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ABSTRACT

Finite-state mean-field games (MFGs) arise as limits of large interacting parti-
cle systems and are governed by an MFG system, a coupled forward-backward
differential equation consisting of a forward Kolmogorov-Fokker—Planck (KFP)
equation describing the population distribution and a backward Hamilton—Jacobi—
Bellman (HJB) equation defining the value function. Solving MFG systems effi-
ciently is challenging, with the structure of each system depending on an initial
distribution of players and the terminal cost of the game. We propose an oper-
ator learning framework that solves parametric families of MFGs, enabling gen-
eralization without retraining for new initial distributions and terminal costs. We
provide theoretical guarantees on the approximation error, parametric complex-
ity, and generalization performance of our method, based on a novel regularity
result for an appropriately defined flow map corresponding to an MFG system.
We then demonstrate empirically that our framework achieves accurate approxi-
mation for two representative instances of MFGs: a cybersecurity example and a
high-dimensional quadratic model commonly used as a benchmark for numerical
methods for MFGs.

1 INTRODUCTION

Mean-field games (MFGs), introduced by Huang et al. (2006) and Lasry & Lions (2007), model the
behavior of stochastic games with many identical players by considering the limiting situation with
an infinite population. While a large portion of the corresponding literature considers continuous
state spaces, MFGs with finite state spaces find applications in economics, epidemic prevention, cy-
bersecurity, resource allocation, and multi-agent reinforcement learning, and beyond (Gomes et al.,
2014; Kolokoltsov & Bensoussan, 2016; Aurell et al., 2022; Mao et al., 2022; Yardim & He, 2025).
The theory of MFGs is well-established, with results concerning existence, uniqueness, and con-
nections with finite-player games in Gomes et al. (2013); Bayraktar & Cohen (2018); Cecchin &
Pelino (2019); see the books Carmona & Delarue (2018a;b) for more background. Nonetheless,
numerically solving finite-state MFGs remains challenging, especially over large state spaces.

Machine learning-based methods have proven promising for overcoming the numerical challenges
associated high-dimensional MFGs, in both continuous and finite state spaces; see Fouque & Zhang
(2020); Carmona & Lauriere (2021; 2022); Min & Hu (2021); Han et al. (2024) for deep learning
methods and Guo et al. (2019); Subramanian & Mahajan (2019); Elie et al. (2020); Cui & Koeppl
(2021) for reinforcement learning methods. However, these methods treat each MFG individually,
requiring the user to rerun the method anew for each MFG instance. Several recent works, such
as Cohen et al. (2024), propose more general methods to learn MFGs equilibria as a function of
the initial distribution by exploiting the connection with the master equation, a nonlinear PDE char-
acterizing finite-state MFGs (Cardaliaguet et al., 2019). However, these methods rely on problem-
specific loss functions and cannot be extended to learn MFG equilibria as a function of the model’s
parameters such as its cost functions.

In this work, we frame MFG equilibria as outputs of an operator, called the flow map, which maps
initial distributions and cost functions to the corresponding Nash equilibrium. We then train a neural
network (NN) to learn this operator.

Main Contributions. Our main contributions are as follows:
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* Algorithm: We combine Picard iteration and operator learning to approximate the flow
map operator for parametrized families of finite-state MFGs (see Fig. 1).

* Parametric complexity: We prove that the flow map can be approximated to accuracy
O(K~1/(@+k+2)) ysing an NN with width W = O(K ((d+k)+3)/(2(d+k)+4)) and depth
L = O(log(d + k + 1)), where d is the number of states, K is a bound on the NN weights,
and k is the dimension of the set of parameters specifying the family of MFGs.

* Generalization error: We prove that for such W and L, given n samples produced via
Picard iteration, our method’s generalization error is bounded by O(n~1/(4+k+4) 1og(n)).

* Numerical experiments: We demonstrate the accuracy and scalability of our method on
two standard finite-state MFG benchmarks.
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Figure 1: Given (1) sample initial distributions 7 and cost parameters x, we bypass the need to
compute the optimal controls and flow of measures (Nash equilibrium) of an MFG by (2) solving
the MFG system via Picard iteration. We then use the resulting trajectories to (3) approximate the
solution operator for the family using a neural network, trained by minimizing an empirical loss over
the samples from (1). In practice, the last step uses stochastic gradient descent (see Algo. 1).

Operator Learning. Independent from the literature on MFGs is that of operator learning, an
umbrella term that typically describes machine learning methods for approximating maps between
function spaces. One natural application of such methods is to partial differential equations (PDEs),
and the general framework has been applied with impressive success to fluid dynamics in Li et al.
(2021); Kovachki et al. (2023), astrophysics in Mao et al. (2023), and large-scale weather forecasting
in Kurth et al. (2023); Lam et al. (2023). In most applications, one attempts to learn the operator
that maps the initial data of a PDE, belonging to some Banach space, to its solution, belonging
to a potentially distinct Banach space; see Kovachki et al. (2024); Boullé & Townsend (2024), for
overviews of the field of operator learning from a mathematical perspective. The development of
novel architectures for operator learning, as in Li et al. (2021) and Lu et al. (2021); Wang et al.
(2021) has allowed for its recent empirical success.

However, instead of leveraging architectural advances in the field, our insight is inspired by the
work of Lanthaler & Stuart (2025). The authors introduce the curse of parametric complexity for
operator learning: given any compact subset K of an infinite-dimensional Banach space, there ex-
ists an operator from K into another Banach space that can only be approximated with a functional
of neural network type (i.e., the composition of a linear operator to a Euclidean space and a neu-
ral network) whose width and depth are exponential in the approximation error. Lanthaler & Stuart
(2025) circumvent this issue for first-order Hamilton—Jacobi—-Bellman (HJB) equations with an ini-
tial condition, learning the operator that maps initial conditions to solutions. Associated with each
HIJB equation is a system of ODEs, also referred to as the characteristics of the PDE. By learning
the flow map for the characteristics and then reconstructing the solution by interpolation, (Lanthaler
& Stuart, 2025, Theorem 5.1) beats the so-called curse of parametric complexity, enabling opera-
tor learning with neural networks of bounded width and depth using a method they label HJ-Nets.
Given the similarity between the forward-backward ODE system for MFGs and the characteristics
of first-order HIB equations, we take this as inspiration for our approach to learning MFG equilibria;
see Appendix F for a more in-depth comparison.

Related Work. We clarify the connection between our contributions and several closely related
works on MFGs. Cohen et al. (2024) proposes and analyzes two methods to solve the master equa-
tion for finite-state MFGs, handling varying initial distributions. However, their methods do not
generalize to the setting of MFGs with varying cost functions as we consider. Chen et al. (2023);
Huang & Lai (2025) proposes operator learning methods for continuous space and time MFGs by
learning the solution as a function of the initial distribution. Although philosophically similar to
our operator learning approach, their methods do not apply to finite-state space MFGs, and neither
method provides a solution for parametrized families of MFGs with varying cost functions. Fi-
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nally, reinforcement learning methods for population-dependent policies tackle discrete time MFGs
(see Perrin et al. (2022); Li et al. (2023); Zhang et al. (2025); Wu et al. (2025) for recent work in
this domain), while we focus on continuous time models. To our knowledge, even in discrete time,
no method has been proposed to solve parameterized families of MFGs at once.

Organization. In Section 2, we describe finite-state MFGs and the forward-backward ODE system
that characterizes MFG equilibria, including the assumptions that we place on parametrized families
of MFGs. Next, we describe the flow map, mapping parameters to equilibria. In Section 3, we de-
scribe our operator learning method in detail. In Section 4, we present the associated approximation,
parametric complexity, and generalization guarantees, with technical proofs in the appendix. Finally,
in Section 5, we provide numerical experiments for two finite-state MFGs often used as benchmarks
for numerical methods: a simple model of cybersecurity and a high-dimensional quadratic model.

2 BACKGROUND

We first provide provide a comprehensive overview of finite-state MFGs for the unfamiliar reader in
Section 2.1, referring to Appendix B for more details. Then, in Section 2.2, we describe the object
that we seek to approximate via operator learning: the flow map for a parametrized family of MFGs.

2.1 FINITE-STATE MFGS

Controls and state dynamics. In a finite-state MFG, a representative player chooses Markovian
controls taking values in a compact set of rates, A C R, := [0, 00). Specifically, the player’s control
« is a time-dependent d x d matrix with values in A, with rows (a, (¢, 2)),¢[q and individual entries
o (t, z) determining the rate of transition between state x to state y at time ¢. When starting with
initial distribution 7 and using control «, the player’s state, denoted by X, € [d] at time ¢, obeys
the dynamics of a continuous-time Markov chain with X"® ~ 7 and:

Pr(X"5 =y | X" =2) = ay(t,x)h +o(h), h—0". (2.1)

Cost function. The representative player aims to minimize a cost functional over the time interval
[0,T]. The cost depends not only on the player’s chosen control and state at time ¢ € [0, 7], but
also on the population distribution p(t) € P([d]), where P([d]) is the set of probability measures on
[d] := {1,...,d}, identifiable with the probability simplex in R¢. We denote by g the terminal cost
and f, F' two running costs depending on the player’s chosen control and the population distribution,
respectively. If the population distribution’s flow p = (u(s))sejo,7) is given, the representative
player aims to minimize the total expected cost over controls o = (v, (8, 7)) se(0,7],2€[d],yeld] :

Ip(a, ) =E

T
| (e ats. o) + PG o)) s + " T 22

Notice that since 1 is a deterministic flow of measures and 1(0) = 7 is fixed, the control may depend
implicitly on the population distribution through time. When f is given, this is a standard stochas-
tic optimal control problem. However, 1 should be determined endogenously as the population
evolution resulting from the players’ optimal behavior.

MFG equilibrium. This leads us naturally to the idea of an MFG equilibrium, a form of Nash equi-
librium in which the population distribution is the same as the representative player’s distribution.

Definition 2.1. An MFG equilibrium for an initial distribution ) € P([d]) is a pair (&, 1) such
that: (1) @ minimizes the cost functional J, (-, i) and (2) for every t € [0, T}, fi(t) = Law(X;"").

Observe that the MFG equilibrium depends on the initial distribution 7 € P([d]). This presents
one of the primary difficulties that we aim to address: can one efficiently compute MFG equilibria
simultaneously for arbitrary initial distributions? Before tackling this question, we first explain how
one can solve an MFG for a fixed initial distribution.

Forward-backward ODE system. The two points in Definition 2.1 can be translated into two
equations: one for the value function wu(t,z) of the representative player (i.e., the optimal cost
attainable at time ¢ in state ), and one for the evolution of the population distribution. In finite-
state, continuous-time MFGs, both take the form of ordinary differential equations (ODEs). Then,
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MFG equilibria can be characterized as solutions of a forward—backward system of coupled ODEzs,
each in dimension d. More precisely, (&, 7) is an MFG equilibrium if and only if @,(¢,z) =
vi(y, Ayu(t,-)) = argmin,{f(z,a) + a - Ayu(t,-)} where A, f == (f(y) — f(2))yelq € R?
plays the role of a discrete gradient and (u, 1) solve the MFG system:

Ao(t,x) + H(z, p(t), Agu(t, ) =0, (t,z) € [0,T] x [d]  (HJB)
%u(t’ x) = Eye[d] /-L(ta y)ﬁ (yv Ayu(t’ ))7 (tv l‘) € [07 T] X [d] (KFP) (23)
/,L(O,.I) = 77(90)7 U(Ta J}) = g(x, M(T))’ S [d}v

with H being the extended Hamiltonian of the representative player’s control problem, defined in
terms of the Hamiltonian H as:

H(z,p) :=min, {f(x, a)+ >,z aypy}, H(z,n,p) == H(z,p) + F(z,n). (24

We will sometimes write u” and p" to stress the dependence on the initial distribution 7. We refer
to the first equation as Hamilton-Jacobi-Bellman (HJB) equation and to the second equation as
the Kolmogorov-Fokker-Planck (KFP) equation.

The above MFG system admits a unique solution under standard assumptions; see Appendix B
and Bayraktar & Cohen (2018); Cecchin & Pelino (2019) for more details. For simplicity, we focus
on the following sufficient condition:

Assumption 2.1. The minimizer v*(x, p) of the Hamiltonian H is unique. Moreover, H is strictly
concave in p and twice continuously differentiable with Lipschitz second derivatives. Finally, the
costs I and g are continuously differentiable with Lipschitz derivatives, and both are Lasry-Lions
monotone in the sense that for both ¢ = F, g,

Pvera(@(@.n) — oz, ) (e —7z) =20, n,i € P([d]). (2.5)

We note that the first part of this assumption holds when f is strictly convex in a. Additionally,
Lasry-Lions monotonicity can be interpreted as the player’s dislike for congestion (e.g., 7,; close to
one). Under the assumptions outlined above, the forward-backward system in (2.3) attains a unique
solution (u", u"), the MFG equilibrium. The argument proving existence follows from a fixed-point
argument via Schauder’s fixed-point theorem, while uniqueness results from Assumption 2.1. For
more details, see (Carmona & Delarue, 2018a, Section 7.2.2), for instance.

2.2 FLOW MAPS AND THE MASTER EQUATION

We now turn to the question of solving the MFG for any initial distribution 7. Although solving the
MFG system (2.3) via Picard iteration for a given y € P([d]) is generally tractable, we aim to solve
the system for all such 7, and hence cannot rely solely on the MFG system.

Master field. We begin by considering the value function u"7, which solves the HIB equation in the
MFG system (2.3) with initial distribution 1. The value function depends implicitly on the mean
field, and we make this dependence explicit by introducing the master field U, defined such that
U(t,z,u(t)) = u(t) for all (¢,z,n) € [0,T] x [d] x P([d]). This object plays a central role
in theory of MFGs and establishing a rigorous connection to finite-player games; see Bayraktar &
Cohen (2018); Cecchin & Pelino (2019) and Appendix C for more details. The master field U is
also very relevant for applications: if the master field is known, then it can be evaluated along any
flow of measures ((t). Additionally, U (¢, z, i) is the optimal cost that a representative player can
obtain if starting in state x at time ¢, with the of the population starting in distribution x and playing
according to the equilibrium control.

Methods, such as Cohen et al. (2024), that learn U by exploiting its connection with a nonlinear PDE
called the master equation suffer from two limitations: (1) the computation of the loss function is
complex and costly, and (2) they cannot handle situations where the terminal cost varies, as the loss
function is defined in terms of a fixed terminal cost. For this reason, we develop a new approach,
relying on the concept of flow map.

Flow map. Instead of focusing on the aforementioned master field, we will consider a function
which maps the initial distribution and the terminal cost to the value function. In other words, we
would like to learn the operator (since g is a function)

@ (t,m,g) = u™ (), (2.6)
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where u"+9 is the value function for the MFG system (2.3) with initial distribution € P([d]) and
terminal cost g. We recall that the control can be recovered from the value function using the relation
ay(t,x) = vi(y, Ayu™9(t,-)). In turn, obtaining ® concretely gives access to the MFG equilibrium
for any initial condition 1) and terminal cost g. In principle, the operator could be extended to include
running costs and dynamics. We comment that, in line with the operator learning approach for HIB
equations proposed in Lanthaler & Stuart (2025), the MFG system in Equation (2.3) can be viewed
as the characteristics of the master field. In the same sense, our method is an operator learning
method because we learn the characteristics of the master field to obtain its solution operator.

Terminal cost parameterization. When endowed with an appropriate norm, the set of all Lipschitz
functions on the probability simplex is an infinite-dimensional Banach space. However, to obtain
precise approximation and generalization guarantees, we restrict our attention to a parameterized
class of terminal costs in this paper. Given a parameter x € R”, we denote by g,. the corresponding
terminal cost function. Then, the flow map we focus on in the sequel is defined as follows.

Definition 2.2. Given a parametrized family of terminal conditions, the flow map ® : [0,T] x
P([d]) x K — R is defined by ®(t,n, k) := u""(t), where u" is the value function for the MFG
system (2.3) with initial distribution ) € P([d]) and terminal cost g,;.

We make two key remarks. First, the initial distribution 7 and the parameter x may be high-
dimensional, which justifies using neural networks to approximate ®. Second, contrary to the
aforementioned master field U, the flow map & does not satisfy a PDE and hence it will require
a novel training algorithm, based on the MFG equilibrium characterization.

We conclude with a regularity condition that allows the rigorous study of the approximation of ® by
neural networks in the next section. This assumption holds in the test cases consider below in our
numerical experiments (see Section 5).

Assumption 2.2. There exists a compact set of parameters K C R¥ such that for all x € K, the
g [d] x P([d]) — R satisfies Assumption 2.1. Moreover, for any k, k' € K, there exists a constant
C > 0 such that |g.(z, ) — gw (z, 1)| < Clk — K|, uniformly in (z, ) € [d] x P([d]).

3 ALGORITHM TO LEARN FLOW MAPS FOR MFGS

In this section, we outline our algorithmic approach to learning MFG equilibria, motivated by the
HIJ-Net algorithm of Lanthaler & Stuart (2025). Recall that we aim to learn an approximation of the
flow map ® : [0, 7] x P([d]) x K — R that maps a time, an initial condition, and a parameter x € K
(corresponding to a terminal condition g,) to the value function w™"(¢). As in (Lanthaler & Stuart,
2025, Section 4), learning the flow map requires sample trajectories. We approximate ¢ by a neural
network which is trained using samples consisting of (¢, 7, <) and the associated u™"(t).

Sampling method. We generate i.i.d. samples (7, k) ~ p, where p is a joint distribution on
P([d]) x K. Then, we compute u""*. Since this value function is coupled with the flow of measures
w" that solves the MFG system (2.3), we solve this system by Picard iteration: given an initial
guess, we alternatively solve the forward KFP equation and the backward HJB equation to update
1 and u respectively. We thus obtain an (approximate) solution of (2.3). In our implementation, we
use a temporal finite-difference scheme with a mesh of M steps, yielding an approximate solution
(@9, 1) i=o,....m. See Appendix D for additional details. We denote the Picard iteration map for
an MFG with terminal condition g by Ty : P([d]) — (RY)M+L. Intwitively, 'y : n — u™9. In
practice, I’y (1) is the vector of values @"¢ ~ u"9(jT/M,-) € R%, j =0,..., M.

Architecture. We approximate ® by a neural network. Since our goal in the next section is to obtain
theoretical guarantees, we focus here on a relatively simple architecture, but more complex archi-
tectures are explored in our numerical experiments. We limit ourselves to fully-connected ReLU
neural networks ¢ : R¥1 — R¥2 of depth L. Following the convention in Jiao et al. (2023), from
which we derive our generalization guarantee, such networks are recursively defined by ¢g(z) = x,
djr1(z) = 0(Aj¢j(x) +b;) forj =1,...,L — 1, and ¢(z) := Ar¢r(z). Above, the weights
satisfy A; € RNi+1XNi for j = 0,..., Land b; € RNi+1 forj = 0,..., L — 1, where Ny = k; and
Np4+1 = ko. By the width of a neural network, we refer to W := max{ Ny, ..., Ny}, the maximum
number of neurons in a hidden layer. For brevity, we denote such a network by ¢(z; A, b), where
A= (1407 cee 7AL—1> and b = (bo, ey bL—l)-
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Training method. We learn the flow map by training such a neural network on the samples gen-
erated by Picard iteration. To alleviate the notation, we denote = (jT/M,n, k) and y = 11;"”,
where j € [M] and we recall that 47" is the discrete time approximation of the value function u".

Given samples {x;, y; }_; from the procedure outlined above, we minimize the empirical loss
where £ : R x R? — R is a convex loss and the minimum is taken over A = {A;}}_; and

b = {b; }f;ol simultaneously. In practice, this is accomplished using batch stochastic gradi-
ent descent (SGD) with a standard optimizer such as AdamW (Loshchilov & Hutter, 2019). If
(A*,b*) := argmin 4 , £,,(A, b; {x;,yi};—,) (noting that these parameters depend on the sampled
trajectories), we define our approximate flow map U, (¢, 7, k) := ¢(t,n, k; A*, b*). This procedure
is summarized in Algo. 1 below (written using SGD as the optimizer for simplicity).

Algorithm 1 Sampling and Learning Flow Map for a Family of MFGs

Input: Number of time steps M € N, parameter set L C R¥, number of samples n € N, Picard
solver I, number of training steps Myain, mini-batch size nmini < n, learning rate {y; }jen
Sample {(7;, ;) }_, uniformly and independently in P([d]) x K
fori=1,...ndo > Sample generation via Picard iteration
(e Fgmi (1)
Draw j ~ Unif([M])
T < (]T/M7 Nis ’%’i)
Yi < Uy
Initialize neural network parameters (A(®), b(°))
for j =1,..., Mrain do > Train neural network approximator
Sample mini-batch {(x;, y;) }= from {(x;, yi) } 7y
(AD BDY «— (AD) b)) — 4,V g Ly (A, by {, i i) > Gradient step
: return \Tln(t, N, k) = P(t, 1, K; Almarain) b(mtm‘“))

R R AR

—_—
—_ O

4 THEORETICAL GUARANTEES

We provide the following two theoretical guarantees for our proposed approach:

(1) Approximation error (Corollary 4.3): There exists a ReLU neural network ap-
proximating the true flow map @ with error O(K~Y/(@+k+2)) " width W =
O(K 2(d+k)+3)/(2(d+k)+4)) “and depth L = O(log(d + k + 1)), all quantified in terms
of abound K > 1 on the weights of the network, the number of states d of the underlying
family of MFGs, and the dimension k of the set that parametrizes the family of MFGs.

(2) Generalization error (Corollary 4.5): Learning the flow map via empirical risk mini-
mization with n samples yields a neural network approximation with expected excess risk
O(n~/(d+k+4) 1og(n)), up to any error from the optimization process.

These results rely on a preliminary regularity result about the regularity of the flow map ¢ that we
establish in Appendix E:
Theorem 4.1. Under Assumptions 2.1 and 2.2, the flow map ® : [0, T] x P([d]) x K — R, given
by ®(t,n, k) = ulo = (t, ), is jointly Lipschitz in its inputs: there exists C > 0 such that

|P(t,m1, k1) — P(s,m2, k2)| < C(|t — 5| + |n1 — 12| + k1 — K2)
forall (t,m1, k1), (8,12, k2) € [0,T] x P([d]) x K.

The approach of Lanthaler & Stuart (2025), which relies on (Yarotsky, 2017, Theorem 1), cannot be
used in our case (see Rem. E.1). Instead, we develop an alternative analysis building upon Jiao et al.
(2023). Given a ReLU neural network with weight matrices {A;}_; and biases {b; }f;ol, let

L—1

p({A;}.Ab}) = I1AL] T max{ll(4;5,65)1,1}.

=0
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Then, the set of neural networks with width W, depth L, and norm bound satisfying
p({4;},{b;}) < K is denoted by NN (W, L, K). In this class of neural networks, (Jiao et al.,
2023, Theorem 3.2) provides the following approximation result. Below, the space of functions
C%1([0,1]%) refers to the space of Lipschitz continuous functions on [0, 1]%.

Proposition 4.2. There exists constants ¢,C' > 0 such that for any K > 1, W > ¢I (2d+1)/(2d+2),
and L > 2[log(d)]| + 2, the worst-case approximation error of the class NN (W, L, K) for ® €

Co’l([O, l]d) satisﬁes: Sup(peco,l([o)l]d) inf\peN’N(W’LyK) ||(I) — ‘IIHC([OJ]d) S CK_I/(CH_I).

More concisely, over the class C%!([0,1]¢) of Lipschitz functions, the worst-case approximation
error with a sufficiently wide and deep ReLU neural network can be quantified precisely in terms of
a bound on the weights of the approximating networks. Using Theorem 4.1, we obtain the following
as a corollary, with proof in Appendix E:

Corollary 4.3. Assume that Assumptions 2.1 and 2.2 hold. Then, for any K > 1 and ¢ >
0, there exists a neural network ¥ € NN (W,L,K) with weight bound K, width W >

c(diam(K), T)d K (d+k)+3)/(2(d+k)+4) " and depth L > 2[log(d + k 4 1)] + 2 such that
1 — Ulleorxp(iayxk) < C(diam(K), T) K~/ @TEF2) 4 o
where ® : [0, T] x P([d]) x K — R% is the flow map from Definition 2.2.

We note that the results in Jiao et al. (2023) are presented in the setting of scalar-valued functions. In
Appendix E, we show how we extend to the vector-valued setting that we require for our particular
flow map. Such a result is particularly useful because of the generalization guarantees that arise
from Rademacher complexity estimates for families of neural networks with bounded weights. For
instance, (Jiao et al., 2023, Theorem 4.1) provides such a guarantee, in the context of regression,
while (Jiao et al., 2023, Corollary 4.2) provides an analogous guarantee for noiseless regression

problems with regularization. Suppose that we have n samples {(x;,y;)}?"; such that z; - 0»
a distribution supported on [0,1]¢, and y; = ®(x;) withi = 1,...,n, where ® : [0,1]¢ — R
belongs to C%1(]0,1]9) (i.e., it is Lipschitz continuous). Then, given fixed widths, depths, and
weight bounds W, L, K > 0, the empirical risk is given exactly as in Equation (3.1), and and the
empirical risk minimizer is
U, = argmin L, (¥;{(zs,y) i) 4.1)
YeNN (W,L,K)
We take as our convex loss £(x,y) = ||z — y||3 for simplicity, as in (Jiao et al., 2023). Note that,
for each ¥ € NN(W, L, K), this quantity provides an unbiased estimate of the population risk
L(V) :=E,p[l(zs, U(x;))]. Now, suppose that we have computed the empirical risk minimizer
in (4.1), up an optimization error £op¢ > 0, via stochastic gradient descent, yielding a neural network
W, that satisfies
L, (0,) < inf L,V : 4.2
(Tn) = VENN(W,L,K) n() + €opt 4-2)
Then, we aim to quantify the excess risk, defined as ||\Tln — <I>||%2(p) = E(\/I\/n) — L(®). A standard
computation then shows that the expected excess risk, with expectation taken over the samples
{z;}4, is given by
~ ) ) ) ~ ~
BT, — @l <, it 0= Bl + BT — £a(B0)] + copr

To quantify the expected excess risk, it suffices to quantify the approximation error and the general-
ization error, the first and second terms in the above bound respectively. (Jiao et al., 2023, Theorem
4.1) combines Proposition 4.2 and a symmetrization argument to show the following:

Proposition 4.4. If ® € C%' ([0, 1]%), then there exists C > 0 such that for K = O(n(d+1)/(2d+6))
W > CK®4H1/2442) [ > 9log(d)] + 3, any neural network V,, € NN (W, L, K) satisfy-
ing (4.2) also satisfies: B[||¥,, — <I>||2L2(p)] — eopt < O~ M43 Jog(n).

In general, it is difficult to quantify the optimization error £,p¢. However, with sufficient hyperpa-
rameter tuning to stabilize training, we can safely assume that e, is small. To conclude, Proposi-
tion 4.4 applies nearly verbatim in our setting, up to a rescaling argument found in Appendix E:
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Corollary 4.5. If K = (’)(n(d"’k”)/(z(d*@‘*‘s) then under the assumptions of Corollary 4.3, min-
imizing the empirical loss in Equation (3.1) over n samples (generated via Algo. 1) yields a neural

network U, that satisfies, up to an optimization error €opt > 0, E[|¥, — @ Lg(p)] Eopt <
C(diam(K), T)n =Y/ (d+k+40) 1og(n). Above, p is the uniform distribution over [0, T] x P([d]) x K.

5 NUMERICAL EXPERIMENTS

In this section, we provide numerical evidence for the accuracy and generalization of our method
on two standard examples of finite-state MFGs. First, we demonstrate our scheme’s accuracy on
a simple cybersecurity model in dimension d = 4. Then, we consider high-dimensional quadratic
MFGs, illustrating that our approach maintains its accuracy as the dimension of the underlying
family of MFGs increases. Full experimental details are in Appendix A.

Example 1: Low-Dimensional Cybersecurity Model. @ We begin with a cybersecurity model
introduced by Kolokoltsov & Bensoussan (2016) and studied in (Cohen et al., 2024, Section 7.4).
Players can either protect or defend their computers against infection by malware. Before passing
to the mean-field limit, each player can either be infected by a hacker or by interacting with another
infected player. The player is either defended or undefended (D or U) and susceptible or infected (S
or I), leading to a state space with d = 4 states: {DS, DI,US,UI}. The player determines whether
to defend or not with a switching parameter p > 0, and the player pays cost kp > 0 for defending
and k; > 0 if they are infected. The running cost is f(x,a) = kplipgs pry(z) + krliprun (o),
and F(z,n) = 0. The player’s control is simply a € {0, 1}, and this yields a transition matrix
exactly as in (Cohen et al., 2024, Section 7.4). Importantly, we modify the original example by
including a terminal cost, penalizing infected players at the terminal time 7" according to a parameter
k > 0: gu(x,m) = kliprury(x). We use Algo. 1 with n = 2000 samples, Mmrain = 2000 epochs
with batches of size mpu,ini = 64. After training the neural network, we evaluate it on several pairs
(n, k) to obtain @ and compare with the solution obtained by solving the ODE system with this pair
of initial and terminal conditions. Fig. 2 shows that our method performs well on random samples
with k € [0, 10] and arbitrary € P([4]). Additionally, having learned the value function u, we
can easily recover the flow of measures p by simply solving the KFP equation with the learned
value function. The results of such experiments are displayed in Figure 3, showing that our method
also allows for the accurate recovery of the flow of measures at the MFG equilibrium. Appendix G
contains more experiments with this model, including an illustration of the case that x = 0 (i.e., the
setting considered in Cohen et al. (2024)).
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Figure 2: Learned value function % and true value function « for four random initial distributions 7
and final cost parameter < € [0, 10], both drawn uniformly at random from P([4]) and the interval
[0, 10], respectively. Each curve corresponds to one state in {D.S, DI,US,UI}.

Example 2: High-Dimensional Quadratic Models. We also consider the quadratic cost model,
as in (Cohen et al., 2024, Section 7.1), also analyzed in (Cecchin & Pelino, 2019, Example 1) and
(Bayraktar & Cohen, 2018, Example 3.1) via the master equation. This setting allows us to test our
method on high-dimensional MFGs, and the assumptions that we impose on the parametrized family
of terminal costs remain easily verifiable. We take a quadratic running cost and a linear mean-field
cost, given by f(z,a) == b}, . (ay — 2)2, F(z,n) = 0, with action space A := [1,3] and
b = 4. As shown in (Cohen et al., 2024, Section 7.1), letting 7" = 1 will ensure that the resulting
Hamiltonian satisfies our assumptions. Therein, the authors take g(x,n) = 0, but we convert their
quadratic model into a parametrized family of MFGs by taking instead x € [0,1]¢ =: K and
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Figure 3: Learned flow of measures i and true flow of measures p for four random initial distribu-

tions 7 and final cost parameter x € [0, 10], both drawn uniformly at random from P([4]) and the
interval [0, 10], respectively.

considering terminal costs of the form g, (z,7) = K4 + 7,. The inclusion of  in the terminal cost
has the effect of pushing the player away from states € [d] such that x, is large and towards
states with small x,,, with the mean-field term 7,, discouraging crowding. As our numerical results
demonstrate, the value function depends heavily on the parameter , making this a challenging task,
especially as d increases.

In Fig. 4, we demonstrate the success of our method in learning the flow map for this family of
MFGs in dimensions d = 3, d = 4, d = 5, and d = 10 respectively. Additionally, Fig. 5 displays
the errors, measured as the difference between the true and approximate value function at each
time, in the preceding figure. Beyond dimension d = 10, learning becomes increasingly unstable,
as the number of samples required to learn to high precision becomes intractable to generate in a
reasonable amount of time using our own computational resources, in line with how the sample
complexity estimate from Corollary 4.5 scales with dimension d. However, in Appendix G, we
show that by passing to a time discretization, our method still generalizes well to dimension d = 20.
Therein, we also provide evidence that using a neural network architecture with skip connections
and layer normalization (e.g., ResNet) can improve training stability in dimension d = 10. While
the optimization procedure is still relatively stable in dimensions d = 3,4, 5, 10 with feedforward
ReLU networks, we anticipate that adding skip connections smooths out the loss landscape and helps
prevent our method from getting trapped in spurious local minima. This observation is supported by
the theoretical and empirical evidence from Balduzzi et al. (2017), although we remark that, even
with feedforward ReLLU networks, our method performs well in dimension d = 10, as in Figure 5d.

Finally, Fig. 6, we illustrate both the training and test loss over the course of Algo. 1 for the quadratic
model in dimension d = 3. Averaging over five trials, we provide empirical evidence for both
Corollary 4.3 and Corollary 4.5, showing that increasing width results in models that (1) learn the
flow map to greater accuracy (Fig. 6a) and (2) generalize better to unseen samples (Fig. 6b).
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Figure 4: Comparison of true value functions u and learned value functions @ for randomly sampled
pairs (7, k) in dimensions d = 3,4, 5, 10 respectively. Averages are taken across 5 trials, and shaded
regions on approximate curves indicate error bars of one standard deviation, computed across trials.

In Table 1 and Table 2 in Appendix A, we describe the optimizers and loss functions that we chose for
each of our experiments, including the additional experiments in Appendix G. In order to verify our
theoretical results, which are restricted to the setting of feedforward ReLU networks, we primarily
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Figure 6: Comparison of training loss and test loss, evaluated on held-out data every 25 epochs, for
ReLU neural networks with width W = 32,64, 128, depth L = 4, and n = 4000 samples. Shaded
regions represent one standard deviation above/below the mean of five trials. As W increases, the
optimization procedure becomes more unstable but both the training and test losses decrease.

present experiments for this architecture. When selecting an optimizer, we observe that Adam and
AdamW perform comparably, although for the high-dimensional quadratic model, AdamW'’s per-
formance is slightly better. We also find that smooth L!-loss, as opposed to L?-loss, provides a more
stable optimization trajectory in the high-dimensional setting. Overall, the optimization of feedfor-
ward ReL.U networks in the high-dimensional setting is more challenging, but standard optimization
tools still yield accurate results without relying on more complex neural network architectures.

6 CONCLUSION

We present an operator learning method for solving parametrized families of finite-state MFGs. To
our knowledge, our approach provides the most general learning-based framework for solving finite-
state MFGs. Our theoretical guarantees rigorously quantify the approximation error, parametric
complexity, and generalization performance, and our numerical experiments illustrate the empirical
accuracy of our method for a variety of common finite-state MFGs. Our method extends naturally
to MFGs with parametrized running costs, with only slight modifications to our regularity proofs
required and no modification to Algo. 1. We believe that our sampling algorithm, although intuitive,
could be improved to gain greater coverage of the flow map’s domain, allow for more stable opti-
mization, and enable better generalization. Techniques such as oversampling in regions with poor
coverage or adversarial training may prove beneficial. Future work will also include extending our
results to continuous state-space MFGs and infinite-dimensional spaces of cost functions, for which
powerful operator learning architectures (e.g., DeepONets or FNO) will likely be instrumental.

10
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Reproducibility Statement. We include a detailed description of our numerical experiments, in-
cluding computational resources used, training methodology, and hyperparameters for all experi-
ments in Appendix A. Additionally, we have submitted all code used for experiments presented in
Section 5 and Appendix G as supplementary material. For our theoretical results, all assumptions
are provided in Section 2.1 and expanded upon in Appendix B, while our technical proofs can all
found be found in Appendix E.
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A EXPERIMENTAL DETAILS

As noted in our reproducibility statement, we provide all experimental details in order to recreate
our results from Section 5 and in Appendix G. Smaller experiments in the cybersecurity example
were carried out a 2020 MacBook Pro with an Apple M1 chip and 8GB RAM. For the purposes
of timing (see Appendix G), higher-dimensional experiments in the quadratic example were instead
run on a single NVIDIA A100 TensorCore GPU with 40GB of VRAM via Google Colaboratory. All
experiments were implemented in the PyTorch machine learning library in Python (Paszke et al.,
2019). Code for our numerical experiments can be found in our submitted supplementary material.

To best align with our theoretical results in Section 4, we utilize fully-connected ReLU neural
networks for all experiments unless otherwise specified. In all cases, we used mini-batches with
Nmini = 064 samples for each gradient step during the training loop. All hyperparameters were se-
lected via a grid search, with tuned parameters being: initial learning rate, number of hidden layers
(depth), width of each hidden layer, number of training epochs, and number of training samples. In
each case, we validated our models by testing on 20% of the training data, held-out from the training
set for validation. In many cases, we found it beneficial to utilize early stopping to prevent overfit-
ting; for higher-dimensional examples, training for fewer epochs appears to provide better results.
Finally, in all cases, we found that a cosine annealing learning rate scheduler performed best for op-
timization; we used the default parameters for the CosineAnnealingL.R scheduler, as implemented
in PyTorch’s torch.optim package. We also found that optimization was more slightly stable
for higher-dimensional cases when using: (1) the AdamW optimizer with the default weight decay
parameter, A = (.01, and (2) smooth L-loss in place of L2-1oss. Nonetheless, we are able to obtain
similar results with L2-loss, in line with our theoretical framework in Section 4.

In Tables 1 and 2 below, we describe the specific architectures and hyperparameters that we chose
for each experiment in Section 5, including depth, width, number of training epochs, optimizer pa-
rameters, and number of training samples. Finally, in Appendix G, we provide additional numerical
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experiments to showcase the accuracy of our method for higher-dimensional quadratic models. De-
parting from feedforward ReLU networks, we are able to obtain even better performance in d = 10
using a ResNet architecture with depth L = 4, two layers of width 128, two hidden layers with width
64, skip connections between all layers, layer normalization, and dropout with probability p = 0.05.
See the results of this experiment in Fig. 7 below.

Our submitted code, provided in the supplementary material, is organized as follows:

* utils contains a generic class for MFG operators, as well as two scripts defining the
cybersecurity and quadratic models from Section 5.

* generation contains two scripts for sampling trajectories from the cybersecurity and

quadratic models, respectively.

e tests contains

— train_cs_operator_time.py
which implement Algorithm 1 for the two models in Section 5, and

and

train_quad_operator_time.py,

— train_cs_operator_fixed.py and train_quad_operator_fixed.py,
which implement a similar algorithm for learning trajectories along a fixed time dis-

cretization.

* Finally, the directories data, models, and plots contain example outputs that can be
reproduced (at least, up to randomness of sampling) by running the above scripts.

For example, running generate_quad._data.py will generate samples for the quadratic model
in dimension d = 3, stored in data then running train_quad-operator_time.py will train
a model on the generated samples, outputting a model stored in mode1s and a corresponding plot
on four random samples, stored in plots.

Table 1: Optimization details for experiments Section 5 and Appendix G.

Experiment Optimizer Loss Function
Cybersecurity Model Adam I?
Cybersecurity Model (Fixed Discretization) Adam L?

Quadratic Model AdamW Smooth L!
Quadratic Model (Fixed Discretization) Adam L?

Table 2: Selected hyperparameters for experiments in Section 5 and Appendix G.

Experiment # Training Samples (1) # Epochs (1mrain) Width (W) Depth (L) Initial Learning Rate
Cybersecurity Model 2000 2000 64 4 8 x 102
Cybersecurity Model (Fixed Discretization) 2000 1000 64 4 8 x 1074
Quadratic Model (d = 3) 4000 2000 64 4 8 x 104
Quadratic Model (d = 3, Fixed Discretization) 4000 1000 64 4 8 x 104
Quadratic Model (d = 4) 4000 2000 64 4 8 x 104
Quadratic Model (d = 4, Fixed Discretization) 4000 1000 64 4 8 x 104
Quadratic Model (d = 5) 4000 2000 64 4 8 x 104
Quadratic Model (d = 5, Fixed Discretization) 4000 1000 64 4 8 x 104
Quadratic Model (d = 10) 10000 500 128 4 1x 104
Quadratic Model (d = 10, Fixed Discretization) 10000 1000 64 4 8 x 1074
Quadratic Model (d = 20, Fixed Discretization) 20000 1000 64 4 8 x 104

B MARKOVIAN CONTROLS AND REPRESENTATIVE PLAYER’S PROCESS

In this appendix, we formally describe the Markovian controls that the representative player in a

finite-state MFG chooses, presented at a high level in Section 2.1.

Denoting [d] = {1,...,d} to be the set of states that the player may switch between, a Markovian

control refers to a measurable function

a:R_‘_x{l,...,d}%Afld]: U
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where
A ={aeR*:Vy#£z, ay€h, ay= —Zy#ﬂay}.

The value of oy (t,x) := a(t,xz),, where  # y, represents the player’s rate of transition at time
t from the state z to the state y. We require that a,(t,2) = =3, ay(t,z) forall z € [d], as
is standard for the transition probabilities of a continuous-time Markov chain. More concisely, let
QJA] be the set of d x d transition-rate matrices with rates in A := [a;, a,,]. Then, the player chooses
Markovian controls « : [0,7] — Q[A] which we refer to as the set of admissible controls. Under
this interpretation, (a(t))q,, = ay(t, x).

In Section 2.1, we noted that, given a Markovian control « and an initial distribution , € P([d]), the
player’s dynamics obey a continuous-time Markov chain with transition probabilities

Pr(X), =y | X" =2) = oy(t,x)h +o(h), h—0".

In fact, this Markov chain arises as the result of a Poisson jump process, which completely describes
the dynamics of the representative player. Our method does not rely on the exact details of the jump
process, however, and we thus refer the interested reader to (Cecchin & Fischer, 2018, Section 2.3)
for additional details on the probabilistic structure of finite-state MFGs that we consider.

In Section 2.1, we provided a condensed version of the assumptions that ensure that the MFG system
has a unique solution. Below, we expand on these assumptions, providing the full suite of assump-
tions that previous work such as Bayraktar & Cohen (2018); Cecchin & Pelino (2019); Cohen et al.
(2024) all utilize.

Our first two assumptions ensure that the Hamiltonian in (2.4) has a unique minimizer and that the
running and terminal costs F' and g are monotone in an appropriate sense. Our third assumption is
a technical assumption on the strong concavity of the Hamiltonian. Although this last assumption
may not appear immediately relevant, it is useful later when we analyze the regularity of the flow
map for Equation (2.3) in Appendix E.1 below.

Assumption B.1. The Hamiltonian has a unique minimizer, which we refer to as the optimal rate
selector and is denoted v* (v, p) := argmin,cpa {f(z,a) + a - p}. The optimal rate selector y* is
a measurable function that, given any (x,p) € [d] x R%, defines a well-defined (unique) rate vector
a such that for any y # x, ay € A and a, = — ay. In particular, it is sufficient that f is
strictly convex with respect to a.

Y#T

Assumption B.2. The functions F' and g are continuously differentiable in ) with Lipschitz deriva-
tives. Moreover, F and g are Lasry—Lions monotone in the sense that for both ¢ = F, g,

> (@@ m) — ¢, 7)) (1 — 1) > 0, (B.1)
z€[d]

forany n, 1 € P([d]).

Assumption B.3. Assume that, for some W > 0, the derivatives Dme and Dy H of the Hamilto-
nian exist and are Lipschitz in p on [—W, W|. Moreover, H is strictly concave in p: there exists a
positive constant Cy_pr such that:

D2 H(z,p) < —Cap. (B.2)

When H is differentiable, (Gomes et al., 2013, Proposition 1) implies that
v (z,p) = DpH(z,p), (B.3)

a useful property when establishing regularity of the flow map. Moreover, if Assumption B.3 holds,
then v* is locally Lipschitz.

C THE MASTER EQUATION

The master equation is given by the following nonlinear PDE:

QU (t,x,m) + 2, e MWy DpUt x,m)vi(y, AyU(t, - ) + H(z,n, AU (t,-,m)) =0,
UT,xz,n) =g(x,n), (t,z,n) €10,T) x [d] x P([d]),
(C.1)
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Above, U : [0,T] x [d] x P([d]) — R, with D]}, denoting a directional derivative in the direction of

the vector e, := e, — e, on the probability simplex, where e,, e, € R¢ are standard basis vectors
indexed by y, z € [d]. More precisely, for ¢ : P([d]) — R, we define

(C.2)

Note that this convention respects the geometry of the simplex, in the sense that derivatives are only
allowed in directions along the simplex: if 7 € P([d]), then ) + e,.h € P([d]) for all  sufficiently
small.

We have the following result concerning the master equation, both providing its regularity and estab-
lishing the consistency relation invoked in Corollary 4.1 above. This proposition combines results
from (Cecchin & Pelino, 2019, Proposition 1, Proposition 5, Theorem 6) and (Cardaliaguet et al.,
2019, Section 1.2.4).

Proposition C.1. There exists a unique solution, denoted by (u®>", putom), in Ct([to, T] x [d],R) x
CY([to, T] x [d], P([d])) to (2.3). Let U be defined by:
Ulto,x,m) = u'"*"(to, ). (C€3)

Then, the master field U is the unique classical solution to the master (C.1). Moreover, we have the
consistency relation such that for all ty € [0, T,

U(t, , pfo(£)) = ub°" O (1) = ulo (1), (t,x,n) € [to, T) x [d] x P([d])- (C4)
Finally, U(-,z,-) € C1([0,T] x P([d])) for every z € [d].

Note that the above result is stated in the more general setting, where our MFG begins at time ¢y €
[0, T'], with the initial distribution specified as (o, z) = n(z). Then, u’®>" and p'" describe the
evolution of the value function and flow of measures starting at time ¢(; this formalism is necessary
for results concerning the master equation, but it is not directly relevant to our setting, so we assume
that £y = 0 throughout.

D PICARD ITERATION FOR FORWARD-BACKWARD SYSTEMS

In this section, we describe the precise details of the Picard iteration map, denoted by I'y, that
we use as a subprocess in Algo. 1 for sampling from parametrized families of finite-state MFGs.
Specifically, we recall the forward-backward MFG system from (2.3):

%u"’”(t,x) + H(x, W™ (t), Agu™"(t,-)) = 0, (t,x) € [0,T] x [d],

d K K * K
ye(d]
p"(0,z) = n(x), z € [d],
u™(T,x) = gg(z, u"(T)), x € [d].
To solve this ODE system on the time interval [0, 7], we introduce a time discretization with M
points and time step At := 1/M, partitioning the interval [0, 7] into subintervals [t;,t;11] with

t; =iAtfori=0,..., M. Then, foreach i = 0, ..., M — 1, the time-discretized system becomes
a nonlinear system of equations given by

u (tipr, ) — u (b, ) = —AtH (2, W (tiv1), Agu (8, ), x € [d],
P (b, @) — () = ALY (b ) vy, Agu (tis, ), x € [d],

y€ld] (D.1)
ph" (to, x) = n(x), € ld],
w (s, w) = gu(@, " (), x € [d].
Using fixed point iteration, we produce approximations of the value function {u""(¢;, ) f\io and
flow of measures of {4"(t;, )}, evaluated along the time discretization ¢, . . ., 7. Now, given
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fixed K € K, the output of the Picard iteration map I' : P([d]) — (RH)M+Lis'(n); ~ u""(t;,-) €
R,

For ease of notation, we suppress the dependence of i and u on (n, k) € P([d]) x K below, noting
that this method solves a single MFG from a parametrized family. To begin, we initialize vectors
1@ € RM+1 and u(® € RM+1 with 11" (z) = n(z) and v\ () = g, (, u\7) for 2 € [d]. Then,
we alternate between updates to u and p via the finite difference equations in (D.1), producing
iterates u*) € RM and ) € RF in an alternating fashion. If the map u(? +— w(*D) is a
strict contraction, then a standard argument via the Banach fixed point theorem shows that this
iterative procedure will converge the solution u € (R%)M+1 to the time-discretized Equation (D.1).
Importantly, note that the discretization of the time derivative incurs an error of O(At), so we must
take At small in order for fixed point iteration be accurate.

As discussed in (Lauriere, 2021, Section 2.3), Picard iteration for such forward-backward systems
may sometimes be numerically unstable. If this is the case, we may introduce a sequence of damping
parameters {(*)},.ciy and carry out damped updates to one of the updates. For instance, in Lauriére
(2021), the author includes an auxiliary update %), with x(©) = (9, and updates the forward
equation via

ﬂ(k+l) _ 5(%@)/1(1@) +(1- 5(k))M(k)

to encourage more stable convergence. Then, the backward equation is updated with /i(¥); the update
to the forward equation remains the same. This algorithm, based on (Lauriere, 2021, Algorithm 1),
is included below. In the numerical examples in Section 5, we do not require damping in order for
fixed point iteration to converge quickly and we simply take §(*) = 0 for all k& € N. However, for
more complex MFG systems, damping may be a helpful augmentation of our sampling procedure.
Algo. 2 provides a summary of the procedure outlined above.

Algorithm 2 Picard Iteration for Time-Discretized MFGs

Input: Parameters (1, x) € P([d]) x K, number of time steps M € N, tolerance ¢ > 0, damping

schedule {0(*)} ¢y, initializations g, o € (R%)M+1

U(O) < Ug

1 — pg

i — po

k<« 0

while ||u*+1) — 4 ®)||; > ¢ or |uF+D) — pF)||5 > e do
Solve the discretized backward equation in Equation (D.1) for u** 1 with input (%),
Solve the discretized foward equation in Equation (D.1) for *+1), with input w(*+1)
D) 0 50 L (1 — 50R)) ()
k+—k+1

end while

return (%)

TYR IR

—

E TECHNICAL PROOFS

In this section, we present technical lemmata and proofs for our claims about the regularity of flow
maps for parametrized families of MFGs. First, we recall some useful notation. For any compact
set K C R% and a function ¢ : K — R, we define

[@]loc = sup |¢(z)
TEK

All functions such that ||@||. < oo form the Banach space C°(K). For instance, for functions such
asu : [0, T[x[d] — R, we take

||| o = sup max |u(t, z)|.
teT =€(d]

We also occasionally refer to the spaces C%!(K), consisting of all Lipschitz functions on K, and
CY1(K), consisting of all continuously differentiable functions on K with Lipschitz derivatives. For
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functions on the d-dimensional probability simplex P([d]), we only allow directional derivatives
along the directions e, — e, where e, e, are standard basis vectors in R%.

E.1 PROOFS OF REGULARITY RESULT

For our regularity results, (Cecchin & Pelino, 2019, Proposition 5) provides a very useful starting
point. Importantly, the authors of Cecchin & Pelino (2019) work under Assumptions 2.1. It remains
to incorporate the added effect of a changing terminal condition, restricted to a parametrized set of
functions under Assumption 2.2, into their results.

First, we define ®(t,n) := U(t, -, u"(t)) = u(t, -). due to the consistency relation in Proposition C.1
in Appendix C, where U is the solution to the master equation. Now, Proposition C.1 also provides
that U(-,z,-) € CHL([0,T] x P([d])) for every x € [d] under our assumptions, which directly
implies the following:

Lemma E.1. Under Assumption 2.1, The flow map ® : [0,T] x P([d]) — R% given by ®(t,n) =
u'l(t, ), satisfies ® € CH1([0,T] x P([d]); RY).

Including Assumption 2.2, on top of Assumptions 2.1, we show that the flow map
®:[0,7) x P([d]) x K =R, ®(t,n, k) = u™(t,")

is Lipschitz in all three arguments. Above, recall that the notation u™" denotes the value function
that solves the MFG system, with initial distribution € P([d]) and terminal cost g,;, where x € K.
In turn, Lipschitz regularity of the flow map on the compact set [0, 7] x P([d]) x K, recalling that
Assumption 2.2 requires that K is compact, is sufficient to invoke the approximation guarantees
provided in Jiao et al. (2023). We begin with a stability estimate for the parametrized family of
MFG systems obeying Assumption 2.2.

Lemma E.2. Let (uq, 1) and (us, pus2) solve the MFG system in (2.3) with data (01, g, ) and
(N2, g, ) respectively, with n1,m2 € P([d]) and k1,ko € K C R, If Assumptions 2.1-2.2 hold,
then there exists a constant C > 0 such that

sup max |uy (¢, x) — ua(t, z)| < C(|k1 — k| + |1 — p2lloo)- (E.1)
tefo,T) z€ld]

Proof. We proceed as in Cecchin & Pelino (2019), taking u := u; — u9 and p = p; — po. The pair
(u, p) then solves the system

%u(ta SU) + Er(il:, H1 (t)’ Arul(tv )) - H(:C’ MQ(t)v Azu?(tv )) =0, (t’ CC) € [07 T] X [d]a

%u(fwﬂ) = > Ity Ayui(t,-) = ma(t, )75 (v, Ayua(t,-)],  (ta) € [0,7] x [d],

y€l[d]
1(0,2) =m(z) —n2(z),  x€[d],
U(Tv‘T) ng(ai,ﬂl(T)) _gﬁz(xnu’Q(T))v T < [d]
(E.2)

To begin, we integrate the backward-in-time HJB equation in (E.2) over the interval [t, T'], where
t € [0, 7] to obtain

T
u(tax) = Gk, (xalul(T)) — Gko ($7M2(T)) +~/t [H(xvﬂl(s)aAfﬂul(s’ )) - H(xa,LL?(S)aAIUQ(Sa ))] ds
Observe that
|gl€1 (‘Thu‘l(T)) - gﬁz(xvﬂ2(T))| = |gl€1 (x’ul(T)) - gﬂz(xvﬂl(T)) +gf@(mhul(lr)) - gﬁz(xay‘?(T)”
< C(lk1 = k2| + [pa(T) = p2(T)])
< C([r1 = k2| + [lp1 = pr2loo)-

leveraging both Assumption 2.2 and the fact that g,.(z, -) € C(P([d])) so that g,, is Lipschitz in its
second input. Now, recall that

H(z,n,b) = H(x,b) + F(x,n),
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with H Lipschitz in b and F' Lipschitz in  under Assumptions 2.1 and 2.1. Consequently, we have
that

| H (2, 11(5), Agua(s, ) — H (@, pa(s), Agua(s, )| < C (|lpa(s) — pa(s) + [Agua(s, ) — Agus(s

< O(Jpa(s) — pa(s)| + max lu(s, x)]),

recognizing that
[ (s,7) = Auas, )P = [Aguls, )P = 3 (uls,y) = uls,2)* < ddmau(s, 2)]
zE
ye(d]

Taking absolute values and the maximum over z € [d] of the integrated HIB equation, we are left
with
T

T
maxu(t, z)] < Clr1 = ool + [l = p2lloc) + C/ [a(s) = pa(s)lds + C | maxu(s, z)|ds
x t t T

T
< O(lr1 — k2| + [ — palloc) + C’/ max lu(s, z)|ds.
t xT
Applying a reversed version of Gronwall’s inequality, we obtain
max lu(t,z)| < C(lk1 — ka| + [l — p2lloo)

forall ¢ € [0, T so that

l[ur — uzfloc < C(lk1 — k2| + [l1 = p2lloo),
taking the supremum over ¢ € [0, 7. O

Next, we require an estimate on the difference ||p; — 12| oo; this time, the argument from Cecchin
& Pelino (2019) applies without modification.

Lemma E.3. Under the same assumptions as in Lemma E.2, the difference in measures satisfies

s — pislloo < Cln — 772|+C/ \/Zm (s — u2) (s, |2 pua (5, 2)ds.

z€(d]

Proof. This estimate follows by integrating the (forward) Kolmogorov equation for p from (E.2);
see (Cecchin & Pelino, 2019, Proposition 5) for details, which carry over verbatim to our setting. [

Equipped with both of the previous lemmata, we proceed to bound ||u||o and || || in terms of the
initial-terminal data (11, <1) and ()2, ko).

Lemma Ed4. Let (uy, 1) and (ug, pu2) solve the MFG system in (2.3) with data (01, gy, ) and
(N2, gwy ) respectively, with n1,m2 € P([d]) and k1, ke € K C R¥. If Assumptions 2.1-2.2 hold,
then there exists a constant C' > 0 such that

11 (t, @) — pa(t, o)|loc < C(In1 —n2| + |51 — K2), (E.3)
lur — uslloo < C(Im — n2| + k1 — K2|) (E4)

As a direct corollary, we can extend this stability result to obtain Lipschitz continuity of the flow
map @ : [0, 7] x P([d]) x K — R4,

Proof of Lemma E.4. Taking ¢(t) = (u(t,-), u(t,-)), we see that

S0 = 3 ult) B0+ Y Sttt )

z€|d] z€ld]
= v Ayur(t, ) = pat,y)vs (W, Ayua(t, ) (ua (t, ) — ua(t, 7))
z€[d] y€[d]
+ > [H(w, pat), Agua(t, ) — H(w, (1), Agua(t, )] (8, ) — pa(t, ).
z€[d]
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Integrating over the interval [0, T], we obtain

¢(T) — /O [Z Dl () vy, Ayua (t,-) — pa(t, y)7vi (v, Ayua(t, )] (ur (¢, ) —uz(tw))] dt

me[d ye[d]
/
0

In the first integral, we observe that under Assumption 2.1, we have that

> )

z€[d]

Z [H($7 /1'2(t)7 AIU?(tﬂ )) - E[(l‘, 121 (t), Amul(t7 '))](Nl(t7 :L‘) - :u2(t7 CU))] dt.

z€[d]

As a result, we can interchange the order of summation to obtain

Do > It )iy, Ayua(t, ) — pe(ty)va(y, Ayua(t, )l (wa(t,z) — uz(t, 2))

z€[d] y€[d]
= Z Z [Ml (t7 Y2 (Y, Ayul(tv )) - /LQ(L y)V; (v, AyUQ(tv '))](ul(t’ .”L') —u(t, y) + uz(t, y) — u2(t7 1‘))
y€ld] z€ld]
=)0 vy, Ayua(t, ) — p2(t, y)7i (v, Ayua(t, )] Ayu(t, )
y€[d] z€[d]
- Z ST (), Aaun () — izt )7 (2 Ayus(t, )] Ayt )
d] y€[d]

= Z Aru : ,LL1 t,SC Y (vaIul(tv')) - NQ(tvI)rY*(‘TaAHTUQ(t?'))L

switching the role of = and y in the fourth line for notational consistency below. With this, we see
that

D (g (@, 11(T) = gy (0, p2(T))) [p1 (T, ) — (T, )
z€[d]

= (u1(0,2) — uz(0,2))[m1 (z) — m2(2)]

z€[d]

+ / ™ [H (e, po(t), Agus(t, ) — H(a, m(»Awﬂt-))}(m(tw)—m(t,x))] dt

xE[d]

[ ]S A (.07 @A) = et o Agua(t) |

Lz€ld]

(E.5)

At this point, we note that the lefthand side of the above equality can be decomposed as

Y (G (@ 11 (T)) = gy (2, p2(T)) 11 (T, ) = o (T, )]

z€[d]
= (g (@ 11 (T) = g, (@, 12(T)) + g, (2, 412(T)) = Gy (@, p12(T)) [111 (T, ) — pia (T, )]
z€(d)
> > (g (2, 12(T)) = Gy (0, p12(T))) (11 (T, ) = po (T, )],
x€[d]
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invoking the fact that g,,, is Lasry—Lions monotone; see Assumption 2.1. Now, we use Assump-
tion 2.2 to bound

> (9w (@, 12(T)) = gy (2, 12(T))) 112 (T, ) — p1a(T, )]
z€[d]

<D 19w (@ 12(T)) = gy (, p2(T)) |11 (T ) = pia (T, )|
z€[d]

< Clkr — fal|l1 — pr2lloo

absorbing additional constants into C' as necessary (e.g., C absorbs a factor of d in the final line). In
summary,

> (G (@, 1(T)) = greo (@, p2(T) (2 (T, ) — pa(T, )] > —C (|51 — r2l” + |1 — palZ)-
z€[d]
On the other hand, observe that
> [H(z, pa(t), Agua(t, ) — H(x, pa (£), Agur (t, )] (i (8, ) — pat, z))]
z€(d]
=Y [H(z,Asua(t, ) — H(w, Agu (t, ) (ma (£, ) — pa(t, )]
z€ld]

d
= (F(a,pa (1) = Fl, pa())) (a(t, 2) — pa(t, )

z€(d]

< Z [H(.T, AEU?(tv )) - H(Z‘, Az (t’ '))(Ml (t’ x) - MQ(t’ x))]’
z€[d]

recalling that F’ also satisfies the Lasry—Lions monotonicity assumption from Assumption 2.1. Now,
(Gomes et al., 2013, Proposition 1) implies that

V" (x,p) = DpH(x,p). (E.6)
From this, we have that
7@, Agus(t, ) = DyH (@, Agus(t, ), i = 1,2,
allowing us to write
H(z,Ayus(t, ) — H(z, Ayui(t, ) + Agu - v* (z, Azuq(t,+))
= H(z,Agua(t,-)) — [H(z, Agui(t,-)) + (Ague — Agur) - DpH (2, Aguq(t,-)]
< —Co | Azul?

by Assumption (2.1). Namely, the Hessian D2 H (x, p) exists and satisfies the bound D2 H (x,p) <
—C', g for some constant C'y i > 0 under our strict concavity assumption. By the same reasoning,
we observe that

H(z,Apui(t, ) — H(z, Agua(t, ) — Agu - v*(z, Agus(t,+))
= H(z,Ayui(t,-)) — [H(z, Agus(t,-)) + (Agur — Agug) - DpH (2, Agua(t, )]
< —CQ,H‘AQCUF.

Thus, returning to (E.5), we have that

—C(|r1 = kalllpa — p2lle) < D (a(0,2) = uz(0,2))[m (z) — n2()]
z€[d]

T
0[5 1Al 5.2) + s )

z€[d]
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Upon rearrangement, and an application of the Cauchy—Schwarz inequality to the first term on the
righthand side of the above inequality, it follows that

T
/0 D 1Auls, )P (s, @) + pa(s, @))ds < C|ullolm — nal + |51 — kol 1o0)
z€[d]

for some constant C' > 0. Now, invoking Lemma E.3, the Cauchy—Schwarz inequality, and the fact
that po(s, ) > 0 forall s € [0,T] and = € [d], we have that

T
Il <l =l +:€ [ [3 [Bsu(s. ) Pra(s,a)ds
0

z€[d]

T
<Cli—ml+C| [ 3 1Al ) 2m(s,a)ds
0 zeqq

< C(Im =2l + Vllullsolm — m2l + 51 — K[|l
< C(Im — mol + lull2Im — mol ™2 + |51 — k2| 2| ul|2L%),

recalling that v/a + Vb > va + bforany a,b > 0. Now, recall that for any a,b > 0 and € > 0, we
also have that

1
ab < ea® + —b>.
4e
Applying this inequality once with € = % , we see that

1
lilloo < Clm =2l + 81 — mal + [l L2m — nal /%) + PLLES

taking C' > 0 larger if necessary. Applying the same inequality again with ¢ = ﬁ and rearranging,
it follows that

lillse < O = ol + sy = al) + 55wl ©7)
Plugging this into the result of Lemma E.2 and rearranging yields
[ullso < C(m — el + |K1 — K2l), (E.8)
and plugging (E.8) into (E.7) results in
[lloe < Clm — m2| + K1 — K2|)

as claimed. O

To conclude, we can present the proof of our main theorem, which follows almost immediately from
the preceding results.

Proof of Theorem 4.1. Observe that we can write

|D(t,m1, k1) = B(s,72, h2)| = |(t, M1, K1) = B(s,m1, k1) + P(s,m1, K1) — (s, 72, K2)|
< |D(t m, k1) = R(s,m1, k1) | + | D(s, 71, 51) — (5,72, K2)|
<Ot — 8|+ |m — na| + [k1 — kKal),
invoking Lemma E.1 to bound the first term and Lemma E.4 to bound the second term. O

Remark E.1. Although Lanthaler & Stuart (2025) reference the approximation guarantee from
(Yarotsky, 2017, Theorem 1) to show that their HJ-Net method evades the curse of parametric com-
plexity, most existing guarantees on the generalization performance of ReLU neural networks re-
quire bounds on the weights of the neural network rather than the size of the network. The well-
known result from Yarotsky (2017), however, only provides width and depth bounds on ReLU net-
works approximating a function with prescribed regularity. To this end, we pursue an alternative
approach for obtaining approximation and generalization guarantees, based on the recent results
of Jiao et al. (2023).
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E.2 PROOFS OF APPROXIMATION AND GENERALIZATION GUARANTEES

We conclude with proofs of Corollary 4.3 and Corollary 4.5, our approximation and generalization
results respectively. Both follow almost directly from the corresponding results in Jiao et al. (2023),
in Proposition 4.2 and Proposition 4.4 respectively, but we include the necessary rescaling arguments
here for the sake of completeness.

Proof of Corollary 4.3. First, to extend from the setting of scalar regression, as is the case in Propo-
sition 4.2, to vector-valued regression, we note that if a scalar Lipschitz function can be uniformly
approximated up to an error £ > 0 by a network with weight bound K and width W, then an R?
valued Lipschitz function ® can be uniformly approximated by a network with weight bound K and
width dW. Indeed, we can simply approximate each coordinate of ¢ by a network of width W and
stack the resulting networks to obtain the desired approximator, which will have width dV.

Now, by Theorem 4.1, the flow map @ : [0, 7] x P([d]) x K — R? belongs to C* ([0, T] x P([d]) x
KC). From this, we can apply Proposition 4.2 directly upon scaling the domain [0, T] x P([d]) x K
to lie entirely within the (d + k + 1)-dimensional unit cube.

To carry out this scaling, we embed P([d]) < [0, 1]%, scale K to lie in the set [0, 1]*, and scale the
interval [0, T to lie in the interval [0, 1]. The natural embedding P([d]) < [0,1]% is simply given
by viewing

d
P([d])-{nERd:Zm—l, 77i>0foralli—1,...,d}.

i=1

This rescaling may incur constants that depend on the diameter of &, denoted by diam(X), and the
final time 7. Importantly, it is always possible for finite 7' > 0 and compact K C R¥. The result
then follows upon applying Proposition 4.2, replacing d with d + k + 1 therein. As noted above,
the universal constants ¢, C' > 0 obtained in Proposition 4.2 must also be replaced by constants
¢(diam(K), T), C(diam(K),T) > 0 that depends on K and 7. O

Proof of Corollary 4.5. This follows directly from Proposition 4.4 upon carrying out the same
rescaling argument as in the previous proof, again replacing d with d + k + 1 in the statement
of the result. Again, we note that the universal constant ¢ > 0 from Proposition 4.4 must be replaced
by a constant C(diam(kC),T') > 0 that can depend on K and 7. O

F CONNECTION TO HAMILTONIAN FLOW

In this appendix, we expand upon the similarity between the MFG system and the characteristic
ODE:s that Lanthaler & Stuart (2025) utilize to obtain parameter-efficient operator learning for first-
order HJB equations. Consider an arbitrary first-order HJB equation on a bounded domain 2 C R,
with Hamiltonian H : R? x R — R:

{atw H(g,Vu) =0 (2,t) € 2 x (0,7],

u(z,0) = ug(x) zEQ, (F.1)

Instead of attempting to learn the operator that maps the initial data ug € C"(Q) to u € C"(Q x
[0,T7), for instance, Lanthaler & Stuart (2025) construct a scheme they label HJ-Net with the aim
of learning the Hamiltonian flow (i.e., the characteristics of the HIB equation), which satisfies the
ODE system

¢=VpH(q,p)  q(0)=qo,,

p=—VyH(q,p) p(0)= po, (F2)

2= L(g,p) 2(0) = .
Then, the flow map ¥; : QxR% xR — Qx R4 xR, given by (qo, po, z0) +— (q(t), p(t), z(t)) is such
that z(t) = u(q(t),t) and p(t) = V4u(g(t),t) along the characteristics (g(¢),t). By learning the
flow map ¥y, instead of the operator uy — u, and reconstructing the solution u from the characteris-
tics, (Lanthaler & Stuart, 2025, Theorem 5.1) shows that the HJ-Net approach can beat the so-called
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curse of parametric complexity, enabling parameter-efficient operator learning for HIB equations.
Observe, nonetheless, that there is a subtle but important difference between the Hamiltonian flow
and the MFG system: the former is independent of the initial condition uy of Equation (F.1), while
the latter depends explicitly on the terminal condition g.. In the setting of Lanthaler & Stuart
(2025), this enables parameter-efficient operator learning over initial conditions belonging to an
infinite-dimensional Banach space, as the Hamiltonian flow map remains approximable by neural
networks of bounded width and depth regardless of the space to which the initial conditions be-
long. Conversely, for finite-state MFGs, we must limit ourselves to parametrized terminal costs due
to the dependence of the MFG system on the terminal cost. Indeed, the technical results in both
our work and in Lanthaler & Stuart (2025) rely upon reducing to a flow map between subsets of
finite-dimensional Euclidean spaces, which is not the case if we allow terminal costs to belong to an
infinite-dimensional Banach space.

G ADDITIONAL NUMERICAL EXPERIMENTS

We provide a comprehensive suite of additional numerical experiments for both the cybersecurity
model and the quadratic model. As alluded to earlier (see also Appendix A), Fig. 7 demonstrates the
improvement in accuracy and reduced variance over trials that comes with a more powerful neural
network architecture. In particular, we replicate the d = 10 results using a ResNet architecture, with
layer normalization, skip connections between all layers, a dropout rate of p = 0.05. Moreover, the
ResNet’s first and layer layer have width W; = 128 while the middle two hidden layers have width
Wy = 64. We find that this “bottleneck” helps promote training stability, and Fig. 7 demonstrates the
effect that this architecture choice has on accuracy and variance (the latter is illustrated by smaller
standard deviations about the mean of the five trials).

Next, Figure 8 and Figure 10 provide additional evidence for the accuracy of our method on the
cybersecurity model. Figure 9 displays the errors obtained when learning the flow map for the
cybersecurity model, in the same vein as Figure 5 above. Similarly, Figures 12—15 illustrate a variety
of random tests for the quadratic model in dimensions d = 3,4, 5, and 10. In Table 3, we present
statistics for the models used to produce Figures 12—15 (as well as Figure 4), including average test
losses on the held-out test set at the end of training and average training times. Figure 16 is the
analogue of Figure 3 for the quadratic model in various dimensions, illustrating that by solving the
KFP equation with the learned value function, we can accurately recover the flow of measures for
the quadratic model as well.

Finally, we include a handful of figures that learn an operator on a fixed time discretization. Specifi-
cally, suppose that we discretize the time interval [0, T'] with M time, yielding times ¢; = jT'/M for
j=0,..., M. Given a pair (n;, ;) € P([d]) x K, one may instead attempt to learn the augmented

flow map subordinate to the discretization, given by @ : P([d]) x K — (R%)M+1

D(miy ki) = (W05 ()7L

In practice, this map can be learned using a slight modification of Algo. 1, where the sampling
step simply takes in a pair ; := (n;,k;) € P([d]) x K and outputs the entire trajectory that
Picard iteration produces as a label, given by g; := I'y, (1;). Then, the pairs {(Z;, 7;)}7_; become
our augmented training data, and we can proceed from Line 7 of Algo. | verbatim. Note that the
augmented flow map @ is less versatile than the flow map ® from Section 2.2, in the sense that
® can be evaluated at any time ¢t € [0,7], while ® can only be evaluated along the given time
discretization. However, given M sufficiently large, learning the map ® to high precision still yields
a useful estimate of the MFG equilibrium, so this modified method may still be of interest.

In Fig. 11, we present an example of the learned map value functions for the cybersecurity model, us-
ing the augmented procedure for a fixed time discretization with M = 50 points. In Figures 17-21,
we provide similar experiments for the quadratic model in dimensions d = 3,4, 5,10, 20 respec-
tively. Interestingly, the quality of the approximation and optimization stability does not appear to
degrade as quickly with dimension, and using a discretization with M/ = 10 points, we are able to
learn augmented flow maps to very high precision up to dimension d = 20.
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Table 3: Statistics for high-dimensional quadratic model experiments. Test losses and training times
are averaged over 5 trials, and all networks had depth L = 4. The test losses are evaluated using

smooth L! loss, summed over the test set.

Dimension d  Average Test Loss Average Training Time (s) Training Samples Epochs Width
3 0.000831 233.42 4000 2000 64
4 0.00200 219.68 4000 2000 64
5 0.00527 220.24 4000 2000 64
10 0.0208 374.10 10000 500 128

e

Time ()

06
Time ()

Figure 7: Learned value functions in the same setting as Fig. 20, using a ResNet architecture with
dropout, layer normalization, and an hidden layer width of 64.

o =[025,025,0.25,0.25]

Ho=[1.0,0.0,0.0,0.0]

Ho=[0.0,0.0,0.0,1.0]

Time ()

Figure 8: Learned value functions, denoted by u, for
[1,0,0,0], and p3 = [0, 0, 0, 1], respectively. In particular, our method

0.25,0.25,0.25,0.25], p10 =

Time ()

Time ()

0 and initial distribution pq

can still perform accurately in the event that the parametrization of the underlying MFG is fixed and

only the initial distribution varies.
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Figure 9: Error, measured as absolute difference across all times between true and learned value
function, on two randomly generated instances of the cybersecurity model.
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Figure 10: Learned value function, denoted by w, approximating time-parametrized flow map ®, for
four random initial distributions and x € [0, 1].
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Figure 11: Learned value function for four randomly sampled pairs (7, ), with x € [0, 10], along a
time discretization with M/ = 50 points for the cybersecurity model. Points indicate the approximate
solution and curves indicate the true solution obtained via Picard iteration.
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Figure 12: Learned value functions for three randomly sampled pairs (7, k), denoted by @, approx-
imating the flow map @ for a d = 3 dimensional quadratic model, for three random initial distribu-
tions and parameters x € [0, 1]* sampled uniformly at random. Averages are taken across 5 trials,

and shaded regions on approximate curves present error bars of one standard deviation above/below
the mean across trials.
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Figure 13: Learned value functions, denoted by u, approximating the flow map ® fora d = 4
dimensional quadratic model, for three random initial distributions and parameters « € [0, 1]* sam-
pled uniformly at random. Averages are taken across 5 trials, and shaded regions on approximate
curves present error bars of one standard deviation above/below the mean across trials.
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Figure 14: Learned value functions, denoted by u, approximating the flow map ® forad = 5
dimensional quadratic model, for three random initial distributions and parameters « € [0, 1]®> sam-
pled uniformly at random. Averages are taken across 5 trials, and shaded regions on approximate
curves present error bars of one standard deviation above/below the mean across trials.
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Figure 15: Learned value functions, denoted by @, approximating the flow map ® for a d = 10
dimensional quadratic model, for three random initial distributions and parameters x € [0, 1]*°
sampled uniformly at random. Averages are taken across 5 trials, and shaded regions on approximate
curves present error bars of one standard deviation above/below the mean across trials.
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Figure 16: Comparison of true flows of measures i and learned flows of measures fi for randomly
sampled pairs (7, ) in dimensions d = 3,4, 5, 10 respectively.
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Figure 17: Learned value function for two randomly sampled pairs (7, &), along a time discretization
with M = 100 points in dimensions d = 3. Points indicate the approximate solution and curves
indicate the true solution obtained via Picard iteration.
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Figure 18: Learned value function for two randomly sampled pairs (7, k), along a time discretization
with M = 100 points in dimensions d = 4. Points indicate the approximate solution and curves
indicate the true solution obtained via Picard iteration.
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Figure 19: Learned value function for two randomly sampled pairs (7, k), along a time discretization
with M = 100 points in dimensions d = 5. Points indicate the approximate solution and curves
indicate the true solution obtained via Picard iteration.
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Figure 20: Learned value function for two randomly sampled pairs (7, k), along a time discretization
with M = 100 points in dimensions d = 10. Points indicate the approximate solution and curves
indicate the true solution obtained via Picard iteration.
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Figure 21: A slice of 10 components of the learned value functions, for two randomly sampled pairs
(n, k), along a time discretization with M = 100 points in dimensions d = 20. Points indicate the
approximate solution and curves indicate the true solution obtained via Picard iteration.
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