

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OPERATOR LEARNING FOR FAMILIES OF FINITE-STATE MEAN-FIELD GAMES

Anonymous authors

Paper under double-blind review

ABSTRACT

Finite-state mean-field games (MFGs) arise as limits of large interacting particle systems and are governed by an MFG system, a coupled forward–backward differential equation consisting of a forward Kolmogorov–Fokker–Planck (KFP) equation describing the population distribution and a backward Hamilton–Jacobi–Bellman (HJB) equation defining the value function. Solving MFG systems efficiently is challenging, with the structure of each system depending on an initial distribution of players and the terminal cost of the game. We propose an operator learning framework that solves parametric families of MFGs, enabling generalization without retraining for new initial distributions and terminal costs. We provide theoretical guarantees on the approximation error, parametric complexity, and generalization performance of our method, based on a novel regularity result for an appropriately defined flow map corresponding to an MFG system. We then demonstrate empirically that our framework achieves accurate approximation for two representative instances of MFGs: a cybersecurity example and a high-dimensional quadratic model commonly used as a benchmark for numerical methods for MFGs.

1 INTRODUCTION

Mean-field games (MFGs), introduced by [Huang et al. \(2006\)](#) and [Lasry & Lions \(2007\)](#), model the behavior of stochastic games with many identical players by considering the limiting situation with an infinite population. While a large portion of the corresponding literature considers continuous state spaces, MFGs with finite state spaces find applications in economics, epidemic prevention, cybersecurity, resource allocation, and multi-agent reinforcement learning, and beyond ([Gomes et al., 2014](#); [Kolokoltsov & Bensoussan, 2016](#); [Aurell et al., 2022](#); [Mao et al., 2022](#); [Yardim & He, 2025](#)). The theory of MFGs is well-established, with results concerning existence, uniqueness, and connections with finite-player games in [Gomes et al. \(2013\)](#); [Bayraktar & Cohen \(2018\)](#); [Cecchin & Pelino \(2019\)](#); see the books [Carmona & Delarue \(2018a;b\)](#) for more background. Nonetheless, numerically solving finite-state MFGs remains challenging, especially over large state spaces.

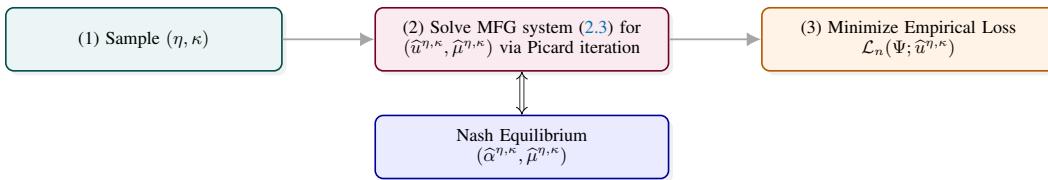
Machine learning-based methods have proven promising for overcoming the numerical challenges associated high-dimensional MFGs, in both continuous and finite state spaces; see [Fouque & Zhang \(2020\)](#); [Carmona & Laurière \(2021; 2022\)](#); [Min & Hu \(2021\)](#); [Han et al. \(2024\)](#) for deep learning methods and [Guo et al. \(2019\)](#); [Subramanian & Mahajan \(2019\)](#); [Elie et al. \(2020\)](#); [Cui & Koeppl \(2021\)](#) for reinforcement learning methods. However, these methods treat each MFG individually, requiring the user to rerun the method anew for each MFG instance. Several recent works, such as [Cohen et al. \(2024\)](#), propose more general methods to learn MFG equilibria as a function of the initial distribution by exploiting the connection with the master equation, a nonlinear PDE characterizing finite-state MFGs ([Cardaliaguet et al., 2019](#)). However, these methods rely on problem-specific loss functions and cannot be extended to learn MFG equilibria as a function of the model’s parameters such as its cost functions.

In this work, we frame MFG equilibria as outputs of an *operator*, called the **flow map**, which maps initial distributions and cost functions to the corresponding Nash equilibrium. We then train a neural network (NN) to learn this operator.

Main Contributions. Our main contributions are as follows:

054

- **Algorithm:** We combine Picard iteration and operator learning to approximate the flow
- 055 map operator for parametrized families of finite-state MFGs (see Fig. 1).
- 056
- **Parametric complexity:** We prove that the flow map can be approximated to accuracy
- 057 $\mathcal{O}(K^{-1/(d+k+2)})$ using an NN with width $W = \mathcal{O}(K^{(2(d+k)+3)/(2(d+k)+4)})$ and depth
- 058 $L = \mathcal{O}(\log(d+k+1))$, where d is the number of states, K is a bound on the NN weights,
- 059 and k is the dimension of the set of parameters specifying the family of MFGs.
- 060
- **Generalization error:** We prove that for such W and L , given n samples produced via
- 061 Picard iteration, our method’s generalization error is bounded by $\mathcal{O}(n^{-1/(d+k+4)} \log(n))$.
- 062
- **Numerical experiments:** We demonstrate the accuracy and scalability of our method on
- 063 two standard finite-state MFG benchmarks.



064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

070

Figure 1: Given (1) sample initial distributions η and cost parameters κ , we bypass the need to compute the optimal controls and flow of measures (Nash equilibrium) of an MFG by (2) solving the MFG system via Picard iteration. We then use the resulting trajectories to (3) approximate the solution operator for the family using a neural network, trained by minimizing an empirical loss over the samples from (1). In practice, the last step uses stochastic gradient descent (see Algo. 1).

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

Operator Learning. Independent from the literature on MFGs is that of *operator learning*, an umbrella term that typically describes machine learning methods for approximating maps between function spaces. One natural application of such methods is to partial differential equations (PDEs), and the general framework has been applied with impressive success to fluid dynamics in [Li et al. \(2021\)](#); [Kovachki et al. \(2023\)](#), astrophysics in [Mao et al. \(2023\)](#), and large-scale weather forecasting in [Kurth et al. \(2023\)](#); [Lam et al. \(2023\)](#). In most applications, one attempts to learn the operator that maps the initial data of a PDE, belonging to some Banach space, to its solution, belonging to a potentially distinct Banach space; see [Kovachki et al. \(2024\)](#); [Bouillé & Townsend \(2024\)](#), for overviews of the field of operator learning from a mathematical perspective. The development of novel architectures for operator learning, as in [Li et al. \(2021\)](#) and [Lu et al. \(2021\)](#); [Wang et al. \(2021\)](#) has allowed for its recent empirical success.

087

088

089

090

091

092

093

094

095

096

097

098

099

100

However, instead of leveraging architectural advances in the field, our insight is inspired by the work of [Lanthaler & Stuart \(2025\)](#). The authors introduce the *curse of parametric complexity* for operator learning: given any compact subset K of an infinite-dimensional Banach space, there exists an operator from K into another Banach space that can only be approximated with a functional of neural network type (i.e., the composition of a linear operator to a Euclidean space and a neural network) whose width and depth are exponential in the approximation error. [Lanthaler & Stuart \(2025\)](#) circumvent this issue for first-order Hamilton–Jacobi–Bellman (HJB) equations with an initial condition, learning the operator that maps initial conditions to solutions. Associated with each HJB equation is a system of ODEs, also referred to as the characteristics of the PDE. By learning the flow map for the characteristics and then reconstructing the solution by interpolation, [\(Lanthaler & Stuart, 2025, Theorem 5.1\)](#) beats the so-called curse of parametric complexity, enabling operator learning with neural networks of bounded width and depth using a method they label HJ-Nets. Given the similarity between the forward-backward ODE system for MFGs and the characteristics of first-order HJB equations, we take this as inspiration for our approach to learning MFG equilibria; see Appendix F for a more in-depth comparison.

101

102

103

104

105

106

107

Related Work. We clarify the connection between our contributions and several closely related works on MFGs. [Cohen et al. \(2024\)](#) proposes and analyzes two methods to solve the master equation for finite-state MFGs, handling varying initial distributions. However, their methods do not generalize to the setting of MFGs with varying cost functions as we consider. [Chen et al. \(2023\)](#); [Huang & Lai \(2025\)](#) proposes operator learning methods for continuous space and time MFGs by learning the solution as a function of the initial distribution. Although philosophically similar to our operator learning approach, their methods do not apply to finite-state space MFGs, and neither method provides a solution for parametrized families of MFGs with varying cost functions. Fi-

nally, reinforcement learning methods for population-dependent policies tackle discrete time MFGs (see Perrin et al. (2022); Li et al. (2023); Zhang et al. (2025); Wu et al. (2025) for recent work in this domain), while we focus on continuous time models. To our knowledge, even in discrete time, no method has been proposed to solve parameterized families of MFGs at once.

Organization. In Section 2, we describe finite-state MFGs and the forward-backward ODE system that characterizes MFG equilibria, including the assumptions that we place on parametrized families of MFGs. Next, we describe the flow map, mapping parameters to equilibria. In Section 3, we describe our operator learning method in detail. In Section 4, we present the associated approximation, parametric complexity, and generalization guarantees, with technical proofs in the appendix. Finally, in Section 5, we provide numerical experiments for two finite-state MFGs often used as benchmarks for numerical methods: a simple model of cybersecurity and a high-dimensional quadratic model.

2 BACKGROUND

We first provide a comprehensive overview of finite-state MFGs for the unfamiliar reader in Section 2.1, referring to Appendix B for more details. Then, in Section 2.2, we describe the object that we seek to approximate via operator learning: the flow map for a parametrized family of MFGs.

2.1 FINITE-STATE MFGs

Controls and state dynamics. In a finite-state MFG, a representative player chooses *Markovian controls* taking values in a compact set of rates, $\mathbb{A} \subseteq \mathbb{R}_+ := [0, \infty)$. Specifically, the player’s control α is a time-dependent $d \times d$ matrix with values in \mathbb{A} , with rows $(\alpha_y(t, x))_{y \in [d]}$ and individual entries $\alpha_y(t, x)$ determining the rate of transition between state x to state y at time t . When starting with initial distribution η and using control α , the player’s state, denoted by $\mathcal{X}_t^{\eta, \alpha} \in [d]$ at time t , obeys the dynamics of a continuous-time Markov chain with $X_0^{\eta, \alpha} \sim \eta$ and:

$$\Pr(\mathcal{X}_{t+h}^{\eta, \alpha} = y \mid \mathcal{X}_t^{\eta, \alpha} = x) = \alpha_y(t, x)h + o(h), \quad h \rightarrow 0^+. \quad (2.1)$$

Cost function. The representative player aims to minimize a cost functional over the time interval $[0, T]$. The cost depends not only on the player’s chosen control and state at time $t \in [0, T]$, but also on the population distribution $\mu(t) \in \mathcal{P}([d])$, where $\mathcal{P}([d])$ is the set of probability measures on $[d] := \{1, \dots, d\}$, identifiable with the probability simplex in \mathbb{R}^d . We denote by g the terminal cost and f, F two running costs depending on the player’s chosen control and the population distribution, respectively. If the population distribution’s flow $\mu = (\mu(s))_{s \in [0, T]}$ is given, the representative player aims to minimize the total expected cost over controls $\alpha = (\alpha_y(s, x))_{s \in [0, T], x \in [d], y \in [d]}$:

$$J_\eta(\alpha, \mu) = \mathbb{E} \left[\int_0^T \left(f(\mathcal{X}_s^{\eta, \alpha}, \alpha(s, \mathcal{X}_s^{\eta, \alpha})) + F(\mathcal{X}_s^{\eta, \alpha}, \mu(s)) \right) ds + g(\mathcal{X}_T^{\eta, \alpha}, \mu(T)) \right]. \quad (2.2)$$

Notice that since μ is a deterministic flow of measures and $\mu(0) = \eta$ is fixed, the control may depend implicitly on the population distribution through time. When μ is given, this is a standard stochastic optimal control problem. However, μ should be determined endogenously as the population evolution resulting from the players’ optimal behavior.

MFG equilibrium. This leads us naturally to the idea of an MFG equilibrium, a form of Nash equilibrium in which the population distribution is the same as the representative player’s distribution.

Definition 2.1. An **MFG equilibrium** for an initial distribution $\eta \in \mathcal{P}([d])$ is a pair $(\bar{\alpha}, \bar{\mu})$ such that: (1) $\bar{\alpha}$ minimizes the cost functional $J_\eta(\cdot, \bar{\mu})$ and (2) for every $t \in [0, T]$, $\bar{\mu}(t) = \text{Law}(\mathcal{X}_t^{\eta, \bar{\alpha}})$.

Observe that the MFG equilibrium depends on the initial distribution $\eta \in \mathcal{P}([d])$. This presents one of the primary difficulties that we aim to address: can one efficiently compute MFG equilibria simultaneously for arbitrary initial distributions? Before tackling this question, we first explain how one can solve an MFG for a fixed initial distribution.

Forward-backward ODE system. The two points in Definition 2.1 can be translated into two equations: one for the value function $u(t, x)$ of the representative player (i.e., the optimal cost attainable at time t in state x), and one for the evolution of the population distribution. In finite-state, continuous-time MFGs, both take the form of ordinary differential equations (ODEs). Then,

MFG equilibria can be characterized as solutions of a forward–backward system of coupled ODEs, each in dimension d . More precisely, $(\bar{\alpha}, \bar{\mu})$ is an MFG equilibrium if and only if $\bar{\alpha}_y(t, x) = \gamma_x^*(y, \Delta_y u(t, \cdot)) := \arg \min_a \{f(x, a) + a \cdot \Delta_y u(t, \cdot)\}$ where $\Delta_x f := (f(y) - f(x))_{y \in [d]} \in \mathbb{R}^d$ plays the role of a discrete gradient and (u, μ) solve the **MFG system**:

$$\begin{cases} \frac{d}{dt} u(t, x) + \bar{H}(x, \mu(t), \Delta_x u(t, \cdot)) = 0, & (t, x) \in [0, T] \times [d] \\ \frac{d}{dt} \mu(t, x) = \sum_{y \in [d]} \mu(t, y) \gamma_x^*(y, \Delta_y u(t, \cdot)), & (t, x) \in [0, T] \times [d] \\ \mu(0, x) = \eta(x), \quad u(T, x) = g(x, \mu(T)), & x \in [d], \end{cases} \quad \begin{array}{ll} (\text{HJB}) \\ (\text{KFP}) \end{array} \quad (2.3)$$

with \bar{H} being the extended Hamiltonian of the representative player’s control problem, defined in terms of the **Hamiltonian** H as:

$$H(x, p) := \min_a \left\{ f(x, a) + \sum_{y \neq x} a_y p_y \right\}, \quad \bar{H}(x, \eta, p) := H(x, p) + F(x, \eta). \quad (2.4)$$

We will sometimes write u^η and μ^η to stress the dependence on the initial distribution η . We refer to the first equation as **Hamilton–Jacobi–Bellman (HJB)** equation and to the second equation as the **Kolmogorov–Fokker–Planck (KFP)** equation.

The above MFG system admits a unique solution under standard assumptions; see Appendix B and [Bayraktar & Cohen \(2018\)](#); [Cecchin & Pelino \(2019\)](#) for more details. For simplicity, we focus on the following sufficient condition:

Assumption 2.1. *The minimizer $\gamma^*(x, p)$ of the Hamiltonian H is unique. Moreover, H is strictly concave in p and twice continuously differentiable with Lipschitz second derivatives. Finally, the costs F and g are continuously differentiable with Lipschitz derivatives, and both are **Lasry–Lions monotone** in the sense that for both $\phi = F, g$,*

$$\sum_{x \in [d]} (\phi(x, \eta) - \phi(x, \hat{\eta})) (\eta_x - \hat{\eta}_x) \geq 0, \quad \eta, \hat{\eta} \in \mathcal{P}([d]). \quad (2.5)$$

We note that the first part of this assumption holds when f is strictly convex in a . Additionally, Lasry–Lions monotonicity can be interpreted as the player’s dislike for congestion (e.g., η_x close to one). Under the assumptions outlined above, the forward–backward system in (2.3) attains a unique solution (u^η, μ^η) , the MFG equilibrium. The argument proving existence follows from a fixed-point argument via Schauder’s fixed-point theorem, while uniqueness results from Assumption 2.1. For more details, see [\(Carmona & Delarue, 2018a, Section 7.2.2\)](#), for instance.

2.2 FLOW MAPS AND THE MASTER EQUATION

We now turn to the question of solving the MFG for any initial distribution η . Although solving the MFG system (2.3) via Picard iteration for a given $\eta \in \mathcal{P}([d])$ is generally tractable, we aim to solve the system for all such η , and hence cannot rely solely on the MFG system.

Master field. We begin by considering the value function u^η , which solves the HJB equation in the MFG system (2.3) with initial distribution η . The value function depends implicitly on the mean field, and we make this dependence *explicit* by introducing the **master field** U , defined such that $U(t, x, \mu^\eta(t)) = u^\eta(t)$ for all $(t, x, \eta) \in [0, T] \times [d] \times \mathcal{P}([d])$. This object plays a central role in theory of MFGs and establishing a rigorous connection to finite-player games; see [Bayraktar & Cohen \(2018\)](#); [Cecchin & Pelino \(2019\)](#) and Appendix C for more details. The master field U is also very relevant for applications: if the master field is known, then it can be evaluated along any flow of measures $\mu(t)$. Additionally, $U(t, x, \mu)$ is the optimal cost that a representative player can obtain if starting in state x at time t , with the of the population starting in distribution μ and playing according to the equilibrium control.

Methods, such as [Cohen et al. \(2024\)](#), that learn U by exploiting its connection with a nonlinear PDE called the master equation suffer from two limitations: (1) the computation of the loss function is complex and costly, and (2) they cannot handle situations where the terminal cost varies, as the loss function is defined in terms of a fixed terminal cost. For this reason, we develop a new approach, relying on the concept of flow map.

Flow map. Instead of focusing on the aforementioned master field, we will consider a function which maps the initial distribution and the terminal cost to the value function. In other words, we would like to learn the operator (since g is a function)

$$\Phi : (t, \eta, g) \mapsto u^{\eta, g}(t), \quad (2.6)$$

216 where $u^{\eta,g}$ is the value function for the MFG system (2.3) with initial distribution $\eta \in \mathcal{P}([d])$ and
 217 terminal cost g . We recall that the control can be recovered from the value function using the relation
 218 $\hat{\alpha}_y(t, x) = \gamma_x^*(y, \Delta_y u^{\eta,g}(t, \cdot))$. In turn, obtaining Φ concretely gives access to the MFG equilibrium
 219 for *any initial condition η and terminal cost g* . In principle, the operator could be extended to include
 220 running costs and dynamics. We comment that, in line with the operator learning approach for HJB
 221 equations proposed in Lanthaler & Stuart (2025), the MFG system in Equation (2.3) can be viewed
 222 as the characteristics of the master field. In the same sense, our method is an operator learning
 223 method because we learn the characteristics of the master field to obtain its solution operator.

224 **Terminal cost parameterization.** When endowed with an appropriate norm, the set of all Lipschitz
 225 functions on the probability simplex is an infinite-dimensional Banach space. However, to obtain
 226 precise approximation and generalization guarantees, we restrict our attention to a *parameterized*
 227 class of terminal costs in this paper. Given a parameter $\kappa \in \mathbb{R}^k$, we denote by g_κ the corresponding
 228 terminal cost function. Then, the flow map we focus on in the sequel is defined as follows.

229 **Definition 2.2.** *Given a parametrized family of terminal conditions, the **flow map** $\Phi : [0, T] \times$
 230 $\mathcal{P}([d]) \times \mathcal{K} \rightarrow \mathbb{R}^d$ is defined by $\Phi(t, \eta, \kappa) := u^{\eta, \kappa}(t)$, where $u^{\eta, \kappa}$ is the value function for the MFG
 231 system (2.3) with initial distribution $\eta \in \mathcal{P}([d])$ and terminal cost g_κ .*

232 We make two key remarks. First, the initial distribution η and the parameter κ may be high-
 233 dimensional, which justifies using neural networks to approximate Φ . Second, contrary to the
 234 aforementioned master field U , the flow map Φ does not satisfy a PDE and hence it will require
 235 a novel training algorithm, based on the MFG equilibrium characterization.

236 We conclude with a regularity condition that allows the rigorous study of the approximation of Φ by
 237 neural networks in the next section. This assumption holds in the test cases consider below in our
 238 numerical experiments (see Section 5).

239 **Assumption 2.2.** *There exists a compact set of parameters $\mathcal{K} \subseteq \mathbb{R}^k$ such that for all $\kappa \in \mathcal{K}$, the
 240 $g_\kappa : [d] \times \mathcal{P}([d]) \rightarrow \mathbb{R}$ satisfies Assumption 2.1. Moreover, for any $\kappa, \kappa' \in \mathcal{K}$, there exists a constant
 241 $C > 0$ such that $|g_\kappa(x, \mu) - g_{\kappa'}(x, \mu)| \leq C|\kappa - \kappa'|$, uniformly in $(x, \mu) \in [d] \times \mathcal{P}([d])$.*

244 3 ALGORITHM TO LEARN FLOW MAPS FOR MFGs

246 In this section, we outline our algorithmic approach to learning MFG equilibria, motivated by the
 247 HJ-Net algorithm of Lanthaler & Stuart (2025). Recall that we aim to learn an approximation of the
 248 flow map $\Phi : [0, T] \times \mathcal{P}([d]) \times \mathcal{K} \rightarrow \mathbb{R}$ that maps a time, an initial condition, and a parameter $\kappa \in \mathcal{K}$
 249 (corresponding to a terminal condition g_κ) to the value function $u^{\eta, \kappa}(t)$. As in (Lanthaler & Stuart,
 250 2025, Section 4), learning the flow map requires sample trajectories. We approximate Φ by a neural
 251 network which is trained using samples consisting of (t, η, κ) and the associated $u^{\eta, \kappa}(t)$.

252 **Sampling method.** We generate i.i.d. samples $(\eta, \kappa) \sim \rho$, where ρ is a joint distribution on
 253 $\mathcal{P}([d]) \times \mathcal{K}$. Then, we compute $u^{\eta, \kappa}$. Since this value function is coupled with the flow of measures
 254 $\mu^{\eta, \kappa}$ that solves the MFG system (2.3), we solve this system by Picard iteration: given an initial
 255 guess, we alternatively solve the forward KFP equation and the backward HJB equation to update
 256 μ and u respectively. We thus obtain an (approximate) solution of (2.3). In our implementation, we
 257 use a temporal finite-difference scheme with a mesh of M steps, yielding an approximate solution
 258 $(\tilde{u}_i^{\eta, g}, \tilde{\mu}_i^{\eta, g})_{i=0, \dots, M}$. See Appendix D for additional details. We denote the Picard iteration map for
 259 an MFG with terminal condition g by $\Gamma_g : \mathcal{P}([d]) \rightarrow (\mathbb{R}^d)^{M+1}$. Intuitively, $\Gamma_g : \eta \mapsto u^{\eta, g}$. In
 260 practice, $\Gamma_g(\eta)$ is the vector of values $\tilde{u}_j^{\eta, g} \approx \textcolor{red}{u}^{\eta, g}(jT/M, \cdot) \in \mathbb{R}^d$, $j = 0, \dots, M$.

261 **Architecture.** We approximate Φ by a neural network. Since our goal in the next section is to obtain
 262 theoretical guarantees, we focus here on a relatively simple architecture, but more complex archi-
 263 tectures are explored in our numerical experiments. We limit ourselves to fully-connected ReLU
 264 neural networks $\phi : \mathbb{R}^{k_1} \rightarrow \mathbb{R}^{k_2}$ of depth L . Following the convention in Jiao et al. (2023), from
 265 which we derive our generalization guarantee, such networks are recursively defined by $\phi_0(x) = x$,
 266 $\phi_{j+1}(x) = \sigma(A_j \phi_j(x) + b_j)$ for $j = 1, \dots, L-1$, and $\phi(x) := A_L \phi_L(x)$. Above, the weights
 267 satisfy $A_j \in \mathbb{R}^{N_{j+1} \times N_j}$ for $j = 0, \dots, L$ and $b_j \in \mathbb{R}^{N_{j+1}}$ for $j = 0, \dots, L-1$, where $N_0 = k_1$ and
 268 $N_{L+1} = k_2$. By the width of a neural network, we refer to $W := \max\{N_1, \dots, N_L\}$, the maximum
 269 number of neurons in a hidden layer. For brevity, we denote such a network by $\phi(x; A, b)$, where
 270 $A = (A_0, \dots, A_{L-1})$ and $b = (b_0, \dots, b_{L-1})$.

270 **Training method.** We learn the flow map by training such a neural network on the samples generated by Picard iteration. To alleviate the notation, we denote $x = (jT/M, \eta, \kappa)$ and $y = \tilde{u}_j^{\eta, \kappa}$, where $j \in [M]$ and we recall that $\tilde{u}^{\eta, \kappa}$ is the discrete time approximation of the value function $u^{\eta, \kappa}$. Given samples $\{x_i, y_i\}_{i=1}^n$ from the procedure outlined above, we minimize the empirical loss

$$\mathcal{L}_n(A, b; \{x_i, y_i\}_{i=1}^n) := \frac{1}{n} \sum_{i=1}^n \ell(\phi(x_i; A, b), y_i), \quad (3.1)$$

276 where $\ell : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$ is a convex loss and the minimum is taken over $A = \{A_j\}_{j=0}^L$ and
277 $b = \{b_j\}_{j=0}^{L-1}$ simultaneously. In practice, this is accomplished using batch stochastic
278 gradient descent (SGD) with a standard optimizer such as AdamW (Loshchilov & Hutter, 2019). If
279 $(A^*, b^*) := \arg \min_{A, b} \mathcal{L}_n(A, b; \{x_i, y_i\}_{i=1}^n)$ (noting that these parameters depend on the sampled
280 trajectories), we define our approximate flow map $\Psi_n(t, \eta, \kappa) := \phi(t, \eta, \kappa; A^*, b^*)$. This procedure
281 is summarized in Algo. 1 below (written using SGD as the optimizer for simplicity).

282 **Algorithm 1** Sampling and Learning Flow Map for a Family of MFGs

284 **Input:** Number of time steps $M \in \mathbb{N}$, parameter set $\mathcal{K} \subset \mathbb{R}^k$, number of samples $n \in \mathbb{N}$, Picard
285 solver Γ , number of training steps m_{train} , mini-batch size $n_{\text{mini}} < n$, learning rate $\{\gamma_j\}_{j \in \mathbb{N}}$

286 1: Sample $\{(\eta_i, \kappa_i)\}_{i=1}^n$ uniformly and independently in $\mathcal{P}([d]) \times \mathcal{K}$

287 2: **for** $i = 1, \dots, n$ **do** ▷ Sample generation via Picard iteration

288 3: $\tilde{u} \leftarrow \Gamma_{g_{\kappa_i}}(\eta_i)$

289 4: Draw $j \sim \text{Unif}([M])$

290 5: $x_i \leftarrow (jT/M, \eta_i, \kappa_i)$

291 6: $y_i \leftarrow \tilde{u}_j$

292 7: Initialize neural network parameters $(A^{(0)}, b^{(0)})$

293 8: **for** $j = 1, \dots, m_{\text{train}}$ **do** ▷ Train neural network approximator

294 9: Sample mini-batch $\{(x_i, y_i)\}_{i=1}^{n_{\text{mini}}}$ from $\{(x_i, y_i)\}_{i=1}^n$

295 10: $(A^{(j)}, b^{(j)}) \leftarrow (A^{(j)}, b^{(j)}) - \gamma_j \nabla_{A, b} \mathcal{L}_{n_{\text{mini}}}(A, b; \{x_i, y_i\}_{i=1}^{n_{\text{mini}}})$ ▷ Gradient step

296 11: **return** $\widehat{\Psi}_n(t, \eta, \kappa) = \phi(t, \eta, \kappa; A^{(m_{\text{train}})}, b^{(m_{\text{train}})})$

297

298

299 **4 THEORETICAL GUARANTEES**

300

301 We provide the following **two theoretical guarantees** for our proposed approach:

302

303 (1) **Approximation error (Corollary 4.3):** There exists a ReLU neural network ap-
304 proximating the true flow map Φ with error $\mathcal{O}(K^{-1/(d+k+2)})$, width $W =$
305 $\mathcal{O}(K^{(2(d+k)+3)/(2(d+k)+4)})$, and depth $L = \mathcal{O}(\log(d+k+1))$, all quantified in terms
306 of a bound $K \geq 1$ on the weights of the network, the number of states d of the underlying
307 family of MFGs, and the dimension k of the set that parametrizes the family of MFGs.

308 (2) **Generalization error (Corollary 4.5):** Learning the flow map via empirical risk mini-
309 mization with n samples yields a neural network approximation with expected excess risk
310 $\mathcal{O}(n^{-1/(d+k+4)} \log(n))$, up to any error from the optimization process.

311 These results rely on a preliminary regularity result about the regularity of the flow map Φ that we
312 establish in Appendix E:

313 **Theorem 4.1.** *Under Assumptions 2.1 and 2.2, the flow map $\Phi : [0, T] \times \mathcal{P}([d]) \times \mathcal{K} \rightarrow \mathbb{R}^d$, given
314 by $\Phi(t, \eta, \kappa) = u^{t_0, \eta, \kappa}(t, \cdot)$, is jointly Lipschitz in its inputs: there exists $C > 0$ such that*

$$|\Phi(t, \eta_1, \kappa_1) - \Phi(s, \eta_2, \kappa_2)| \leq C(|t - s| + |\eta_1 - \eta_2| + |\kappa_1 - \kappa_2|)$$

316 for all $(t, \eta_1, \kappa_1), (s, \eta_2, \kappa_2) \in [0, T] \times \mathcal{P}([d]) \times \mathcal{K}$.

318 The approach of Lanthaler & Stuart (2025), which relies on (Yarotsky, 2017, Theorem 1), cannot be
319 used in our case (see Rem. E.1). Instead, we develop an alternative analysis building upon Jiao et al.
320 (2023). Given a ReLU neural network with weight matrices $\{A_j\}_{j=0}^L$ and biases $\{b_j\}_{j=0}^{L-1}$, let

$$p(\{A_j\}, \{b_j\}) := \|A_L\| \prod_{j=0}^{L-1} \max\{\|(A_j, b_j)\|, 1\}.$$

324 Then, the set of neural networks with width W , depth L , and norm bound satisfying
 325 $p(\{A_j\}, \{b_j\}) \leq K$ is denoted by $\mathcal{NN}(W, L, K)$. In this class of neural networks, (Jiao et al.,
 326 2023, Theorem 3.2) provides the following approximation result. Below, the space of functions
 327 $\mathcal{C}^{0,1}([0, 1]^d)$ refers to the space of Lipschitz continuous functions on $[0, 1]^d$.

328 **Proposition 4.2.** *There exists constants $c, C > 0$ such that for any $K \geq 1$, $W \geq cK^{(2d+1)/(2d+2)}$,
 329 and $L \geq 2\lceil \log(d) \rceil + 2$, the worst-case approximation error of the class $\mathcal{NN}(W, L, K)$ for $\Phi \in$
 330 $\mathcal{C}^{0,1}([0, 1]^d)$ satisfies: $\sup_{\Phi \in \mathcal{C}^{0,1}([0, 1]^d)} \inf_{\Psi \in \mathcal{NN}(W, L, K)} \|\Phi - \Psi\|_{\mathcal{C}([0, 1]^d)} \leq CK^{-1/(d+1)}$.*
 331

332 More concisely, over the class $\mathcal{C}^{0,1}([0, 1]^d)$ of Lipschitz functions, the worst-case approximation
 333 error with a sufficiently wide and deep ReLU neural network can be quantified precisely in terms of
 334 a bound on the weights of the approximating networks. Using Theorem 4.1, we obtain the following
 335 as a corollary, with proof in Appendix E:

336 **Corollary 4.3.** *Assume that Assumptions 2.1 and 2.2 hold. Then, for any $K \geq 1$ and $\varepsilon >$
 337 0 , there exists a neural network $\Psi \in \mathcal{NN}(W, L, K)$ with weight bound K , width $W \geq$
 338 $c(\text{diam}(\mathcal{K}), T)dK^{(2(d+k)+3)/(2(d+k)+4)}$, and depth $L \geq 2\lceil \log(d+k+1) \rceil + 2$ such that*
 339

$$340 \|\Phi - \Psi\|_{\mathcal{C}([0, T] \times \mathcal{P}([d]) \times \mathcal{K})} \leq C(\text{diam}(\mathcal{K}), T)K^{-1/(d+k+2)} + \varepsilon,$$

341 where $\Phi : [0, T] \times \mathcal{P}([d]) \times \mathcal{K} \rightarrow \mathbb{R}^d$ is the flow map from Definition 2.2.

343 We note that the results in Jiao et al. (2023) are presented in the setting of scalar-valued functions. In
 344 Appendix E, we show how we extend to the vector-valued setting that we require for our particular
 345 **flow map**. Such a result is particularly useful because of the generalization guarantees that arise
 346 from Rademacher complexity estimates for families of neural networks with bounded weights. For
 347 instance, (Jiao et al., 2023, Theorem 4.1) provides such a guarantee, in the context of regression,
 348 while (Jiao et al., 2023, Corollary 4.2) provides an analogous guarantee for noiseless regression
 349 problems with regularization. Suppose that we have n samples $\{(x_i, y_i)\}_{i=1}^n$ such that $x_i \stackrel{\text{i.i.d.}}{\sim} \rho$,
 350 a distribution supported on $[0, 1]^d$, and $y_i = \Phi(x_i)$ with $i = 1, \dots, n$, where $\Phi : [0, 1]^d \rightarrow \mathbb{R}$
 351 belongs to $\mathcal{C}^{0,1}([0, 1]^d)$ (i.e., it is Lipschitz continuous). Then, given fixed widths, depths, and
 352 weight bounds $W, L, K > 0$, the empirical risk is given exactly as in Equation (3.1), and the empirical risk
 353 minimizer is

$$354 \Psi_n := \arg \min_{\Psi \in \mathcal{NN}(W, L, K)} \mathcal{L}_n(\Psi; \{(x_i, y_i)\}_{i=1}^n). \quad (4.1)$$

356 We take as our convex loss $\ell(x, y) = \|x - y\|_2^2$ for simplicity, as in (Jiao et al., 2023). Note that,
 357 for each $\Psi \in \mathcal{NN}(W, L, K)$, this quantity provides an unbiased estimate of the population risk
 358 $\mathcal{L}(\Psi) := \mathbb{E}_{x_i \sim \rho} [\ell(x_i, \Psi(x_i))]$. Now, suppose that we have computed the empirical risk minimizer
 359 in (4.1), up an optimization error $\varepsilon_{\text{opt}} > 0$, via stochastic gradient descent, yielding a neural network
 360 $\widehat{\Psi}_n$ that satisfies

$$361 \mathcal{L}_n(\widehat{\Psi}_n) \leq \inf_{\Psi \in \mathcal{NN}(W, L, K)} \mathcal{L}_n(\Psi) + \varepsilon_{\text{opt}}. \quad (4.2)$$

363 Then, we aim to quantify the excess risk, defined as $\|\widehat{\Psi}_n - \Phi\|_{L^2(\rho)}^2 := \mathcal{L}(\widehat{\Psi}_n) - \mathcal{L}(\Phi)$. A standard
 364 computation then shows that the expected excess risk, with expectation taken over the samples
 365 $\{x_i\}_{i=1}^n$, is given by

$$367 \mathbb{E}[\|\widehat{\Psi}_n - \Phi\|_{L^2(\rho)}^2] \leq \inf_{\Psi \in \mathcal{NN}(W, L, K)} \|\Psi - \Phi\|_{L^2(\rho)}^2 + \mathbb{E}[\mathcal{L}(\widehat{\Psi}_n) - \mathcal{L}_n(\widehat{\Psi}_n)] + \varepsilon_{\text{opt}}.$$

369 To quantify the expected excess risk, it suffices to quantify the approximation error and the general-
 370 ization error, the first and second terms in the above bound respectively. (Jiao et al., 2023, Theorem
 371 4.1) combines Proposition 4.2 and a symmetrization argument to show the following:

372 **Proposition 4.4.** *If $\Phi \in \mathcal{C}^{0,1}([0, 1]^d)$, then there exists $\tilde{C} > 0$ such that for $K = \mathcal{O}(n^{(d+1)/(2d+6)})$,
 373 $W \geq \tilde{C}K^{(2d+1)/(2d+2)}$, $L \geq 2\lceil \log(d) \rceil + 3$, any neural network $\widehat{\Psi}_n \in \mathcal{NN}(W, L, K)$ satisfy-
 374 ing (4.2) also satisfies: $\mathbb{E}[\|\widehat{\Psi}_n - \Phi\|_{L^2(\rho)}^2] - \varepsilon_{\text{opt}} \leq \tilde{C}n^{-1/(d+3)} \log(n)$.*
 375

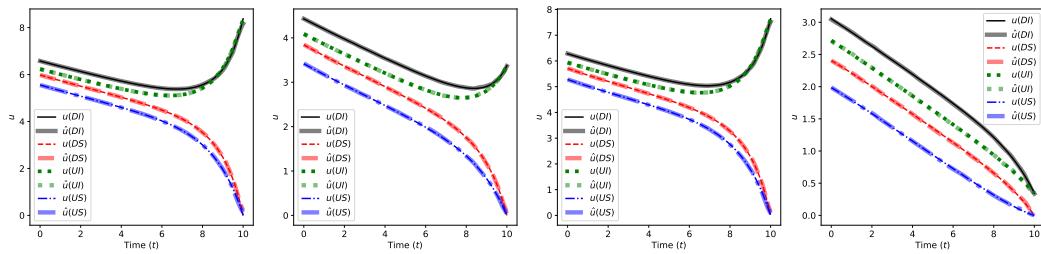
376 In general, it is difficult to quantify the optimization error ε_{opt} . However, with sufficient hyper-
 377 parameter tuning to stabilize training, we can safely assume that ε_{opt} is small. To conclude, Proposi-
 378 tion 4.4 applies nearly *verbatim* in our setting, up to a rescaling argument found in Appendix E:

378 **Corollary 4.5.** If $K = \mathcal{O}(n^{(d+k+2)/(2(d+k)+8)})$, then under the assumptions of Corollary 4.3, minimizing the empirical loss in Equation (3.1) over n samples (generated via Algo. 1) yields a neural network $\hat{\Psi}_n$ that satisfies, up to an optimization error $\varepsilon_{\text{opt}} > 0$, $\mathbb{E}[\|\hat{\Psi}_n - \Phi\|_{L^2(\rho)}^2] - \varepsilon_{\text{opt}} \leq \tilde{C}(\text{diam}(\mathcal{K}), T)n^{-1/(d+k+4)} \log(n)$. Above, ρ is the uniform distribution over $[0, T] \times \mathcal{P}([d]) \times \mathcal{K}$.

5 NUMERICAL EXPERIMENTS

386 In this section, we provide numerical evidence for the accuracy and generalization of our method
387 on two standard examples of finite-state MFGs. First, we demonstrate our scheme's accuracy on
388 a simple cybersecurity model in dimension $d = 4$. Then, we consider high-dimensional quadratic
389 MFGs, illustrating that our approach maintains its accuracy as the dimension of the underlying
390 family of MFGs increases. Full experimental details are in Appendix A.

391 **Example 1: Low-Dimensional Cybersecurity Model.** We begin with a cybersecurity model
392 introduced by Kolokoltsov & Bensoussan (2016) and studied in (Cohen et al., 2024, Section 7.4).
393 Players can either protect or defend their computers against infection by malware. Before passing
394 to the mean-field limit, each player can either be infected by a hacker or by interacting with another
395 infected player. The player is either defended or undefended (D or U) and susceptible or infected (S
396 or I), leading to a state space with $d = 4$ states: $\{DS, DI, US, UI\}$. The player determines whether
397 to defend or not with a switching parameter $\rho > 0$, and the player pays cost $k_D > 0$ for defending
398 and $k_I > 0$ if they are infected. The running cost is $f(x, a) = k_D \mathbf{1}_{\{DS, DI\}}(x) + k_I \mathbf{1}_{\{DI, UI\}}(x)$,
399 and $F(x, \eta) \equiv 0$. The player's control is simply $a \in \{0, 1\}$, and this yields a transition matrix
400 exactly as in (Cohen et al., 2024, Section 7.4). Importantly, we modify the original example by
401 including a terminal cost, penalizing infected players at the terminal time T according to a parameter
402 $\kappa \geq 0$: $g_\kappa(x, \eta) = \kappa \mathbf{1}_{\{DI, UI\}}(x)$. We use Algo. 1 with $n = 2000$ samples, $m_{\text{train}} = 2000$ epochs
403 with batches of size $m_{\text{mini}} = 64$. After training the neural network, we evaluate it on several pairs
404 (η, κ) to obtain \hat{u} and compare with the solution obtained by solving the ODE system with this pair
405 of initial and terminal conditions. Fig. 2 shows that our method performs well on random samples
406 with $\kappa \in [0, 10]$ and arbitrary $\eta \in \mathcal{P}([4])$. Additionally, having learned the value function u , we
407 can easily recover the flow of measures μ by simply solving the KFP equation with the learned
408 value function. The results of such experiments are displayed in Figure 3, showing that our method
409 also allows for the accurate recovery of the flow of measures at the MFG equilibrium. Appendix G
410 contains more experiments with this model, including an illustration of the case that $\kappa = 0$ (i.e., the
411 setting considered in Cohen et al. (2024)).



420 Figure 2: Learned value function \hat{u} and true value function u for four random initial distributions η
421 and final cost parameter $\kappa \in [0, 10]$, both drawn uniformly at random from $\mathcal{P}([4])$ and the interval
422 $[0, 10]$, respectively. Each curve corresponds to one state in $\{DS, DI, US, UI\}$.

424 **Example 2: High-Dimensional Quadratic Models.** We also consider the quadratic cost model,
425 as in (Cohen et al., 2024, Section 7.1), also analyzed in (Cecchin & Pelino, 2019, Example 1) and
426 (Bayraktar & Cohen, 2018, Example 3.1) via the master equation. This setting allows us to test our
427 method on high-dimensional MFGs, and the assumptions that we impose on the parametrized family
428 of terminal costs remain easily verifiable. We take a quadratic running cost and a linear mean-field
429 cost, given by $f(x, a) := b \sum_{y \neq x} (a_y - 2)^2$, $F(x, \eta) := \eta_x$, with action space $\mathbb{A} := [1, 3]$ and
430 $b = 4$. As shown in (Cohen et al., 2024, Section 7.1), letting $T = 1$ will ensure that the resulting
431 Hamiltonian satisfies our assumptions. Therein, the authors take $g(x, \eta) \equiv 0$, but we convert their
432 quadratic model into a parametrized family of MFGs by taking instead $\kappa \in [0, 1]^d =: \mathcal{K}$ and

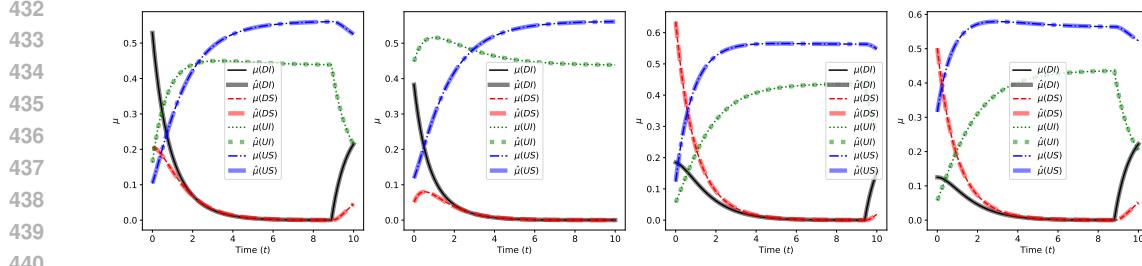


Figure 3: Learned flow of measures $\hat{\mu}$ and true flow of measures μ for four random initial distributions η and final cost parameter $\kappa \in [0, 10]$, both drawn uniformly at random from $\mathcal{P}([4])$ and the interval $[0, 10]$, respectively.

considering terminal costs of the form $g_\kappa(x, \eta) = \kappa_x + \eta_x$. The inclusion of κ in the terminal cost has the effect of pushing the player away from states $x \in [d]$ such that κ_x is large and towards states with small κ_x , with the mean-field term η_x discouraging crowding. As our numerical results demonstrate, the value function depends heavily on the parameter κ , making this a challenging task, especially as d increases.

In Fig. 4, we demonstrate the success of our method in learning the flow map for this family of MFGs in dimensions $d = 3, d = 4, d = 5$, and $d = 10$ respectively. Additionally, Fig. 5 displays the errors, measured as the difference between the true and approximate value function at each time, in the preceding figure. Beyond dimension $d = 10$, learning becomes increasingly unstable, as the number of samples required to learn to high precision becomes intractable to generate in a reasonable amount of time using our own computational resources, in line with how the sample complexity estimate from Corollary 4.5 scales with dimension d . However, in Appendix G, we show that by passing to a time discretization, our method still generalizes well to dimension $d = 20$. Therein, we also provide evidence that using a neural network architecture with skip connections and layer normalization (e.g., ResNet) can improve training stability in dimension $d = 10$. While the optimization procedure is still relatively stable in dimensions $d = 3, 4, 5, 10$ with feedforward ReLU networks, we anticipate that adding skip connections smooths out the loss landscape and helps prevent our method from getting trapped in spurious local minima. This observation is supported by the theoretical and empirical evidence from Balduzzi et al. (2017), although we remark that, even with feedforward ReLU networks, our method performs well in dimension $d = 10$, as in Figure 5d.

Finally, Fig. 6, we illustrate both the training and test loss over the course of Algo. 1 for the quadratic model in dimension $d = 3$. Averaging over five trials, we provide empirical evidence for both Corollary 4.3 and Corollary 4.5, showing that increasing width results in models that (1) learn the flow map to greater accuracy (Fig. 6a) and (2) generalize better to unseen samples (Fig. 6b).

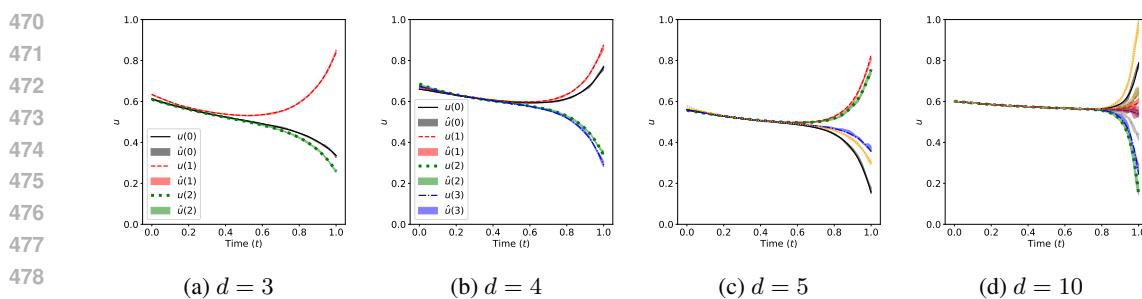


Figure 4: Comparison of true value functions u and learned value functions \hat{u} for randomly sampled pairs (η, κ) in dimensions $d = 3, 4, 5, 10$ respectively. Averages are taken across 5 trials, and shaded regions on approximate curves indicate error bars of one standard deviation, computed across trials.

In Table 1 and Table 2 in Appendix A, we describe the optimizers and loss functions that we chose for each of our experiments, including the additional experiments in Appendix G. In order to verify our theoretical results, which are restricted to the setting of feedforward ReLU networks, we primarily

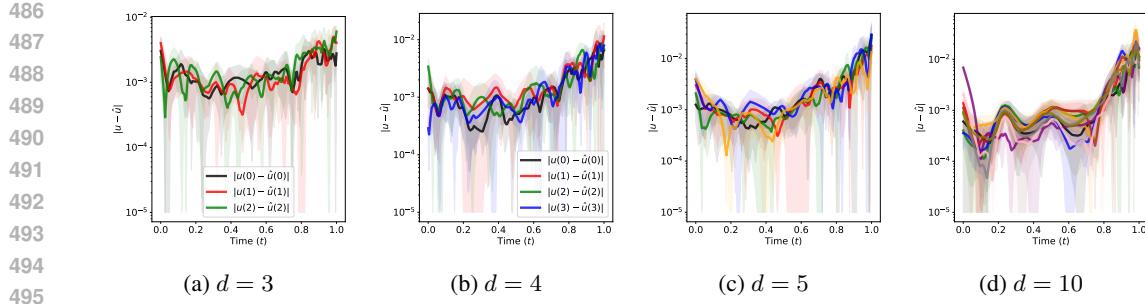
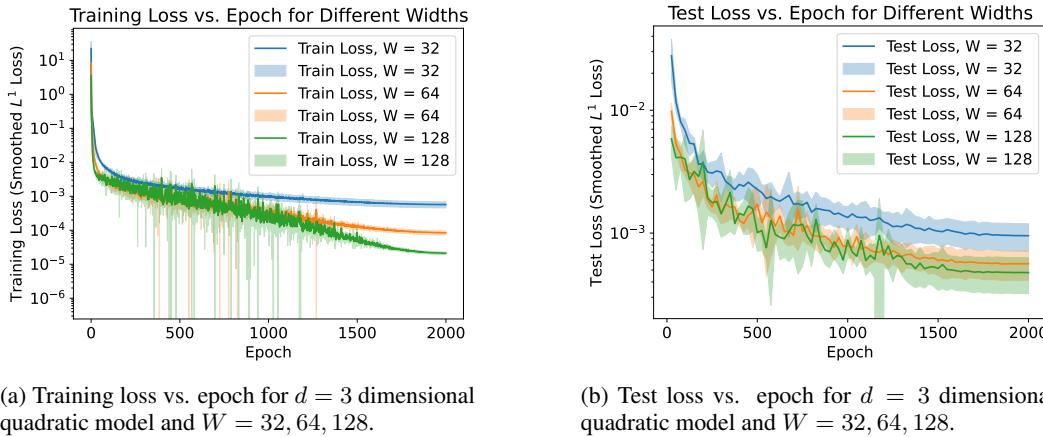


Figure 5: Absolute errors of learned value functions $|u - \hat{u}|$ for randomly sampled pairs (η, κ) in dimensions $d = 3, 4, 5, 10$ respectively. Averages are taken across 5 trials, and shaded regions on approximate curves indicate error bars of one standard deviation, computed across trials.



(a) Training loss vs. epoch for $d = 3$ dimensional quadratic model and $W = 32, 64, 128$.

(b) Test loss vs. epoch for $d = 3$ dimensional quadratic model and $W = 32, 64, 128$.

Figure 6: Comparison of training loss and test loss, evaluated on held-out data every 25 epochs, for ReLU neural networks with width $W = 32, 64, 128$, depth $L = 4$, and $n = 4000$ samples. Shaded regions represent one standard deviation above/below the mean of five trials. As W increases, the optimization procedure becomes more unstable but both the training and test losses decrease.

present experiments for this architecture. When selecting an optimizer, we observe that Adam and AdamW perform comparably, although for the high-dimensional quadratic model, AdamW's performance is slightly better. We also find that smooth L^1 -loss, as opposed to L^2 -loss, provides a more stable optimization trajectory in the high-dimensional setting. Overall, the optimization of feedforward ReLU networks in the high-dimensional setting is more challenging, but standard optimization tools still yield accurate results *without* relying on more complex neural network architectures.

6 CONCLUSION

We present an operator learning method for solving parametrized families of finite-state MFGs. To our knowledge, our approach provides the most general learning-based framework for solving finite-state MFGs. Our theoretical guarantees rigorously quantify the approximation error, parametric complexity, and generalization performance, and our numerical experiments illustrate the empirical accuracy of our method for a variety of common finite-state MFGs. Our method extends naturally to MFGs with parametrized running costs, with only slight modifications to our regularity proofs required and no modification to Algo. 1. We believe that our sampling algorithm, although intuitive, could be improved to gain greater coverage of the flow map's domain, allow for more stable optimization, and enable better generalization. Techniques such as oversampling in regions with poor coverage or adversarial training may prove beneficial. Future work will also include extending our results to continuous state-space MFGs and infinite-dimensional spaces of cost functions, for which powerful operator learning architectures (e.g., DeepONets or FNO) will likely be instrumental.

540 **Reproducibility Statement.** We include a detailed description of our numerical experiments, in-
 541 cluding computational resources used, training methodology, and hyperparameters for all experi-
 542 ments in Appendix A. Additionally, we have submitted all code used for experiments presented in
 543 Section 5 and Appendix G as supplementary material. For our theoretical results, all assumptions
 544 are provided in Section 2.1 and expanded upon in Appendix B, while our technical proofs can all
 545 be found in Appendix E.

546
 547 REFERENCES
 548

549 Alexander Aurell, René Carmona, Gökçe Dayanikli, and Mathieu Laurière. Optimal incentives to
 550 mitigate epidemics: a Stackelberg mean field game approach. *SIAM J. Control Optim.*, 60(2):
 551 S294–S322, 2022. ISSN 0363-0129. doi: 10.1137/20M1377862. URL <https://doi-org.proxy.lib.umich.edu/10.1137/20M1377862>.

553 David Balduzzi, Marcus Frean, Lennox Leary, J. P. Lewis, Kurt Wan-Duo Ma, and Brian
 554 McWilliams. The Shattered Gradients Problem: If resnets are the answer, then what is the
 555 question? In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International
 556 Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*,
 557 pp. 342–350. PMLR, 06–11 Aug 2017. URL <https://proceedings.mlr.press/v70/balduzzi17b.html>.

559
 560 Erhan Bayraktar and Asaf Cohen. Analysis of a finite state many player game using its master
 561 equation. *SIAM Journal on Control and Optimization*, 56(5):3538–3568, 2018. doi: 10.1137/
 562 17M113887X. URL <https://doi.org/10.1137/17M113887X>.

563
 564 Nicolas Boullé and Alex Townsend. Chapter 3 - A mathematical guide to operator learning. In
 565 Siddhartha Mishra and Alex Townsend (eds.), *Numerical Analysis Meets Machine Learning*, vol-
 566 ume 25 of *Handbook of Numerical Analysis*, pp. 83–125. Elsevier, 2024.

567
 568 Pierre Cardaliaguet, François Delarue, Jean-Michel Lasry, and Pierre-Louis Lions. *The master
 569 equation and the convergence problem in mean field games*, volume 201 of *Annals of Mathematics
 570 Studies*. Princeton University Press, Princeton, NJ, 2019. ISBN 978-0-691-19071-6; 978-0-691-
 19070-9. doi: 10.2307/j.ctvckq7qf. URL <https://doi.org/10.2307/j.ctvckq7qf>.

571
 572 René Carmona and François Delarue. *Probabilistic theory of mean field games with applications.
 573 I*, volume 83 of *Probability Theory and Stochastic Modelling*. Springer, Cham, 2018a. ISBN
 574 978-3-319-56437-1; 978-3-319-58920-6. Mean field FBSDEs, control, and games.

575
 576 René Carmona and François Delarue. *Probabilistic theory of mean field games with applications. II*,
 577 volume 84 of *Probability Theory and Stochastic Modelling*. Springer, Cham, 2018b. ISBN 978-
 578 3-319-56435-7; 978-3-319-56436-4. Mean field games with common noise and master equations.

579
 580 René Carmona and Mathieu Laurière. Convergence analysis of machine learning algorithms for
 581 the numerical solution of mean field control and games I: The ergodic case. *SIAM Journal on
 582 Numerical Analysis*, 59(3):1455–1485, 2021.

583
 584 René Carmona and Mathieu Laurière. Convergence analysis of machine learning algorithms for the
 585 numerical solution of mean field control and games: II—the finite horizon case. *The Annals of
 586 Applied Probability*, 32(6):4065–4105, 2022.

587
 588 Alekos Cecchin and Markus Fischer. Probabilistic approach to finite state mean field games. *Applied
 589 Mathematics & Optimization*, 2018. ISSN 1432-0606. URL <https://doi.org/10.1007/s00245-018-9488-7>.

590
 591 Alekos Cecchin and Guglielmo Pelino. Convergence, fluctuations and large deviations for fi-
 592 nite state mean field games via the master equation. *Stochastic Processes and their Ap-
 593 plications*, 129(11):4510 – 4555, 2019. ISSN 0304-4149. doi: <https://doi.org/10.1016/j.spa.2018.12.002>. URL <http://www.sciencedirect.com/science/article/pii/S030441491830694X>.

594 Xu Chen, Yongjie FU, Shuo Liu, and Xuan Di. Physics-informed neural operator for coupled
 595 forward-backward partial differential equations. In *1st Workshop on the Synergy of Scientific
 596 and Machine Learning Modeling @ ICML2023*, 2023. URL [https://openreview.net/
 597 forum?id=iLwfzf33Ub](https://openreview.net/forum?id=iLwfzf33Ub).

598 Asaf Cohen, Mathieu Laurière, and Ethan Zell. Deep backward and Galerkin methods for the finite
 599 state master equation. *Journal of Machine Learning Research*, 25(401):1–50, 2024.

601 Kai Cui and Heinz Koeppl. Approximately solving mean field games via entropy-regularized deep
 602 reinforcement learning. In *International Conference on Artificial Intelligence and Statistics*, pp.
 603 1909–1917. PMLR, 2021.

604 Romuald Elie, Julien Perolat, Mathieu Laurière, Matthieu Geist, and Olivier Pietquin. On the con-
 605 vergence of model free learning in mean field games. In *Proceedings of the AAAI Conference on
 606 Artificial Intelligence*, volume 34, pp. 7143–7150, 2020.

608 Jean-Pierre Fouque and Zhaoyu Zhang. Deep learning methods for mean field control problems
 609 with delay. *Frontiers in Applied Mathematics and Statistics*, 6(11), 2020.

611 Diogo Gomes, Roberto M Velho, and Marie-Therese Wolfram. Socio-economic applications of
 612 finite state mean field games. *Phil. Trans. R. Soc. A*, 372(2028):20130405, 2014.

613 Diogo A. Gomes, Joana Mohr, and Rafael Rigão Souza. Continuous time finite state mean
 614 field games. *Appl. Math. Optim.*, 68(1):99–143, 2013. ISSN 0095-4616. doi: 10.1007/
 615 s00245-013-9202-8. URL [http://dx.doi.org.proxy.lib.umich.edu/10.1007/
 616 s00245-013-9202-8](http://dx.doi.org.proxy.lib.umich.edu/10.1007/s00245-013-9202-8).

617 Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang. Learning mean-field games. *Advances in
 618 Neural Information Processing Systems*, 32:4966–4976, 2019.

620 Jiequn Han, Ruimeng Hu, and Jihao Long. Learning high-dimensional McKean–Vlasov forward-
 621 backward stochastic differential equations with general distribution dependence. *SIAM Journal
 622 on Numerical Analysis*, 62(1):1–24, 2024.

624 Han Huang and Rongjie Lai. Unsupervised solution operator learning for mean-field games. *Journal
 625 of Computational Physics*, 537:114057, September 2025. ISSN 0021-9991. doi: 10.1016/j.jcp.
 626 2025.114057. URL <http://dx.doi.org/10.1016/j.jcp.2025.114057>.

627 Minyi Huang, Roland P. Malhamé, and Peter E. Caines. Large population stochastic dynamic games:
 628 Closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. *Commun. Inf.
 629 Syst.*, 6(3):221–251, 2006. ISSN 1526-7555. URL <http://projecteuclid.org.proxy.lib.umich.edu/euclid.cis/1183728987>.

632 Yuling Jiao, Yang Wang, and Yunfei Yang. Approximation bounds for norm constrained neural
 633 networks with applications to regression and GANs. *Applied and Computational Harmonic
 634 Analysis*, 65:249–278, July 2023. ISSN 1063-5203. doi: 10.1016/j.acha.2023.03.004. URL
 635 <http://dx.doi.org/10.1016/j.acha.2023.03.004>.

636 Vassili N. Kolokoltsov and Alain Bensoussan. Mean-field-game model for botnet defense in cyber-
 637 security. *Appl. Math. Optim.*, 74(3):669–692, 2016. ISSN 0095-4616,1432-0606. doi: 10.1007/
 638 s00245-016-9389-6. URL <https://doi.org/10.1007/s00245-016-9389-6>.

640 Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
 641 drew Stuart, and Anima Anandkumar. Neural Operator: Learning Maps Between Function Spaces
 642 With Applications to PDEs. *Journal of Machine Learning Research*, 24(89):1–97, 2023. URL
 643 <http://jmlr.org/papers/v24/21-1524.html>.

644 Nikola B. Kovachki, Samuel Lanthaler, and Andrew M. Stuart. Chapter 9 - Operator learning: Algo-
 645 rithms and analysis. In Siddhartha Mishra and Alex Townsend (eds.), *Numerical Analysis Meets
 646 Machine Learning*, volume 25 of *Handbook of Numerical Analysis*, pp. 419–467. Elsevier, 2024.
 647 doi: <https://doi.org/10.1016/bs.hna.2024.05.009>. URL <https://www.sciencedirect.com/science/article/pii/S1570865924000097>.

648 Thorsten Kurth, Shashank Subramanian, Peter Harrington, Jaideep Pathak, Morteza Mardani, David
 649 Hall, Andrea Miele, Karthik Kashinath, and Anima Anandkumar. Fourcastnet: Accelerating
 650 global high-resolution weather forecasting using adaptive fourier neural operators. In *Proceedings*
 651 *of the Platform for Advanced Scientific Computing Conference, PASC '23*, pp. 1–11. ACM, June
 652 2023. doi: 10.1145/3592979.3593412. URL <http://dx.doi.org/10.1145/3592979.3593412>.

654 Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Fer-
 655 ran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose,
 656 Stephan Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir Mo-
 657 hamed, and Peter Battaglia. Learning skillful medium-range global weather forecasting. *Science*,
 658 382(6677):1416–1421, December 2023. ISSN 1095-9203. doi: 10.1126/science.adi2336. URL
 659 <http://dx.doi.org/10.1126/science.adi2336>.

660 Samuel Lanthaler and Andrew M Stuart. The parametric complexity of operator learning. *IMA
 661 Journal of Numerical Analysis*, August 2025. ISSN 1464-3642. doi: 10.1093/imanum/draf028.
 662 URL <http://dx.doi.org/10.1093/imanum/draf028>.

664 Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. *Jpn. J. Math.*, 2(1):229–260, 2007.
 665 ISSN 0289-2316. doi: 10.1007/s11537-007-0657-8. URL <http://dx.doi.org.proxy.lib.umich.edu/10.1007/s11537-007-0657-8>.

667 Mathieu Laurière. Numerical methods for mean field games and mean field type control, 2021.
 668 ISSN 2324-7088. URL <http://dx.doi.org/10.1090/psapm/078/06>.

670 Pengdeng Li, Xinrun Wang, Shuxin Li, Hau Chan, and Bo An. Population-size-aware policy opti-
 671 mization for mean-field games. In *The Eleventh International Conference on Learning Represen-
 672 tations*, 2023. URL <https://openreview.net/forum?id=fB4V-2QvCEm>.

673 Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
 674 tacharya, Andrew Stuart, and Anima Anandkumar. Fourier Neural Operator for Parametric Par-
 675 tial Differential Equations. In *International Conference on Learning Representations*, 2021. URL
 676 <https://openreview.net/forum?id=c8P9NQVtmnO>.

678 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 679 ence on Learning Representations*, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.

681 Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
 682 nonlinear operators via deeponet based on the universal approximation theorem of operators.
 683 *Nature Machine Intelligence*, 3(3):218–229, March 2021. ISSN 2522-5839. doi: 10.1038/s42256-021-00302-5. URL <http://dx.doi.org/10.1038/s42256-021-00302-5>.

685 Shunyuan Mao, Ruobing Dong, Lu Lu, Kwang Moo Yi, Sifan Wang, and Paris Perdikaris. Pp-
 686 donet: Deep operator networks for fast prediction of steady-state solutions in disk–planet sys-
 687 tems. *The Astrophysical Journal Letters*, 950(2):L12, June 2023. ISSN 2041-8213. doi: 10.3847/
 688 2041-8213/acd77f. URL <http://dx.doi.org/10.3847/2041-8213/acd77f>.

690 Weichao Mao, Haoran Qiu, Chen Wang, Hubertus Franke, Zbigniew Kalbarczyk, Ravishankar Iyer,
 691 and Tamer Basar. A mean-field game approach to cloud resource management with function
 692 approximation. *Advances in Neural Information Processing Systems*, 35:36243–36258, 2022.

693 Ming Min and Ruimeng Hu. Signatured deep fictitious play for mean field games with common
 694 noise. In *International Conference on Machine Learning*, pp. 7736–7747. PMLR, 2021.

695 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 696 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 697 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 698 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
 699 deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox,
 700 and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Cur-
 701 ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

702 Sarah Perrin, Mathieu Laurière, Julien Pérolat, Romuald Élie, Matthieu Geist, and Olivier Pietquin.
 703 Generalization in mean field games by learning master policies. In *Proceedings of the AAAI*
 704 *Conference on Artificial Intelligence*, volume 36, pp. 9413–9421, 2022.

705 Jayakumar Subramanian and Aditya Mahajan. Reinforcement learning in stationary mean-field
 706 games. In *Proceedings of the 18th International Conference on Autonomous Agents and MultiA-*
 707 *gent Systems*, pp. 251–259, 2019.

708 Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric
 709 partial differential equations with physics-informed deeponets. *Science Advances*, 7(40), October
 710 2021. ISSN 2375-2548. doi: 10.1126/sciadv.abi8605. URL <http://dx.doi.org/10.1126/sciadv.abi8605>.

711 Zida Wu, Mathieu Lauriere, Matthieu Geist, Olivier Pietquin, and Ankur Mehta. Population-aware
 712 online mirror descent for mean-field games with common noise by deep reinforcement learning,
 713 2025. URL <https://arxiv.org/abs/2509.03030>.

714 Batuhan Yardim and Niao He. Exploiting approximate symmetry for efficient multi-agent rein-
 715 forcement learning. In Necmiye Ozay, Laura Balzano, Dimitra Panagou, and Alessandro Abate
 716 (eds.), *Proceedings of the 7th Annual Learning for Dynamics & Control Conference*, volume
 717 283 of *Proceedings of Machine Learning Research*, pp. 31–44. PMLR, 04–06 Jun 2025. URL
 718 <https://proceedings.mlr.press/v283/yardim25a.html>.

719 Dmitry Yarotsky. Error bounds for approximations with deep relu networks. *Neural Networks*, 94:
 720 103–114, October 2017. ISSN 0893-6080. doi: 10.1016/j.neunet.2017.07.002. URL <http://dx.doi.org/10.1016/j.neunet.2017.07.002>.

721 Chenyu Zhang, Xu Chen, and Xuan Di. Stochastic semi-gradient descent for learning mean field
 722 games with population-aware function approximation. In *The Thirteenth International Confer-
 723 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=tfo07iz0b9>.

724 A EXPERIMENTAL DETAILS

725 As noted in our reproducibility statement, we provide all experimental details in order to recreate
 726 our results from Section 5 and in Appendix G. Smaller experiments in the cybersecurity example
 727 were carried out a 2020 MacBook Pro with an Apple M1 chip and 8GB RAM. For the purposes
 728 of timing (see Appendix G), higher-dimensional experiments in the quadratic example were instead
 729 run on a single NVIDIA A100 TensorCore GPU with 40GB of VRAM via Google Colaboratory. All
 730 experiments were implemented in the PyTorch machine learning library in Python (Paszke et al.,
 731 2019). Code for our numerical experiments can be found in our submitted supplementary material.

732 To best align with our theoretical results in Section 4, we utilize fully-connected ReLU neural
 733 networks for all experiments unless otherwise specified. In all cases, we used mini-batches with
 734 $n_{\text{mini}} = 64$ samples for each gradient step during the training loop. All hyperparameters were
 735 selected via a grid search, with tuned parameters being: initial learning rate, number of hidden layers
 736 (depth), width of each hidden layer, number of training epochs, and number of training samples. In
 737 each case, we validated our models by testing on 20% of the training data, held-out from the training
 738 set for validation. In many cases, we found it beneficial to utilize early stopping to prevent overfitting.
 739 Finally, in all cases, we found that a cosine annealing learning rate scheduler performed best for op-
 740 timization; we used the default parameters for the CosineAnnealingLR scheduler, as implemented
 741 in PyTorch’s `torch.optim` package. We also found that optimization was more slightly stable
 742 for higher-dimensional cases when using: (1) the AdamW optimizer with the default weight decay
 743 parameter, $\lambda = 0.01$, and (2) smooth L^1 -loss in place of L^2 -loss. Nonetheless, we are able to obtain
 744 similar results with L^2 -loss, in line with our theoretical framework in Section 4.

745 In Tables 1 and 2 below, we describe the specific architectures and hyperparameters that we chose
 746 for each experiment in Section 5, including depth, width, number of training epochs, optimizer pa-
 747 rameters, and number of training samples. Finally, in Appendix G, we provide additional numerical

756 experiments to showcase the accuracy of our method for higher-dimensional quadratic models. Departing
 757 from feedforward ReLU networks, we are able to obtain even better performance in $d = 10$
 758 using a ResNet architecture with depth $L = 4$, two layers of width 128, two hidden layers with width
 759 64, skip connections between all layers, layer normalization, and dropout with probability $p = 0.05$.
 760 See the results of this experiment in Fig. 7 below.

761 Our submitted code, provided in the supplementary material, is organized as follows:
 762

- 763 • `utils` contains a generic class for MFG operators, as well as two scripts defining the
 764 cybersecurity and quadratic models from Section 5.
- 765 • `generation` contains two scripts for sampling trajectories from the cybersecurity and
 766 quadratic models, respectively.
- 767 • `tests` contains
 - 768 – `train_cs_operator_time.py` and `train_quad_operator_time.py`,
 769 which implement Algorithm 1 for the two models in Section 5, and
 - 770 – `train_cs_operator_fixed.py` and `train_quad_operator_fixed.py`,
 771 which implement a similar algorithm for learning trajectories along a *fixed* time dis-
 772 cretization.
- 773 • Finally, the directories `data`, `models`, and `plots` contain example outputs that can be
 774 reproduced (at least, up to randomness of sampling) by running the above scripts.
 775

776 For example, running `generate_quad_data.py` will generate samples for the quadratic model
 777 in dimension $d = 3$, stored in `data` then running `train_quad_operator_time.py` will train
 778 a model on the generated samples, outputting a model stored in `models` and a corresponding plot
 779 on four random samples, stored in `plots`.

780 Table 1: Optimization details for experiments Section 5 and Appendix G.

781 Experiment	782 Optimizer	783 Loss Function
784 Cybersecurity Model	785 Adam	L^2
786 Cybersecurity Model (Fixed Discretization)	787 Adam	L^2
787 Quadratic Model	788 AdamW	Smooth L^1
788 Quadratic Model (Fixed Discretization)	789 Adam	L^2

790 Table 2: Selected hyperparameters for experiments in Section 5 and Appendix G.

791 Experiment	792 # Training Samples (n)	793 # Epochs (m_{train})	794 Width (W)	795 Depth (L)	796 Initial Learning Rate
797 Cybersecurity Model	798 2000	799 2000	800 64	801 4	8×10^{-4}
802 Cybersecurity Model (Fixed Discretization)	803 2000	804 1000	805 64	806 4	8×10^{-4}
807 Quadratic Model ($d = 3$)	808 4000	809 2000	810 64	811 4	8×10^{-4}
812 Quadratic Model ($d = 3$, Fixed Discretization)	813 4000	814 1000	815 64	816 4	8×10^{-4}
817 Quadratic Model ($d = 4$)	818 4000	819 2000	820 64	821 4	8×10^{-4}
822 Quadratic Model ($d = 4$, Fixed Discretization)	823 4000	824 1000	825 64	826 4	8×10^{-4}
828 Quadratic Model ($d = 5$)	829 4000	830 2000	831 64	832 4	8×10^{-4}
834 Quadratic Model ($d = 5$, Fixed Discretization)	835 4000	836 1000	837 64	838 4	8×10^{-4}
840 Quadratic Model ($d = 10$)	841 10000	842 500	843 128	844 4	1×10^{-4}
846 Quadratic Model ($d = 10$, Fixed Discretization)	847 10000	848 1000	849 64	850 4	8×10^{-4}
852 Quadratic Model ($d = 20$, Fixed Discretization)	853 20000	854 1000	855 64	856 4	8×10^{-4}

807 B MARKOVIAN CONTROLS AND REPRESENTATIVE PLAYER'S PROCESS

808 In this appendix, we formally describe the Markovian controls that the representative player in a
 809 finite-state MFG chooses, presented at a high level in Section 2.1.

810 Denoting $[d] = \{1, \dots, d\}$ to be the set of states that the player may switch between, a Markovian
 811 control refers to a measurable function

$$812 \alpha : \mathbb{R}_+ \times \{1, \dots, d\} \rightarrow \mathbb{A}_{[d]}^d = \bigcup_{x \in [d]} \mathbb{A}_{-x}^d,$$

810 where

$$811 \quad \mathbb{A}_{-x}^d := \{a \in \mathbb{R}^d : \forall y \neq x, \quad a_y \in \mathbb{A}, \quad a_x = -\sum_{y \neq x} a_y\}.$$

812 The value of $\alpha_y(t, x) := \alpha(t, x)_y$, where $x \neq y$, represents the player's rate of transition at time
 813 t from the state x to the state y . We require that $\alpha_x(t, x) = -\sum_{y \neq x} \alpha_y(t, x)$ for all $x \in [d]$, as
 814 is standard for the transition probabilities of a continuous-time Markov chain. More concisely, let
 815 $\mathcal{Q}[\mathbb{A}]$ be the set of $d \times d$ transition-rate matrices with rates in $\mathbb{A} := [\alpha_l, \alpha_u]$. Then, the player chooses
 816 Markovian controls $\alpha : [0, T] \rightarrow \mathcal{Q}[\mathbb{A}]$ which we refer to as the set of admissible controls. Under
 817 this interpretation, $(\alpha(t))_{x,y} = \alpha_y(t, x)$.
 818

819 In Section 2.1, we noted that, given a Markovian control α and an initial distribution $\eta \in \mathcal{P}([d])$, the
 820 player's dynamics obey a continuous-time Markov chain with transition probabilities
 821

$$822 \quad \Pr(\mathcal{X}_{t+h}^\eta = y \mid \mathcal{X}_t^\eta = x) = \alpha_y(t, x)h + o(h), \quad h \rightarrow 0^+.$$

823 In fact, this Markov chain arises as the result of a Poisson jump process, which completely describes
 824 the dynamics of the representative player. Our method does not rely on the exact details of the jump
 825 process, however, and we thus refer the interested reader to (Cecchin & Fischer, 2018, Section 2.3)
 826 for additional details on the probabilistic structure of finite-state MFGs that we consider.
 827

828 In Section 2.1, we provided a condensed version of the assumptions that ensure that the MFG system
 829 has a unique solution. Below, we expand on these assumptions, providing the full suite of assumptions
 830 that previous work such as Bayraktar & Cohen (2018); Cecchin & Pelino (2019); Cohen et al.
 831 (2024) all utilize.

832 Our first two assumptions ensure that the Hamiltonian in (2.4) has a unique minimizer and that the
 833 running and terminal costs F and g are monotone in an appropriate sense. Our third assumption is
 834 a technical assumption on the strong concavity of the Hamiltonian. Although this last assumption
 835 may not appear immediately relevant, it is useful later when we analyze the regularity of the flow
 836 map for Equation (2.3) in Appendix E.1 below.

837 **Assumption B.1.** *The Hamiltonian has a unique minimizer, which we refer to as the optimal rate
 838 selector and is denoted $\gamma^*(x, p) := \arg \min_{a \in \mathbb{A}_{-x}^d} \{f(x, a) + a \cdot p\}$. The optimal rate selector γ^* is
 839 a measurable function that, given any $(x, p) \in [d] \times \mathbb{R}^d$, defines a well-defined (unique) rate vector
 840 a such that for any $y \neq x$, $a_y \in \mathbb{A}$ and $a_x = -\sum_{y \neq x} a_y$. In particular, it is sufficient that f is
 841 strictly convex with respect to a .*

842 **Assumption B.2.** *The functions F and g are continuously differentiable in η with Lipschitz derivatives. Moreover, F and g are Lasry–Lions monotone in the sense that for both $\phi = F, g$,*

$$843 \quad \sum_{x \in [d]} (\phi(x, \eta) - \phi(x, \hat{\eta}))(\eta_x - \hat{\eta}_x) \geq 0, \quad (\text{B.1})$$

844 for any $\eta, \hat{\eta} \in \mathcal{P}([d])$.
 845

846 **Assumption B.3.** *Assume that, for some $W > 0$, the derivatives $D_{pp}^2 H$ and $D_p H$ of the Hamiltonian exist and are Lipschitz in p on $[-W, W]$. Moreover, H is strictly concave in p : there exists a positive constant $C_{2,H}$ such that:*

$$847 \quad D_{pp}^2 H(x, p) \leq -C_{2,H}. \quad (\text{B.2})$$

848 When H is differentiable, (Gomes et al., 2013, Proposition 1) implies that
 849

$$850 \quad \gamma^*(x, p) = D_p H(x, p), \quad (\text{B.3})$$

851 a useful property when establishing regularity of the flow map. Moreover, if Assumption B.3 holds,
 852 then γ^* is locally Lipschitz.
 853

854 C THE MASTER EQUATION

855 The master equation is given by the following nonlinear PDE:

$$856 \quad \begin{cases} \partial_t U(t, x, \eta) + \sum_{y,z \in [d]} \eta_y D_{yz}^\eta U(t, x, \eta) \gamma_z^*(y, \Delta_y U(t, \cdot, \eta)) + \bar{H}(x, \eta, \Delta_x U(t, \cdot, \eta)) = 0, \\ U(T, x, \eta) = g(x, \eta), \quad (t, x, \eta) \in [0, T] \times [d] \times \mathcal{P}([d]), \end{cases} \quad (\text{C.1})$$

Above, $U : [0, T] \times [d] \times \mathcal{P}([d]) \rightarrow \mathbb{R}$, with D_{yz}^η denoting a directional derivative in the direction of the vector $e_{yz} := e_y - e_z$ on the probability simplex, where $e_y, e_z \in \mathbb{R}^d$ are standard basis vectors indexed by $y, z \in [d]$. More precisely, for $\phi : \mathcal{P}([d]) \rightarrow \mathbb{R}$, we define

$$D_{yz}^\eta \phi(\eta) := \lim_{h \rightarrow 0^+} \frac{\phi(\eta + e_{yz}h) - \phi(\eta)}{h}. \quad (\text{C.2})$$

Note that this convention respects the geometry of the simplex, in the sense that derivatives are only allowed in directions along the simplex: if $\eta \in \mathcal{P}([d])$, then $\eta + e_{yz}h \in \mathcal{P}([d])$ for all h sufficiently small.

We have the following result concerning the master equation, both providing its regularity and establishing the consistency relation invoked in Corollary 4.1 above. This proposition combines results from (Cecchin & Pelino, 2019, Proposition 1, Proposition 5, Theorem 6) and (Cardaliaguet et al., 2019, Section 1.2.4).

Proposition C.1. *There exists a unique solution, denoted by $(u^{t_0, \eta}, \mu^{t_0, \eta})$, in $\mathcal{C}^1([t_0, T] \times [d], \mathbb{R}) \times \mathcal{C}^1([t_0, T] \times [d], \mathcal{P}([d]))$ to (2.3). Let U be defined by:*

$$U(t_0, x, \eta) := u^{t_0, \eta}(t_0, x). \quad (\text{C.3})$$

Then, the master field U is the unique classical solution to the master (C.1). Moreover, we have the consistency relation such that for all $t_0 \in [0, T]$,

$$U(t, x, \mu^{t_0, \eta}(t)) = u^{t, \mu^{t_0, \eta}(t)}(t) = u^{t_0, \eta}(t), \quad (t, x, \eta) \in [t_0, T] \times [d] \times \mathcal{P}([d]). \quad (\text{C.4})$$

Finally, $U(\cdot, x, \cdot) \in \mathcal{C}^{1,1}([0, T] \times \mathcal{P}([d]))$ for every $x \in [d]$.

Note that the above result is stated in the more general setting, where our MFG begins at time $t_0 \in [0, T]$, with the initial distribution specified as $\mu(t_0, x) = \eta(x)$. Then, $u^{t_0, \eta}$ and $\mu^{t_0, \eta}$ describe the evolution of the value function and flow of measures starting at time t_0 ; this formalism is necessary for results concerning the master equation, but it is not directly relevant to our setting, so we assume that $t_0 = 0$ throughout.

D PICARD ITERATION FOR FORWARD-BACKWARD SYSTEMS

In this section, we describe the precise details of the Picard iteration map, denoted by Γ_g , that we use as a subprocess in Algo. 1 for sampling from parametrized families of finite-state MFGs. Specifically, we recall the forward-backward MFG system from (2.3):

$$\begin{aligned} \frac{d}{dt} u^{\eta, \kappa}(t, x) + \bar{H}(x, \mu^{\eta, \kappa}(t), \Delta_x u^{\eta, \kappa}(t, \cdot)) &= 0, & (t, x) \in [0, T] \times [d], \\ \frac{d}{dt} \mu^{\eta, \kappa}(t, x) &= \sum_{y \in [d]} \mu^{\eta, \kappa}(t, y) \gamma_x^*(y, \Delta_y u^{\eta, \kappa}(t, \cdot)), & (t, x) \in [0, T] \times [d], \\ \mu^{\eta, \kappa}(0, x) &= \eta(x), & x \in [d], \\ u^{\eta, \kappa}(T, x) &= g_\kappa(x, \mu^{\eta, \kappa}(T)), & x \in [d]. \end{aligned}$$

To solve this ODE system on the time interval $[0, T]$, we introduce a time discretization with M points and time step $\Delta t := 1/M$, partitioning the interval $[0, T]$ into subintervals $[t_i, t_{i+1}]$ with $t_i = i\Delta t$ for $i = 0, \dots, M$. Then, for each $i = 0, \dots, M-1$, the time-discretized system becomes a nonlinear system of equations given by

$$\begin{aligned} u^{\eta, \kappa}(t_{i+1}, x) - u^{\eta, \kappa}(t_i, x) &= -\Delta t \bar{H}(x, \mu^{\eta, \kappa}(t_{i+1}), \Delta_x u^{\eta, \kappa}(t_i, \cdot)), & x \in [d], \\ \mu^{\eta, \kappa}(t_{i+1}, x) - \mu^{\eta, \kappa}(t_i, x) &= \Delta t \sum_{y \in [d]} \mu^{\eta, \kappa}(t_i, y) \gamma_x^*(y, \Delta_y u^{\eta, \kappa}(t_{i+1}, \cdot)), & x \in [d], \\ \mu^{\eta, \kappa}(t_0, x) &= \eta(x), & x \in [d], \\ u^{\eta, \kappa}(t_M, x) &= g_\kappa(x, \mu^{\eta, \kappa}(t_M)), & x \in [d]. \end{aligned} \quad (\text{D.1})$$

Using fixed point iteration, we produce approximations of the value function $\{u^{\eta, \kappa}(t_i, \cdot)\}_{i=0}^M$ and flow of measures of $\{\mu^{\eta, \kappa}(t_i, \cdot)\}_{i=0}^M$, evaluated along the time discretization t_0, \dots, t_M . Now, given

918 *fixed* $\kappa \in \mathcal{K}$, the output of the Picard iteration map $\Gamma : \mathcal{P}([d]) \rightarrow (\mathbb{R}^d)^{M+1}$ is $\Gamma(\eta)_i \approx u^{\eta, \kappa}(t_i, \cdot) \in \mathbb{R}^d$.
 919
 920

921 For ease of notation, we suppress the dependence of μ and u on $(\eta, \kappa) \in \mathcal{P}([d]) \times \mathcal{K}$ below, noting
 922 that this method solves a *single* MFG from a parametrized family. To begin, we initialize vectors
 923 $\mu^{(0)} \in \mathbb{R}^{M+1}$ and $u^{(0)} \in \mathbb{R}^{M+1}$ with $\mu_0^{(0)}(x) = \eta(x)$ and $u_M^{(0)}(x) = g_\kappa(x, \mu_M^{(0)})$ for $x \in [d]$. Then,
 924 we alternate between updates to u and μ via the finite difference equations in (D.1), producing
 925 iterates $u^{(k)} \in \mathbb{R}^M$ and $\mu^{(k)} \in \mathbb{R}^k$ in an alternating fashion. If the map $u^{(i)} \mapsto u^{(i+1)}$ is a
 926 strict contraction, then a standard argument via the Banach fixed point theorem shows that this
 927 iterative procedure will converge the solution $u \in (\mathbb{R}^d)^{M+1}$ to the time-discretized Equation (D.1).
 928 Importantly, note that the discretization of the time derivative incurs an error of $\mathcal{O}(\Delta t)$, so we must
 929 take Δt small in order for fixed point iteration be accurate.
 930

930 As discussed in (Laurière, 2021, Section 2.3), Picard iteration for such forward-backward systems
 931 may sometimes be numerically unstable. If this is the case, we may introduce a sequence of damping
 932 parameters $\{\delta^{(k)}\}_{k \in \mathbb{N}}$ and carry out damped updates to one of the updates. For instance, in Laurière
 933 (2021), the author includes an auxiliary update $\tilde{\mu}^{(k)}$, with $\mu^{(0)} = \tilde{\mu}^{(0)}$, and updates the forward
 934 equation via

$$\tilde{\mu}^{(k+1)} = \delta^{(k)} \tilde{\mu}^{(k)} + (1 - \delta^{(k)}) \mu^{(k)}$$

935 to encourage more stable convergence. Then, the backward equation is updated with $\tilde{\mu}^{(k)}$; the update
 936 to the forward equation remains the same. This algorithm, based on (Laurière, 2021, Algorithm 1),
 937 is included below. In the numerical examples in Section 5, we do not require damping in order for
 938 fixed point iteration to converge quickly and we simply take $\delta^{(k)} = 0$ for all $k \in \mathbb{N}$. However, for
 939 more complex MFG systems, damping may be a helpful augmentation of our sampling procedure.
 940 Algo. 2 provides a summary of the procedure outlined above.
 941

942 **Algorithm 2** Picard Iteration for Time-Discretized MFGs

943 **Input:** Parameters $(\eta, \kappa) \in \mathcal{P}([d]) \times \mathcal{K}$, number of time steps $M \in \mathbb{N}$, tolerance $\varepsilon > 0$, damping
 944 schedule $\{\delta^{(k)}\}_{k \in \mathbb{N}}$, initializations $u_0, \mu_0 \in (\mathbb{R}^d)^{M+1}$
 945
 946 1: $u^{(0)} \leftarrow u_0$
 947 2: $\mu^{(0)} \leftarrow \mu_0$
 948 3: $\tilde{\mu}^{(0)} \leftarrow \mu_0$
 949 4: $k \leftarrow 0$
 950 5: **while** $\|u^{(k+1)} - u^{(k)}\|_2 \geq \varepsilon$ or $\|\mu^{(k+1)} - \mu^{(k)}\|_2 \geq \varepsilon$ **do**
 951 6: Solve the discretized backward equation in Equation (D.1) for $u^{(k+1)}$, with input $\tilde{\mu}^{(k)}$.
 952 7: Solve the discretized forward equation in Equation (D.1) for $\mu^{(k+1)}$, with input $u^{(k+1)}$.
 953 8: $\tilde{\mu}^{(k+1)} \leftarrow \delta^{(k)} \tilde{\mu}^{(k)} + (1 - \delta^{(k)}) \mu^{(k)}$
 954 9: $k \leftarrow k + 1$
 955 10: **end while**
 956 11: **return** $u^{(k)}$

957
 958
 959 **E TECHNICAL PROOFS**
 960

961 In this section, we present technical lemmata and proofs for our claims about the regularity of flow
 962 maps for parametrized families of MFGs. First, we recall some useful notation. For any compact
 963 set $K \subseteq \mathbb{R}^d$ and a function $\phi : K \rightarrow \mathbb{R}$, we define
 964

$$\|\phi\|_\infty := \sup_{x \in K} |\phi(x)|.$$

965 All functions such that $\|\phi\|_\infty < \infty$ form the Banach space $\mathcal{C}^0(K)$. For instance, for functions such
 966 as $u : [0, T] \times [d] \rightarrow \mathbb{R}$, we take
 967

$$\|u\|_\infty = \sup_{t \in T} \max_{x \in [d]} |u(t, x)|.$$

968 We also occasionally refer to the spaces $\mathcal{C}^{0,1}(K)$, consisting of all Lipschitz functions on K , and
 969 $\mathcal{C}^{0,1}(K)$, consisting of all continuously differentiable functions on K with Lipschitz derivatives. For
 970

functions on the d -dimensional probability simplex $\mathcal{P}([d])$, we only allow directional derivatives along the directions $e_y - e_x$, where e_x, e_y are standard basis vectors in \mathbb{R}^d .

975 E.1 PROOFS OF REGULARITY RESULT

977 For our regularity results, (Cecchin & Pelino, 2019, Proposition 5) provides a very useful starting
 978 point. Importantly, the authors of Cecchin & Pelino (2019) work under Assumptions 2.1. It remains
 979 to incorporate the added effect of a changing terminal condition, restricted to a parametrized set of
 980 functions under Assumption 2.2, into their results.

981 First, we define $\tilde{\Phi}(t, \eta) := U(t, \cdot, \mu^\eta(t)) = u(t, \cdot)$, due to the consistency relation in Proposition C.1
 982 in Appendix C, where U is the solution to the master equation. Now, Proposition C.1 also provides
 983 that $U(\cdot, x, \cdot) \in \mathcal{C}^{1,1}([0, T] \times \mathcal{P}([d]))$ for every $x \in [d]$ under our assumptions, which directly
 984 implies the following:

985 **Lemma E.1.** *Under Assumption 2.1, The flow map $\tilde{\Phi} : [0, T] \times \mathcal{P}([d]) \rightarrow \mathbb{R}^d$, given by $\tilde{\Phi}(t, \eta) =$
 986 $u^\eta(t, \cdot)$, satisfies $\Phi \in \mathcal{C}^{1,1}([0, T] \times \mathcal{P}([d]); \mathbb{R}^d)$.*

988 Including Assumption 2.2, on top of Assumptions 2.1, we show that the flow map

$$989 \Phi : [0, T] \times \mathcal{P}([d]) \times \mathcal{K} \rightarrow \mathbb{R}^d, \quad \Phi(t, \eta, \kappa) = u^{\eta, \kappa}(t, \cdot)$$

991 is Lipschitz in all three arguments. Above, recall that the notation $u^{\eta, \kappa}$ denotes the value function
 992 that solves the MFG system, with initial distribution $\eta \in \mathcal{P}([d])$ and terminal cost g_κ , where $\kappa \in \mathcal{K}$.
 993 In turn, Lipschitz regularity of the flow map on the compact set $[0, T] \times \mathcal{P}([d]) \times \mathcal{K}$, recalling that
 994 Assumption 2.2 requires that \mathcal{K} is compact, is sufficient to invoke the approximation guarantees
 995 provided in Jiao et al. (2023). We begin with a stability estimate for the parametrized family of
 996 MFG systems obeying Assumption 2.2.

997 **Lemma E.2.** *Let (u_1, μ_1) and (u_2, μ_2) solve the MFG system in (2.3) with data (η_1, g_{κ_1}) and
 998 (η_2, g_{κ_2}) respectively, with $\eta_1, \eta_2 \in \mathcal{P}([d])$ and $\kappa_1, \kappa_2 \in \mathcal{K} \subset \mathbb{R}^k$. If Assumptions 2.1–2.2 hold,
 999 then there exists a constant $C > 0$ such that*

$$1000 \sup_{t \in [0, T]} \max_{x \in [d]} |u_1(t, x) - u_2(t, x)| \leq C(|\kappa_1 - \kappa_2| + \|\mu_1 - \mu_2\|_\infty). \quad (\text{E.1})$$

1002 *Proof.* We proceed as in Cecchin & Pelino (2019), taking $u := u_1 - u_2$ and $\mu = \mu_1 - \mu_2$. The pair
 1003 (u, μ) then solves the system

$$1004 \begin{aligned} \frac{d}{dt} u(t, x) + \bar{H}(x, \mu_1(t), \Delta_x u_1(t, \cdot)) - \bar{H}(x, \mu_2(t), \Delta_x u_2(t, \cdot)) &= 0, & (t, x) \in [0, T] \times [d], \\ \frac{d}{dt} \mu(t, x) &= \sum_{y \in [d]} [\mu_1(t, y) \gamma_x^*(y, \Delta_y u_1(t, \cdot)) - \mu_2(t, y) \gamma_x^*(y, \Delta_y u_2(t, \cdot))], & (t, x) \in [0, T] \times [d], \\ \mu(0, x) &= \eta_1(x) - \eta_2(x), & x \in [d], \\ u(T, x) &= g_{\kappa_1}(x, \mu_1(T)) - g_{\kappa_2}(x, \mu_2(T)), & x \in [d]. \end{aligned} \quad (\text{E.2})$$

1013 To begin, we integrate the backward-in-time HJB equation in (E.2) over the interval $[t, T]$, where
 1014 $t \in [0, T]$ to obtain

$$1015 u(t, x) = g_{\kappa_1}(x, \mu_1(T)) - g_{\kappa_2}(x, \mu_2(T)) + \int_t^T [\bar{H}(x, \mu_1(s), \Delta_x u_1(s, \cdot)) - \bar{H}(x, \mu_2(s), \Delta_x u_2(s, \cdot))] ds$$

1018 Observe that

$$1019 \begin{aligned} |g_{\kappa_1}(x, \mu_1(T)) - g_{\kappa_2}(x, \mu_2(T))| &= |g_{\kappa_1}(x, \mu_1(T)) - g_{\kappa_2}(x, \mu_1(T)) + g_{\kappa_2}(x, \mu_1(T)) - g_{\kappa_2}(x, \mu_2(T))| \\ 1020 &\leq C(|\kappa_1 - \kappa_2| + |\mu_1(T) - \mu_2(T)|) \\ 1021 &\leq C(|\kappa_1 - \kappa_2| + \|\mu_1 - \mu_2\|_\infty). \end{aligned}$$

1023 leveraging both Assumption 2.2 and the fact that $g_\kappa(x, \cdot) \in \mathcal{C}^1(\mathcal{P}([d]))$ so that g_{κ_2} is Lipschitz in its
 1024 second input. Now, recall that

$$1025 \bar{H}(x, \eta, b) = H(x, b) + F(x, \eta),$$

1026 with H Lipschitz in b and F Lipschitz in η under Assumptions 2.1 and 2.1. Consequently, we have
 1027 that
 1028 $|\bar{H}(x, \mu_1(s), \Delta_x u_1(s, \cdot)) - \bar{H}(x, \mu_2(s), \Delta_x u_2(s, \cdot))| \leq C(|\mu_1(s) - \mu_2(s)| + |\Delta_x u_1(s, \cdot) - \Delta_x u_2(s, \cdot)|)$
 1029 $\leq C(|\mu_1(s) - \mu_2(s)| + \max_{x \in [d]} |u(s, x)|),$
 1030

1031 recognizing that
 1032

$$1033 |\Delta_x u_1(s, \cdot) - \Delta_x u_2(s, \cdot)|^2 = |\Delta_x u(s, \cdot)|^2 = \sum_{y \in [d]} (u(s, y) - u(s, x))^2 \leq 3d \max_{x \in [d]} |u(s, x)|^2. \\ 1034$$

1035 Taking absolute values and the maximum over $x \in [d]$ of the integrated HJB equation, we are left
 1036 with
 1037

$$1038 \max_{x \in [d]} |u(t, x)| \leq C(|\kappa_1 - \kappa_2| + \|\mu_1 - \mu_2\|_\infty) + C \int_t^T |\mu_1(s) - \mu_2(s)| ds + C \int_t^T \max_{x \in [d]} |u(s, x)| ds \\ 1039 \\ 1040 \leq C(|\kappa_1 - \kappa_2| + \|\mu_1 - \mu_2\|_\infty) + C \int_t^T \max_{x \in [d]} |u(s, x)| ds. \\ 1041$$

1042 Applying a reversed version of Gronwall's inequality, we obtain
 1043

$$1044 \max_{x \in [d]} |u(t, x)| \leq C(|\kappa_1 - \kappa_2| + \|\mu_1 - \mu_2\|_\infty) \\ 1045$$

1046 for all $t \in [0, T]$ so that
 1047

$$\|u_1 - u_2\|_\infty \leq C(|\kappa_1 - \kappa_2| + \|\mu_1 - \mu_2\|_\infty),$$

1048 taking the supremum over $t \in [0, T]$. \square
 1049

1050 Next, we require an estimate on the difference $\|\mu_1 - \mu_2\|_\infty$; this time, the argument from Cecchin
 1051 & Pelino (2019) applies without modification.
 1052

1053 **Lemma E.3.** *Under the same assumptions as in Lemma E.2, the difference in measures satisfies*

$$1054 \|\mu_1 - \mu_2\|_\infty \leq C|\eta_1 - \eta_2| + C \int_0^T \sqrt{\sum_{x \in [d]} |\Delta_x(u_1 - u_2)(s, \cdot)|^2 \mu_1(s, x)} ds. \\ 1055 \\ 1056$$

1057 *Proof.* This estimate follows by integrating the (forward) Kolmogorov equation for μ from (E.2);
 1058 see (Cecchin & Pelino, 2019, Proposition 5) for details, which carry over verbatim to our setting. \square
 1059

1060 Equipped with both of the previous lemmata, we proceed to bound $\|u\|_\infty$ and $\|\mu\|_\infty$ in terms of the
 1061 initial-terminal data (η_1, κ_1) and (η_2, κ_2) .
 1062

1063 **Lemma E.4.** *Let (u_1, μ_1) and (u_2, μ_2) solve the MFG system in (2.3) with data (η_1, g_{κ_1}) and
 1064 (η_2, g_{κ_2}) respectively, with $\eta_1, \eta_2 \in \mathcal{P}([d])$ and $\kappa_1, \kappa_2 \in \mathcal{K} \subset \mathbb{R}^k$. If Assumptions 2.1–2.2 hold,
 1065 then there exists a constant $C > 0$ such that*

$$1066 \|\mu_1(t, x) - \mu_2(t, x)\|_\infty \leq C(|\eta_1 - \eta_2| + |\kappa_1 - \kappa_2|), \quad (\text{E.3})$$

$$1067 \|u_1 - u_2\|_\infty \leq C(|\eta_1 - \eta_2| + |\kappa_1 - \kappa_2|) \quad (\text{E.4})$$

1068 As a direct corollary, we can extend this stability result to obtain Lipschitz continuity of the flow
 1069 map $\Phi : [0, T] \times \mathcal{P}([d]) \times \mathcal{K} \rightarrow \mathbb{R}^d$.
 1070

1071 *Proof of Lemma E.4.* Taking $\phi(t) = \langle u(t, \cdot), \mu(t, \cdot) \rangle$, we see that
 1072

$$1073 \phi'(t) = \sum_{x \in [d]} u(t, x) \frac{d\mu}{dt}(t, x) + \sum_{x \in [d]} \frac{du}{dt}(t, x) \mu(t, x) \\ 1074 \\ 1075 = \sum_{x \in [d]} \sum_{y \in [d]} [\mu_1(t, y) \gamma_x^*(y, \Delta_y u_1(t, \cdot)) - \mu_2(t, y) \gamma_x^*(y, \Delta_y u_2(t, \cdot))] (u_1(t, x) - u_2(t, x)) \\ 1076 \\ 1077 + \sum_{x \in [d]} [\bar{H}(x, \mu_2(t), \Delta_x u_1(t, \cdot)) - \bar{H}(x, \mu_1(t), \Delta_x u_2(t, \cdot))] (\mu_1(t, x) - \mu_2(t, x)). \\ 1078 \\ 1079$$

1080 Integrating over the interval $[0, T]$, we obtain
 1081

$$1082 \phi(T) - \phi(0) = \int_0^T \left[\sum_{x \in [d]} \sum_{y \in [d]} [\mu_1(t, y) \gamma_x^*(y, \Delta_y u_1(t, \cdot)) - \mu_2(t, y) \gamma_x^*(y, \Delta_y u_2(t, \cdot))] (u_1(t, x) - u_2(t, x)) \right] dt \\ 1083 \\ 1084 \\ 1085 \\ 1086 \\ 1087 \\ 1088 \\ 1089 \\ 1090 \\ 1091 \\ 1092 \\ 1093 \\ 1094 \\ 1095 \\ 1096 \\ 1097 \\ 1098 \\ 1099 \\ 1100 \\ 1101 \\ 1102 \\ 1103 \\ 1104 \\ 1105 \\ 1106 \\ 1107 \\ 1108 \\ 1109 \\ 1110 \\ 1111 \\ 1112 \\ 1113 \\ 1114 \\ 1115 \\ 1116 \\ 1117 \\ 1118 \\ 1119 \\ 1120 \\ 1121 \\ 1122 \\ 1123 \\ 1124 \\ 1125 \\ 1126 \\ 1127 \\ 1128 \\ 1129 \\ 1130 \\ 1131 \\ 1132 \\ 1133$$

$$\begin{aligned} &+ \int_0^t \left[\sum_{x \in [d]} [\bar{H}(x, \mu_2(t), \Delta_x u_2(t, \cdot)) - \bar{H}(x, \mu_1(t), \Delta_x u_1(t, \cdot))] (\mu_1(t, x) - \mu_2(t, x)) \right] dt. \end{aligned}$$

In the first integral, we observe that under Assumption 2.1, we have that

$$\sum_{x \in [d]} \gamma_x^*(y, \cdot) = 0.$$

As a result, we can interchange the order of summation to obtain

$$\begin{aligned} &\sum_{x \in [d]} \sum_{y \in [d]} [\mu_1(t, y) \gamma_x^*(y, \Delta_y u_1(t, \cdot)) - \mu_2(t, y) \gamma_x^*(y, \Delta_y u_2(t, \cdot))] (u_1(t, x) - u_2(t, x)) \\ &= \sum_{y \in [d]} \sum_{x \in [d]} [\mu_1(t, y) \gamma_x^*(y, \Delta_y u_1(t, \cdot)) - \mu_2(t, y) \gamma_x^*(y, \Delta_y u_2(t, \cdot))] (u_1(t, x) - u_1(t, y) + u_2(t, y) - u_2(t, x)) \\ &= \sum_{y \in [d]} \sum_{x \in [d]} [\mu_1(t, y) \gamma_x^*(y, \Delta_y u_1(t, \cdot)) - \mu_2(t, y) \gamma_x^*(y, \Delta_y u_2(t, \cdot))] \Delta_y u(t, x) \\ &= \sum_{x \in [d]} \sum_{y \in [d]} [\mu_1(t, x) \gamma_y^*(x, \Delta_x u_1(t, \cdot)) - \mu_2(t, x) \gamma_y^*(x, \Delta_x u_2(t, \cdot))] \Delta_x u(t, y) \\ &= \sum_{x \in [d]} \Delta_x u \cdot [\mu_1(t, x) \gamma^*(x, \Delta_x u_1(t, \cdot)) - \mu_2(t, x) \gamma^*(x, \Delta_x u_2(t, \cdot))], \end{aligned}$$

switching the role of x and y in the fourth line for notational consistency below. With this, we see that

$$\begin{aligned} &\sum_{x \in [d]} (g_{\kappa_1}(x, \mu_1(T)) - g_{\kappa_2}(x, \mu_2(T))) [\mu_1(T, x) - \mu_2(T, x)] \\ &= \sum_{x \in [d]} (u_1(0, x) - u_2(0, x)) [\eta_1(x) - \eta_2(x)] \\ &+ \int_0^T \left[\sum_{x \in [d]} [\bar{H}(x, \mu_2(t), \Delta_x u_2(t, \cdot)) - \bar{H}(x, \mu_1(t), \Delta_x u_1(t, \cdot))] (\mu_1(t, x) - \mu_2(t, x)) \right] dt \\ &+ \int_0^T \left[\sum_{x \in [d]} \Delta_x u \cdot (\mu_1(t, x) \gamma^*(x, \Delta_x u_1(t, \cdot)) - \mu_2(t, x) \gamma^*(x, \Delta_x u_2(t, \cdot))) \right] dt. \end{aligned} \tag{E.5}$$

At this point, we note that the lefthand side of the above equality can be decomposed as

$$\begin{aligned} &\sum_{x \in [d]} (g_{\kappa_1}(x, \mu_1(T)) - g_{\kappa_2}(x, \mu_2(T))) [\mu_1(T, x) - \mu_2(T, x)] \\ &= \sum_{x \in [d]} (g_{\kappa_1}(x, \mu_1(T)) - g_{\kappa_1}(x, \mu_2(T)) + g_{\kappa_1}(x, \mu_2(T)) - g_{\kappa_2}(x, \mu_2(T))) [\mu_1(T, x) - \mu_2(T, x)] \\ &\geq \sum_{x \in [d]} (g_{\kappa_1}(x, \mu_2(T)) - g_{\kappa_2}(x, \mu_2(T))) [\mu_1(T, x) - \mu_2(T, x)], \end{aligned}$$

invoking the fact that g_{κ_1} is Lasry–Lions monotone; see Assumption 2.1. Now, we use Assumption 2.2 to bound

$$\begin{aligned} & \left| \sum_{x \in [d]} (g_{\kappa_1}(x, \mu_2(T)) - g_{\kappa_2}(x, \mu_2(T)))[\mu_1(T, x) - \mu_2(T, x)] \right| \\ & \leq \sum_{x \in [d]} |g_{\kappa_1}(x, \mu_2(T)) - g_{\kappa_2}(x, \mu_2(T))| |\mu_1(T, x) - \mu_2(T, x)| \\ & \leq C |\kappa_1 - \kappa_2| \|\mu_1 - \mu_2\|_\infty \end{aligned}$$

absorbing additional constants into C as necessary (e.g., C absorbs a factor of d in the final line). In summary,

$$\sum_{x \in [d]} (g_{\kappa_1}(x, \mu_1(T)) - g_{\kappa_2}(x, \mu_2(T)))[\mu_1(T, x) - \mu_2(T, x)] \geq -C(|\kappa_1 - \kappa_2|^2 + \|\mu_1 - \mu_2\|_\infty^2).$$

On the other hand, observe that

$$\begin{aligned} & \sum_{x \in [d]} [\bar{H}(x, \mu_2(t), \Delta_x u_2(t, \cdot)) - \bar{H}(x, \mu_1(t), \Delta_x u_1(t, \cdot))](\mu_1(t, x) - \mu_2(t, x)) \\ & = \sum_{x \in [d]} [H(x, \Delta_x u_2(t, \cdot)) - H(x, \Delta_x u_1(t, \cdot))](\mu_1(t, x) - \mu_2(t, x)) \\ & \quad - \sum_{x \in [d]} (F(x, \mu_1(t)) - F(x, \mu_2(t)))(\mu_1(t, x) - \mu_2(t, x)) \\ & \leq \sum_{x \in [d]} [H(x, \Delta_x u_2(t, \cdot)) - H(x, \Delta_x u_1(t, \cdot))](\mu_1(t, x) - \mu_2(t, x)), \end{aligned}$$

recalling that F also satisfies the Lasry–Lions monotonicity assumption from Assumption 2.1. Now, (Gomes et al., 2013, Proposition 1) implies that

$$\gamma^*(x, p) = D_p H(x, p). \quad (\text{E.6})$$

From this, we have that

$$\gamma^*(x, \Delta_x u_i(t, \cdot)) = D_p H(x, \Delta_x u_i(t, \cdot)), \quad i = 1, 2,$$

allowing us to write

$$\begin{aligned} & H(x, \Delta_x u_2(t, \cdot)) - H(x, \Delta_x u_1(t, \cdot)) + \Delta_x u \cdot \gamma^*(x, \Delta_x u_1(t, \cdot)) \\ & = H(x, \Delta_x u_2(t, \cdot)) - [H(x, \Delta_x u_1(t, \cdot)) + (\Delta_x u_2 - \Delta_x u_1) \cdot D_p H(x, \Delta_x u_1(t, \cdot))] \\ & \leq -C_{2,H} |\Delta_x u|^2 \end{aligned}$$

by Assumption (2.1). Namely, the Hessian $D_{pp}^2 H(x, p)$ exists and satisfies the bound $D_{pp}^2 H(x, p) \leq -C_{2,H}$ for some constant $C_{2,H} \geq 0$ under our strict concavity assumption. By the same reasoning, we observe that

$$\begin{aligned} & H(x, \Delta_x u_1(t, \cdot)) - H(x, \Delta_x u_2(t, \cdot)) - \Delta_x u \cdot \gamma^*(x, \Delta_x u_2(t, \cdot)) \\ & = H(x, \Delta_x u_1(t, \cdot)) - [H(x, \Delta_x u_2(t, \cdot)) + (\Delta_x u_1 - \Delta_x u_2) \cdot D_p H(x, \Delta_x u_2(t, \cdot))] \\ & \leq -C_{2,H} |\Delta_x u|^2. \end{aligned}$$

Thus, returning to (E.5), we have that

$$\begin{aligned} -C(|\kappa_1 - \kappa_2| \|\mu_1 - \mu_2\|_\infty) & \leq \sum_{x \in [d]} (u_1(0, x) - u_2(0, x))[\eta_1(x) - \eta_2(x)] \\ & \quad - C \int_0^T \sum_{x \in [d]} |\Delta_x u(s, \cdot)|^2 (\mu_1(s, x) + \mu_2(s, x)) ds \end{aligned}$$

Upon rearrangement, and an application of the Cauchy–Schwarz inequality to the first term on the righthand side of the above inequality, it follows that

$$\int_0^T \sum_{x \in [d]} |\Delta_x u(s, \cdot)|^2 (\mu_1(s, x) + \mu_2(s, x)) ds \leq C(\|u\|_\infty |\eta_1 - \eta_2| + |\kappa_1 - \kappa_2| \|\mu\|_\infty)$$

for some constant $C > 0$. Now, invoking Lemma E.3, the Cauchy–Schwarz inequality, and the fact that $\mu_2(s, x) \geq 0$ for all $s \in [0, T]$ and $x \in [d]$, we have that

$$\begin{aligned} \|\mu\|_\infty &\leq C|\eta_1 - \eta_2| + C \int_0^T \sqrt{\sum_{x \in [d]} |\Delta_x u(s, \cdot)|^2 \mu_1(s, x)} ds \\ &\leq C|\eta_1 - \eta_2| + C \sqrt{\int_0^T \sum_{x \in [d]} |\Delta_x u(s, \cdot)|^2 \mu_1(s, x) ds} \\ &\leq C(|\eta_1 - \eta_2| + \sqrt{\|u\|_\infty |\eta_1 - \eta_2| + |\kappa_1 - \kappa_2| \|\mu\|_\infty}) \\ &\leq C(|\eta_1 - \eta_2| + \|u\|_\infty^{1/2} |\eta_1 - \eta_2|^{1/2} + |\kappa_1 - \kappa_2|^{1/2} \|\mu\|_\infty^{1/2}), \end{aligned}$$

recalling that $\sqrt{a} + \sqrt{b} \geq \sqrt{a+b}$ for any $a, b \geq 0$. Now, recall that for any $a, b \geq 0$ and $\varepsilon > 0$, we also have that

$$ab \leq \varepsilon a^2 + \frac{1}{4\varepsilon} b^2.$$

Applying this inequality once with $\varepsilon = \frac{1}{2C}$, we see that

$$\|\mu\|_\infty \leq C(|\eta_1 - \eta_2| + |\kappa_1 - \kappa_2| + \|u\|_\infty^{1/2} |\eta_1 - \eta_2|^{1/2}) + \frac{1}{2} \|\mu\|_\infty$$

taking $C > 0$ larger if necessary. Applying the same inequality again with $\varepsilon = \frac{1}{4C^2}$ and rearranging, it follows that

$$\|\mu\|_\infty \leq C(|\eta_1 - \eta_2| + |\kappa_1 - \kappa_2|) + \frac{1}{2C} \|u\|_\infty. \quad (\text{E.7})$$

Plugging this into the result of Lemma E.2 and rearranging yields

$$\|u\|_\infty \leq C(|\eta_1 - \eta_2| + |\kappa_1 - \kappa_2|), \quad (\text{E.8})$$

and plugging (E.8) into (E.7) results in

$$\|\mu\|_\infty \leq C(|\eta_1 - \eta_2| + |\kappa_1 - \kappa_2|)$$

as claimed. \square

To conclude, we can present the proof of our main theorem, which follows almost immediately from the preceding results.

Proof of Theorem 4.1. Observe that we can write

$$\begin{aligned} |\Phi(t, \eta_1, \kappa_1) - \Phi(s, \eta_2, \kappa_2)| &= |\Phi(t, \eta_1, \kappa_1) - \Phi(s, \eta_1, \kappa_1) + \Phi(s, \eta_1, \kappa_1) - \Phi(s, \eta_2, \kappa_2)| \\ &\leq |\Phi(t, \eta_1, \kappa_1) - \Phi(s, \eta_1, \kappa_1)| + |\Phi(s, \eta_1, \kappa_1) - \Phi(s, \eta_2, \kappa_2)| \\ &\leq C(|t - s| + |\eta_1 - \eta_2| + |\kappa_1 - \kappa_2|), \end{aligned}$$

invoking Lemma E.1 to bound the first term and Lemma E.4 to bound the second term. \square

Remark E.1. Although [Lanthaler & Stuart \(2025\)](#) reference the approximation guarantee from [\(Yarotsky, 2017, Theorem 1\)](#) to show that their HJ-Net method evades the curse of parametric complexity, most existing guarantees on the generalization performance of ReLU neural networks require bounds on the weights of the neural network rather than the size of the network. The well-known result from [Yarotsky \(2017\)](#), however, only provides width and depth bounds on ReLU networks approximating a function with prescribed regularity. To this end, we pursue an alternative approach for obtaining approximation and generalization guarantees, based on the recent results of [Jiao et al. \(2023\)](#).

1242 E.2 PROOFS OF APPROXIMATION AND GENERALIZATION GUARANTEES
1243

1244 We conclude with proofs of Corollary 4.3 and Corollary 4.5, our approximation and generalization
1245 results respectively. Both follow almost directly from the corresponding results in Jiao et al. (2023),
1246 in Proposition 4.2 and Proposition 4.4 respectively, but we include the necessary rescaling arguments
1247 here for the sake of completeness.

1248
1249 *Proof of Corollary 4.3.* First, to extend from the setting of scalar regression, as is the case in Propo-
1250 sition 4.2, to vector-valued regression, we note that if a scalar Lipschitz function can be uniformly
1251 approximated up to an error $\varepsilon > 0$ by a network with weight bound K and width W , then an \mathbb{R}^d
1252 valued Lipschitz function Φ can be uniformly approximated by a network with weight bound K and
1253 width dW . Indeed, we can simply approximate each coordinate of Φ by a network of width W and
1254 stack the resulting networks to obtain the desired approximator, which will have width dW .

1255 Now, by Theorem 4.1, the flow map $\Phi : [0, T] \times \mathcal{P}([d]) \times \mathcal{K} \rightarrow \mathbb{R}^d$ belongs to $\mathcal{C}^{0,1}([0, T] \times \mathcal{P}([d]) \times$
1256 $\mathcal{K})$. From this, we can apply Proposition 4.2 directly upon scaling the domain $[0, T] \times \mathcal{P}([d]) \times \mathcal{K}$
1257 to lie entirely within the $(d+k+1)$ -dimensional unit cube.

1258 To carry out this scaling, we embed $\mathcal{P}([d]) \hookrightarrow [0, 1]^d$, scale \mathcal{K} to lie in the set $[0, 1]^k$, and scale the
1259 interval $[0, T]$ to lie in the interval $[0, 1]$. The natural embedding $\mathcal{P}([d]) \hookrightarrow [0, 1]^d$ is simply given
1260 by viewing

$$1261 \quad \mathcal{P}([d]) = \left\{ \eta \in \mathbb{R}^d : \sum_{i=1}^d \eta_i = 1, \quad \eta_i \geq 0 \text{ for all } i = 1, \dots, d \right\}.$$

1262 This rescaling may incur constants that depend on the diameter of \mathcal{K} , denoted by $\text{diam}(\mathcal{K})$, and the
1263 final time T . Importantly, it is always possible for finite $T > 0$ and compact $\mathcal{K} \subset \mathbb{R}^k$. The result
1264 then follows upon applying Proposition 4.2, replacing d with $d+k+1$ therein. As noted above,
1265 the universal constants $c, C > 0$ obtained in Proposition 4.2 must also be replaced by constants
1266 $c(\text{diam}(\mathcal{K}), T), C(\text{diam}(\mathcal{K}), T) > 0$ that depends on \mathcal{K} and T . \square

1267
1268 *Proof of Corollary 4.5.* This follows directly from Proposition 4.4 upon carrying out the same
1269 rescaling argument as in the previous proof, again replacing d with $d+k+1$ in the statement
1270 of the result. Again, we note that the universal constant $c > 0$ from Proposition 4.4 must be replaced
1271 by a constant $\tilde{C}(\text{diam}(\mathcal{K}), T) > 0$ that can depend on \mathcal{K} and T . \square

1272 F CONNECTION TO HAMILTONIAN FLOW
1273

1274 In this appendix, we expand upon the similarity between the MFG system and the characteristic
1275 ODEs that Lanthaler & Stuart (2025) utilize to obtain parameter-efficient operator learning for first-
1276 order HJB equations. Consider an arbitrary first-order HJB equation on a bounded domain $\Omega \subseteq \mathbb{R}^d$,
1277 with Hamiltonian $H : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$:

$$1278 \quad \begin{cases} \partial_t u + H(q, \nabla_q u) = 0 & (x, t) \in \Omega \times (0, T], \\ 1279 \quad u(x, 0) = u_0(x) & x \in \Omega, \end{cases} \quad (\text{F.1})$$

1280 Instead of attempting to learn the operator that maps the initial data $u_0 \in C^r(\Omega)$ to $u \in C^r(\Omega \times$
1281 $[0, T])$, for instance, Lanthaler & Stuart (2025) construct a scheme they label HJ-Net with the aim
1282 of learning the Hamiltonian flow (i.e., the characteristics of the HJB equation), which satisfies the
1283 ODE system

$$1284 \quad \begin{cases} \dot{q} = \nabla_p H(q, p) & q(0) = q_0, \\ 1285 \quad \dot{p} = -\nabla_q H(q, p) & p(0) = p_0, \\ 1286 \quad \dot{z} = \mathcal{L}(q, p) & z(0) = z_0. \end{cases} \quad (\text{F.2})$$

1287 Then, the flow map $\Psi_t : \Omega \times \mathbb{R}^d \times \mathbb{R} \rightarrow \Omega \times \mathbb{R}^d \times \mathbb{R}$, given by $(q_0, p_0, z_0) \mapsto (q(t), p(t), z(t))$ is such
1288 that $z(t) = u(q(t), t)$ and $p(t) = \nabla_q u(q(t), t)$ along the characteristics $(q(t), t)$. By learning the
1289 flow map Ψ_t , instead of the operator $u_0 \mapsto u$, and reconstructing the solution u from the characteris-
1290 tics, (Lanthaler & Stuart, 2025, Theorem 5.1) shows that the HJ-Net approach can beat the so-called

1296 curse of parametric complexity, enabling parameter-efficient operator learning for HJB equations.
 1297 Observe, nonetheless, that there is a subtle but important difference between the Hamiltonian flow
 1298 and the MFG system: the former is independent of the initial condition u_0 of Equation (F.1), while
 1299 the latter *depends* explicitly on the terminal condition g_κ . In the setting of Lanthaler & Stuart
 1300 (2025), this enables parameter-efficient operator learning over initial conditions belonging to an
 1301 infinite-dimensional Banach space, as the Hamiltonian flow map remains approximable by neural
 1302 networks of bounded width and depth regardless of the space to which the initial conditions be-
 1303 long. Conversely, for finite-state MFGs, we must limit ourselves to parametrized terminal costs due
 1304 to the dependence of the MFG system on the terminal cost. Indeed, the technical results in both
 1305 our work and in Lanthaler & Stuart (2025) rely upon reducing to a flow map between subsets of
 1306 finite-dimensional Euclidean spaces, which is *not* the case if we allow terminal costs to belong to an
 1307 infinite-dimensional Banach space.

G ADDITIONAL NUMERICAL EXPERIMENTS

1311 We provide a comprehensive suite of additional numerical experiments for both the cybersecurity
 1312 model and the quadratic model. As alluded to earlier (see also Appendix A), Fig. 7 demonstrates the
 1313 improvement in accuracy and reduced variance over trials that comes with a more powerful neural
 1314 network architecture. In particular, we replicate the $d = 10$ results using a ResNet architecture, with
 1315 layer normalization, skip connections between all layers, a dropout rate of $p = 0.05$. Moreover, the
 1316 ResNet’s first and layer layer have width $W_1 = 128$ while the middle two hidden layers have width
 1317 $W_2 = 64$. We find that this “bottleneck” helps promote training stability, and Fig. 7 demonstrates the
 1318 effect that this architecture choice has on accuracy and variance (the latter is illustrated by smaller
 1319 standard deviations about the mean of the five trials).

1320 Next, Figure 8 and Figure 10 provide additional evidence for the accuracy of our method on the
 1321 cybersecurity model. Figure 9 displays the errors obtained when learning the flow map for the
 1322 cybersecurity model, in the same vein as Figure 5 above. Similarly, Figures 12–15 illustrate a variety
 1323 of random tests for the quadratic model in dimensions $d = 3, 4, 5$, and 10. In Table 3, we present
 1324 statistics for the models used to produce Figures 12–15 (as well as Figure 4), including average test
 1325 losses on the held-out test set at the end of training and average training times. Figure 16 is the
 1326 analogue of Figure 3 for the quadratic model in various dimensions, illustrating that by solving the
 1327 KFP equation with the learned value function, we can accurately recover the flow of measures for
 1328 the quadratic model as well.

1329 Finally, we include a handful of figures that learn an operator on a *fixed* time discretization. Specifi-
 1330 cally, suppose that we discretize the time interval $[0, T]$ with M time, yielding times $t_j = jT/M$ for
 1331 $j = 0, \dots, M$. Given a pair $(\eta_i, \kappa_i) \in \mathcal{P}([d]) \times \mathcal{K}$, one may instead attempt to learn the augmented
 1332 flow map subordinate to the discretization, given by $\tilde{\Phi} : \mathcal{P}([d]) \times \mathcal{K} \rightarrow (\mathbb{R}^d)^{M+1}$

$$\tilde{\Phi}(\eta_i, \kappa_i) \mapsto (u^{\eta_i, \kappa_i}(t_j))_{j=0}^M.$$

1333 In practice, this map can be learned using a slight modification of Algo. 1, where the sampling
 1334 step simply takes in a pair $\tilde{x}_i := (\eta_i, \kappa_i) \in \mathcal{P}([d]) \times \mathcal{K}$ and outputs the entire trajectory that
 1335 Picard iteration produces as a label, given by $\tilde{y}_i := \Gamma_{g_{\kappa_i}}(\eta_i)$. Then, the pairs $\{(\tilde{x}_i, \tilde{y}_i)\}_{i=1}^n$ become
 1336 our augmented training data, and we can proceed from Line 7 of Algo. 1 verbatim. Note that the
 1337 augmented flow map $\tilde{\Phi}$ is less versatile than the flow map Φ from Section 2.2, in the sense that
 1338 Φ can be evaluated at *any* time $t \in [0, T]$, while $\tilde{\Phi}$ can only be evaluated along the given time
 1339 discretization. However, given M sufficiently large, learning the map $\tilde{\Phi}$ to high precision still yields
 1340 a useful estimate of the MFG equilibrium, so this modified method may still be of interest.

1341 In Fig. 11, we present an example of the learned map value functions for the cybersecurity model, us-
 1342 ing the augmented procedure for a fixed time discretization with $M = 50$ points. In Figures 17–21,
 1343 we provide similar experiments for the quadratic model in dimensions $d = 3, 4, 5, 10, 20$ respec-
 1344 tively. Interestingly, the quality of the approximation and optimization stability does not appear to
 1345 degrade as quickly with dimension, and using a discretization with $M = 10$ points, we are able to
 1346 learn augmented flow maps to very high precision up to dimension $d = 20$.

1347
 1348
 1349

1350

1351 Table 3: Statistics for high-dimensional quadratic model experiments. Test losses and training times
 1352 are averaged over 5 trials, and all networks had depth $L = 4$. The test losses are evaluated using
 1353 smooth L^1 loss, summed over the test set.

1354

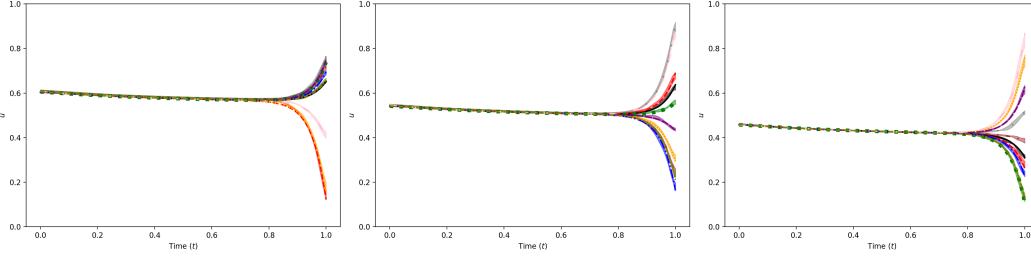
1355 Dimension d	1356 Average Test Loss	1357 Average Training Time (s)	1358 Training Samples	1359 Epochs	1360 Width
1356 3	1357 0.000831	1358 233.42	1359 4000	1360 2000	1361 64
1356 4	1357 0.00200	1358 219.68	1359 4000	1360 2000	1361 64
1356 5	1357 0.00527	1358 220.24	1359 4000	1360 2000	1361 64
1356 10	1357 0.0208	1358 374.10	1359 10000	1360 500	1361 128

1359

1360

1361

1362



1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

Figure 7: Learned value functions in the same setting as Fig. 20, using a ResNet architecture with dropout, layer normalization, and an hidden layer width of 64.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

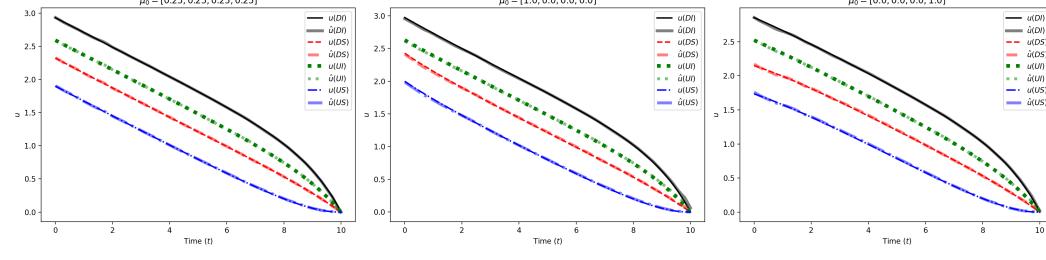


Figure 8: Learned value functions, denoted by \hat{u} , for $\kappa = 0$ and initial distribution $\mu_1 = [0.25, 0.25, 0.25, 0.25]$, $\mu_2 = [1, 0, 0, 0]$, and $\mu_3 = [0, 0, 0, 1]$, respectively. In particular, our method can still perform accurately in the event that the parametrization of the underlying MFG is fixed and only the initial distribution varies.

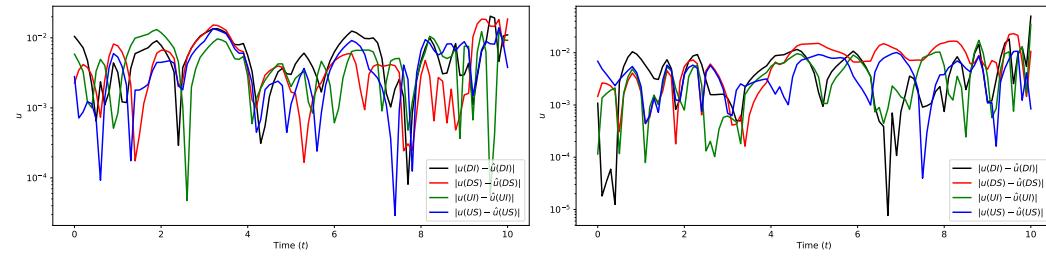
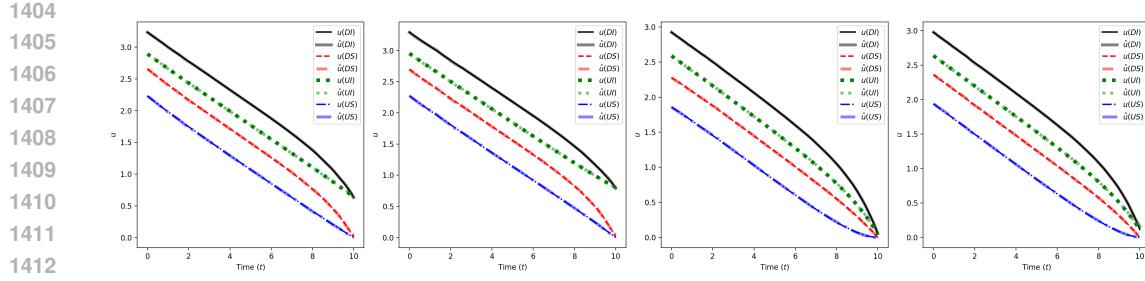
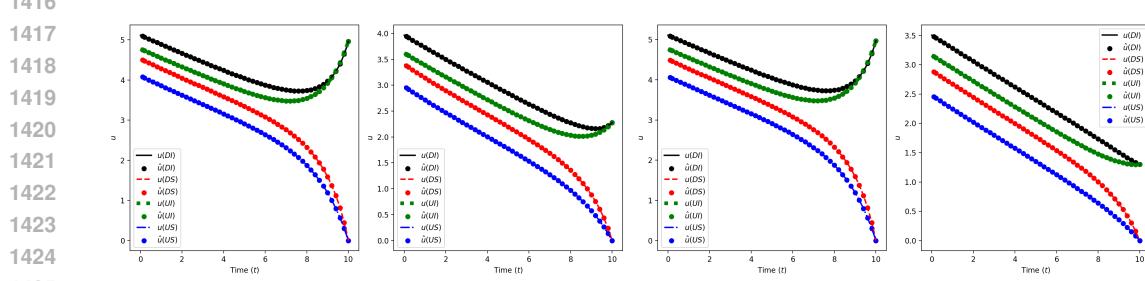
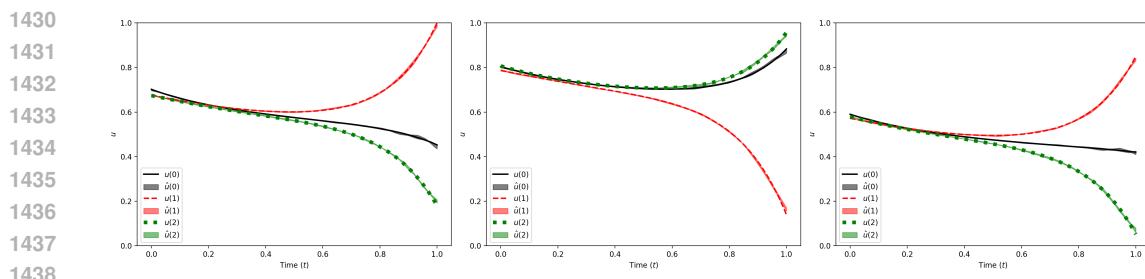
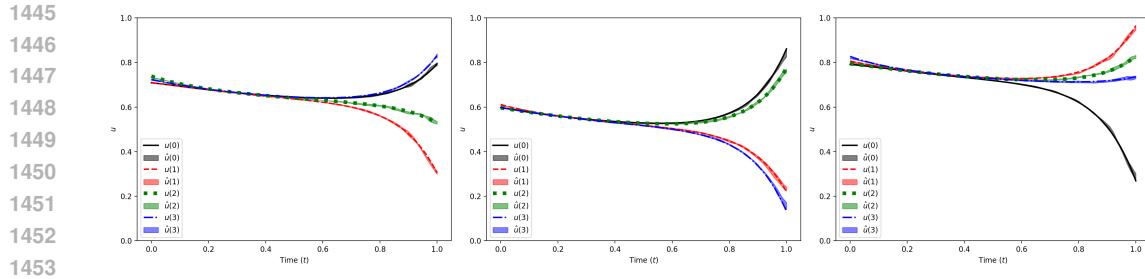
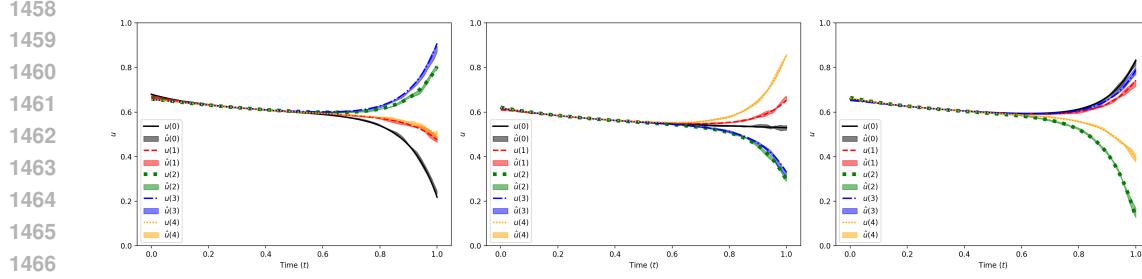


Figure 9: Error, measured as absolute difference across all times between true and learned value function, on two randomly generated instances of the cybersecurity model.





1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Figure 14: Learned value functions, denoted by \hat{u} , approximating the flow map Φ for a $d = 5$ dimensional quadratic model, for three random initial distributions and parameters $\kappa \in [0, 1]^5$ sampled uniformly at random. Averages are taken across 5 trials, and shaded regions on approximate curves present error bars of one standard deviation above/below the mean across trials.

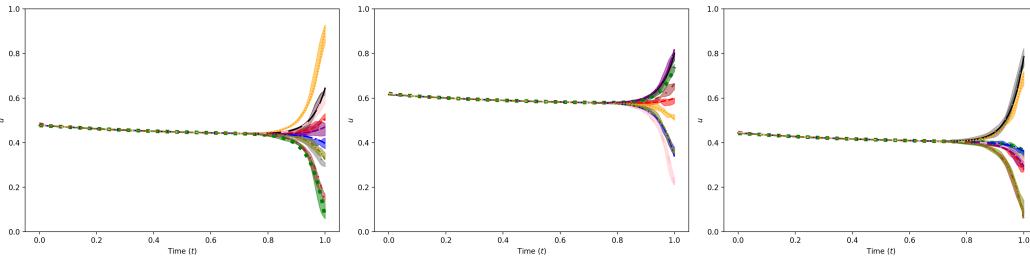


Figure 15: Learned value functions, denoted by \hat{u} , approximating the flow map Φ for a $d = 10$ dimensional quadratic model, for three random initial distributions and parameters $\kappa \in [0, 1]^{10}$ sampled uniformly at random. Averages are taken across 5 trials, and shaded regions on approximate curves present error bars of one standard deviation above/below the mean across trials.

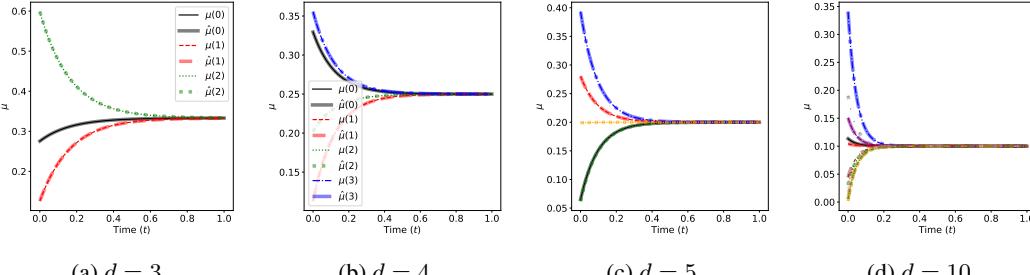
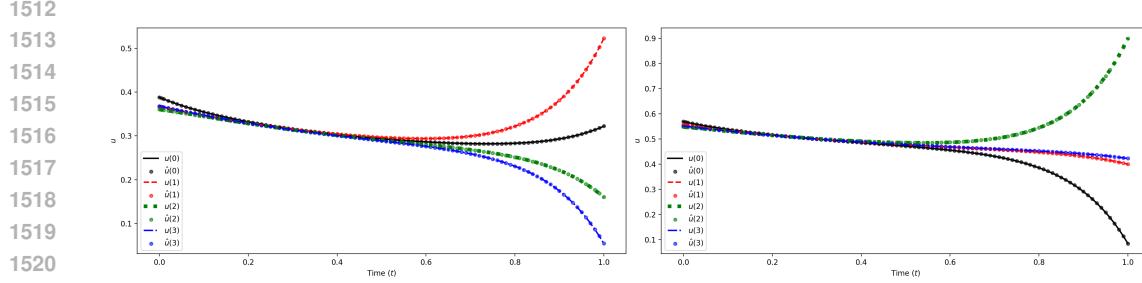


Figure 16: Comparison of true flows of measures μ and learned flows of measures $\hat{\mu}$ for randomly sampled pairs (η, κ) in dimensions $d = 3, 4, 5, 10$ respectively.

Figure 17: Learned value function for two randomly sampled pairs (η, κ) , along a time discretization with $M = 100$ points in dimensions $d = 3$. Points indicate the approximate solution and curves indicate the true solution obtained via Picard iteration.



1522
1523
1524

Figure 18: Learned value function for two randomly sampled pairs (η, κ) , along a time discretization with $M = 100$ points in dimensions $d = 4$. Points indicate the approximate solution and curves indicate the true solution obtained via Picard iteration.

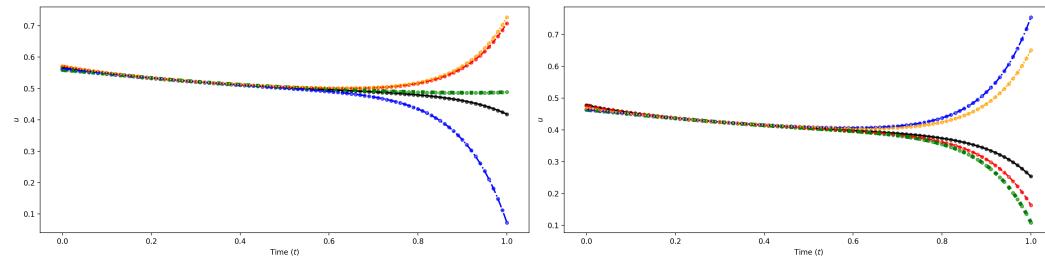


Figure 19: Learned value function for two randomly sampled pairs (η, κ) , along a time discretization with $M = 100$ points in dimensions $d = 5$. Points indicate the approximate solution and curves indicate the true solution obtained via Picard iteration.

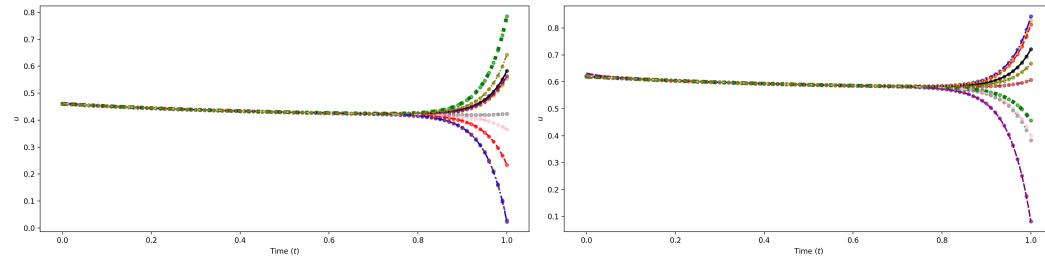


Figure 20: Learned value function for two randomly sampled pairs (η, κ) , along a time discretization with $M = 100$ points in dimensions $d = 10$. Points indicate the approximate solution and curves indicate the true solution obtained via Picard iteration.

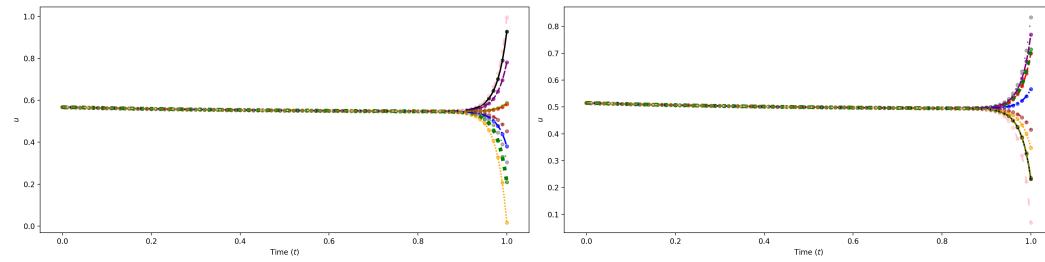


Figure 21: A slice of 10 components of the learned value functions, for two randomly sampled pairs (η, κ) , along a time discretization with $M = 100$ points in dimensions $d = 20$. Points indicate the approximate solution and curves indicate the true solution obtained via Picard iteration.