Under review as a conference paper at ICLR 2026

OPERATOR LEARNING FOR FAMILIES OF FINITE-
STATE MEAN-FIELD GAMES

Anonymous authors
Paper under double-blind review

ABSTRACT

Finite-state mean-field games (MFGs) arise as limits of large interacting parti-
cle systems and are governed by an MFG system, a coupled forward-backward
differential equation consisting of a forward Kolmogorov-Fokker—Planck (KFP)
equation describing the population distribution and a backward Hamilton—Jacobi—
Bellman (HJB) equation defining the value function. Solving MFG systems effi-
ciently is challenging, with the structure of each system depending on an initial
distribution of players and the terminal cost of the game. We propose an oper-
ator learning framework that solves parametric families of MFGs, enabling gen-
eralization without retraining for new initial distributions and terminal costs. We
provide theoretical guarantees on the approximation error, parametric complex-
ity, and generalization performance of our method, based on a novel regularity
result for an appropriately defined flow map corresponding to an MFG system.
We then demonstrate empirically that our framework achieves accurate approxi-
mation for two representative instances of MFGs: a cybersecurity example and a
high-dimensional quadratic model commonly used as a benchmark for numerical
methods for MFGs.

1 INTRODUCTION

Mean-field games (MFGs), introduced by Huang et al. (2006) and Lasry & Lions (2007), model the
behavior of stochastic games with many identical players by considering the limiting situation with
an infinite population. While a large portion of the corresponding literature considers continuous
state spaces, MFGs with finite state spaces find applications in economics, epidemic prevention, cy-
bersecurity, resource allocation, and multi-agent reinforcement learning, and beyond (Gomes et al.,
2014; Kolokoltsov & Bensoussan, 2016; Aurell et al., 2022; Mao et al., 2022; Yardim & He, 2025).
The theory of MFGs is well-established, with results concerning existence, uniqueness, and con-
nections with finite-player games in (Gomes et al., 2013; Bayraktar & Cohen, 2018; Cecchin &
Pelino, 2019); see the books (Carmona & Delarue, 2018a;b) for more background. Nonetheless,
numerically solving finite-state MFGs remains challenging, especially over large state spaces.

Machine learning-based methods have proven promising for overcoming the numerical challenges
associated high-dimensional MFGs, in both continuous and finite state spaces; see (Fouque &
Zhang, 2020; Carmona & Lauriere, 2021; 2022; Min & Hu, 2021; Han et al., 2024) for deep learn-
ing methods and (Guo et al., 2019; Subramanian & Mahajan, 2019; Elie et al., 2020; Cui & Koeppl,
2021) for reinforcement learning methods. However, these methods treat each MFG individually,
requiring the user to rerun the method anew for each MFG instance. Several recent works, such
as (Cohen et al., 2024), propose more general methods to learn MFGs equilibria as a function of
the initial distribution by exploiting the connection with the master equation, a nonlinear PDE char-
acterizing finite-state MFGs (Cardaliaguet et al., 2019). However, these methods rely on problem-
specific loss functions and cannot be extended to learn MFG equilibria as a function of the model’s
parameters such as its cost functions.

In this work, we frame MFG equilibria as outputs of an operator, called the flow map, which maps
initial distributions and cost functions to the corresponding Nash equilibrium. We then train a neural
network (NN) to learn this operator.

Main Contributions. Our main contributions are as follows:

Under review as a conference paper at ICLR 2026

* Algorithm: We combine Picard iteration and operator learning to approximate the flow
map operator for parametrized families of finite-state MFGs (see Fig. 1).

* Approximation error and parame: We prove that the flow map can be approximated to
accuracy O(K ~/(4+k+2)) using an NN with width W = O (K (2(d+k)+3)/(2(d+k)+4)) anq
depth L = O(log(d + k + 1)), where d is the number of states, K is a bound on the NN
weights, and & is the dimension of the set of parameters specifying the family of MFGs.

* Generalization error: We prove that for such W and L, given n samples produced via
Picard iteration, our method has generalization error bounded by O(n~1/(4+k+4) 1og(n)).

* Numerical experiments: We demonstrate the accuracy and scalability of our method on
two standard finite-state MFG benchmarks.

n . o
(1) Sample (1, k) ’ ‘ (2) Solve MFG system (2.3) for ’ | (3) Minimize Empirical Loss

(a™", p"™") via Picard iteration Ln(T;a™")

[

‘ Nash Equilibrium }

@)

Figure 1: Given (1) sample initial distributions 7 and cost parameters x, we bypass the need to
compute the optimal controls and flow of measures (Nash equilibrium) of an MFG by (2) solving
the MFG system via Picard iteration. We then use the resulting trajectories to (3) approximate the
solution operator for the family using a neural network, trained by minimizing an empirical loss over
the samples from (1). In practice, the last step uses stochastic gradient descent (see Algo. 1).

Operator Learning. Independent from the literature on MFGs is that of operator learning, an
umbrella term that typically describes machine learning methods for approximating maps between
function spaces. One natural application of such methods is to partial differential equations (PDEs),
and the general framework has been applied with impressive success to fluid dynamics in (Li et al.,
2021; Kovachki et al., 2023), astrophysics in (Mao et al., 2023), and large-scale weather forecasting
in (Kurth et al., 2023; Lam et al., 2023). In most applications, one attempts to learn the operator
that maps the initial data of a PDE, belonging to some Banach space, to its solution, belonging
to a potentially distinct Banach space; see (Kovachki et al., 2024; Boullé & Townsend, 2024), for
overviews of the field of operator learning from a mathematical perspective. The development of
novel architectures for operator learning, as in (Li et al., 2021) and (Lu et al., 2021; Wang et al.,
2021) has allowed for its recent empirical success.

However, instead of leveraging architectural advances in the field, our insight is inspired by the work
of Lanthaler & Stuart (2025). The authors introduce the curse of parametric complexity for oper-
ator learning: given any compact subset K of an infinite-dimensional Banach space, there exists
an operator from K into another Banach space that can only be approximated with a functional of
neural network type (i.e., the composition of a linear operator to a Euclidean space and a neural
network) whose width and depth are exponential in the approximation error. Lanthaler & Stuart
(2025) circumvent this issue for first-order Hamilton—Jacobi-Bellman (HJB) equations with an ini-
tial condition, learning the operator that maps initial conditions to solutions. Associated with each
HJB equation is a system of ODEs, also referred to as the characteristics of the PDE. By learning
the flow map for the characteristics and then reconstructing the solution by interpolation, (Lanthaler
& Stuart, 2025, Theorem 5.1) beats the so-called curse of parametric complexity, enabling opera-
tor learning with neural networks of bounded width and depth using a method they label HJ-Nets.
Given the similarity between the forward-backward ODE system for MFGs and the characteristics
of first-order HIB equations, we take this as inspiration for our approach to learning MFG equilibria;
see Appendix F for a more in-depth comparison.

Related works. We clarify the connection between our contributions and several closely related
works on MFGs. Cohen et al. (2024) proposes and analyzes two methods to solve the master equa-
tion for finite-state MFGs, handling varying initial distributions. However, their methods do not
generalize to the setting of MFGs with varying cost functions as we consider. Chen et al. (2023);
Huang & Lai (2025) proposes operator learning methods for continuous space and time MFGs by
learning the solution as a function of the initial distribution. Although philosophically similar to
our operator learning approach, their methods do not apply to finite-state space MFGs, and neither
method provides a solution for parametrized families of MFGs with varying cost functions. Finally,

Under review as a conference paper at ICLR 2026

reinforcement learning methods for population-dependent policies tackle discrete time MFGs (see
Perrin et al. (2022); Li et al. (2023); Zhang et al. (2025); Wu et al. (2025) for recent work in this
domain), while we focus on continuous time models. To our knowledge, even in discrete time, no
method has been proposed to solve parameterized families of MFGs at once.

Organization. In Section 2, we describe finite-state MFGs and the forward-backward ODE system
that characterizes MFG equilibria, including the assumptions that we place on parametrized families
of MFGs. Next, we describe the flow map, mapping parameters to equilibria. In Section 3, we de-
scribe our operator learning method in detail. In Section 4, we present the associated approximation,
parametric complexity, and generalization guarantees, with technical proofs in the appendix. Finally,
in Section 5, we provide numerical experiments for two finite-state MFGs often used as benchmarks
for numerical methods: a simple model of cybersecurity and a high-dimensional quadratic model.

2 BACKGROUND

We first provide provide a comprehensive overview of finite-state MFGs for the unfamiliar reader in
Section 2.1, referring to Appendix B for more details. Then, in Section 2.2, we describe the object
that we seek to approximate via operator learning: the flow map for a parametrized family of MFGs.

2.1 FINITE-STATE MFGS

Actions, controls and state dynamics. In a finite-state MFG, a representative player chooses
Markovian controls taking values in a compact set of rates, A C R, := [0,00). Specifically, the
player’s control « is a time-dependent d x d matrix with values in A, with rows (o, (t, 7)), e[q and in-
dividual entries o, (¢, x) determining the rate of transition between state x to state y at time ¢. When
starting with initial distribution 7 and using control «, the player’s state, denoted by X,;"* € [d] at
time ¢, obeys the dynamics of a continuous-time Markov chain with X" ~ n and:

Pr(X"5 =y | X" =x) = ay(t,x)h +o(h), h—0". (2.1)

Cost function. The representative player aims to minimize a cost functional over the time interval
[0,7]. The cost depends not only on the player’s action and state at time ¢t € [0, 7], but also
on the population distribution u(t) € P([d]), where P([d]) is the set of probability measures on
[d] := {1,...,d}, identifiable with the probability simplex in R. We denote by g the terminal
cost and f, F' two running costs depending on the player’s action and the population distribution,
respectively. If the population distribution’s flow p = (u(s))sejo,7) is given, the representative
player aims to minimize the total expected cost over controls o = (v, (8, 7)) se(0,7],2€[d],yeld] :

Ip(a,) =E

T
| (e ats. o) + PG o)))ds + ")| 22

Notice that since 1 is a deterministic flow of measures and 1(0) = 7 is fixed, the control may depend
implicitly on the population distribution through time. When f is given, this is a standard stochas-
tic optimal control problem. However, 1 should be determined endogenously as the population
evolution resulting from the players’ optimal behavior.

MFG equilibrium. This leads us naturally to the idea of an MFG equilibrium, a form of Nash equi-
librium in which the population distribution is the same as the representative player’s distribution.

Definition 2.1. An MFG equilibrium for an initial distribution n € P([d]) is a pair (&, 1) such
that: (1) @ minimizes the cost functional J, (-, t) and (2) for every t € [0, T, (t) = L(X7).

Observe that the MFG equilibrium depends on the initial distribution 7 € P([d]). This presents
one of the primary difficulties that we aim to address: can one efficiently compute MFG equilibria
simultaneously for arbitrary initial distributions? Before tackling this question, we first explain how
one can solve an MFG for a fixed initial distribution.

Forward-backward ODE system. The two points in Definition 2.1 can be translated into two
equations: one for the value function wu(t,z) of the representative player (i.e., the optimal cost
attainable at time ¢ in state), and one for the evolution of the population distribution. In finite-
state, continuous-time MFGs, both take the form of ordinary differential equations (ODEs). Then,

Under review as a conference paper at ICLR 2026

MFG equilibria can be characterized as solutions of a forward—backward system of coupled ODEzs,
each in dimension d. More precisely, (&, 7) is an MFG equilibrium if and only if @,(¢,z) =
vi(y, Ayu(t,-)) = argmin,{f(z,a) + a - Ayu(t,-)} where A, f == (f(y) — f(2))yelq € R?
plays the role of a discrete gradient and (u, 1) solve the MFG system:

Ao(t,x) + H(z, p(t), Agu(t,) =0, (t,z) € [0,T] x [d] (HJB)
%u(t’ x) = Eye[d] /-L(ta y)ﬁ (yv Ayu(t’))7 (tv l‘) € [07 T] X [d] (KFP) (23)
/,L(O,.I) = 77(90)7 U(Ta J}) = g(x, M(T))’ S [d}v

with H being the extended Hamiltonian of the representative player’s control problem, defined in
terms of the Hamiltonian H as:

H(z,p) :=min, {f(x, a)+ >,z aypy}, H(z,n,p) == H(z,p) + F(z,n). (24

We will sometimes write u” and p" to stress the dependence on the initial distribution 7. We refer
to the first equation as Hamilton-Jacobi-Bellman (HJB) equation and to the second equation as
the Kolmogorov-Fokker-Planck (KFP) equation.

The above MFG system admits a unique solution under standard assumptions; see Appendix B
and (Bayraktar & Cohen, 2018; Cecchin & Pelino, 2019) for more details. For simplicity, we focus
on the following sufficient condition:

Assumption 2.1. The minimizer v*(x, p) of the Hamiltonian H is unique. Moreover, H is strictly
concave in p and twice continuously differentiable with Lipschitz second derivatives. Finally, the
costs I and g are continuously differentiable with Lipschitz derivatives, and both are Lasry-Lions
monotone in the sense that for both ¢ = F, g,

Pvera(@(@.n) — oz,) (e —7z) =20, n,i € P([d]). (2.5)

We note that the first part of this assumption holds when f is strictly convex in a. Additionally,
Lasry-Lions monotonicity can be interpreted as the player’s dislike for congestion (e.g., 7,; close to
one). Under the assumptions outlined above, the forward-backward system in (2.3) attains a unique
solution (u", u"), the MFG equilibrium. The argument proving existence follows from a fixed-point
argument via Schauder’s fixed-point theorem, while uniqueness results from Assumption 2.1. For
more details, see (Carmona & Delarue, 2018a, Section 7.2.2), for instance.

2.2 FLOW MAPS AND THE MASTER EQUATION

We now turn to the question of solving the MFG for any initial distribution 7. Although solving the
MFG system (2.3) via Picard iteration for a given y € P([d]) is generally tractable, we aim to solve
the system for all such 7, and hence cannot rely solely on the MFG system.

Master field. We begin by considering the value function u"7, which solves the HIB equation in the
MFG system (2.3) with initial distribution 1. The value function depends implicitly on the mean
field, and we make this dependence explicit by introducing the master field U, defined such that
U(t,z,u(t)) = u(t) for all (¢,z,n) € [0,T] x [d] x P([d]). This object plays a central role
in theory of MFGs and establishing a rigorous connection to finite-player games; see (Bayraktar &
Cohen, 2018; Cecchin & Pelino, 2019) and Appendix C for more details. The master field U is
also very relevant for applications: if the master field is known, then it can be evaluated along any
flow of measures ((t). Additionally, U (¢, z, i) is the optimal cost that a representative player can
obtain if starting in state x at time ¢, with the of the population starting in distribution x and playing
according to the equilibrium control.

Methods, such as (Cohen et al., 2024), that learn U by exploiting its connection with a nonlinear
PDE called the master equation suffer from two limitations: (1) the computation of the loss function
is complex and costly, and (2) they cannot handle situations where the terminal cost varies, as the
loss function is defined in terms of a fixed terminal cost. For this reason, we develop a new approach,
relying on the concept of flow map.

Flow map. Instead of focusing on the aforementioned master field, we will consider a function
which maps the initial distribution and the terminal cost to the value function. In other words, we
would like to learn the operator (since g is a function)

®: (t,m,9) = u™ (1), (2.6)

Under review as a conference paper at ICLR 2026

where u"+9 is the value function for the MFG system (2.3) with initial distribution € P([d]) and
terminal cost g. We recall that the control can be recovered from the value function using the relation
ay(t,x) = vi(y, Ayu™9(t,-)). In turn, obtaining ® concretely gives access to the MFG equilibrium
for any initial condition 1) and terminal cost g. In principle, the operator could be extended to include
running costs and dynamics. We comment that, in line with the operator learning approach for HIB
equations proposed in (Lanthaler & Stuart, 2025), the MFG system in Equation (2.3) can be viewed
as the characteristics of the master field. In the same sense, our method is an operator learning
method because we learn the characteristics of the master field to obtain its solution operator.

Terminal cost parameterization. When endowed with an appropriate norm, the set of all Lipschitz
functions on the probability simplex is an infinite-dimensional Banach space. However, to obtain
precise approximation and generalization guarantees, we restrict our attention to a parameterized
class of terminal costs in this paper. Given a parameter x € R”, we denote by g,. the corresponding
terminal cost function. Then, the flow map we focus on in the sequel is defined as follows.

Definition 2.2. Given a parametrized family of terminal conditions, the flow map ® : [0,T] x
P([d]) x K — R is defined by ®(t,n, k) := u""(t), where u" is the value function for the MFG
system (2.3) with initial distribution) € P([d]) and terminal cost g,;.

We make two key remarks. First, the initial distribution 7 and the parameter x may be high-
dimensional, which justifies using neural networks to approximate ®. Second, contrary to the
aforementioned master field U, the flow map & does not satisfy a PDE and hence it will require
a novel training algorithm, based on the MFG equilibrium characterization.

We conclude with a regularity condition that allows the rigorous study of the approximation of ® by
neural networks in the next section. This assumption holds in the test cases consider below in our
numerical experiments (see Section 5).

Assumption 2.2. There exists a compact set of parameters K C R¥ such that for all x € K, the
g [d] x P([d]) — R satisfies Assumption 2.1. Moreover, for any k, k' € K, there exists a constant
C > 0 such that |g.(z,) — gw (z, 1)| < Clk — K|, uniformly in (z,) € [d] x P([d]).

3 ALGORITHM TO LEARN FLOW MAPS FOR MFGS

In this section, we outline our algorithmic approach to learning MFG equilibria, motivated by the
HIJ-Net algorithm of Lanthaler & Stuart (2025). Recall that we aim to learn an approximation of the
flow map ® : [0, 7] x P([d]) x K — R that maps a time, an initial condition, and a parameter x € K
(corresponding to a terminal condition g,) to the value function w™"(¢). As in (Lanthaler & Stuart,
2025, Section 4), learning the flow map requires sample trajectories. We approximate ¢ by a neural
network which is trained using samples consisting of (¢, 7, <) and the associated u™"(t).

Sampling method. We generate i.i.d. samples (7, k) ~ p, where p is a joint distribution on
P([d]) x K. Then, we compute u""*. Since this value function is coupled with the flow of measures
w" that solves the MFG system (2.3), we solve this system by Picard iteration: given an initial
guess, we alternatively solve the forward KFP equation and the backward HJB equation to update
1 and u respectively. We thus obtain an (approximate) solution of (2.3). In our implementation, we
use a temporal finite-difference scheme with a mesh of M steps, yielding an approximate solution
(@9, 1) i=o,....m. See Appendix D for additional details. We denote the Picard iteration map for
an MFG with terminal condition g by Ty : P([d]) — (RY)M+L. Intwitively, 'y : n — u™9. In
practice, I’y (1) is the vector of values @)¢ ~ u"(jT/M,-) e R%, j =0,..., M.

Architecture. We approximate ® by a neural network. Since our goal in the next section is to
obtain theoretical guarantees, we focus here on a relatively simple architecture, but more complex
architectures are explored in our numerical experiments. We limit ourselves to fully-connected
ReLU neural networks ¢ : R¥* — RF2 of depth L. Following the convention in (Jiao et al.,
2023), from which we derive our generalization guarantee, such networks are recursively defined by
do(z) =z, pjr1(x) = 0(A;¢;(x)+b;)forj=1,...,L — 1, and ¢(z) := Ar¢r(z). Above, the
weights satisfy A; € RNi+1*Ni for j = 0,...,L and B; € RYi+1 for j = 0,...,L — 1, where
No = k1 and N1 = ko. By the width of a neural network, we refer to W := max{Ny,..., Np},
the maximum number of neurons in a hidden layer. For brevity, we denote such a network by
o(x; A, b), where A = (Ag,...,Ap_1)and b = (by,...,br_1).

Under review as a conference paper at ICLR 2026

Training method. We learn the flow map by training such a neural network on the samples gen-
erated by Picard iteration. To alleviate the notation, we denote = (jT/M,n, k) and y = 11;"”,
where j € [M] and we recall that 47" is the discrete time approximation of the value function u".

Given samples {x;, y; }_; from the procedure outlined above, we minimize the empirical loss
£’VL(A7 b7 {xiv Yi ?:1) = % Z:‘L:]_ K(d)(ﬂf“ A7 b)a y1)7 (31)
where £ : R x R — R is a convex loss and the minimum is taken over A = {A;}}_; and

b = {bj}f;(} simultaneously. In practice, this is accomplished using batch stochastic gradi-
ent descent (SGD) with a standard optimizer such as AdamW (Loshchilov & Hutter, 2019). If
(A*,b*) = argmin 4 , £,,(A, b; {x;,y;};,) (noting that these parameters depend on the sampled
trajectories), we define our approximate flow map U, (¢, 7, k) := ¢(t,n, k; A*, b*). This procedure
is summarized in Algo. | below (written using SGD as the optimizer for simplicity).

Algorithm 1 Sampling and Learning Flow Map for a Family of MFGs

Input: Number of time steps M € N, parameter set L C R*, number of samples n € N, Picard
solver I', number of training steps myain, Mini-batch size nyini < n, learning rate {7, }jen

1: Sample {(7;, #;) }?_, uniformly and independently in P([d]) x K

2: fori=1,...ndo > Sample generation via Picard iteration
3: u Ty, (1)

4: Draw j ~ Unif([M])

50 @« (JT/M, i, ki)

6: Yi < ﬂj

7: Initialize neural network parameters (A, p(0))

8: forj =1,..., Myrain do > Train neural network approximator
9: Sample mini-batch {(z;, y;) };=™ from {(x;, yi) iy
100 (AW D))« (AW D)) — 7V 4y Lo (A, by {2, yi b imin) > Gradient step

—
—_

: return U, (t,1, k) = G(t, 1, r; AMemain) p(mesain))

4 THEORETICAL GUARANTEES

We provide the following two theoretical guarantees for our proposed approach:

(1) Approximation error (Corollary 4.3): There exists a ReLU neural network ap-
proximating the true flow map ® with error O(K—Y(@+k+2)) width W =
O(K 2(d+k)+3)/(2(d+k)+4)) "and depth L = O(log(d + k + 1)), all quantified in terms
of a bound K > 1 on the weights of the network, the number of states d of the underlying
family of MFGs, and the dimension & of the set that parametrizes the family of MFGs.

(2) Generalization error (Corollary 4.5): Learning the flow map via empirical risk mini-
mization with n samples yields a neural network approximation with expected excess risk
O(n~Y(d+k+4) 1og(n)), up to any error from the optimization process.

These results rely on a preliminary regularity result about the regularity of the flow map ¢ that we
establish in Appendix E:
Theorem 4.1. Under Assumptions 2.1 and 2.2, the flow map ® : [0, T] x P([d]) x K — RY, given
by ®(t,n, k) = ulo™5(t,), is jointly Lipschitz in its inputs: there exists C' > 0 such that

|<I)(ta m, K',l) - (I)(S?nQa "{2)| < C(‘t - 5| + |771 - 772| + |K‘1 - H2|)
forall (t,m1, k1), (8,12, k2) € [0,T] x P([d]) x K.

The approach of Lanthaler & Stuart (2025), which relies on (Yarotsky, 2017, Theorem 1), cannot be
used in our case (see Rem. E.1). Instead, we develop an alternative analysis building upon Jiao et al.
(2023). Given a ReLU neural network with weight matrices {A;}_; and biases {b; }]L;Ol, let

L-1

p({A;},4b;}) = I1AL] T max{ll(4;5,65)1,1}.

=0

Under review as a conference paper at ICLR 2026

Then, the set of neural networks with width W, depth L, and norm bound satisfying
p({4;},{b;}) < K is denoted by NN (W, L, K). In this class of neural networks, (Jiao et al.,
2023, Theorem 3.2) provides the following approximation result. Below, the space of functions
C%1([0,1]%) refers to the space of Lipschitz continuous functions on [0, 1]%.

Proposition 4.2. There exists constants ¢,C > 0 such that for any K > 1, W > ¢I (2d+1)/(2d+2),
and L > 2[log(d)] + 2, the worst-case approximation error of the class NN (W, L, K) for ® €
Co’l([O, l]d) S[ltiSﬁES.' sup@eco,l([071]d) inf\peNN(W)L7K) ||(I) — \IIHC([O,l]d) S CK_I/(d+1).

More concisely, over the class C%!([0,1]¢) of Lipschitz functions, the worst-case approximation
error with a sufficiently wide and deep ReLU neural network can be quantified precisely in terms of
a bound on the weights of the approximating networks. Using Theorem 4.1, we obtain the following
as a corollary, with proof in Appendix E:

Corollary 4.3. Assume that Assumptions 2.1 and 2.2 hold. Then, for any K > 1 and ¢ >
0, there exists a neural network W € NN(W,L,K) with weight bound K, width W >

c(diam(K), T) K (d+k)+3)/2(d+k)+4) and depth L > 2[log(d + k + 1)] + 2 such that
1 — Ulleomxp(ayxk) < C(diam(K), T) K~/ @TEF2) 4 o
where ® : [0, T] x P([d]) x K — R< is the flow map from Definition 2.2.

This result is particularly useful because of the generalization guarantees that arise from Rademacher
complexity estimates for families of neural networks with bounded weights. For instance, (Jiao et al.,
2023, Theorem 4.1) provides such a guarantee, in the context of regression, while (Jiao et al., 2023,
Corollary 4.2) provides an analogous guarantee for noiseless regression problems with regulariza-
tion. Suppose that we have n samples {(x;,y;)}?"_; such that z; kS p, a distribution supported on
[0,1]¢, and y; = ®(z;) withi = 1,...,n, where ® : [0,1]¢ — R satisfies ® € C%1([0,1]%) (i.e.,
it is Lipschitz continuous). Then, given fixed widths, depths, and weight bounds W, L, K > 0, the
empirical risk is given exactly as in Equation (3.1), and and the empirical risk minimizer is

U, := argmin L, (¥;{(xs,vi)}iq). 4.1

VENN (W,L,K)

We take as our convex loss £(z,y) = (x — y)? for simplicity, as in (Jiao et al., 2023). Note that,
for each ¥ € NN(W, L, K), this quantity provides an unbiased estimate of the population risk
L(¥) := E,,,[l(x;, ¥ (x;))]. Now, suppose that we have computed the empirical risk minimizer
in (4.1), up an optimization error €, > 0, via stochastic gradient descent, yielding a neural network

v, that satisfies

L£,(0,) < inf L, (T . 4.2

n(¥n) < \I/G/\/’./\I/I(lw,L,K) (%) + €opt 4.2)
Then, we aim to quantify the excess risk, defined as ||(I\ln - <I>||%2(p) = [,(\T!n) — L(®). A standard
computation then shows that the expected excess risk, with expectation taken over the samples
{x;}1_,, is given by

~ 5] 5 ~ ~
E[||@, — @HLz(p)] < ‘IleN/\lfr(léV,L,K) v — q)”L?(p) +E[L(Vn) = Ln(¥y)] + €opt-

To quantify the expected excess risk, it suffices to quantify the approximation error and the general-
ization error, the first and second terms in the above bound respectively. (Jiao et al., 2023, Theorem
4.1) combines Proposition 4.2 and a symmetrization argument to show the following:
Proposition 4.4. If & € C%1([0,1]%), then there exists C' > 0 such that for K = O(n(d+1)/(2d+6))
W > CK@d+0/2d+2) 1 > 2[log(d)] + 3, any neural network ¥,, € NN (W, L, K) satisfy-
ing (4.2) also satisfies: E|[||¥,, — <I>||%2(p)] — Eopt < Cn~V(4+3) 1og(n).

In general, it is difficult to quantify the optimization error £,p,¢. However, with sufficient hyperpa-
rameter tuning to stabilize training, we can safely assume that e, is small. To conclude, Proposi-
tion 4.4 applies nearly verbatim in our setting, up to a rescaling argument found in Appendix E:

Corollary 4.5. If K = O(n(d+k+2)/QU+R)+8) then under the assumptions of Corollary 4.3, min-
imizing the empirical loss in Equation (3.1) over n samples (generated via Algo. 1) yields a neural
network U,, that satisfies, up to an optimization error £qpy > 0, E[||¥,, — @H%z(p)] — Eopt <

C(diam(K), T)n~ Y/ (4+k+4) 1og(n). Above, p is the uniform distribution over [0, T] x P([d]) x K.

Under review as a conference paper at ICLR 2026

5 NUMERICAL EXPERIMENTS

In this section, we provide numerical evidence for the accuracy and low parametric complexity of our
method on two examples. First, we demonstrate our scheme’s accuracy on a simple cybersecurity
model in dimension d = 4. Then, we consider high-dimensional quadratic MFGs, illustrating that
our approach maintains its accuracy as the dimension of the underlying family of MFGs increases.
Full experimental details are in Appendix A.

Example 1: Low-Dimensional Cybersecurity Model. = We begin with a cybersecurity model
introduced by Kolokoltsov & Bensoussan (2016) and studied in (Cohen et al., 2024, Section 7.4).
Players can either protect or defend their computers against infection by malware. Before passing
to the mean-field limit, each player can either be infected by a hacker or by interacting with another
infected player. The player is either defended or undefended (D or U) and susceptible or infected (S
or I), leading to a state space with d = 4 states: {DS, DI, US,UTI}. The player determines whether
to defend or not with a switching parameter p > 0, and the player pays cost kp > 0 for defending
and k7 > 0 if they are infected. The running cost is f(z,a) = kplips pry(z) + krliprun(z),
and F(x,n) = 0. The player’s control is simply a € {0, 1}, and this yields a transition matrix
exactly as in (Cohen et al., 2024, Section 7.4). Importantly, we modify the original example by
including a terminal cost, penalizing infected players at the terminal time 7" according to a parameter
k > 0: gu(x,m) = kliprury(x). We use Algo. 1 with n = 2000 samples, Mmrain = 2000 epochs
with batches of size myin; = 64. After training the neural network, we evaluate it on several pairs
(n, k) to obtain © and compare with the solution obtained by solving the ODE system with this pair
of initial and terminal conditions. Fig. 2 shows that our method performs well on random samples
with x € [0,10] and arbitrary n € P([4]). Appendix G contains more experiments with this model,
including an illustration of the case that x = 0 (i.e., the setting considered in (Cohen et al., 2024)).

8
7
6
5
L4
3
2
1
0

aT\me (t)6 AT\me (t)6 AT\me (NE
Figure 2: Learned value function @ and true value function v for four random initial distributions 7
and final cost parameter x € [0, 10], both drawn uniformly at random from P([4]) and the interval

[0, 10], respectively. Each curve corresponds to one state in { DS, DI,US,UI}.

Example 2: High-Dimensional Quadratic Models. We also consider the quadratic cost model,
as in (Cohen et al., 2024, Section 7.1), also analyzed in (Cecchin & Pelino, 2019, Example 1) and
(Bayraktar & Cohen, 2018, Example 3.1) via the master equation. This setting allows us to test our
method on high-dimensional MFGs, and the assumptions that we impose on the parametrized family
of terminal costs remain easily verifiable. We take a quadratic running cost and a linear mean-field
cost, given by f(z,a) :== b} . (ay — 2)2, F(x,n) = n,, with action space A := [1,3] and
b = 4. As shown in (Cohen et al., 2024, Section 7.1), letting 7" = 1 will ensure that the resulting
Hamiltonian satisfies our assumptions. Therein, the authors take g(x,n) = 0, but we convert their
quadratic model into a parametrized family of MFGs by taking instead x € [0,1]¢ =: K and
considering terminal costs of the form g, (z,n) = K, + 1,. The inclusion of in the terminal cost
has the effect of pushing the player away from states © € [d] such that x, is large and towards
states with small x,, with the mean-field term 7, discouraging crowding. As our numerical results
demonstrate, the value function depends heavily on the parameter «, making this a challenging task,
especially as d increases.

In Fig. 3, we demonstrate the success of our method in learning the flow map for this family of
MFGs in dimensions d = 3, d = 4, d = 5, and d = 10 respectively. Beyond dimension d = 10,
learning becomes increasingly unstable, as the number of samples required to learn to high preci-
sion becomes intractable to generate in a reasonable amount of time using our own computational
resources. However, in Appendix G, we show that by passing to a time discretization, our method

Under review as a conference paper at ICLR 2026

still generalizes well to dimension d = 20. Therein, we also provide evidence that using a neu-
ral network architecture with skip connections and layer normalization (e.g., ResNet) can improve
training stability in dimension d = 10. Finally, Fig. 4, we illustrate both the training and test loss
over the course of Algo. 1 for the quadratic model in dimension d = 3. Averaging over five trials,
we provide empirical evidence for both Corollary 4.3 and Corollary 4.5, showing that increasing
width results in models that (1) learn the flow map to greater accuracy (Fig. 4a) and (2) generalize
better to unseen samples (Fig. 4b).

1 1 1 1

0.8 i 0.8

0.6 (fé 061 =

04 \ 04

- u() N
0.2{ = 4(1) 0.2{ W 4(2) 0.2 0.2
= u(2) == u(3)
— G(2) . G(3)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time (t) Time (t) Time (t) Time (t)

(ad=3 (b)yd=4 (©0d=5 dd=10

Figure 3: Comparison of true value functions v and learned value functions @ for randomly sampled
pairs (7, <) in dimensions d = 3,4, 5, 10 respectively. Averages are taken across 5 trials, and shaded
regions on approximate curves indicate error bars of one standard deviation, computed across trials.

Training Loss vs. Epoch for Different Widths Test Loss vs. Epoch for Different Widths
10t | —— Train Loss, W = 32 —— Test Loss, W = 32
Train Loss, W = 32 Test Loss, W = 32
100 Train Loss, W = 64 Test Loss, W = 64

1074 Test Loss, W = 64
—— Test Loss, W = 128

Test Loss, W = 128

Train Loss, W = 64
—— Train Loss, W = 128
10724 Train Loss, W = 128

10—1,

Training Loss (Smoothed L! Loss)
Test Loss (Smoothed L Loss)

1073

1074 10-31

10-5

1075

0 500 1000 1500 2000 0 500 1000 1500 2000
Epoch Epoch

(a) Training loss vs. epoch for d = 3 dimensional (b) Test loss vs. epoch for d = 3 dimensional
quadratic model and W = 32, 64, 128. quadratic model and W = 32,64, 128.

Figure 4: Comparison of training loss and test loss, evaluated on held-out data every 25 epochs, for
ReLU neural networks with width W = 32,64, 128, depth L = 4, and n = 4000 samples. Shaded
regions represent one standard deviation above/below the mean of five trials. As W increases, the
optimization procedure becomes more unstable but both the training and test losses decrease.

6 CONCLUSION

We present an operator learning method for solving parametrized families of finite-state MFGs. To
our knowledge, our approach provides the most general learning-based framework for solving finite-
state MFGs. Our theoretical guarantees rigorously quantify the approximation error, parametric
complexity, and generalization performance, and our numerical experiments illustrate the empirical
accuracy of our method for a variety of common finite-state MFGs. Our method extends naturally
to MFGs with parametrized running costs, with only slight modifications to our regularity proofs
required and no modification to Algo. 1. We believe that our sampling algorithm, although intuitive,
could be improved to gain greater coverage of the flow map’s domain, allow for more stable opti-
mization, and enable better generalization. Techniques such as oversampling in regions with poor
coverage or adversarial training may prove beneficial. Future work will also include extending our
results to continuous state-space MFGs and infinite-dimensional spaces of cost functions, for which
powerful operator learning architectures (e.g., DeepONets or FNO) will likely be instrumental.

Under review as a conference paper at ICLR 2026

Reproducibility Statement. We include a detailed description of our numerical experiments, in-
cluding computational resources used, training methodology, and hyperparameters for all experi-
ments in Appendix A. Additionally, we have submitted all code used for experiments presented in
Section 5 and Appendix G as supplementary material. For our theoretical results, all assumptions
are provided in Section 2.1 and expanded upon in Appendix B, while our technical proofs can all
found be found in Appendix E.

REFERENCES

Alexander Aurell, René Carmona, Gokce Dayanikli, and Mathieu Lauriére. Optimal incentives to
mitigate epidemics: a Stackelberg mean field game approach. SIAM J. Control Optim., 60(2):
S$294-S322, 2022. ISSN 0363-0129. doi: 10.1137/20M1377862. URL https://doi-org.
proxy.lib.umich.edu/10.1137/20M1377862.

Erhan Bayraktar and Asaf Cohen. Analysis of a finite state many player game using its master
equation. SIAM Journal on Control and Optimization, 56(5):3538-3568, 2018. doi: 10.1137/
17M113887X. URL https://doi.org/10.1137/17M113887X.

Nicolas Boullé and Alex Townsend. Chapter 3 - A mathematical guide to operator learning. In
Siddhartha Mishra and Alex Townsend (eds.), Numerical Analysis Meets Machine Learning, vol-
ume 25 of Handbook of Numerical Analysis, pp. 83—125. Elsevier, 2024.

Pierre Cardaliaguet, Francois Delarue, Jean-Michel Lasry, and Pierre-Louis Lions. The master
equation and the convergence problem in mean field games, volume 201 of Annals of Mathematics
Studies. Princeton University Press, Princeton, NJ, 2019. ISBN 978-0-691-19071-6; 978-0-691-
19070-9. doi: 10.2307/j.ctvckq7qf. URL https://doi.org/10.2307/7.ctvckgigf.

René Carmona and Francois Delarue. Probabilistic theory of mean field games with applications.
1, volume 83 of Probability Theory and Stochastic Modelling. Springer, Cham, 2018a. ISBN
978-3-319-56437-1; 978-3-319-58920-6. Mean field FBSDEs, control, and games.

René Carmona and Francois Delarue. Probabilistic theory of mean field games with applications. 11,
volume 84 of Probability Theory and Stochastic Modelling. Springer, Cham, 2018b. ISBN 978-
3-319-56435-7; 978-3-319-56436-4. Mean field games with common noise and master equations.

René Carmona and Mathieu Lauriere. Convergence analysis of machine learning algorithms for
the numerical solution of mean field control and games I: The ergodic case. SIAM Journal on
Numerical Analysis, 59(3):1455-1485, 2021.

René Carmona and Mathieu Lauriere. Convergence analysis of machine learning algorithms for the
numerical solution of mean field control and games: II—the finite horizon case. The Annals of
Applied Probability, 32(6):4065-4105, 2022.

Alekos Cecchin and Markus Fischer. Probabilistic approach to finite state mean field games. Applied
Mathematics & Optimization, 2018. ISSN 1432-0606. URL https://doi.org/10.1007/
s00245-018-9488-"17.

Alekos Cecchin and Guglielmo Pelino. Convergence, fluctuations and large deviations for fi-
nite state mean field games via the master equation. Stochastic Processes and their Ap-
plications, 129(11):4510 — 4555, 2019. ISSN 0304-4149. doi: https://doi.org/10.1016/].
spa.2018.12.002. URL http://www.sciencedirect.com/science/article/pii/
5030441491830694X.

Xu Chen, Yongjie FU, Shuo Liu, and Xuan Di. Physics-informed neural operator for coupled
forward-backward partial differential equations. In /st Workshop on the Synergy of Scientific
and Machine Learning Modeling @ ICML2023, 2023. URL https://openreview.net/
forum?id=iLwfz£33Ub.

Asaf Cohen, Mathieu Lauriere, and Ethan Zell. Deep backward and Galerkin methods for the finite
state master equation. Journal of Machine Learning Research, 25(401):1-50, 2024.

10

https://doi-org.proxy.lib.umich.edu/10.1137/20M1377862
https://doi-org.proxy.lib.umich.edu/10.1137/20M1377862
https://doi.org/10.1137/17M113887X
https://doi.org/10.2307/j.ctvckq7qf
https://doi.org/10.1007/s00245-018-9488-7
https://doi.org/10.1007/s00245-018-9488-7
http://www.sciencedirect.com/science/article/pii/S030441491830694X
http://www.sciencedirect.com/science/article/pii/S030441491830694X
https://openreview.net/forum?id=iLwfzf33Ub
https://openreview.net/forum?id=iLwfzf33Ub

Under review as a conference paper at ICLR 2026

Kai Cui and Heinz Koeppl. Approximately solving mean field games via entropy-regularized deep
reinforcement learning. In International Conference on Artificial Intelligence and Statistics, pp.
1909-1917. PMLR, 2021.

Romuald Elie, Julien Perolat, Mathieu Lauriere, Matthieu Geist, and Olivier Pietquin. On the con-
vergence of model free learning in mean field games. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 7143-7150, 2020.

Jean-Pierre Fouque and Zhaoyu Zhang. Deep learning methods for mean field control problems
with delay. Frontiers in Applied Mathematics and Statistics, 6(11), 2020.

Diogo Gomes, Roberto M Velho, and Marie-Therese Wolfram. Socio-economic applications of
finite state mean field games. Phil. Trans. R. Soc. A, 372(2028):20130405, 2014.

Diogo A. Gomes, Joana Mohr, and Rafael Rigdo Souza. Continuous time finite state mean
field games. Appl. Math. Optim., 68(1):99-143, 2013. ISSN 0095-4616. doi: 10.1007/
s00245-013-9202-8. URL http://dx.doi.org.proxy.lib.umich.edu/10.1007/
s00245-013-9202-8.

Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang. Learning mean-field games. Advances in
Neural Information Processing Systems, 32:4966—4976, 2019.

Jiequn Han, Ruimeng Hu, and Jihao Long. Learning high-dimensional McKean—Vlasov forward-
backward stochastic differential equations with general distribution dependence. SIAM Journal
on Numerical Analysis, 62(1):1-24, 2024.

Han Huang and Rongjie Lai. Unsupervised solution operator learning for mean-field games. Journal
of Computational Physics, 537:114057, September 2025. ISSN 0021-9991. doi: 10.1016/j.jcp.
2025.114057. URL http://dx.doi.org/10.1016/7.Jcp.2025.114057.

Minyi Huang, Roland P. Malhamé, and Peter E. Caines. Large population stochastic dynamic games:
Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf.
Syst., 6(3):221-251, 2006. ISSN 1526-7555. URL http://projecteuclid.org.proxy.
lib.umich.edu/euclid.cis/1183728987.

Yuling Jiao, Yang Wang, and Yunfei Yang. Approximation bounds for norm constrained neural
networks with applications to regression and GANs. Applied and Computational Harmonic
Analysis, 65:249-278, July 2023. ISSN 1063-5203. doi: 10.1016/j.acha.2023.03.004. URL
http://dx.doi.org/10.1016/j.acha.2023.03.004.

Vassili N. Kolokoltsov and Alain Bensoussan. Mean-field-game model for botnet defense in cyber-
security. Appl. Math. Optim., 74(3):669-692, 2016. ISSN 0095-4616,1432-0606. doi: 10.1007/
s00245-016-9389-6. URL https://doi.org/10.1007/s00245-016-9389—6.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural Operator: Learning Maps Between Function Spaces
With Applications to PDEs. Journal of Machine Learning Research, 24(89):1-97, 2023. URL
http://jmlr.org/papers/v24/21-1524 . html.

Nikola B. Kovachki, Samuel Lanthaler, and Andrew M. Stuart. Chapter 9 - Operator learning: Algo-
rithms and analysis. In Siddhartha Mishra and Alex Townsend (eds.), Numerical Analysis Meets
Machine Learning, volume 25 of Handbook of Numerical Analysis, pp. 419-467. Elsevier, 2024.
doi: https://doi.org/10.1016/bs.hna.2024.05.009. URL https://www.sciencedirect.
com/science/article/pii/S1570865924000097.

Thorsten Kurth, Shashank Subramanian, Peter Harrington, Jaideep Pathak, Morteza Mardani, David
Hall, Andrea Miele, Karthik Kashinath, and Anima Anandkumar. Fourcastnet: Accelerating
global high-resolution weather forecasting using adaptive fourier neural operators. In Proceedings
of the Platform for Advanced Scientific Computing Conference, PASC *23, pp. 1-11. ACM, June
2023. doi: 10.1145/3592979.3593412. URL http://dx.doi.org/10.1145/3592979.
3593412.

11

http://dx.doi.org.proxy.lib.umich.edu/10.1007/s00245-013-9202-8
http://dx.doi.org.proxy.lib.umich.edu/10.1007/s00245-013-9202-8
http://dx.doi.org/10.1016/j.jcp.2025.114057
http://projecteuclid.org.proxy.lib.umich.edu/euclid.cis/1183728987
http://projecteuclid.org.proxy.lib.umich.edu/euclid.cis/1183728987
http://dx.doi.org/10.1016/j.acha.2023.03.004
https://doi.org/10.1007/s00245-016-9389-6
http://jmlr.org/papers/v24/21-1524.html
https://www.sciencedirect.com/science/article/pii/S1570865924000097
https://www.sciencedirect.com/science/article/pii/S1570865924000097
http://dx.doi.org/10.1145/3592979.3593412
http://dx.doi.org/10.1145/3592979.3593412

Under review as a conference paper at ICLR 2026

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Fer-
ran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose,
Stephan Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir Mo-
hamed, and Peter Battaglia. Learning skillful medium-range global weather forecasting. Science,
382(6677):1416-1421, December 2023. ISSN 1095-9203. doi: 10.1126/science.adi2336. URL
http://dx.doi.org/10.1126/science.adi2336.

Samuel Lanthaler and Andrew M Stuart. The parametric complexity of operator learning. IMA
Journal of Numerical Analysis, August 2025. ISSN 1464-3642. doi: 10.1093/imanum/draf028.
URL http://dx.doi.org/10.1093/imanum/draf028.

Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Jpn. J. Math., 2(1):229-260, 2007.
ISSN 0289-2316. doi: 10.1007/s11537-007-0657-8. URL http://dx.doi.org.proxy.
lib.umich.edu/10.1007/s11537-007-0657-8.

Mathieu Lauriere. Numerical methods for mean field games and mean field type control, 2021.
ISSN 2324-7088. URL http://dx.doi.org/10.1090/psapm/078/06.

Pengdeng Li, Xinrun Wang, Shuxin Li, Hau Chan, and Bo An. Population-size-aware policy opti-
mization for mean-field games. In The Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/forum?id=fB4V-2QvCEm.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier Neural Operator for Parametric Par-
tial Differential Equations. In International Conference on Learning Representations,2021. URL
https://openreview.net/forum?id=c8PINQVtmnO.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqgY7.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218-229, March 2021. ISSN 2522-5839. doi: 10.1038/
s42256-021-00302-5. URL http://dx.doi.org/10.1038/s42256-021-00302-5.

Shunyuan Mao, Ruobing Dong, Lu Lu, Kwang Moo Yi, Sifan Wang, and Paris Perdikaris. Pp-
donet: Deep operator networks for fast prediction of steady-state solutions in disk—planet sys-
tems. The Astrophysical Journal Letters, 950(2):1.12, June 2023. ISSN 2041-8213. doi: 10.3847/
2041-8213/acd77f. URL http://dx.doi.org/10.3847/2041-8213/acd77f.

Weichao Mao, Haoran Qiu, Chen Wang, Hubertus Franke, Zbigniew Kalbarczyk, Ravishankar Iyer,
and Tamer Basar. A mean-field game approach to cloud resource management with function
approximation. Advances in Neural Information Processing Systems, 35:36243-36258, 2022.

Ming Min and Ruimeng Hu. Signatured deep fictitious play for mean field games with common
noise. In International Conference on Machine Learning, pp. 7736-7747. PMLR, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Sarah Perrin, Mathieu Lauriére, Julien Pérolat, Romuald Elie, Matthieu Geist, and Olivier Pietquin.
Generalization in mean field games by learning master policies. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 9413-9421, 2022.

Jayakumar Subramanian and Aditya Mahajan. Reinforcement learning in stationary mean-field
games. In Proceedings of the 18th International Conference on Autonomous Agents and MultiA-
gent Systems, pp. 251-259, 2019.

12

http://dx.doi.org/10.1126/science.adi2336
http://dx.doi.org/10.1093/imanum/draf028
http://dx.doi.org.proxy.lib.umich.edu/10.1007/s11537-007-0657-8
http://dx.doi.org.proxy.lib.umich.edu/10.1007/s11537-007-0657-8
http://dx.doi.org/10.1090/psapm/078/06
https://openreview.net/forum?id=fB4V-2QvCEm
https://openreview.net/forum?id=c8P9NQVtmnO
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://dx.doi.org/10.1038/s42256-021-00302-5
http://dx.doi.org/10.3847/2041-8213/acd77f
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

Under review as a conference paper at ICLR 2026

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric
partial differential equations with physics-informed deeponets. Science Advances, 7(40), October
2021. ISSN 2375-2548. doi: 10.1126/sciadv.abi8605. URL http://dx.doi.org/10.
1126/sciadv.abi8605.

Zida Wu, Mathieu Lauriere, Matthieu Geist, Olivier Pietquin, and Ankur Mehta. Population-aware
online mirror descent for mean-field games with common noise by deep reinforcement learning,
2025. URL https://arxiv.org/abs/2509.03030.

Batuhan Yardim and Niao He. Exploiting approximate symmetry for efficient multi-agent rein-
forcement learning. In Necmiye Ozay, Laura Balzano, Dimitra Panagou, and Alessandro Abate
(eds.), Proceedings of the 7th Annual Learning for Dynamics &,; Control Conference, volume
283 of Proceedings of Machine Learning Research, pp. 31-44. PMLR, 04-06 Jun 2025. URL
https://proceedings.mlr.press/v283/yardim25a.html.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:
103-114, October 2017. ISSN 0893-6080. doi: 10.1016/j.neunet.2017.07.002. URL http:
//dx.doi.org/10.1016/j.neunet.2017.07.002.

Chenyu Zhang, Xu Chen, and Xuan Di. Stochastic semi-gradient descent for learning mean field
games with population-aware function approximation. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
t£0071z0b9.

A EXPERIMENTAL DETAILS

As noted in our reproducibility statement, we provide all experimental details in order to recreate
our results from Section 5 and in Appendix G. Smaller experiments in the cybersecurity example
were carried out a 2020 MacBook Pro with an Apple M1 chip and 8GB RAM. For the purposes
of timing (see Appendix G), higher-dimensional experiments in the quadratic example were instead
run on a single NVIDIA A100 TensorCore GPU with 40GB of VRAM via Google Colaboratory.
All experiments were implemented in the PyTorch machine learning library in Python Paszke et al.
(2019). Code for our numerical experiments can be found in our submitted supplementary material.

To best align with our theoretical results in Section 4, we utilize fully-connected ReLU neural
networks for all experiments unless otherwise specified. In all cases, we used mini-batches with
TNmini = 064 samples for each gradient step during the training loop. All hyperparameters were se-
lected via a grid search, with tuned parameters being: initial learning rate, number of hidden layers
(depth), width of each hidden layer, number of training epochs, and number of training samples. In
each case, we validated our models by testing on 20% of the training data, held-out from the training
set for validation. In many cases, we found it beneficial to utilize early stopping to prevent overfit-
ting; for higher-dimensional examples, training for fewer epochs appears to provide better results.
Finally, in all cases, we found that a cosine annealing learning rate scheduler performed best for op-
timization; we used the default parameters for the CosineAnnealingL.R scheduler, as implemented
in PyTorch’s torch.optim package. We also found that optimization was more slightly stable
for higher-dimensional cases when using: (1) the AdamW optimizer with the default weight decay
parameter, A = 0.01, and (2) smooth L'-loss in place of L2-1oss. Nonetheless, we are able to obtain
similar results with L2-loss, in line with our theoretical framework in Section 4.

In Tables 1 and 2 below, we describe the specific architectures and hyperparameters that we chose
for each experiment in Section 5, including depth, width, number of training epochs, optimizer pa-
rameters, and number of training samples. Finally, in Appendix G, we provide additional numerical
experiments to showcase the accuracy of our method for higher-dimensional quadratic models. De-
parting from feedforward ReLU networks, we are able to obtain even better performance in d = 10
using a ResNet architecture with depth L = 4, two layers of width 128, two hidden layers with width
64, skip connections between all layers, layer normalization, and dropout with probability p = 0.05.
See the results of this experiment in Fig. 5 below.

Our submitted code, provided in the supplementary material, is organized as follows:

13

http://dx.doi.org/10.1126/sciadv.abi8605
http://dx.doi.org/10.1126/sciadv.abi8605
https://arxiv.org/abs/2509.03030
https://proceedings.mlr.press/v283/yardim25a.html
http://dx.doi.org/10.1016/j.neunet.2017.07.002
http://dx.doi.org/10.1016/j.neunet.2017.07.002
https://openreview.net/forum?id=tfO07iz0b9
https://openreview.net/forum?id=tfO07iz0b9

Under review as a conference paper at ICLR 2026

* utils contains a generic class for MFG operators, as well as two scripts defining the
cybersecurity and quadratic models from Section 5.

* generation contains two scripts for sampling trajectories from the cybersecurity and
quadratic models, respectively.
* tests contains
— train_cs_operator_time.py and train_quad.operator_time.py,
which implement Algorithm | for the two models in Section 5, and

— train_cs_operator_fixed.py and train_quad_operator_fixed.py,
which implement a similar algorithm for learning trajectories along a fixed time dis-
cretization.

Finally, the directories data, models, and plots contain example outputs that can be
reproduced (at least, up to randomness of sampling) by running the above scripts.

For example, running generate_quad._data.py will generate samples for the quadratic model
in dimension d = 3, stored in data then running train_quad-operator_time.py will train
a model on the generated samples, outputting a model stored in mode1s and a corresponding plot
on four random samples, stored in plots.

Table 1: Optimization details for experiments Section 5 and Appendix G.

Experiment Optimizer Loss Function
Cybersecurity Model Adam L?
Cybersecurity Model (Fixed Discretization) Adam L?

Quadratic Model AdamW Smooth L!
Quadratic Model (Fixed Discretization) Adam L?

Table 2: Selected hyperparameters for experiments in Section 5 and Appendix G.

Experiment # Training Samples (n) # Epochs (mpqin) Width (W) Depth (L) Initial Learning Rate
Cybersecurity Model 2000 2000 64 4 8 x 10 1
Cybersecurity Model (Fixed Discretization) 2000 1000 64 4 8 x 1074
Quadratic Model (d = 3) 4000 2000 64 4 8 x 104
Quadratic Model (d = 3, Fixed Discretization) 4000 1000 64 4 8 x 1074
Quadratic Model (d = 4) 4000 2000 64 4 8 x 104
Quadratic Model (d = 4, Fixed Discretization) 4000 1000 64 4 8 x 1074
Quadratic Model (d = 5) 4000 2000 64 4 8 x 104
Quadratic Model (d = 5, Fixed Discretization) 4000 1000 64 4 8 x 104
Quadratic Model (d = 10) 10000 500 128 4 1x 104
Quadratic Model (d = 10, Fixed Discretization) 10000 1000 64 4 8 x 104
Quadratic Model (d = 20, Fixed Discretization) 20000 1000 64 4 8 x 104

B MARKOVIAN CONTROLS AND REPRESENTATIVE PLAYER’S PROCESS

In this appendix, we formally describe the Markovian controls that the representative player in a
finite-state MFG chooses, presented at a high level in Section 2.1.

Denoting [d] = {1,...,d} to be the set of states that the player may switch between, a Markovian
control refers to a measurable function

a:Ry x{1,...,d} —» Afy =] A,
z€(d]

where
A ={aeR*":Vy#z, ay€h, a,= _Zy;&xay}-

The value of oy (t,x) := a(t,z),, where # y, represents the player’s rate of transition at time
t from the state z to the state y. We require that o, (t,2) = =3, ay(t,z) forall z € [d], as
is standard for the transition probabilities of a continuous-time Markov chain. More concisely, let
QJA] be the set of d x d transition-rate matrices with rates in A := [a;, a,,]. Then, the player chooses
Markovian controls « : [0,7] — Q[A] which we refer to as the set of admissible controls. Under
this interpretation, (a(t))q,, = ay(t, x).

14

Under review as a conference paper at ICLR 2026

In Section 2.1, we noted that, given a Markovian control o and an initial distribution , € P([d]), the
player’s dynamics obey a continuous-time Markov chain with transition probabilities

Pr(X), =y | X" =2) = ay(t,x)h +o(h), h—0".

In fact, this Markov chain arises as the result of a Poisson jump process, which completely describes
the dynamics of the representative player. Our method does not rely on the exact details of the jump
process, however, and we thus refer the interested reader to (Cecchin & Fischer, 2018, Section 2.3)
for additional details on the probabilistic structure of finite-state MFGs that we consider.

In Section 2.1, we provided a condensed version of the assumptions that ensure that the MFG system
has a unique solution. Below, we expand on these assumptions, providing the full suite of assump-
tions that previous work such as Bayraktar & Cohen (2018); Cecchin & Pelino (2019); Cohen et al.
(2024) all utilize.

Our first two assumptions ensure that the Hamiltonian in (2.4) has a unique minimizer and that the
running and terminal costs F' and g are monotone in an appropriate sense. Our third assumption is
a technical assumption on the strong concavity of the Hamiltonian. Although this last assumption
may not appear immediately relevant, it is useful later when we analyze the regularity of the flow
map for Equation (2.3) in Appendix E.1 below.

Assumption B.1. The Hamiltonian has a unique minimizer, which we refer to as the optimal rate
selector and is denoted * (x, p) := argmin, e a {f(x,a) + a - p}. The optimal rate selector v* is

a measurable function that, given any (x,p) € [d] x R, defines a well-defined (unique) rate vector
a such that for any y # x, ay € A and a, = — Zy;éx ay. In particular, it is sufficient that f is
strictly convex with respect to a.

Assumption B.2. The functions F' and g are continuously differentiable in n with Lipschitz deriva-
tives. Moreover, F and g are Lasry—Lions monotone in the sense that for both ¢ = F, g,

> " (¢(x,n) — ¢(@.7)) (12 — 1) > 0, (B.1)
z€(d]

for any n, 1 € P([d]).

Assumption B.3. Assume that, for some W > 0, the derivatives Df,pH and Dy H of the Hamilto-

nian exist and are Lipschitz in p on [—W, W|. Moreover, H is strictly concave in p: there exists a
positive constant Cy gy such that:

D2 H(z,p) < —Ca,p. (B.2)

When H is differentiable, (Gomes et al., 2013, Proposition 1) implies that
v*(z,p) = DpH (z,p), (B.3)

a useful property when establishing regularity of the flow map. Moreover, if Assumption B.3 holds,
then ~* is locally Lipschitz.

C THE MASTER EQUATION

The master equation is given by the following nonlinear PDE:

QU (t,x,m) + 2, e DUt x,m)vi(y, AyU(t, -) + H(z,n, AU, -, m)) =0,
U(T,z,n) =g(x,m), (az,n) €0,T)x[d xP([d]),

(C.D

Above, U : [0,T] x [d] x P([d]) — R, with Dj}, denoting a directional derivative in the direction of

the vector e, := e, — e, on the probability simplex, where ¢,, e, € R? are standard basis vectors
indexed by y, z € [d]. More precisely, for ¢ : P([d]) — R, we define

D7_¢(n) := lim P(n+ ey:h) — ¢’(77)

vz h—0t h

(C2)

15

Under review as a conference paper at ICLR 2026

Note that this convention respects the geometry of the simplex, in the sense that derivatives are only
allowed in directions along the simplex: if n € P([d]), then + e,.h € P([d]) for all h sufficiently
small.

We have the following result concerning the master equation, both providing its regularity and estab-
lishing the consistency relation invoked in Corollary 4.1 above. This proposition combines results
from (Cecchin & Pelino, 2019, Proposition 1, Proposition 5, Theorem 6) and (Cardaliaguet et al.,
2019, Section 1.2.4).

Proposition C.1. There exists a unique solution, denoted by (u'®>", puto-"), in C1([to, T] x [d],R) x
CY([to, T) x [d], P([d])) to (2.3). Let U be defined by:
Ulto, ,m) := u'"(tg,). (C.3)

Then, the master field U is the unique classical solution to the master (C.1). Moreover, we have the
consistency relation such that for all ty € [0, T,

U(t, z, pfo () = ut+""" O (4) = wlon(p), (t,x,n) € [to,T] x [d] x P([d]). (C.4)
Finally, U(-,x,-) € C¥Y([0,T] x P([d))) for every x € [d).

Note that the above result is stated in the more general setting, where our MFG begins at time ¢y €
[0, 7], with the initial distribution specified as p(tg, z) = n(x). Then, u'" and p'o-" describe the
evolution of the value function and flow of measures starting at time ¢¢; this formalism is necessary
for results concerning the master equation, but it is not directly relevant to our setting, so we assume
that £y = 0 throughout.

D PICARD ITERATION FOR FORWARD-BACKWARD SYSTEMS

In this section, we describe the precise details of the Picard iteration map, denoted by I'y, that
we use as a subprocess in Algo. 1 for sampling from parametrized families of finite-state MFGs.
Specifically, we recall the forward-backward MFG system from (2.3):

%u”’“(t,x) + H(z, y™"(t), Ayu™"(t,-)) = 0, (t,x) € [0,T] x [d],

d K *
S) =D) (s Ay (), (ta) € [0,T) x [d),
ye(d]
‘un’fﬂ(o,x) = U(ﬂﬁ)a S [d],
ut™(T,x) = g (2, p"™(T)), x€[d].
To solve this ODE system on the time interval [0, 7], we introduce a time discretization with M
points and time step At := 1/M, partitioning the interval [0, 7] into subintervals [t;,t;11] with

t; =iAtfori=0,..., M. Then, foreachi = 0,..., M — 1, the time-discretized system becomes
a nonlinear system of equations given by

u (i,) — P (b, w) = —AH (2, 1" (i), Agu™ (8,0), x € [d],
P (b, @) — g () = ALY (b)y (Y Agu™ (i), x € [d),
veld) (D.1)
p" (to,) = n(z), LS [dL
u (tar,) = gz, p"" (tur)), z € [d].
Using fixed point iteration, we produce approximations of the value function {u""(¢;,-)}M and
flow of measures of {u%(t;,-)}M , evaluated along the time discretization t, . . ., t57. Now, given

fixed K € K, the output of the Picard iteration map I' : P([d]) — (RH)M+1is T'(n); =~ u""(t;,-) €
R%

For ease of notation, we suppress the dependence of and u on (7, k) € P([d]) x K below, noting
that this method solves a single MFG from a parametrized family. To begin, we initialize vectors

1 € RM+1 and u(® € RM+1 with 11" (z) = n(z) and v\ () = g, (, u\7) for 2 € [d]. Then,

16

Under review as a conference paper at ICLR 2026

we alternate between updates to u and p via the finite difference equations in (D.1), producing
iterates u*) € RM and) € RF in an alternating fashion. If the map u(? +— w(*1) is a
strict contraction, then a standard argument via the Banach fixed point theorem shows that this
iterative procedure will converge the solution u € (R%)M+! to the time-discretized Equation (D.1).
Importantly, note that the discretization of the time derivative incurs an error of O(At), so we must
take At small in order for fixed point iteration be accurate.

As discussed in (Lauriere, 2021, Section 2.3), Picard iteration for such forward-backward systems
may sometimes be numerically unstable. If this is the case, we may introduce a sequence of damping
parameters {5(%) } . and carry out damped updates to one of the updates. For instance, in (Lauriére,
2021), the author includes an auxiliary update i), with ©(©) = (©) and updates the forward
equation via

ﬂ(k+l) _ 5(%@)/1(1«) +(1- 5(k))ﬂ(k)

to encourage more stable convergence. Then, the backward equation is updated with /i(*); the update
to the forward equation remains the same. This algorithm, based on (Lauriere, 2021, Algorithm 1),
is included below. In the numerical examples in Section 5, we do not require damping in order for
fixed point iteration to converge quickly and we simply take §(*) = 0 for all k& € N. However, for
more complex MFG systems, damping may be a helpful augmentation of our sampling procedure.
Algo. 2 provides a summary of the procedure outlined above.

Algorithm 2 Picard Iteration for Time-Discretized MFGs

Input: Parameters (1, k) € P([d]) x K, number of time steps M € N, tolerance ¢ > 0, damping

schedule {6(*)} ¢y, initializations ug, po € (R%)M+1

U(O) < Up

1O < pg

i — po

k<0

while ||u*+1) — 4 ®)||; > cor |uF+D) — p®)||5, > e do
Solve the discretized backward equation in Equation (D.1) for u(**1) with input ji(*).
Solve the discretized foward equation in Equation (D.1) for p*+1), with input (*+1).
D 5R) R (1 — R (k)
k+—k+1

end while

return (%)

TRYR R DUNRRN

—_ =

E TECHNICAL PROOFS

In this section, we present technical lemmata and proofs for our claims about the regularity of flow
maps for parametrized families of MFGs. First, we recall some useful notation. For any compact
set K C R% and a function ¢ : K — R, we define

[6]loo := sup | (x)
zeK

All functions such that ||¢|| < oo form the Banach space CY(K). For instance, for functions such
asu : [0, T[x[d] — R, we take

lu|loo = sup max |u(t, z)].
teT v€ld]
We also occasionally refer to the spaces C%!(K), consisting of all Lipschitz functions on K, and
C%1(K), consisting of all continuously differentiable functions on K with Lipschitz derivatives. For

functions on the d-dimensional probability simplex P([d]), we only allow directional derivatives
along the directions e,, — e, where e, e, are standard basis vectors in R%.

17

Under review as a conference paper at ICLR 2026

E.1 PROOFS OF REGULARITY RESULT

For our regularity results, (Cecchin & Pelino, 2019, Proposition 5) provides a very useful starting
point. Importantly, the authors of (Cecchin & Pelino, 2019) work under Assumptions 2.1. It remains
to incorporate the added effect of a changing terminal condition, restricted to a parametrized set of
functions under Assumption 2.2, into their results.

First, we define ®(t,7) := U(t, -, u"(t)) = u(t,). due to the consistency relation in Proposition C.1
in Appendix C, where U is the solution to the master equation. Now, Proposition C.1 also provides
that U(-,z,-) € CH([0,T] x P([d])) for every = € [d] under our assumptions, which directly
implies the following:

Lemma E.1. Under Assumption 2.1, The flow map ® : [0, T] x P([d]) — RY, given by ®(t,n) =
u(t,-), satisfies ® € CL1([0,T] x P([d]); RY).

Including Assumption 2.2, on top of Assumptions 2.1, we show that the flow map
®:[0,T] x P([d]) x K= RY, ®(t,n, k) = u"(t,)

is Lipschitz in all three arguments. Above, recall that the notation u™" denotes the value function
that solves the MFG system, with initial distribution € P([d]) and terminal cost g,;, where x € K.
In turn, Lipschitz regularity of the flow map on the compact set [0, 7] x P([d]) x K, recalling that
Assumption 2.2 requires that I is compact, is sufficient to invoke the approximation guarantees
provided in (Jiao et al., 2023). We begin with a stability estimate for the parametrized family of
MFG systems obeying Assumption 2.2.

Lemma E.2. Let (uq, 1) and (us, pu2) solve the MFG system in (2.3) with data (01, gx,) and
(N2, g,) respectively, with n1,m2 € P([d]) and k1,ko € K C R¥. If Assumptions 2.1-2.2 hold,
then there exists a constant C > 0 such that

sup max |uy (t, x) — uz(t,)| < C(|k1 — Kol + (|1 — pallso)- (E.1)
te[o,T] =€ld]

Proof. We proceed as in (Cecchin & Pelino, 2019), taking u := u; — ug and p = p3 — po. The pair
(u, (1) then solves the system

%u(t, x) + H(z, py(t), Agup (t,-)) — H(z, pa(t), Agua(t,) =0, (t,x) € [0,T] x [d],

%u(t,w) = [y Ay (t,) — pa(t, Vs (y, Ayua(t,)], (tz) € 0,T] x [d],

y€ld]
w(0,2) =m(z) —ma(z), x€ld],
U(T7x) ng(l‘,,ul(T))—g,w(x,,ug(T)), (S [d]
(E.2)

To begin, we integrate the backward-in-time HIB equation in (E.2) over the interval [t, T'|, where
t € [0,T] to obtain

u(t,) = g, (@, 11 (1)) = gy (x, p2(T)) + /t [H (, 1 (s), Agua (s,) — H(z, pa(s), Agua(s,)] ds
Observe that

(91 (@ 12(T)) = Gy (1, 12 (1)) = gy (. 12(T)) = Gy (2, 11 (1)) + s (2, 11(T)) = G (2, 12(T)|
< C(|k1 — Ba| + |1 (T) — p2(T)H])
< CO(lk1 = Ka| + [l1 — pr2lloo)-

leveraging both Assumption 2.2 and the fact that g, (z, -) € C*(P([d])) so that g,, is Lipschitz in its
second input. Now, recall that

H(z,n,b) = H(x,b) + F(x,n),

18

Under review as a conference paper at ICLR 2026

with H Lipschitz in b and F' Lipschitz in under Assumptions 2.1 and 2.1. Consequently, we have
that

| H (2, 11(5), Agua(s,) — H (@, pa(s), Agua(s,)| < C (|lpa(s) — pa(s) + [Agua(s,) — Agus(s

< O(Jpa(s) — pa(s)| + max lu(s, x)]),

recognizing that
[(s,7) = Auas,)P = [Aguls,)P = 3 (uls,y) = uls,2)* < ddmau(s, 2)]
zE
ye(d]

Taking absolute values and the maximum over z € [d] of the integrated HIB equation, we are left
with
T

T
maxu(t, z)] < Clr1 = ool + [l = p2lloc) + C/ [a(s) = pa(s)lds + C | maxu(s, z)|ds
x t t T

T
< O(lr1 — k2| + [— palloc) + C’/ max lu(s, z)|ds.
t xT
Applying a reversed version of Gronwall’s inequality, we obtain
max lu(t,z)| < C(lk1 — ka| + [l — p2lloo)

forall ¢ € [0, T so that

l[ur — uzfloc < C(lk1 — k2| + [l1 = p2lloo),
taking the supremum over ¢ € [0, 7. O

Next, we require an estimate on the difference ||p; — 12| oo; this time, the argument from Cecchin
& Pelino (2019) applies without modification.

Lemma E.3. Under the same assumptions as in Lemma E.2, the difference in measures satisfies

s — pislloo < Cln — 772|+C/ \/Zm (s — u2) (s, |2 pua (5, 2)ds.

z€(d]

Proof. This estimate follows by integrating the (forward) Kolmogorov equation for p from (E.2);
see (Cecchin & Pelino, 2019, Proposition 5) for details, which carry over verbatim to our setting. [

Equipped with both of the previous lemmata, we proceed to bound ||u||o and || || in terms of the
initial-terminal data (11, <1) and ()2, ko).

Lemma Ed4. Let (uy, 1) and (ug, pu2) solve the MFG system in (2.3) with data (01, gy,) and
(N2, gwy) respectively, with n1,m2 € P([d]) and k1, ke € K C R¥. If Assumptions 2.1-2.2 hold,
then there exists a constant C' > 0 such that

11 (t, @) — pa(t, o)|loc < C(In1 —n2| + |51 — K2), (E.3)
lur — uslloo < C(Im — n2| + k1 — K2|) (E4)

As a direct corollary, we can extend this stability result to obtain Lipschitz continuity of the flow
map @ : [0, 7] x P([d]) x K — R4,

Proof of Lemma E.4. Taking ¢(t) = (u(t,-), u(t,-)), we see that

S0 = 3 ult) B0+ Y Sttt)

z€|d] z€ld]
= v Ayur(t,) = pat,y)vs (W, Ayua(t,) (ua (t,) — ua(t, 7))
z€[d] y€[d]
+ > [H(w, pat), Agua(t,) — H(w, (1), Agua(t,)] (8,) — pa(t,).
z€[d]

19

)

Under review as a conference paper at ICLR 2026

Integrating over the interval [0, T], we obtain

¢(T) — /O [Z Dl () vy, Ayua (t,-) — pa(t, y)7vi (v, Ayua(t,)] (ur (¢,) —uz(tw))] dt

me[d ye[d]
/
0

In the first integral, we observe that under Assumption 2.1, we have that

>)

z€[d]

Z [H($7 /1'2(t)7 AIU?(tﬂ)) - E[(l‘, 121 (t), Amul(t7 '))](Nl(t7 :L‘) - :u2(t7 CU))] dt.

z€[d]

As a result, we can interchange the order of summation to obtain

Do > It)iy, Ayua(t,) — pe(ty)va(y, Ayua(t,)l (wa(t,z) — uz(t, 2))

z€[d] y€[d]
= Z Z [Ml (t7 Y2 (Y, Ayul(tv)) - /LQ(L y)V; (v, AyUQ(tv '))](ul(t’ .”L') —u(t, y) + uz(t, y) — u2(t7 1‘))
y€ld] z€ld]
=)0 vy, Ayua(t,) — p2(t, y)7i (v, Ayua(t,)] Ayu(t,)
y€[d] z€[d]
- Z ST (), Aaun () — izt)7 (2 Ayus(t,)] Ayt)
d] y€[d]

= Z Aru : ,LL1 t,SC Y (vaIul(tv')) - NQ(tvI)rY*(‘TaAHTUQ(t?'))L

switching the role of = and y in the fourth line for notational consistency below. With this, we see
that

D (g (@, 11(T) = gy (0, p2(T))) [p1 (T,) — (T,)
z€[d]

= (u1(0,2) — uz(0,2))[m1 (z) — m2(2)]

z€[d]

+ / ™ [H (e, po(t), Agus(t,) — H(a, m(»Awﬂt-))}(m(tw)—m(t,x))] dt

xE[d]

[]S A (.07 @A) = et o Agua(t) |

Lz€ld]

(E.5)

At this point, we note that the lefthand side of the above equality can be decomposed as

Y (G (@ 11 (T)) = gy (2, p2(T)) 11 (T,) = o (T,)]

z€[d]
= (g (@ 11 (T) = g, (@, 12(T)) + g, (2, 412(T)) = Gy (@, p12(T)) [111 (T,) — pia (T,)]
z€(d)
> > (g (2, 12(T)) = Gy (0, p12(T))) (11 (T,) = po (T,)],
x€[d]

20

Under review as a conference paper at ICLR 2026

invoking the fact that g,,, is Lasry—Lions monotone; see Assumption 2.1. Now, we use Assump-
tion 2.2 to bound

> (9w (@, 12(T)) = gy (2, 12(T))) 112 (T,) — p1a(T,)]
z€[d]

<D 19w (@ 12(T)) = gy (, p2(T)) |11 (T) = pia (T,)|
z€[d]

< Clkr — fal|l1 — pr2lloo

absorbing additional constants into C' as necessary (e.g., C absorbs a factor of d in the final line). In
summary,

> (G (@, 1(T)) = greo (@, p2(T) (2 (T,) — pa(T,)] > —C (|51 — r2l” + |1 — palZ)-
z€[d]
On the other hand, observe that
> [H(z, pa(t), Agua(t,) — H(x, pa (£), Agur (t,)] (i (8,) — pat, z))]
z€(d]
=Y [H(z,Asua(t,) — H(w, Agu (t,) (ma (£,) — pa(t,)]
z€ld]

d
= (F(a,pa (1) = Fl, pa())) (a(t, 2) — pa(t,)

z€(d]

< Z [H(.T, AEU?(tv)) - H(Z‘, Az (t’ '))(Ml (t’ x) - MQ(t’ x))]’
z€[d]

recalling that F’ also satisfies the Lasry—Lions monotonicity assumption from Assumption 2.1. Now,
(Gomes et al., 2013, Proposition 1) implies that

V" (x,p) = DpH(x,p). (E.6)
From this, we have that
7@, Agus(t,) = DyH (@, Agus(t,), i = 1,2,
allowing us to write
H(z,Ayus(t,) — H(z, Ayui(t,) + Agu - v* (z, Azuq(t,+))
= H(z,Agua(t,-)) — [H(z, Agui(t,-)) + (Ague — Agur) - DpH (2, Aguq(t,-)]
< —Co | Azul?

by Assumption (2.1). Namely, the Hessian D2 H (x, p) exists and satisfies the bound D2 H (x,p) <
—C', g for some constant C'y i > 0 under our strict concavity assumption. By the same reasoning,
we observe that

H(z,Apui(t,) — H(z, Agua(t,) — Agu - v*(z, Agus(t,+))
= H(z,Ayui(t,-)) — [H(z, Agus(t,-)) + (Agur — Agug) - DpH (2, Agua(t,)]
< —CQ,H‘AQCUF.

Thus, returning to (E.5), we have that

—C(|r1 = kalllpa — p2lle) < D (a(0,2) = uz(0,2))[m (z) — n2()]
z€[d]

T
0[5 1Al 5.2) + s)

z€[d]

21

Under review as a conference paper at ICLR 2026

Upon rearrangement, and an application of the Cauchy—Schwarz inequality to the first term on the
righthand side of the above inequality, it follows that

T
/0 D 1Auls,)P (s, @) + pa(s, @))ds < C|ullolm — nal + |51 — kol 1o0)
z€[d]

for some constant C' > 0. Now, invoking Lemma E.3, the Cauchy—Schwarz inequality, and the fact
that po(s,) > 0 forall s € [0,T] and = € [d], we have that

T
Il <l =l +:€ [[3 [Bsu(s.) Pra(s,a)ds
0

z€[d]

T
<Cli—ml+C| [3 1Al) 2m(s,a)ds
0 zeqq

< C(Im =2l + Vllullsolm — m2l + 51 — K[|l
< C(Im — mol + lull2Im — mol ™2 + |51 — k2| 2| ul|2L%),

recalling that v/a + Vb > va + bforany a,b > 0. Now, recall that for any a,b > 0 and € > 0, we
also have that

1
ab < ea® + —b>.
4e
Applying this inequality once with € = % , we see that

1
lilloo < Clm =2l + 81 — mal + [l L2m — nal /%) + PLLES

taking C' > 0 larger if necessary. Applying the same inequality again with ¢ = ﬁ and rearranging,
it follows that

lillse < O = ol + sy = al) + 55wl ©7)
Plugging this into the result of Lemma E.2 and rearranging yields
[ullso < C(m — el + |K1 — K2l), (E.8)
and plugging (E.8) into (E.7) results in
[lloe < Clm — m2| + K1 — K2|)

as claimed. O

To conclude, we can present the proof of our main theorem, which follows almost immediately from
the preceding results.

Proof of Theorem 4.1. Observe that we can write

|D(t,m1, k1) = B(s,72, h2)| = |(t, M1, K1) = B(s,m1, k1) + P(s,m1, K1) — (s, 72, K2)|
< |D(t m, k1) = R(s,m1, k1) | + | D(s, 71, 51) — (5,72, K2)|
<Ot — 8|+ |m — na| + [k1 — kKal),
invoking Lemma E.1 to bound the first term and Lemma E.4 to bound the second term. O

Remark E.1. Although Lanthaler & Stuart (2025) reference the approximation guarantee from
(Yarotsky, 2017, Theorem 1) to show that their HJ-Net method evades the curse of parametric com-
plexity, most existing guarantees on the generalization performance of ReLU neural networks re-
quire bounds on the weights of the neural network rather than the size of the network. The well-
known result from Yarotsky (2017), however, only provides width and depth bounds on ReLU net-
works approximating a function with prescribed regularity. To this end, we pursue an alternative
approach for obtaining approximation and generalization guarantees, based on the recent results of
Jiao et al. (2023).

22

Under review as a conference paper at ICLR 2026

E.2 PROOFS OF APPROXIMATION AND GENERALIZATION GUARANTEES

We conclude with proofs of Corollary 4.3 and Corollary 4.5, our approximation and generalization
results respectively. Both follow almost directly from the corresponding results in (Jiao et al., 2023),
in Proposition 4.2 and Proposition 4.4 respectively, but we include the necessary rescaling arguments
here for the sake of completeness.

Proof of Corollary 4.3. First, by Theorem 4.1, the flow map ® : [0,7T] x P([d]) x K belongs to
C%1(]0, T) x P([d]) x K). From this, we can apply Proposition 4.2 directly upon scaling the domain
[0,T] x P([d]) x K to lie entirely within the (d + k + 1)-dimensional unit cube.

To carry out this scaling, we embed P([d]) < [0, 1]¢, scale K to lie in the set [0, 1]¥, and scale the
interval [0, 77 to lie in the interval [0, 1]. The natural embedding P([d]) < [0, 1]¢ is simply given
by viewing

d
P([d]) = {neRd:Zm:L mZOforalli:l,...,d}.
i=1

This rescaling may incur constants that depend on the diameter of K, denoted by diam(X), and the
final time 7. Importantly, it is always possible for finite 7" > 0 and compact K C R¥. The result
then follows upon applying Proposition 4.2, replacing d with d + k + 1 therein. As noted above,
the universal constants ¢, C' > 0 obtained in Proposition 4.2 must also be replaced by constants
¢(diam(K), T), C(diam(K),T) > 0 that depends on K and 7. O

Proof of Corollary 4.5. This follows directly from Proposition 4.4 upon carrying out the same
rescaling argument as in the previous proof, again replacing d with d + k + 1 in the statement
of the result. Again, we note that the universal constant ¢ > 0 from Proposition 4.4 must be replaced

by a constant C'(diam(K), T') > 0 that can depend on K and 7. O

F CONNECTION TO HAMILTONIAN FLOW

In this appendix, we expand upon the similarity between the MFG system and the characteristic
ODEs that Lanthaler & Stuart (2025) utilize to obtain parameter-efficient operator learning for first-
order HJB equations. Consider an arbitrary first-order HJB equation on a bounded domain £ C R,
with Hamiltonian H : R? x R? — R:

{8tu+H(q,un) =0 (z,t) € Qx(0,7T],

u(z,0) = uo(x) z €, (F1

Instead of attempting to learn the operator that maps the initial data ug € C™(2) to u € C™(2 X
[0, 7)), for instance, Lanthaler & Stuart (2025) construct a scheme they label HJ-Net with the aim
of learning the Hamiltonian flow (i.e., the characteristics of the HIB equation), which satisfies the
ODE system

¢=VyH(q,p) q(0)=qo,,
p=—VqH(q,p) p(0)= po, (F2)
z2=L(q,p) 2(0) = zo.

Then, the flow map ¥; : Q x R? x R — Q x R? x R, given by (qo, po, 20) — (q(t),p(t), 2(t)) is
such that z(t) = u(q(t),t) and p(t) = V,u(q(t),t) along the characteristics (¢(¢),t). By learn-
ing the flow map Wy, instead of the operator uy +— wu, and reconstructing the solution u from
the characteristics, (Lanthaler & Stuart, 2025, Theorem 5.1) shows that the HJ-Net approach can
beat the so-called curse of parametric complexity, enabling parameter-efficient operator learning for
HIJB equations. Observe, nonetheless, that there is a subtle but important difference between the
Hamiltonian flow and the MFG system: the former is independent of the initial condition ug of
Equation (F.1), while the latter depends explicitly on the terminal condition g,. In the setting of
Lanthaler & Stuart (2025), this enables parameter-efficient operator learning over initial conditions
belonging to an infinite-dimensional Banach space, as the Hamiltonian flow map remains approx-
imable by neural networks of bounded width and depth regardless of the space to which the initial

23

Under review as a conference paper at ICLR 2026

conditions belong. Conversely, for finite-state MFGs, we must limit ourselves to parametrized ter-
minal costs due to the dependence of the MFG system on the terminal cost. Indeed, the technical
results in both our work and in (Lanthaler & Stuart, 2025) rely upon reducing to a flow map between
subsets of finite-dimensional Euclidean spaces, which is not the case if we allow terminal costs to
belong to an infinite-dimensional Banach space.

G ADDITIONAL NUMERICAL EXPERIMENTS

We provide a comprehensive suite of additional numerical experiments for both the cybersecurity
model and the quadratic model.

As alluded to earlier (see also Appendix A), Fig. 5 demonstrates the improvement in accuracy and
reduced variance over trials that comes with a more powerful neural network architecture. In par-
ticular, we replicate the d = 10 results using a ResNet architecture, with layer normalization, skip
connections between all layers, a dropout rate of p = 0.05. Moreover, the ResNet’s first and layer
layer have width W7 = 128 while the middle two hidden layers have width W = 64. We find that
this “bottleneck” helps promote training stability, and Fig. 5 demonstrates the effect that this archi-
tecture choice has on accuracy and variance (the latter is illustrated by smaller standard deviations
about the mean of the five trials).

Next, Figure 6 and Figure 7 provide additional evidence for the accuracy of our method on the
cybersecurity model. Similarly, Figures 9—12 illustrate a variety of random tests for the quadratic
model in dimensions d = 3,4, 5, and 10. In Table 3, we present statistics for the models used to
produce Figures 9—12 (as well as Figure 3), including average test losses on the held-out test set at
the end of training and average training times.

Finally, we include a handful of figures that learn an operator on a fixed time discretization. Specifi-
cally, suppose that we discretize the time interval [0, 7] with M time, yielding times t; = jT'/M for
j=0,..., M. Given a pair (1;, ;) € P([d]) x K, one may instead attempt to learn the augmented

flow map subordlnate to the discretization, given by @ : P([d]) x K — (R%)M+1

D(ni, ki) > (W (1)) 1L,

In practice, this map can be learned using a slight modification of Algo. 1, where the sampling
step simply takes in a pair I; := (n,, ki) € P([d]) x K and outputs the entire trajectory that
Picard iteration produces as a label, given by ; := I'g_ (;). Then, the pairs {(Z;, 7;) };-; become
our augmented training data, and we can proceed from Line 7 of Algo. 1 verbatim. Note that the
augmented flow map ® is less versatile than the flow map ® from Section 2.2, in the sense that
® can be evaluated at any time ¢ € [0,T], while ® can only be evaluated along the given time
discretization. However, given M sufficiently large, learning the map P to high precision still yields
a useful estimate of the MFG equilibrium, so this modified method may still be of interest.

In Fig. 8, we present an example of the learned map value functions for the cybersecurity model, us-
ing the augmented procedure for a fixed time discretization with M = 50 points. In Figures 13-17,
we provide similar experiments for the quadratic model in dimensions d = 3,4, 5,10, 20 respec-
tively. Interestingly, the quality of the approximation and optimization stability does not appear to
degrade as quickly with dimension, and using a discretization with A/ = 10 points, we are able to
learn augmented flow maps to very high precision up to dimension d = 20.

Table 3: Statistics for high-dimensional quadratic model experiments. Test losses and training times
are averaged over 5 trials, and all networks had depth L = 4. The test losses are evaluated using
smooth L! loss, summed over the test set.

Dimension d Average Test Loss Average Training Time (s) Training Samples Epochs Width

3 0.000831 233.42 4000 2000 64
4 0.00200 219.68 4000 2000 64
5 0.00527 220.24 4000 2000 64
10 0.0208 374.10 10000 500 128

24

Under review as a conference paper at ICLR 2026

10 10

08 0.8 [0.8

06] emm—— J 05 / 0s

e) Z
E) N E E)
‘\ -
et e ae

0t 0s 0s

02 0z 0z

00 00 00

i A P P P o o P P P o o P o o P P ")
Time (t) Time (t) Time (t)

Figure 5: Learned value functions in the same setting as Fig. 16, using a ResNet architecture with
dropout, layer normalization, and an hidden layer width of 64.

o =[025,0.25,0.25,0.25)

Ho=[1.0,0.0,0.0,0.0]

1o =[0.0,0.0,0.0, 1.0]
30 — u(D) 30 — u(DN) — u(DN)
e (D) — 00 —i1)
. == u(DS) == ulDs) 25 . == u(DS)
25 .,
., aos) | 2 i(0s) ‘., i(0s)
. = ") ~o - .)
20 S v it 20 awn 20 "~ e an
~ —_ — . . —
N i e I N ae
~ —_ — . ~. . —
515 S Nt 515 15 ~. ~ e
\'\ S \'\ S
1.0 \ 1.0 10 \ ~
05 05 05
00 00 00
0 2 s 10 o 2 8 o 3 2 3 1o
Time (t) Time (t) Time (t)

Figure 6: Learned value functions, denoted by w, for k

only the initial distribution varies.

0 and initial distribution p; =
[0.25,0.25,0.25,0.25], ue = [1,0,0,0], and u3 = [0, 0,0, 1], respectively. In particular, our method
can still perform accurately in the event that the parametrization of the underlying MFG is fixed and

3.0 — (D)
20 e (D))
. -~ us)
25 ‘o i0s)
25 ~, . - . u(un)
e u
~ '~ atun
0 20 \ . e, — uws)
. ~, —G(US)
AN
Bl 315 ~N
15 \ ~\,
o 10 N
0.5 05
00 00 S
0 2 s 10 3 2 3 10 3 2 3 1o 3 2 13 8 10
Time ()

Time (&) Time (&)

Time (&)

Figure 7: Learned value function, denoted by u, approximating time-parametrized flow map &, for
four random initial distributions and & € [0, 1].

40 —
5 s 35 L,AD”
o o)
35 2 -~ uos)
® u(Ds)
4 30 4 - w uun)
25 ® G
25 — uws)
3 3 20 ® 0ws)
s 520 s s
— (D) — u(Dn — u(Dn 15
2 o 1. o 2 a
e ubn e ubn e ubn
- us) ', -~ ups) -~ u(s) ', 10
o l0s) .'\ 101 o is) o i(0s) \\
e o L\ oo ™ e <
o awn 051 o o awn 05
- u(us) - u(us) - u(us)
of e iws) 00{ o iws) 0] e iws) 00
o 2 5 10 3 2 3 3 3 o 3 2) o 3 2) 10
Time ()

Time (6)

4 6
Time (6)

4 6
Time (&)

Figure 8: Learned value function for four randomly sampled pairs (7, k), with x € [0, 10], along a
time discretization with M = 50 points for the cybersecurity model. Points indicate the approximate
solution and curves indicate the true solution obtained via Picard iteration.

25

Under review as a conference paper at ICLR 2026

o o \\———_g.”// "
* \ B " \"K\
0s 0s 0s

— =i — o
- G(0) - G(0) - G(0)
021 == u1) 02] == un 02] == w1

-) -) - ()
= u(2) " u2) n o u2)
- 02) - (2) - (2)

06 04 06 04 0.
“Time (&) Time (8) Time (&)

Figure 9: Learned value functions for three randomly sampled pairs (7,), denoted by u, approxi-
mating the flow map @ for a d = 3 dimensional quadratic model, for three random initial distribu-
tions and parameters x € [0, 1]* sampled uniformly at random. Averages are taken across 5 trials,
and shaded regions on approximate curves present error bars of one standard deviation above/below
the mean across trials.

— w0 — w0
= () = ()
— u) -= un)
(1) - (1)
02{ % ® u2 02 w2 02 ® w2
- 0(2) - 02) - 2)
— u3) — u3) — u3)
- i) e E) - (3)

4
Time (&) Time () Time (&)

Figure 10: Learned value functions, denoted by u, approximating the flow map ® fora d = 4
dimensional quadratic model, for three random initial distributions and parameters « € [0, 1]* sam-
pled uniformly at random. Averages are taken across 5 trials, and shaded regions on approximate
curves present error bars of one standard deviation above/below the mean across trials.

........ 06 G
— w0
= ()
-= u)
=)

— w0 — uo)
= () = ()
-= u - u
=) =)
" u2) = w2 . u2)
= i(2) - 0(2) - 2)
02 = v 02 =+ u3) 02] =" u3
-) -) RE)
@) ua) @)

ita) i@ @)

04 06
Time (&) Time (&) Time (&)

Figure 11: Learned value functions, denoted by u, approximating the flow map ® forad = 5
dimensional quadratic model, for three random initial distributions and parameters « € [0, 1]®> sam-
pled uniformly at random. Averages are taken across 5 trials, and shaded regions on approximate
curves present error bars of one standard deviation above/below the mean across trials.

I Z | o

D
e ——— —
-t <t 8 0ottt

04 06 04 06 04 06
Time (&) Time (8) Time (&)

Figure 12: Learned value functions, denoted by %, approximating the flow map ® for a d = 10
dimensional quadratic model, for three random initial distributions and parameters x € [0, 1]'°
sampled uniformly at random. Averages are taken across 5 trials, and shaded regions on approximate
curves present error bars of one standard deviation above/below the mean across trials.

26

Under review as a conference paper at ICLR 2026

—_— u(0) »
0.6 0.7 o {(0) P
-= u1) B
o G -

06
0s s d
o i -
S us -
04 'zn‘ﬁ-n..__
s S04
ennnny,
03 RS R,, 03
— w0 e,
"o, -,
o i) S 02
021 == u) '~ T,
o 0 .
. y(2] .
(2) \ 01

011 o a2) ™

Time (&) Time ()

Figure 13: Learned value function for two randomly sampled pairs (7, k), along a time discretization
with M = 100 points in dimensions d = 3. Points indicate the approximate solution and curves
indicate the true solution obtained via Picard iteration.

— u0)
o o)
021 == i)
o i)
w e u2)
o a2
- u3)
o a3

— u(0)
o (0)
== u1)
o 0
" u2)
o 02)
—- u3)
011 o 3

Time (6) Time (6)

Figure 14: Learned value function for two randomly sampled pairs (7, k), along a time discretization
with M = 100 points in dimensions d = 4. Points indicate the approximate solution and curves
indicate the true solution obtained via Picard iteration.

.
07 i
07 ’
0s 7
st o, ° ‘
05 /f
0s ',
M-m-...,. e
304 E) ot
04 gesest
03
o TR
.
02 o
02 AX)
'+
01 *
01 A

Time (6) Time ()

Figure 15: Learned value function for two randomly sampled pairs (7, k), along a time discretization
with M = 100 points in dimensions d = 5. Points indicate the approximate solution and curves
indicate the true solution obtained via Picard iteration.

06 4
Time (6) Time ()

Figure 16: Learned value function for two randomly sampled pairs (7, k), along a time discretization
with M = 100 points in dimensions d = 10. Points indicate the approximate solution and curves
indicate the true solution obtained via Picard iteration.

27

Under review as a conference paper at ICLR 2026

s

S

o
B3

Time (&) Time (0

Figure 17: A slice of 10 components of the learned value functions, for two randomly sampled pairs
(n, k), along a time discretization with M = 100 points in dimensions d = 20. Points indicate the
approximate solution and curves indicate the true solution obtained via Picard iteration.

28

	Introduction
	Background
	Finite-State MFGs
	Flow Maps and the Master Equation

	Algorithm to Learn Flow Maps for MFGs
	Theoretical Guarantees
	Numerical Experiments
	Conclusion
	Experimental Details
	Markovian Controls and Representative player's Process
	The Master Equation
	Picard Iteration for Forward-Backward Systems
	Technical Proofs
	Proofs of Regularity Result
	Proofs of Approximation and Generalization Guarantees

	Connection to Hamiltonian Flow
	Additional Numerical Experiments

