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ABSTRACT

Optimization problems are fundamental across various fields, including logistics,
machine learning, and bioinformatics, where challenges are often characterized by
complexity, high dimensionality. Modeling the interplay among multiple objec-
tives is beneficial for optimization. However, existing Neural Combinatorial Op-
timization (NCO) methods and Large Language Model (LLM)-based approaches
show limitations in adaptability and computational efficiency, primarily focus-
ing on single-objective optimization. In this paper, we propose a novel frame-
work, Multi-Objective Hierarchical Reflective Evolution (MHRE), for optimizing
and generating heuristics algorithms for a broad range of optimization problems.
Specifically, we extend the optimization space of the conventional hyper-heuristic
methodologies, which allows us to unify similarity algorithms. We successfully
construct Generalized Evolutionary Metaheuristic Algorithm (GEMA) for unify-
ing metaheuristic algorithms. Yielding improved performance in experimental
results. To show the performance of our method, we further applied the MHRE
framework to optimize the Ant Colony Optimization (ACO) algorithm, achiev-
ing state-of-the-art results on random TSP problems and the TSPLib benchmark
datasets. Our findings illustrate that the MLHH framework offers a robust and
innovative solution for tackling complex optimization challenges, paving the way
for future research in this area. For better reproducibility, we open source the code
at https://anonymous.4open.science/r/MHRE-BB53.
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Figure 1: Overview of the Multi-Objective Hierarchical Reflective Evolution (MHRE) framework.
Illustrating its hierarchical structure and how large language models (LLMs) are employed to opti-
mize both sub-functions and architecture functions. The framework integrates Crossover Evolution,
Cooperative Evolution, and Architecture Upgrade. To further standardize and improve optimization
efficiency, we propose the Generation-Standardization-Evaluation-Selection (GSES) cycle.
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1 INTRODUCTION

Optimization problems are fundamental across various fields, including logistics, machine learning,
and bioinformatics, where challenges are often characterized by complexity, high dimensionality,
and conflicting objectives. The rise of Neural Combinatorial Optimization (NCO) has introduced
deep learning techniques into the optimization landscape, allowing models like Pointer Networks
(Vinyals et al., 2015) and Graph Neural Networks (GNNs) (Khalil et al., 2017) to learn heuristics
directly from data. These NCO methods have successfully solved classical NP-hard problems such
as the Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP) (Joshi et al., 2021),
automating the process of heuristic discovery. However, NCO models are computationally expensive
and require domain-specific customization, making them less adaptable to diverse problem types
without significant retraining.

Recently, the emergence of Large Language Models (LLMs), such as GPT-4 (OpenAI, 2023), has
opened new possibilities for optimization. LLMs, with their vast knowledge of heuristic strate-
gies, can generate and refine optimization techniques, positioning them as powerful hyper-heuristic
optimizers. Unlike traditional heuristics that are typically tailored for specific problems, hyper-
heuristics generated by LLMs aim to create or select heuristics applicable across a broad spectrum
of tasks (Burke et al., 2013). This shift from specialized solutions to flexible, general-purpose frame-
works has gained significant attention due to its potential to streamline optimization processes across
various domains. The flexibility of LLMs comes from their pre-training on vast datasets, enabling
them to generate novel strategies without domain-specific fine-tuning. This flexibility minimizes
manual tuning, making LLMs more efficient for solving complex, high-dimensional problems by
dynamically adjusting strategies in real-time.

The existing approaches have leveraged LLMs as solvers or tools to enhance traditional metaheuris-
tics. In the OPRO framework (Yang et al., 2024), LLMs are employed as black-box solvers, while in
ReEvo (Ye et al., 2024), LLMs fine-tune heuristic of metaheuristic to improve performance. These
methods, although promising, primarily focus on single-objective optimization, leaving the potential
of LLMs for solving more complex, multi-objective optimization problems underexplored. Despite
some advancements in expanding the optimization space for metaheuristics, the scope and versatil-
ity of these methods remain limited, particularly when addressing diverse and complex optimization
challenges.

To bridge this gap, we aim to explore the extension of Language Hyper-Heuristics (LHHs) to multi-
objective optimization problems (MOPs). However, directly applying existing LHH frameworks to
multi-objective problems may be unsuitable for several reasons: Firstly, multiple heuristic func-
tions may interact competitively, cooperatively, or hierarchically, and neglecting these dynamics
could lead to suboptimal outcomes. Secondly, changes in one heuristic function can impact the
adaptability of others, potentially degrading overall system performance.

To cope with the above problems, we introduce Multi-Objective Hierarchical Reflective Evolution
(MHRE), a novel framework that extends Language Hyper-Heuristics (LHHs) to multi-objective
optimization problems (MOPs) for enhancing the efficacy of heuristic solving while allowing for the
unification of algorithmic architectures. Thereby broadening the optimization space and augmenting
the effectiveness of heuristic solving. Unlike existing frameworks, MHRE is designed to achieve a
unification of heuristic algorithms, optimizing and generating heuristics that are adaptable across
various types of optimization tasks. MHRE operates by evolving a population of heuristics in a
hierarchical process, leveraging LLMs not only to optimize individual sub-functions but also to
dynamically adjust the overarching architecture of the optimization process.

Our work brings the following contributions:

• Multi-Objective Language Hyper-Heuristics (MLHH): We propose the concept of Multi-
Objective Language Hyper-Heuristics (MLHH), To the best of our knowledge, this is the first
framework that explores the potential of LHHs in solving multi-objective optimization prob-
lems.

• The MHRE Framework: We propose the Multi-Objective Hierarchical Reflective Evolution
(MHRE) framework and demonstrate its efficacy within the Generalized Metaheuristic Frame-
work (GEMA), achieving the goal of ”unifying all species” in optimization.
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• Application to MHRE-ACO: We enhance the Ant Colony Optimization (ACO) algorithm
using the MHRE framework, achieving state-of-the-art results on random TSP problems and
TSPLib benchmark datasets.

• Experimental Validation: Our experiments show that MHRE significantly improves opti-
mization efficiency across diverse multi-objective problems. Specifically, the integration of
Crossover Evolution, Cooperative Evolution, and Architecture Upgrade yields superior perfor-
mance metrics compared to traditional approaches, demonstrating the robustness and scalability
of the MHRE framework in addressing complex optimization challenges.

2 RELATED WORK

2.1 METAHEURISTIC ALGORITHMS AND COMBINATORIAL OPTIMIZATION

Metaheuristic algorithms have become essential for solving complex combinatorial optimization
problems due to their efficiency in exploring vast search spaces. Classic examples include Genetic
Algorithms (GA), Simulated Annealing (SA), Particle Swarm Optimization (PSO), and Ant Colony
Optimization (ACO). ACO, in particular, has demonstrated substantial success in solving NP-hard
problems like the Traveling Salesman Problem (TSP) and the Capacitated Vehicle Routing Problem
(CVRP) by mimicking the foraging behavior of ants in nature. Solutions are built incrementally,
guided by pheromone trails that represent learned information about the search space, which is
updated iteratively based on solution quality (Dorigo & Gambardella, 1996; Kennedy & Eberhart,
1995; Kirkpatrick & Vecchi, 1983). Despite their success, these methods often require substantial
manual tuning, limiting their generalization across diverse tasks (Talbi, 2009). To address these
challenges, more adaptable methods that automate the selection and modification of heuristics have
been developed, yet issues in flexibility and generalization persist (Boussaid et al., 2013; Yang,
2010).

2.2 LARGE LANGUAGE MODELS (LLMS) FOR HEURISTIC ALGORITHM SOLVING

LLMs have emerged as powerful tools not only for text-based tasks but also for solving complex
optimization problems. The OPRO framework, for example, demonstrated the potential of LLMs
as solvers or tools to enhance traditional metaheuristics (Yang et al., 2024). The ReEvo framework
applies LLMs to enhance the performance of traditional metaheuristics such as ACO, PSO, and
GA, unifying them under a single adaptive framework (Ye et al., 2024). By learning from vast
datasets, LLMs can model the structure of optimization problems and predict near-optimal solutions,
bypassing the need for handcrafted heuristics (Bengio et al., 2020). LLMs have also been used
as hyper-heuristics to dynamically adjust the parameters of traditional algorithms, improving their
performance across multiple problem domains (Ye et al., 2024; Durasevic & Jakobovic, 2020). This
approach significantly reduces the need for manual intervention while improving performance on
tasks like TSP and CVRP (Khalil et al., 2017).

2.3 HYPER-HEURISTICS IN COMBINATORIAL OPTIMIZATION

Traditional hyper-heuristics provide a generalized framework for automating the selection or gen-
eration of low-level heuristics, reducing the reliance on expert-designed components (Burke et al.,
2013). However, these methods still often require manually crafted components, which limits their
ability to generalize to novel problems (Sabar et al., 2013). LLMs present a promising solution to
this limitation by learning generalized representations from large-scale data, enabling the automated
design of heuristic rules. Integrating LLMs into hyper-heuristic design allows for greater flexibility
and improved performance without manual tuning (Ye et al., 2024; Yang et al., 2024). This integra-
tion is poised to play a key role in the future of combinatorial optimization, automating algorithm
design while maintaining high efficiency and adaptability.

3 LANGUAGE HYPER-HEURISTICS FOR MULTI-OBJECTIVE OPTIMIZATION

Hyper-heuristics (HHs) are high-level search methodologies that explore a space of heuristics to se-
lect or generate effective strategies for solving underlying optimization problems. In multi-objective
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optimization problems (MOPs), HHs aim to find heuristics that effectively approximate the Pareto
front, thereby optimizing multiple conflicting objectives simultaneously. This dual-level framework
is formally defined as follows:
Definition 1 (Hyper-Heuristic for MOP). Given a multi-objective optimization problem with solu-
tion space S and objective vector function f : S → Rk, a hyper-heuristic searches for an optimal
heuristic h∗ in a heuristic space H that minimizes a meta-objective function F : H → R:

h∗ = arg min
h∈H

F (h),

where
F (h) = Φ (f(Sh)) ,

and Sh ⊆ S is the set of solutions generated by heuristic h, and Φ is a performance indicator
measuring the quality of f(Sh) in approximating the Pareto front.

Traditional HHs are often categorized into heuristic selection and heuristic generation approaches,
relying on manually defined heuristic components or rules. However, these methods may be limited
by the predefined heuristic space H and might not capture the full potential of novel heuristics.

To address these limitations, we introduce Language Hyper-Heuristics with Multi-Objective Hierar-
chical Reflective Evolution (MHRE), a framework that leverages Large Language Models (LLMs) to
generate heuristics within an open-ended heuristic space. MHRE enhances the exploration of com-
plex heuristic spaces by employing a hierarchical and cooperative evolutionary process involving
sub-functions and architecture functions.

3.1 MULTI-OBJECTIVE HIERARCHICAL REFLECTIVE EVOLUTION

The MHRE framework operates by evolving a population of heuristics composed of two distinct
types of functions:

• Sub-functions (F): Specialized functions responsible for specific tasks within the heuristic
algorithm, such as performing local searches or implementing problem-specific operations.

• Architecture Functions (A): High-level functions that integrate information from sub-
functions to make core decisions within the heuristic, handling parameter tuning and adapting
the overall strategy based on feedback from the optimization process.

By structuring heuristics into sub-functions and architecture functions, MHRE enables a hierarchical
and cooperative evolutionary process that explores complex heuristic spaces more effectively than
traditional HHs or LHHs alone.

3.2 FORMAL DEFINITION OF MHRE FOR MOPS

Definition 2 (MHRE for MOP). Given a multi-objective optimization problem with solution space
S and objective vector function f : S → Rk, the MHRE framework searches for an optimal set of
heuristics H∗ ⊆ H , where H consists of combinations of sub-functions ϕ ∈ F and architecture
functions α ∈ A. The goal is to minimize the meta-objective function F : H → R:

H∗ = arg min
H⊆F×A

F (H),

where
F (H) =

1

|H|
∑
h∈H

Φ (f(Sh)) ,

and for each heuristic h = (ϕ, α) ∈ H , Sh ⊆ S is the set of solutions generated by h, and Φ is a
performance indicator that measures how well f(Sh) approximates the Pareto front.

By leveraging LLMs to generate and refine both sub-functions and architecture functions, MHRE
explores a vast and diverse heuristic space, potentially discovering novel and effective heuristics
beyond human-designed components. The hierarchical cooperative evolution in MHRE allows
for complex interactions between heuristic components, enhancing the capability to solve intricate
MOPs effectively.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 LANGUAGE HYPER-HEURISTICS WITH MULTI-OBJECTIVE
HIERARCHICAL REFLECTIVE EVOLUTION

Building upon the concept of Language Hyper-Heuristics (LHHs), we introduce a novel framework
tailored for multi-objective optimization problems (MOPs), termed Multi-Objective Hierarchical
Reflective Evolution (MHRE). Unlike traditional approaches that may focus solely on a single op-
timization problem, MHRE is designed to optimize and generate heuristics applicable to a broad
range of optimization problems. The framework incorporates two distinct types of functions—sub-
functions and architecture functions—and leverages Large Language Models (LLMs) to facilitate a
cooperative evolutionary process aimed at discovering effective heuristics.

4.1 OPTIMIZATION FLOW STEPS

MHRE operates by evolving a population of heuristics, each composed of sub-functions and archi-
tecture functions. The optimization flow of MHRE consists of three main steps, each designed to
enhance different aspects of the heuristic population through cooperative evolution:

Co-evolution of Same-Type Functions In this initial step, functions of the same type undergo
crossover evolution. The hinter LLM analyzes a randomly selected pair of functions—one superior
and one inferior—and provides optimization suggestions based on their differences. These sugges-
tions are then used by the generator LLM to produce new individuals, enhancing the population with
improved function variants.

Co-evolution of Different-Type Functions Next, functions of different types engage in cooper-
ative evolution. The hinter LLM receives a sub-function and an architecture function, and through
relational analysis, it generates optimization suggestions that enhance their interaction. The gener-
ator LLM utilizes these insights to create new functions that better cooperate, leading to heuristics
with improved performance.

Framework Upgrade Finally, the framework undergoes an upgrade based on elite individuals
in the population. The hinter LLM analyzes the top-performing architecture functions, offering
optimization suggestions for refinement. The generator LLM then produces upgraded architecture
functions.

4.2 GENERATION-STANDARDIZATION-EVALUATION-SELECTION (GSES) CYCLE

To systematically refine the heuristic population in each iteration, we employ the Generation-
Standardization-Evaluation-Selection (GSES) cycle in Figure 2. This cycle encompasses four key
steps—generation, standardization, evaluation, and selection—that work together to enhance the
quality and performance of the heuristics within the framework.

Generator
LLM

Formator
LLM

Evaluate

Base function

Initial population Standardized population Scored population

Output

Generation-Standardization-Evaluation-Selection (GSES) Cycle

Offspring population

Elitist

Figure 2: Overview of the Generation-Standardization-Evaluation-Selection (GSES) cycle. This
cycle iteratively refines the heuristic population in the MHRE framework. The generator LLM cre-
ates a new population, which is then standardized by the Formator LLM to correct inconsistencies.
The standardized functions are evaluated, and top-performing ones are selected based on their per-
formance alongside elite individuals. This process ensures continuous improvement in heuristic
quality and effectiveness.
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Table 1: Behavioral Correspondence Among Metaheuristic Algorithms. This table shows the pres-
ence or absence of key behaviors (Local Search, Global Search, Following Behavior, and Mutation
Behavior) across different metaheuristic algorithms. The identified patterns serve as the founda-
tion for the unified optimization approach in the MHRE framework, allowing these behaviors to be
abstracted and generalized for more adaptable and efficient heuristics.

Algorithm Local Search Global Search Following Mutation
AFSA ✓ ✗ ✓ ✗
CSA ✗ ✓ ✗ ✓
FLA ✗ ✗ ✓ ✓
WOA ✗ ✓ ✗ ✗
PSO ✓ ✓ ✓ ✗

Note: The checkmarks (✓) indicate that the algorithm exhibits the corresponding behavior, while crosses (✗)
indicate absence of the behavior.

Each iteration of the evolutionary process follows this consistent procedure to generate offspring
populations. Initially, the generator LLM produces an initial population of heuristic functions. How-
ever, some individuals may be unsuitable for direct use due to issues such as input/output format
discrepancies or inconsistent parameter naming. To address this, we introduce an intermediate step
utilizing a Formator LLM, which standardizes the generated functions by correcting minor flaws.
Severe issues, such as parameter anomalies or data mismatches, lead to the deletion of the affected
individuals, resulting in a standardized population ready for evaluation.

Subsequently, we evaluate the standardized population on a test set to obtain performance scores for
each individual function. Importantly, the score of each function is derived based on its performance
in conjunction with the elite individuals from other function groups, reflecting the cooperative nature
of the heuristic components within the framework. Following evaluation, we rank the individuals
and perform selection to curate a new population with a specified number of individuals. The top-
performing functions are designated as elite individuals, ensuring that their advantageous traits are
preserved for future iterations. This GSES cycle iterates to progressively enhance the overall quality
of the heuristic population, systematically refining the heuristics through generation, standardiza-
tion, evaluation, and selection.

5 EXPERIMENTS

In this section, we assess the effectiveness of the proposed Multi-Objective Hierarchical Reflective
Evolution (MHRE) framework through two sets of experiments. The first experiment focuses on
demonstrating MHRE’s ability to unify and optimize multiple metaheuristic algorithms by iden-
tifying and leveraging common behavioral patterns. The second experiment applies the MHRE
framework specifically to the Ant Colony Optimization (ACO) algorithm, showcasing its potential
to enhance and refine existing optimization techniques. These experiments collectively validate the
framework’s capacity to improve both efficiency and adaptability across diverse optimization prob-
lems.

5.1 UNIFYING METAHEURISTIC ALGORITHMS

Metaheuristic algorithms, such as the Artificial Fish Swarm Algorithm (AFSA), Cuckoo Search
Algorithm (CSA), Frog Leaping Algorithm (FLA), and Whale Optimization Algorithm (WOA), ex-
hibit core similarities in their mechanisms despite differences in agent behavior. These algorithms
focus on exploring solution spaces, optimizing candidates, and converging towards optimal solu-
tions. By analyzing these algorithms, we identified four fundamental behavioral patterns: Local
Search, Global Search, Following Behavior, and Mutation Behavior.

Through iterative reflection, we abstracted these principles into generalized functions that capture
the essence of these behaviors. This abstraction allows us to create a unified optimization approach,
streamlining the design of metaheuristics while improving performance.

6
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Table 2: Performance Comparison of GEMA and Other Metaheuristic Algorithms on Benchmark
Functions. This table compares the performance of GEMA (proposed framework) with traditional
metaheuristic algorithms (AFSA, WOA, CSA, PSO, FLA) across several standard benchmark func-
tions.

Benchmark GEMA(ours) AFSA WOA CSA PSO FLA
Sphere 0.008 1.280 0.000 122.479 4.082 8.299
Rastrigin 0.123 46.996 0.000 365.123 162.679 378.326
Ackley 2.591 2.564 0.000 8.208 2.552 3.782
Griewank 0.007 0.101 0.000 1.030 0.384 0.908
Levy 0.823 1.347 10.679 35.250 5.979 31.279
Schwefel 0.111 12451.214 12451.214 12483.42 1245.099 12551.835
Rosenbrock 0.272 269.036 28.737 88152.181 242.587 1362.773
Michalewicz -6.35 -10.984 -14.373 -7.648 -12.659 -4.092
Zakharov 0.634 6.075 239.083 233.855 21.825 48.269
Alpine 1.27 1.892 0.000 30.382 2.041 20.958

*Note: Results closer to 0 indicate better performance.

• Local Search: This pattern involves focused exploration around a given agent to fine-tune
potential solutions within a local area. For instance, the foraging behavior in AFSA and the
local search mechanisms in PSO (Particle Swarm Optimization) are driven by this principle.

• Global Search: In contrast to local search, global search emphasizes broad exploration across
the entire solution space to avoid premature convergence to suboptimal solutions. This is ex-
emplified by the Lévy flight mechanism in CSA and the global best guidance in PSO.

• Following Behavior: Here, agents adjust their positions by mimicking better-performing indi-
viduals in the population. Examples include the following mechanism in AFSA and the frog
leaping towards better local optima in FLA.

• Mutation Behavior: This behavior introduces randomness to increase diversity and help es-
cape local optima, thereby preventing premature convergence. Random jumps in FLA and the
nest replacement in CSA illustrate this type of behavior.

The MHRE framework encapsulates these common behaviors into generalized sub-functions and
architecture functions. The multi-objective optimization process iteratively refines these functions,
producing robust and adaptable heuristics that are optimized for a wide range of problems. This
approach offers a novel unification strategy, surpassing the limitations of traditional metaheuristic
design by integrating and optimizing common patterns across multiple algorithms.

In this experiment, we conduct a comprehensive evaluation of the proposed Generalized Evolution-
ary Metaheuristic Algorithm (GEMA) across standard benchmark functions. GEMA consistently
outperformed other metaheuristic algorithms, not only in convergence speed but also in adaptability
to high-dimensional search spaces.

Traditional metaheuristics, such as AFSA, WOA, CSA, PSO, and FLA, are limited by their reliance
on specific natural behaviors, restricting their generality across diverse problem domains. GEMA,
on the other hand, introduces a unified evolutionary framework that integrates local and global search
strategies, providing superior performance on both simple and complex benchmark functions.

The results demonstrate GEMA’s strong ability to navigate non-linear, high-dimensional land-
scapes, outperforming traditional algorithms in robustness and convergence. These findings high-
light GEMA’s potential as a generalized optimization method applicable to a wide range of tasks,
significantly extending the scope of metaheuristic applications.

In conclusion, GEMA provides a flexible and robust solution to diverse optimization tasks, address-
ing the long-standing issue of homogeneity in metaheuristic algorithms and paving the way for more
adaptable optimization methods in future research.

5.2 MAIN EXEPRIMENTS

In this section, we evaluate the effectiveness of the proposed Multi-Objective Hierarchical Reflective
Evolution (MHRE) framework through a series of experiments aimed at optimizing Ant Colony

7
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Optimization (ACO) for combinatorial optimization problems (COPs). Specifically, we compare the
performance of the MHRE-ACO algorithm with existing state-of-the-art algorithms across multiple
problem sizes, including instances from the well-known TSPLIB dataset G. Reinelt (1991). These
experiments serve to assess both the scalability and adaptability of the MHRE framework in handling
increasingly complex optimization tasks.

5.2.1 SETUP

Problem
definition

Pheromone
model

Input data Expert knowledge

Update

Solution construction

Pheromone trials Heuristic measures

Problem
definition

Pheromone
model

Input data HeuristicEnv

Update

Solution construction

HeuristicPopu Make decisions

HeuristicPopu HeuristicEnv

MHRE framework

Sub-functions

Make decisions

Architecture Function

ACO MHRE-ACO

Figure 3: Comprehensive Overview of the MHRE-ACO Algorithm: Integrating Multi-Objective
Hierarchical Reflective Evolution to Enhance Ant Colony Optimization for Combinatorial Problems.

To assess the effectiveness of the Multi-Objective Hierarchical Reflective Evolution (MHRE) frame-
work, we conducted experiments focusing on optimizing Ant Colony Optimization (ACO) heuristics
for a variety of combinatorial optimization problems (COPs). Figure ?? illustrates the MHRE-ACO
framework. In this framework, the ACO algorithm is iteratively refined using MHRE’s reflective
evolutionary process. This process enables the dynamic adjustment of search strategies, including
local and global search behaviors, thereby enhancing the overall optimization capabilities of ACO.

The MHRE-ACO algorithm was evaluated in two distinct experimental settings. First, it was tested
on randomly generated TSP instances with varying problem sizes (e.g., TSP with 100, 500, and 1000
cities) to assess its scalability and generalization capabilities across different problem complexities.
In the second phase, the algorithm was applied to a subset of TSPLIB (G. Reinelt, 1991), includ-
ing well-established benchmark instances, to evaluate its optimization performance and compare it
against state-of-the-art algorithms in structured, real-world problem environments.

Key parameters such as population size, number of generations, and the number of function evalua-
tions were kept consistent across all experiments to ensure fairness. Each experiment was repeated
10 times to account for statistical variability, with the average performance across runs being used
for comparison.

5.2.2 RESULTS

The experimental results, first demonstrated in Table 3, highlight the strong performance of the
Multi-Objective Hierarchical Reflective Evolution (MHRE) framework on randomly generated TSP
instances, particularly in larger problem sizes like TSP1000. MHRE-ACO consistently outper-
formed competing algorithms, achieving solutions that closely approached those of the SOTA solver.
This success is largely due to MHRE’s ability to dynamically balance exploration and exploitation
through its reflective evolutionary mechanisms, allowing it to efficiently navigate complex, high-
dimensional solution spaces.

Furthermore, as shown in Table 4, MHRE’s performance on the structured TSPLIB dataset fur-
ther validates its robustness and scalability. The framework consistently achieved higher solution
quality compared to other methods across all tested instances. In larger, more challenging TSPLIB

8
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Table 3: Performance Evaluation of Algorithms on Randomly Generated TSP Instances (TSP20 to
TSP1000), with Partial Data Referenced from AEL (Algorithm Evolution Using Large Language
Models) (Smith et al., 2024).

Problem
Size

SOTA Solver
LKH3

Human
(Greedy)

MHRE+ACO
(ours)

ReEvo
+ACO Constructive AEL

(GPT-4)
20 3.84 4.49 3.64 3.85 5.34 4.07
50 5.69 7.01 5.63 5.76 8.19 6.33

100 7.77 9.84 8.06 8.18 11.3 8.58
500 16.56 20.87 18.09 20.05 22.76 18.67
1000 23.08 28.9 26.21 30.4 31.1 26.03

Table 4: Results on Subsets of TSPLib. The last column represents the optimal solution that has
been found in this task. Each cell shows a function score representing the result of the algorithm op-
timization with a ratio to the optimal score in parentheses. Cells without value indicate unsuccessful
attempts at completing the task.

Task ReEvo+ACO DeepACO
(n=100)

DeepACO
(n=500)

MHRE+ACO
(ours) Optimal

a280 2942 (14.07%) 3160 (22.55%) 3156 (22.39%) 2924 (13.39%) 2579
att48 34984 (4.36%) 34369 (2.53%) 34938 (4.22%) 34046 (1.56%) 33522

att532 97427 (12.34%) 118691 (36.85%) 117044 (34.95%) 97329 (12.22%) 86729
ch130 6528 (6.85%) 6727 (10.09%) 6535 (6.96%) 6377 (4.38%) 6110
ch150 6794 (4.07%) 7078 (8.43%) 7276 (11.45%) 6779 (3.85%) 6528
d1291 58678 (15.5%) 138128 (171.9%) 102817 (102.39%) 55113 (8.49%) 50801
d1655 74098 (19.27%) - - 68619 (10.45%) 62128
d198 17463 (10.66%) 20986 (32.99%) 19166 (21.46%) 15822 (0.27%) 15780
d493 39044 (11.55%) 50834 (45.23%) 46619 (33.19%) 35019 (0.05%) 35002
d657 56346 (15.2%) 76611 (56.63%) 73884 (51.06%) 54101 (10.61%) 48912

eil101 678 (7.72%) 673 (7.02%) 670 (6.49%) 675 (7.29%) 629
eil51 436 (2.27%) 543 (27.37%) 437 (2.49%) 432 (1.36%) 426
eil76 561 (4.31%) 562 (4.45%) 567 (5.33%) 556 (3.41%) 538

fl1400 24719 (22.81%) - 99209 (392.92%) 23684 (17.67%) 20127
fl1577 25785 (15.89%) - 71870 (223.03%) 24795 (11.44%) 22249
fl417 13671 (15.26%) 51267 (332.23%) 25164 (112.16%) 13794 (16.3%) 11861

gil262 2608 (9.66%) 2663 (11.97%) 2727 (14.66%) 2613 (9.88%) 2378
kroA100 22709 (6.7%) 24433 (14.81%) 24792 (16.49%) 22575 (6.07%) 21282
kroA150 29158 (9.93%) 30916 (16.56%) 31458 (18.6%) 28917 (9.02%) 26524
kroA200 32482 (10.6%) 35260 (20.06%) 35208 (19.89%) 31590 (7.56%) 29368
kroB100 23571 (6.46%) 24412 (10.26%) 24846 (12.22%) 22779 (2.88%) 22141
kroB150 29209 (11.78%) 30327 (16.06%) 30482 (16.65%) 29048 (11.17%) 26130
kroB200 33181 (12.72%) 35291 (19.89%) 34733 (17.99%) 32049 (8.87%) 29437
kroC100 22082 (6.42%) 23684 (14.14%) 24784 (19.44%) 21800 (5.06%) 20749
kroD100 22615 (6.2%) 23803 (11.78%) 23917 (12.32%) 22481 (5.57%) 21294
vm1084 284951 (19.08%) 905479 (278.39%) 532173 (122.39%) 281503 (17.64%) 239297

problems, MHRE’s adaptability and refined search processes were key factors in its superior per-
formance, allowing it to closely approximate optimal solutions while maintaining computational
efficiency.

The scalability of MHRE was another notable advantage. As the problem size increased, MHRE
maintained its efficiency, consistently converging to high-quality solutions. In contrast, ReEvo,
while effective in smaller instances, showed a noticeable decline in both efficiency and solution
quality as the complexity of the problem grew. MHRE’s hierarchical and reflective evolutionary
processes allowed it to handle the increased complexity with minimal performance degradation.

As shown in Table 3, MHRE+ACO consistently delivered superior performance compared to other
approaches, including ReEvo+ACO and human-designed greedy algorithms. Particularly in larger
problem sizes like TSP1000, MHRE+ACO maintained efficiency and scalability, offering improved
convergence over traditional methods.
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Figure 4: Convergence Curve Comparison over Iterations. The MHRE+ACO algorithm consistently
converges faster to near-optimal solutions across all problem sizes.

Figure 4 further illustrates the rapid convergence of MHRE+ACO compared to other algorithms.
MHRE’s adaptive mechanisms enabled it to efficiently navigate the solution space, reaching optimal
solutions with fewer iterations. This improved convergence is particularly evident in larger instances
such as TSP1000, where MHRE+ACO consistently demonstrated faster and more stable results.

5.3 ABLATION STUDY

We conduct extra experiments on the utility of different components in MHRE. The experiments
show that Crossover Evolution provides a foundational optimization mechanism, the integration
of Cooperative Evolution and Architecture Upgrade substantially boosts the model’s performance.
Details are presented in Appendix A.

6 CONCLUSION

In this work, we introduced the Multi-Objective Language Hyper-Heuristics (MLHH) framework,
which significantly advances the field of multi-objective optimization. Our contributions include
the proposal of the MHRE framework, which successfully integrates and optimizes multiple meta-
heuristic algorithms, demonstrating the effectiveness of unifying different optimization strategies.

Through comprehensive ablation experiments, we validated the individual and combined impacts of
the three key components: Crossover Evolution, Cooperative Evolution, and Architecture Upgrade.
The results indicated that while Crossover Evolution provides a solid foundation for optimization,
the addition of Cooperative Evolution markedly enhances the efficiency of weaker functions, espe-
cially when dealing with inconsistent performance. Furthermore, the Architecture Upgrade compo-
nent allows for further improvements in the model’s upper-performance limits.

Overall, the MLHH framework not only offers an innovative approach to tackling multi-objective
optimization problems but also sets the stage for future research to explore the potential of combin-
ing various heuristic strategies for improved algorithmic performance.
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A DETAILS OF ABLATION STUDY ON COMPONENTS’ UTILITY

To evaluate the contributions of the three main components of our model (i.e., Crossover Evolution,
Cooperative Evolution, and Architecture Upgrade), we conducted a series of experiments on TSP.
We recorded data from three distinct experimental setups: using only Crossover Evolution, combin-
ing Crossover Evolution with Cooperative Evolution, and employing all three components together.
The results are shown in Table 5.

Table 5: Performance Evaluation of MHRE with Different Components

Method TSP20 TSP50 TSP100 TSP500 TSP1000
Only Crossover 3.76 5.88 8.41 19.12 28.45
w/ Cooperative 3.76 5.75 8.19 18.61 26.88

Full MHRE 3.64 5.63 8.06 18.09 26.71

The first experiment focused solely on Crossover Evolution, which facilitates the crossover of heuris-
tics among similar functions. The second experiment incorporated Cooperative Evolution, allowing
for the combination of dissimilar functions. The results indicated that when the performance of the
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functions was inconsistent, Cooperative Evolution significantly enhanced the optimization efficiency
of the weaker function objectives compared to Crossover Evolution alone.

Furthermore, we introduced the Architecture Upgrade component in the third experiment, which
yielded an additional improvement in the upper performance limits of the model. The incorporation
of this component demonstrates the synergistic effect of combining all three elements, leading to
superior overall results.

In summary, the experiments illustrate that while Crossover Evolution provides a foundational op-
timization mechanism, the integration of Cooperative Evolution and Architecture Upgrade substan-
tially boosts the model’s performance, particularly in scenarios where function performance varies
significantly.

B GEMA EXPERIMENT: ARCHITECTURE AND SUB-FUNCTIONS

This section presents the architecture function and four sub-functions used in GEMA. We provide
the initial prompt for each function and the corresponding seed function that was used.

B.1 ARCHITECTURE FUNCTION: UPDATE POSITION

Design an architecture function named update_position that balances local search, global search, mutation,
and following behavior to optimize the individual’s position.

Listing 1: System prompt for architecture function (update position).

import numpy as np
from mutate import mutate
from follow import follow
from global_search import global_search
from local_search import local_search

def update_position(self, individual):
local_step = 0.5
local_prob = 0.3
global_step = 0.5
global_prob = 0.4
follow_prob = 0.2
mutation_prob = 0.1
mutation_step = 0.6
alpha = 0.6
beta = 0.5

r = np.random.rand()

if r < local_prob:
local_search(individual, local_step, self.lower_bound, self.upper_bound, self.dim)

elif r < local_prob + global_prob:
global_search(individual, global_step, alpha, beta, self.best_individual, self.lower_bound,

self.upper_bound)

elif r < local_prob + global_prob + follow_prob:
follow(individual, beta, self.population, self.lower_bound, self.upper_bound)

elif r < local_prob + global_prob + follow_prob + mutation_prob:
mutate(individual, mutation_step, self.lower_bound, self.upper_bound, self.dim)

Listing 2: Seed function for update position.

B.2 SUB-FUNCTION: FOLLOW

Design a follow function that adjusts the position of an individual by following another, more successful
individual in the population.

Listing 3: System prompt for follow function.

import numpy as np

def follow(individual: dict, beta: float, population: list, lower_bound: float, upper_bound: float) -> None:
chosen_individual = np.random.choice(population)
direction = chosen_individual[’position’] - individual[’position’]
norm = np.linalg.norm(direction)
if norm > 1e-8:

12
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step = beta * direction / norm
new_position = individual[’position’] + step
individual[’position’] = np.clip(new_position, lower_bound, upper_bound)

Listing 4: Seed function for follow.

B.3 SUB-FUNCTION: MUTATE

Design a mutate function that introduces random variations in an individual’s position to promote exploration
and prevent premature convergence.

Listing 5: System prompt for mutate function.

import numpy as np

def mutate(individual: dict, mutation_step: float, lower_bound: float, upper_bound: float, dim: int) -> None:
mutation = mutation_step * np.random.uniform(-1, 1, dim)
individual[’position’] = np.clip(individual[’position’] + mutation, lower_bound, upper_bound)

Listing 6: Seed function for mutate.

B.4 SUB-FUNCTION: GLOBAL SEARCH

Design a global search function that moves an individual towards the best-known solution in the population.

Listing 7: System prompt for global search function.

import numpy as np

def global_search(individual: dict, global_step: float, alpha: float, beta: float, best_individual_position:
np.array, lower_bound: float, upper_bound: float) -> None:

global_best_position = best_individual_position
if global_best_position is not None:

direction = global_best_position - individual[’position’]
norm = np.linalg.norm(direction)
if norm > 1e-8:

step = global_step * alpha * direction / norm
new_position = individual[’position’] + step
individual[’position’] = np.clip(new_position, lower_bound, upper_bound)

Listing 8: Seed function for global search.

B.5 SUB-FUNCTION: LOCAL SEARCH

Design a local search function that fine-tunes an individual’s position by exploring its neighborhood to
improve solution quality.

Listing 9: System prompt for local search function.

import numpy as np

def local_search(individual: dict, local_step: float, lower_bound: float, upper_bound: float, dim: int) ->
None:

step = local_step * np.random.uniform(-1, 1, dim)
new_position = individual[’position’] + step
individual[’position’] = np.clip(new_position, lower_bound, upper_bound)

Listing 10: Seed function for local search.

C MHRE-ACO EXPERIMENT: ARCHITECTURE AND SUB-FUNCTIONS

This section presents the architecture function and two sub-functions used in the MHRE-ACO ex-
periment, along with their prompts and seed functions. These functions collaboratively contribute
to optimizing the ant colony optimization (ACO) process.

13
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C.1 ARCHITECTURE FUNCTION: PICK MOVE

Design a pick_move function that takes the heuristic outputs from the HeuristicPopu and HeuristicEnv
functions and bases its action decision on the heuristic information provided by both.

Listing 11: System prompt for architecture function (pick move).

import torch
from torch.distributions import Categorical
from typing import Tuple, Optional

def pick_move(global_popu_weight: torch.Tensor, global_env_weight: torch.Tensor, prev: torch.Tensor, mask:
torch.Tensor, require_prob: bool) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:

alpha = 1.0
beta = 3

popu_weight = global_popu_weight[prev] # shape: (n_agents, p_size)
env_weight = global_env_weight[prev] # shape: (n_agents, p_size)

popu_weight_log = torch.log1p(popu_weight)
env_weight_log = torch.log1p(env_weight)

weighted_sum = alpha * popu_weight_log + beta * env_weight_log
weighted_sum *= mask

probs = torch.softmax(weighted_sum, dim=1)

dist = Categorical(probs=probs)
actions = dist.sample() # shape: (n_agents,)
log_probs = dist.log_prob(actions) if require_prob else None # shape: (n_agents,)

return actions, log_probs

Listing 12: Seed function for pick move.

C.2 SUB-FUNCTION: HEURISTICENV

The ‘HeuristicEnv‘ function computes heuristic estimates that reflect the potential benefit of each
edge being part of the optimal tour in the optimization process.

Design a HeuristicEnv function that computes heuristic estimates for each edge, helping to determine which
edges should be part of the optimal solution in the optimization problem.

Listing 13: System prompt for HeuristicEnv function.

import torch

def HeuristicEnv(edge_attr: torch.Tensor) -> torch.Tensor:
num_edges = edge_attr.size(0)
heuristic_values = torch.zeros_like(edge_attr)

transformed_attr = torch.log1p(torch.abs(edge_attr))

mean = transformed_attr.mean(dim=0, keepdim=True)
std = transformed_attr.std(dim=0, keepdim=True)
edge_attr_norm = (transformed_attr - mean) / (std + 1e-7)

heuristic_values = torch.exp(-8 * edge_attr_norm)
heuristic_values[torch.isnan(heuristic_values)] = 0
heuristic_values = torch.clamp(heuristic_values, min=0)

return heuristic_values

Listing 14: Seed function for HeuristicEnv.

C.3 SUB-FUNCTION: HEURISTICPOPU

Design a HeuristicPopu function that updates the global heuristic matrix based on the paths taken by agents
and their associated costs, reflecting the significance of each edge.

Listing 15: System prompt for HeuristicPopu function.

import torch

def HeuristicPopu(global_popu_weight: torch.Tensor, paths: torch.Tensor, costs: torch.Tensor) -> torch.Tensor:
decay = 0.9
n_agent = paths.size(0)

14
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new_popu_weight = global_popu_weight * decay

path_usage = torch.zeros_like(new_popu_weight)

for i in range(n_agent):
path = paths[i]
cost = costs[i]
path_usage[path, torch.roll(path, shifts=1)] += 1.0 / (cost + 1e-7)

path_fitness = 1.0 / (costs + 1e-7)
fitness_threshold = 1.0 / (torch.mean(costs) + 1e-7)

for j in range(n_agent):
path = paths[j]
fitness_score = path_fitness[j]

if fitness_score > fitness_threshold:
path_contribution = path_usage[path, torch.roll(path, shifts=1)].sum() * fitness_score

path_penalty = (path_usage[path, torch.roll(path, shifts=1)] < 1).float()
new_popu_weight[path, torch.roll(path, shifts=1)] += path_contribution - path_penalty

new_popu_weight = new_popu_weight * 0.9 + global_popu_weight * 0.1
new_popu_weight = torch.clamp(new_popu_weight, min=0)

return new_popu_weight

Listing 16: Seed function for HeuristicPopu.

C.4 RELATIONSHIP BETWEEN HEURISTICENV AND HEURISTICPOPU

The functions ‘HeuristicEnv‘ and ‘HeuristicPopu‘ work together to generate heuristic matrices. ‘HeuristicEnv‘
computes the environmental heuristic estimates for each edge, while ‘HeuristicPopu‘ updates the global
heuristic matrix based on the population’s path data and costs. Together, they balance the
environmental and population information to optimize the overall routing strategy.

Listing 17: Relationship Between HeuristicEnv and HeuristicPopu

D COMMON PROMPTS FOR LLMS

This section presents the common system and user prompts used for various Large Language Model
(LLM) interactions, including checking function validity, providing optimization hints, and gener-
ating heuristic functions.

D.1 SYSTEM PROMPT: CHECK LLM

You are responsible for evaluating a Python function. Your task is to verify if the function strictly adheres
to the provided input/output formats and matches the given sample data.

- If the function does not conform to the input format or fails to correctly run, return the string ’error’
followed by a brief explanation of the issue.

- If the function fully meets the requirements, return only the function as code, with no additional
explanations or comments.

Listing 18: System prompt for checking Python function validity (check LLM).

Input/Output Format Description:
{format_description}
Function to be Evaluated:
{code}

Listing 19: User prompt for checking Python function validity (check LLM).

D.2 SYSTEM PROMPT: HINT LLM

You are an expert in the domain of optimization heuristics. Your task is to offer practical hints to design
better heuristics.

Listing 20: System prompt for hint generation (Hint LLM).
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D.3 USER PROMPT: ARCHITECTURE HINTER

Please generate a hint focused on optimizing the {Optimization_Function} function, based on a deep
understanding of its relationships and internal mechanisms with other functions.

{architecture_info}

[{Optimization_Function}]:
{Optimization_Function_code}

Listing 21: User prompt for architecture hinter function.

D.4 SYSTEM PROMPT: GENERATOR LLM

You are an expert in the domain of optimization heuristics. Your task is to design heuristics that can
effectively solve optimization problems.

You are required to output Python code and nothing else. The output must strictly adhere to the following
format:

‘‘‘python
<your Python code>
‘‘‘

Listing 22: System prompt for generating heuristic functions (Generator LLM).

D.5 USER PROMPT: COOPERATIVE HEURISTIC GENERATION

Explore and design a novel heuristic function ’{Optimization_Function}’ for {func_desc} based on the other
functions and use the provided reflection to enhance the ’{Optimization_Function}’ function.

{Relationship_Description}

[{Function_code}]

[Reflection]
{reflection}

Output only the improved function in Python format, enclosed in a code block as follows:

‘‘‘python
Your improved code
‘‘‘

Listing 23: User prompt for cooperative heuristic generation (Generator LLM).
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