s embedding token, the performance decreases, confirming the
benefit of hierarchical temporal fusion.

Contrastive Loss Variants. We also evaluate the effectiveness of our contrastive learning design.
While the standard InfoNCE objective provides a strong baseline, we observe measurable improve-
ments by incorporating length-aware weighting and a dynamic semantic margin. The combination of
both yields the best results, demonstrating that these enhancements improve fine-grained semantic
alignment between motion and other modalities.
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Table 6: Ablation study on MuTMoT design variants using text-to-motion and motion-to-text retrieval on
HumanML3D test set. Results are reported as Recall@K and Median Rank. All results are computed on the test
split.

| Input-to-Motion Retrieval | Motion-to-Input Retrieval
Model Variant | R@1T R@2F R@31 R@5T MedR| | R@IT R@2T R@31 R@5! MedR|
Full MuTMoT 69.56  85.00 9045 94.86 1.00 70.65 8692 9142 96.26 1.00
w/o Paraphrasing 62.74 7982 8642 92.10 1.04 63.25 7956 86.57 92.28 1.05
w/o Adapters 62.03 77.67 8492 91091 1.08 60.46 76.27 83.50 90.02 1.11
w/o FiLM 67.29 8334 89.17 92.88 1.01 68.05 8446 89.25 94.02 1.02
Last Embedding Only | 66.07 8145 8795 9333 1.02 61.75 7892 86.27 9296 1.07

Table 7: Ablation study on contrastive loss variants using text-to-motion and motion-to-text retrieval on
HumanML3D test set. Results are reported as Recall@K and Median Rank. All results are computed on the test
split.

\ Text-to-Motion Retrieval \ Motion-to-Text Retrieval
Contrastive Loss Type | R@11  R@2t R@3{ R@5} MedR| | R@I{ R@2} R@31 R@5! MedR|
InfoNCE 67.23 8296 88.59 93.75 1.03 66.18 8292 8856 94.18 1.03
+ length-aware 68.14 8429 8997 9478 1.01 67.92 84.10 90.64 95.87 1.01
+ margin only 68.48  83.61 90.08  94.58 1.02 68.14 83.69 90.02 94.99 1.01
Full MuTMoT 69.56 85.00 90.45 94.86 1.00 70.65 86.92 9142 96.26 1.00

Tables [6]and [7] summarize the retrieval performance across all ablation settings. The consistent gap
between the full MuTMoT model and its ablated variants highlights the complementary value of each
architectural and training component.

B.2.1 REALM Ablations

To assess the contribution of key components in the Retrieval-Augmented Latent Diffusion Model
(REALM), we perform ablation studies on the KIT-ML dataset using the standard text-to-motion
synthesis benchmarks. Specifically, we evaluate the effects of (i) classifier-free guidance (CFG)
and temporal conditioning, (ii) conditioning granularity (frame-wise vs. global token), and (iii)
retrieval-based reference motion conditioning (presence and quality). The results, shown in Tables [§]
and [I0] are reported using R@K (top-K retrieval precision), Frechet Inception Distance (FID),
Multimodal Distance (MM Dist), and Multimodality (MModality).

Conditioning and Guidance. We first analyze conditioning mechanisms and guidance strategies.
Removing CFG slightly decreases retrieval performance (e.g. R@1 drops from 43.5 to 42.4), the more
notable degradation is in generation quality, with FID rising from 0.264 to 0.588. This indicates that
CFG not only improves alignment with text prompts but also stabilizes generation and enhances
realism. Next, we compare Frame-Wise Conditioning (FWC) with a Global Token Conditioning
(GTC). FWC consistently improves all key metrics demonstrating that temporally aligned, fine-
grained conditioning better preserves motion dynamics than a single global token.

Retrieval and Textual Conditioning. We then evaluate the contribution of semantic and structural
conditioning. The inclusion of a reference motion retrieved from a large-scale motion database is
designed to provide semantically relevant structure during denoising. Removing this reference signal
leads to slight degradation in performance across all retrieval and diversity metrics. R@1 drops from
43.5 to 41.9, and MM-Dist slightly increases, confirming the role of retrieval in improving semantic
grounding and synthesis consistency.

To evaluate the importance of explicit textual conditioning, we ablate the text encoder and condition
generation solely on the retrieved reference motion along with its text encoding. This results in a
substantial performance drop across all metrics: R@1 falls to 39.0, FID increases to 0.478, and
MM-Dist rises sharply to 3.065. This highlights that while retrieval helps guide synthesis, semantic
alignment to the text is essential for meaningful generation.

Reference Motion Quality. Finally, we evaluate REALM’s sensitivity to reference motion quality
by varying the retrieval pool size (top-k). Table|10|shows gradual performance degradation as less
relevant references are included, yet REALM remains robust even without any reference motion (No

28



Ref: R@1 =0.419, FID = 0.307). This demonstrates the model’s robustness and the complementary
benefit of retrieval when available.

Together, these results show that frame-wise conditioning and classifier-free guidance jointly improve
realism and alignment, while retrieval conditioning contribute complementary roles in improving
generation fidelity and semantic alignment, and that textual input remains a critical modality for
grounding generated motion as expected.

Table 8: Text-to-motion generation evaluation on the KIT-ML test set. 4 indicates a 95% confidence interval.

Method R@11 R@2 1 R@3t | FID| MM Dist | MModality
REALM 0.4355:009 06615010 07855008 | 02645010 27185029 (.881+079
wlo CEG 0.424+011 0 648+010  (773+.008 | (0 588+.030 9 770+047 (9 g95+-121

w/o Reference Motion  0.419%009  0.655+015 (. 786%:014 | 0.307+011  2.707%023 0.876+023
w/o Text Condition 0.390+:007  0.622+016 (0 748+012 | (0 478+026 3 0g5+-046 1.261+:193

Table 9: Frame-Wise Conditioning (FWC) vs. Global Token Conditioning (GTC) on KIT-ML.
Method R@11 R@2 1 R@3 1 \ FID | MM Dist | MModality

REALM (w/ FWC) 0.435%:009 0661010 (0785+008 | 0 264+010 2 718%029 () 8g1+-079
REALM (w/ GTC)  0.405%004  (.626+010  (744+005 | (325+025 2 995+.030 () 9g6+-213

Table 10: Impact of reference motion quality (retrieval pool size, top-k) on KIT-ML.

Top-k R@11 R@2 1 R@3t | FID| MM Dist | MModality 1
2 0.435%-009 () 661£:010 (0 785+008 | 0264+010  p718+029 () gg]+-079
20 0.419%-007  (,650+:006 (0 775+008 | 282+ 035 5 76p+-038 0.965%-220
50 04115012 (6455017 07735006 | 0286%-018  2.762+:035  (0.940* 256

100 0.410%012  (,639+005 (g 772%:004 | 2g]+011 7 771+.035 1.080+:124
No Ref 0.419%:009 (655+015 (9 786%-014 | o 307%-011 2 7(07+-023 0.876+-023

B.3 Qualitative Results

B.3.1 Comparison on HumanML3D.

Figure[5]presents qualitative comparisons of the results of text-to-motion generation on HumanML3D
for three challenging prompts (as in [23]). Compared to the state-of-the-art methods such as Re-
MoDiffuse, T2M-GPT, and MotionGPT, REALM generates motions that more accurately follow the
describe sequences of actions and maintain spatial and temporal consistency.

B.3.2 Any-to-Motion Generation Results

In Figure[3] we present qualitative examples that highlights the generalization capability of our model
by showcasing motion generation from diverse conditioning modalities, including images and videos,
despite the model being trained only on text-motion pairs. This supports the effectiveness of our
unified multimodal representation.

B.3.3 Failure Case Analysis

While REALM achieves high-quality and semantically aligned motion synthesis, certain artifacts re-
main, reflecting broader challenges in generative motion modeling. Figure []illustrates representative
examples. We categorize the most common failure modes as follows:

1. Floating Feet: feet hover above the ground plane, indicating insufficient ground-contact con-
straints.

2. Abrupt Transitions: sudden pose or velocity changes without proper anticipation/interpolation,
often at motion boundaries.
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Figure 3: Any-to-motion generation results. Each column shows an example. Top row: input modality

(image/video/audio). Bottom row: corresponding generated motion.
h

Input: Image of person swimming Input: Frame from dance video Input: Audio snapshot (boxing)

€ 4 {

Generated: Swimming motion Generated: The moonwalk dance Generated: Boxing motion

Figure 4: Failure case examples. (a) Feet hover above the ground; (b) abrupt pose/velocity changes between
segments; (c) high-frequency joint oscillations; (d) unintended foot sliding; (e) rotations beyond biomechanical
limits; (f) missing object contact or grasp.

b <

(a) Floating Feet (b) Abrupt Transitions (c) Velocity Jitter
(d) Foot Skating (e) Anatomical Violations (f) Lack of Object Interaction

Velocity Jitter: high-frequency oscillations in distal joints (e.g., wrists, ankles).
Foot Skating: unintended sliding of feet during phases that should remain stationary.
Anatomical Violations: rotations beyond biomechanical limits, producing implausible poses.

A

Lack of Object Interaction: motions do not convincingly reflect interactions with implied/visible
objects (e.g., grasp/contact).

These artifacts are not unique to REALM, but are common across all motion synthesis models,
stemming from the inherent difficulty of jointly modeling physical realism, temporal coherence, and
semantic fidelity in unconstrained human motion.
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Figure 5: Comparison of text-to-motion generation results on HumanML3D. Red phrases highlight difficult
parts of the prompt.
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