
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OPERATOR LEARNING FOR FAMILIES OF FINITE-
STATE MEAN-FIELD GAMES

Anonymous authors
Paper under double-blind review

ABSTRACT

Finite-state mean-field games (MFGs) arise as limits of large interacting parti-
cle systems and are governed by an MFG system, a coupled forward–backward
differential equation consisting of a forward Kolmogorov–Fokker–Planck (KFP)
equation describing the population distribution and a backward Hamilton–Jacobi–
Bellman (HJB) equation defining the value function. Solving MFG systems effi-
ciently is challenging, with the structure of each system depending on an initial
distribution of players and the terminal cost of the game. We propose an oper-
ator learning framework that solves parametric families of MFGs, enabling gen-
eralization without retraining for new initial distributions and terminal costs. We
provide theoretical guarantees on the approximation error, parametric complex-
ity, and generalization performance of our method, based on a novel regularity
result for an appropriately defined flow map corresponding to an MFG system.
We then demonstrate empirically that our framework achieves accurate approxi-
mation for two representative instances of MFGs: a cybersecurity example and a
high-dimensional quadratic model commonly used as a benchmark for numerical
methods for MFGs.

1 INTRODUCTION

Mean-field games (MFGs), introduced by Huang et al. (2006) and Lasry & Lions (2007), model the
behavior of stochastic games with many identical players by considering the limiting situation with
an infinite population. While a large portion of the corresponding literature considers continuous
state spaces, MFGs with finite state spaces find applications in economics, epidemic prevention, cy-
bersecurity, resource allocation, and multi-agent reinforcement learning, and beyond (Gomes et al.,
2014; Kolokoltsov & Bensoussan, 2016; Aurell et al., 2022; Mao et al., 2022; Yardim & He, 2025).
The theory of MFGs is well-established, with results concerning existence, uniqueness, and con-
nections with finite-player games in (Gomes et al., 2013; Bayraktar & Cohen, 2018; Cecchin &
Pelino, 2019); see the books (Carmona & Delarue, 2018a;b) for more background. Nonetheless,
numerically solving finite-state MFGs remains challenging, especially over large state spaces.

Machine learning-based methods have proven promising for overcoming the numerical challenges
associated high-dimensional MFGs, in both continuous and finite state spaces; see (Fouque &
Zhang, 2020; Carmona & Laurière, 2021; 2022; Min & Hu, 2021; Han et al., 2024) for deep learn-
ing methods and (Guo et al., 2019; Subramanian & Mahajan, 2019; Elie et al., 2020; Cui & Koeppl,
2021) for reinforcement learning methods. However, these methods treat each MFG individually,
requiring the user to rerun the method anew for each MFG instance. Several recent works, such
as (Cohen et al., 2024), propose more general methods to learn MFGs equilibria as a function of
the initial distribution by exploiting the connection with the master equation, a nonlinear PDE char-
acterizing finite-state MFGs (Cardaliaguet et al., 2019). However, these methods rely on problem-
specific loss functions and cannot be extended to learn MFG equilibria as a function of the model’s
parameters such as its cost functions.

In this work, we frame MFG equilibria as outputs of an operator, called the flow map, which maps
initial distributions and cost functions to the corresponding Nash equilibrium. We then train a neural
network (NN) to learn this operator.

Main Contributions. Our main contributions are as follows:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• Algorithm: We combine Picard iteration and operator learning to approximate the flow
map operator for parametrized families of finite-state MFGs (see Fig. 1).

• Approximation error and parame: We prove that the flow map can be approximated to
accuracyO(K−1/(d+k+2)) using an NN with width W = O(K(2(d+k)+3)/(2(d+k)+4)) and
depth L = O(log(d + k + 1)), where d is the number of states, K is a bound on the NN
weights, and k is the dimension of the set of parameters specifying the family of MFGs.

• Generalization error: We prove that for such W and L, given n samples produced via
Picard iteration, our method has generalization error bounded by O(n−1/(d+k+4) log(n)).

• Numerical experiments: We demonstrate the accuracy and scalability of our method on
two standard finite-state MFG benchmarks.

(1) Sample (η, κ)
(2) Solve MFG system (2.3) for
(ûη,κ, µ̂η,κ) via Picard iteration

(3) Minimize Empirical Loss
Ln(Ψ; ûη,κ)

Nash Equilibrium
(α̂η,κ, µ̂η,κ)

Figure 1: Given (1) sample initial distributions η and cost parameters κ, we bypass the need to
compute the optimal controls and flow of measures (Nash equilibrium) of an MFG by (2) solving
the MFG system via Picard iteration. We then use the resulting trajectories to (3) approximate the
solution operator for the family using a neural network, trained by minimizing an empirical loss over
the samples from (1). In practice, the last step uses stochastic gradient descent (see Algo. 1).

Operator Learning. Independent from the literature on MFGs is that of operator learning, an
umbrella term that typically describes machine learning methods for approximating maps between
function spaces. One natural application of such methods is to partial differential equations (PDEs),
and the general framework has been applied with impressive success to fluid dynamics in (Li et al.,
2021; Kovachki et al., 2023), astrophysics in (Mao et al., 2023), and large-scale weather forecasting
in (Kurth et al., 2023; Lam et al., 2023). In most applications, one attempts to learn the operator
that maps the initial data of a PDE, belonging to some Banach space, to its solution, belonging
to a potentially distinct Banach space; see (Kovachki et al., 2024; Boullé & Townsend, 2024), for
overviews of the field of operator learning from a mathematical perspective. The development of
novel architectures for operator learning, as in (Li et al., 2021) and (Lu et al., 2021; Wang et al.,
2021) has allowed for its recent empirical success.

However, instead of leveraging architectural advances in the field, our insight is inspired by the work
of Lanthaler & Stuart (2025). The authors introduce the curse of parametric complexity for oper-
ator learning: given any compact subset K of an infinite-dimensional Banach space, there exists
an operator from K into another Banach space that can only be approximated with a functional of
neural network type (i.e., the composition of a linear operator to a Euclidean space and a neural
network) whose width and depth are exponential in the approximation error. Lanthaler & Stuart
(2025) circumvent this issue for first-order Hamilton–Jacobi–Bellman (HJB) equations with an ini-
tial condition, learning the operator that maps initial conditions to solutions. Associated with each
HJB equation is a system of ODEs, also referred to as the characteristics of the PDE. By learning
the flow map for the characteristics and then reconstructing the solution by interpolation, (Lanthaler
& Stuart, 2025, Theorem 5.1) beats the so-called curse of parametric complexity, enabling opera-
tor learning with neural networks of bounded width and depth using a method they label HJ-Nets.
Given the similarity between the forward-backward ODE system for MFGs and the characteristics
of first-order HJB equations, we take this as inspiration for our approach to learning MFG equilibria;
see Appendix F for a more in-depth comparison.

Related works. We clarify the connection between our contributions and several closely related
works on MFGs. Cohen et al. (2024) proposes and analyzes two methods to solve the master equa-
tion for finite-state MFGs, handling varying initial distributions. However, their methods do not
generalize to the setting of MFGs with varying cost functions as we consider. Chen et al. (2023);
Huang & Lai (2025) proposes operator learning methods for continuous space and time MFGs by
learning the solution as a function of the initial distribution. Although philosophically similar to
our operator learning approach, their methods do not apply to finite-state space MFGs, and neither
method provides a solution for parametrized families of MFGs with varying cost functions. Finally,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

reinforcement learning methods for population-dependent policies tackle discrete time MFGs (see
Perrin et al. (2022); Li et al. (2023); Zhang et al. (2025); Wu et al. (2025) for recent work in this
domain), while we focus on continuous time models. To our knowledge, even in discrete time, no
method has been proposed to solve parameterized families of MFGs at once.

Organization. In Section 2, we describe finite-state MFGs and the forward-backward ODE system
that characterizes MFG equilibria, including the assumptions that we place on parametrized families
of MFGs. Next, we describe the flow map, mapping parameters to equilibria. In Section 3, we de-
scribe our operator learning method in detail. In Section 4, we present the associated approximation,
parametric complexity, and generalization guarantees, with technical proofs in the appendix. Finally,
in Section 5, we provide numerical experiments for two finite-state MFGs often used as benchmarks
for numerical methods: a simple model of cybersecurity and a high-dimensional quadratic model.

2 BACKGROUND

We first provide provide a comprehensive overview of finite-state MFGs for the unfamiliar reader in
Section 2.1, referring to Appendix B for more details. Then, in Section 2.2, we describe the object
that we seek to approximate via operator learning: the flow map for a parametrized family of MFGs.

2.1 FINITE-STATE MFGS

Actions, controls and state dynamics. In a finite-state MFG, a representative player chooses
Markovian controls taking values in a compact set of rates, A ⊆ R+ := [0,∞). Specifically, the
player’s control α is a time-dependent d×d matrix with values in A, with rows (αy(t, x))y∈[d] and in-
dividual entries αy(t, x) determining the rate of transition between state x to state y at time t. When
starting with initial distribution η and using control α, the player’s state, denoted by X η,α

t ∈ [d] at
time t, obeys the dynamics of a continuous-time Markov chain with Xη,α

0 ∼ η and:

Pr(X η,α
t+h = y | X η,α

t = x) = αy(t, x)h+ o(h), h→ 0+. (2.1)

Cost function. The representative player aims to minimize a cost functional over the time interval
[0, T]. The cost depends not only on the player’s action and state at time t ∈ [0, T], but also
on the population distribution µ(t) ∈ P([d]), where P([d]) is the set of probability measures on
[d] := {1, . . . , d}, identifiable with the probability simplex in Rd. We denote by g the terminal
cost and f, F two running costs depending on the player’s action and the population distribution,
respectively. If the population distribution’s flow µ = (µ(s))s∈[0,T] is given, the representative
player aims to minimize the total expected cost over controls α = (αy(s, x))s∈[0,T],x∈[d],y∈[d] :

Jη(α, µ) = E

[∫ T

0

(
f(X η,α

s , α(s,X η,α
s)) + F (X η,α

s , µ(s))
)
ds+ g(X η,α

T , µ(T))

]
. (2.2)

Notice that since µ is a deterministic flow of measures and µ(0) = η is fixed, the control may depend
implicitly on the population distribution through time. When µ is given, this is a standard stochas-
tic optimal control problem. However, µ should be determined endogenously as the population
evolution resulting from the players’ optimal behavior.

MFG equilibrium. This leads us naturally to the idea of an MFG equilibrium, a form of Nash equi-
librium in which the population distribution is the same as the representative player’s distribution.
Definition 2.1. An MFG equilibrium for an initial distribution η ∈ P([d]) is a pair (α, µ) such
that: (1) α minimizes the cost functional Jη(·, µ) and (2) for every t ∈ [0, T], µ(t) = L(X η,α

t).

Observe that the MFG equilibrium depends on the initial distribution η ∈ P([d]). This presents
one of the primary difficulties that we aim to address: can one efficiently compute MFG equilibria
simultaneously for arbitrary initial distributions? Before tackling this question, we first explain how
one can solve an MFG for a fixed initial distribution.

Forward-backward ODE system. The two points in Definition 2.1 can be translated into two
equations: one for the value function u(t, x) of the representative player (i.e., the optimal cost
attainable at time t in state x), and one for the evolution of the population distribution. In finite-
state, continuous-time MFGs, both take the form of ordinary differential equations (ODEs). Then,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

MFG equilibria can be characterized as solutions of a forward–backward system of coupled ODEs,
each in dimension d. More precisely, (α, µ) is an MFG equilibrium if and only if αy(t, x) =
γ∗
x(y,∆yu(t, ·)) := argmina{f(x, a) + a · ∆yu(t, ·)} where ∆xf := (f(y) − f(x))y∈[d] ∈ Rd

plays the role of a discrete gradient and (u, µ) solve the MFG system:
d
dtu(t, x) + H̄(x, µ(t),∆xu(t, ·)) = 0, (t, x) ∈ [0, T]× [d] (HJB)
d
dtµ(t, x) =

∑
y∈[d] µ(t, y)γ

∗
x(y,∆yu(t, ·)), (t, x) ∈ [0, T]× [d] (KFP)

µ(0, x) = η(x), u(T, x) = g(x, µ(T)), x ∈ [d],

(2.3)

with H̄ being the extended Hamiltonian of the representative player’s control problem, defined in
terms of the Hamiltonian H as:

H(x, p) := mina

{
f(x, a) +

∑
y ̸=x aypy

}
, H̄(x, η, p) := H(x, p) + F (x, η). (2.4)

We will sometimes write uη and µη to stress the dependence on the initial distribution η. We refer
to the first equation as Hamilton–Jacobi–Bellman (HJB) equation and to the second equation as
the Kolmogorov–Fokker–Planck (KFP) equation.

The above MFG system admits a unique solution under standard assumptions; see Appendix B
and (Bayraktar & Cohen, 2018; Cecchin & Pelino, 2019) for more details. For simplicity, we focus
on the following sufficient condition:
Assumption 2.1. The minimizer γ∗(x, p) of the Hamiltonian H is unique. Moreover, H is strictly
concave in p and twice continuously differentiable with Lipschitz second derivatives. Finally, the
costs F and g are continuously differentiable with Lipschitz derivatives, and both are Lasry–Lions
monotone in the sense that for both ϕ = F, g,∑

x∈[d](ϕ(x, η)− ϕ(x, η̂))(ηx − η̂x) ≥ 0, η, η̂ ∈ P([d]). (2.5)

We note that the first part of this assumption holds when f is strictly convex in a. Additionally,
Lasry–Lions monotonicity can be interpreted as the player’s dislike for congestion (e.g., ηx close to
one). Under the assumptions outlined above, the forward-backward system in (2.3) attains a unique
solution (uη, µη), the MFG equilibrium. The argument proving existence follows from a fixed-point
argument via Schauder’s fixed-point theorem, while uniqueness results from Assumption 2.1. For
more details, see (Carmona & Delarue, 2018a, Section 7.2.2), for instance.

2.2 FLOW MAPS AND THE MASTER EQUATION

We now turn to the question of solving the MFG for any initial distribution η. Although solving the
MFG system (2.3) via Picard iteration for a given η ∈ P([d]) is generally tractable, we aim to solve
the system for all such η, and hence cannot rely solely on the MFG system.

Master field. We begin by considering the value function uη , which solves the HJB equation in the
MFG system (2.3) with initial distribution η. The value function depends implicitly on the mean
field, and we make this dependence explicit by introducing the master field U , defined such that
U(t, x, µη(t)) = uη(t) for all (t, x, η) ∈ [0, T] × [d] × P([d]). This object plays a central role
in theory of MFGs and establishing a rigorous connection to finite-player games; see (Bayraktar &
Cohen, 2018; Cecchin & Pelino, 2019) and Appendix C for more details. The master field U is
also very relevant for applications: if the master field is known, then it can be evaluated along any
flow of measures µ(t). Additionally, U(t, x, µ) is the optimal cost that a representative player can
obtain if starting in state x at time t, with the of the population starting in distribution µ and playing
according to the equilibrium control.

Methods, such as (Cohen et al., 2024), that learn U by exploiting its connection with a nonlinear
PDE called the master equation suffer from two limitations: (1) the computation of the loss function
is complex and costly, and (2) they cannot handle situations where the terminal cost varies, as the
loss function is defined in terms of a fixed terminal cost. For this reason, we develop a new approach,
relying on the concept of flow map.

Flow map. Instead of focusing on the aforementioned master field, we will consider a function
which maps the initial distribution and the terminal cost to the value function. In other words, we
would like to learn the operator (since g is a function)

Φ : (t, η, g) 7→ uη,g(t), (2.6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where uη,g is the value function for the MFG system (2.3) with initial distribution η ∈ P([d]) and
terminal cost g. We recall that the control can be recovered from the value function using the relation
α̂y(t, x) = γ∗

x(y,∆yu
η,g(t, ·)). In turn, obtaining Φ concretely gives access to the MFG equilibrium

for any initial condition η and terminal cost g. In principle, the operator could be extended to include
running costs and dynamics. We comment that, in line with the operator learning approach for HJB
equations proposed in (Lanthaler & Stuart, 2025), the MFG system in Equation (2.3) can be viewed
as the characteristics of the master field. In the same sense, our method is an operator learning
method because we learn the characteristics of the master field to obtain its solution operator.

Terminal cost parameterization. When endowed with an appropriate norm, the set of all Lipschitz
functions on the probability simplex is an infinite-dimensional Banach space. However, to obtain
precise approximation and generalization guarantees, we restrict our attention to a parameterized
class of terminal costs in this paper. Given a parameter κ ∈ Rk, we denote by gκ the corresponding
terminal cost function. Then, the flow map we focus on in the sequel is defined as follows.

Definition 2.2. Given a parametrized family of terminal conditions, the flow map Φ : [0, T] ×
P([d])×K → Rd is defined by Φ(t, η, κ) := uη,κ(t), where uη,κ is the value function for the MFG
system (2.3) with initial distribution η ∈ P([d]) and terminal cost gκ.

We make two key remarks. First, the initial distribution η and the parameter κ may be high-
dimensional, which justifies using neural networks to approximate Φ. Second, contrary to the
aforementioned master field U , the flow map Φ does not satisfy a PDE and hence it will require
a novel training algorithm, based on the MFG equilibrium characterization.

We conclude with a regularity condition that allows the rigorous study of the approximation of Φ by
neural networks in the next section. This assumption holds in the test cases consider below in our
numerical experiments (see Section 5).

Assumption 2.2. There exists a compact set of parameters K ⊆ Rk such that for all κ ∈ K, the
gκ : [d]×P([d])→ R satisfies Assumption 2.1. Moreover, for any κ, κ′ ∈ K, there exists a constant
C > 0 such that |gκ(x, µ)− gκ′(x, µ)| ≤ C|κ− κ′|, uniformly in (x, µ) ∈ [d]× P([d]).

3 ALGORITHM TO LEARN FLOW MAPS FOR MFGS

In this section, we outline our algorithmic approach to learning MFG equilibria, motivated by the
HJ-Net algorithm of Lanthaler & Stuart (2025). Recall that we aim to learn an approximation of the
flow map Φ : [0, T]×P([d])×K → R that maps a time, an initial condition, and a parameter κ ∈ K
(corresponding to a terminal condition gκ) to the value function uη,κ(t). As in (Lanthaler & Stuart,
2025, Section 4), learning the flow map requires sample trajectories. We approximate Φ by a neural
network which is trained using samples consisting of (t, η, κ) and the associated uη,κ(t).

Sampling method. We generate i.i.d. samples (η, κ) ∼ ρ, where ρ is a joint distribution on
P([d])×K. Then, we compute uη,κ. Since this value function is coupled with the flow of measures
µη,κ that solves the MFG system (2.3), we solve this system by Picard iteration: given an initial
guess, we alternatively solve the forward KFP equation and the backward HJB equation to update
µ and u respectively. We thus obtain an (approximate) solution of (2.3). In our implementation, we
use a temporal finite-difference scheme with a mesh of M steps, yielding an approximate solution
(ũη,g

i , µ̃η,g
i)i=0,...,M . See Appendix D for additional details. We denote the Picard iteration map for

an MFG with terminal condition g by Γg : P([d]) → (Rd)M+1. Intuitively, Γg : η 7→ uη,g . In
practice, Γg(η) is the vector of values ũη,g

j ≈ uη(jT/M, ·) ∈ Rd, j = 0, . . . ,M .

Architecture. We approximate Φ by a neural network. Since our goal in the next section is to
obtain theoretical guarantees, we focus here on a relatively simple architecture, but more complex
architectures are explored in our numerical experiments. We limit ourselves to fully-connected
ReLU neural networks ϕ : Rk1 → Rk2 of depth L. Following the convention in (Jiao et al.,
2023), from which we derive our generalization guarantee, such networks are recursively defined by
ϕ0(x) = x, ϕj+1(x) = σ(Ajϕj(x) + bj) for j = 1, . . . , L− 1, and ϕ(x) := ALϕL(x). Above, the
weights satisfy Aj ∈ RNj+1×Nj for j = 0, . . . , L and Bj ∈ RNj+1 for j = 0, . . . , L − 1, where
N0 = k1 and NL+1 = k2. By the width of a neural network, we refer to W := max{N1, . . . , NL},
the maximum number of neurons in a hidden layer. For brevity, we denote such a network by
ϕ(x;A, b), where A = (A0, . . . , AL−1) and b = (b0, . . . , bL−1).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Training method. We learn the flow map by training such a neural network on the samples gen-
erated by Picard iteration. To alleviate the notation, we denote x = (jT/M, η, κ) and y = ũη,κ

j ,
where j ∈ [M] and we recall that ũη,κ is the discrete time approximation of the value function uη,κ.
Given samples {xi, yi}ni=1 from the procedure outlined above, we minimize the empirical loss

Ln(A, b; {xi, yi}ni=1) :=
1
n

∑n
i=1 ℓ(ϕ(xi;A, b), yi), (3.1)

where ℓ : R × R → R is a convex loss and the minimum is taken over A = {Aj}Lj=0 and
b = {bj}L−1

j=0 simultaneously. In practice, this is accomplished using batch stochastic gradi-
ent descent (SGD) with a standard optimizer such as AdamW (Loshchilov & Hutter, 2019). If
(A∗, b∗) := argminA,b Ln(A, b; {xi, yi}ni=1) (noting that these parameters depend on the sampled
trajectories), we define our approximate flow map Ψn(t, η, κ) := ϕ(t, η, κ;A∗, b∗). This procedure
is summarized in Algo. 1 below (written using SGD as the optimizer for simplicity).

Algorithm 1 Sampling and Learning Flow Map for a Family of MFGs

Input: Number of time steps M ∈ N, parameter set K ⊂ Rk, number of samples n ∈ N, Picard
solver Γ, number of training steps mtrain, mini-batch size nmini < n, learning rate {γj}j∈N

1: Sample {(ηi, κi)}ni=1 uniformly and independently in P([d])×K
2: for i = 1, . . . n do ▷ Sample generation via Picard iteration
3: ũ← Γgκi

(ηi)

4: Draw j ∼ Unif([M])
5: xi ← (jT/M, ηi, κi)
6: yi ← ũj

7: Initialize neural network parameters (A(0), b(0))
8: for j = 1, . . . ,mtrain do ▷ Train neural network approximator
9: Sample mini-batch {(xi, yi)}nmini

i=1 from {(xi, yi)}ni=1

10: (A(j), b(j))← (A(j), b(j))− γj∇A,bLnmini
(A, b; {xi, yi}nmini

i=1) ▷ Gradient step
11: return Ψ̂n(t, η, κ) = ϕ(t, η, κ;A(mtrain), b(mtrain))

4 THEORETICAL GUARANTEES

We provide the following two theoretical guarantees for our proposed approach:

(1) Approximation error (Corollary 4.3): There exists a ReLU neural network ap-
proximating the true flow map Φ with error O(K−1/(d+k+2)), width W =
O(K(2(d+k)+3)/(2(d+k)+4)), and depth L = O(log(d + k + 1)), all quantified in terms
of a bound K ≥ 1 on the weights of the network, the number of states d of the underlying
family of MFGs, and the dimension k of the set that parametrizes the family of MFGs.

(2) Generalization error (Corollary 4.5): Learning the flow map via empirical risk mini-
mization with n samples yields a neural network approximation with expected excess risk
O(n−1/(d+k+4) log(n)), up to any error from the optimization process.

These results rely on a preliminary regularity result about the regularity of the flow map Φ that we
establish in Appendix E:
Theorem 4.1. Under Assumptions 2.1 and 2.2, the flow map Φ : [0, T]×P([d])×K → Rd, given
by Φ(t, η, κ) = ut0,η,κ(t, ·), is jointly Lipschitz in its inputs: there exists C > 0 such that

|Φ(t, η1, κ1)− Φ(s, η2, κ2)| ≤ C(|t− s|+ |η1 − η2|+ |κ1 − κ2|)
for all (t, η1, κ1), (s, η2, κ2) ∈ [0, T]× P([d])×K.

The approach of Lanthaler & Stuart (2025), which relies on (Yarotsky, 2017, Theorem 1), cannot be
used in our case (see Rem. E.1). Instead, we develop an alternative analysis building upon Jiao et al.
(2023). Given a ReLU neural network with weight matrices {Aj}Lj=0 and biases {bj}L−1

j=0 , let

p({Aj}, {bj}) := ∥AL∥
L−1∏
j=0

max{∥(Aj , bj)∥, 1}.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Then, the set of neural networks with width W , depth L, and norm bound satisfying
p({Aj}, {bj}) ≤ K is denoted by NN (W,L,K). In this class of neural networks, (Jiao et al.,
2023, Theorem 3.2) provides the following approximation result. Below, the space of functions
C0,1([0, 1]d) refers to the space of Lipschitz continuous functions on [0, 1]d.
Proposition 4.2. There exists constants c, C > 0 such that for any K ≥ 1, W ≥ cK(2d+1)/(2d+2),
and L ≥ 2⌈log(d)⌉ + 2, the worst-case approximation error of the class NN (W,L,K) for Φ ∈
C0,1([0, 1]d) satisfies: supΦ∈C0,1([0,1]d) infΨ∈NN (W,L,K) ∥Φ−Ψ∥C([0,1]d) ≤ CK−1/(d+1).

More concisely, over the class C0,1([0, 1]d) of Lipschitz functions, the worst-case approximation
error with a sufficiently wide and deep ReLU neural network can be quantified precisely in terms of
a bound on the weights of the approximating networks. Using Theorem 4.1, we obtain the following
as a corollary, with proof in Appendix E:
Corollary 4.3. Assume that Assumptions 2.1 and 2.2 hold. Then, for any K ≥ 1 and ε >
0, there exists a neural network Ψ ∈ NN (W,L,K) with weight bound K, width W ≥
c(diam(K), T)K(2(d+k)+3)/(2(d+k)+4), and depth L ≥ 2⌈log(d+ k + 1)⌉+ 2 such that

∥Φ−Ψ∥C([0,T]×P([d])×K) ≤ C(diam(K), T)K−1/(d+k+2) + ε,

where Φ : [0, T]× P([d])×K → Rd is the flow map from Definition 2.2.

This result is particularly useful because of the generalization guarantees that arise from Rademacher
complexity estimates for families of neural networks with bounded weights. For instance, (Jiao et al.,
2023, Theorem 4.1) provides such a guarantee, in the context of regression, while (Jiao et al., 2023,
Corollary 4.2) provides an analogous guarantee for noiseless regression problems with regulariza-
tion. Suppose that we have n samples {(xi, yi)}ni=1 such that xi

i.i.d.∼ ρ, a distribution supported on
[0, 1]d, and yi = Φ(xi) with i = 1, . . . , n, where Φ : [0, 1]d → R satisfies Φ ∈ C0,1([0, 1]d) (i.e.,
it is Lipschitz continuous). Then, given fixed widths, depths, and weight bounds W,L,K > 0, the
empirical risk is given exactly as in Equation (3.1), and and the empirical risk minimizer is

Ψn := argmin
Ψ∈NN (W,L,K)

Ln(Ψ; {(xi, yi)}ni=1). (4.1)

We take as our convex loss ℓ(x, y) = (x − y)2 for simplicity, as in (Jiao et al., 2023). Note that,
for each Ψ ∈ NN (W,L,K), this quantity provides an unbiased estimate of the population risk
L(Ψ) := Exi∼ρ[ℓ(xi,Ψ(xi))]. Now, suppose that we have computed the empirical risk minimizer
in (4.1), up an optimization error εopt > 0, via stochastic gradient descent, yielding a neural network
Ψ̂n that satisfies

Ln(Ψ̂n) ≤ inf
Ψ∈NN (W,L,K)

Ln(Ψ) + εopt. (4.2)

Then, we aim to quantify the excess risk, defined as ∥Ψ̂n −Φ∥2L2(ρ) := L(Ψ̂n)−L(Φ). A standard
computation then shows that the expected excess risk, with expectation taken over the samples
{xi}ni=1, is given by

E[∥Ψ̂n − Φ∥2L2(ρ)] ≤ inf
Ψ∈NN (W,L,K)

∥Ψ− Φ∥2L2(ρ) + E[L(Ψ̂n)− Ln(Ψ̂n)] + εopt.

To quantify the expected excess risk, it suffices to quantify the approximation error and the general-
ization error, the first and second terms in the above bound respectively. (Jiao et al., 2023, Theorem
4.1) combines Proposition 4.2 and a symmetrization argument to show the following:
Proposition 4.4. If Φ ∈ C0,1([0, 1]d), then there exists C̃ > 0 such that for K = O(n(d+1)/(2d+6)),
W ≥ C̃K(2d+1)/(2d+2), L ≥ 2⌈log(d)⌉ + 3, any neural network Ψ̂n ∈ NN (W,L,K) satisfy-
ing (4.2) also satisfies: E[∥Ψ̂n − Φ∥2L2(ρ)]− εopt ≤ C̃n−1/(d+3) log(n).

In general, it is difficult to quantify the optimization error εopt. However, with sufficient hyperpa-
rameter tuning to stabilize training, we can safely assume that εopt is small. To conclude, Proposi-
tion 4.4 applies nearly verbatim in our setting, up to a rescaling argument found in Appendix E:
Corollary 4.5. If K = O(n(d+k+2)/(2(d+k)+8), then under the assumptions of Corollary 4.3, min-
imizing the empirical loss in Equation (3.1) over n samples (generated via Algo. 1) yields a neural
network Ψ̂n that satisfies, up to an optimization error εopt > 0, E[∥Ψ̂n − Φ∥2L2(ρ)] − εopt ≤
C̃(diam(K), T)n−1/(d+k+4) log(n). Above, ρ is the uniform distribution over [0, T]×P([d])×K.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 NUMERICAL EXPERIMENTS

In this section, we provide numerical evidence for the accuracy and low parametric complexity of our
method on two examples. First, we demonstrate our scheme’s accuracy on a simple cybersecurity
model in dimension d = 4. Then, we consider high-dimensional quadratic MFGs, illustrating that
our approach maintains its accuracy as the dimension of the underlying family of MFGs increases.
Full experimental details are in Appendix A.

Example 1: Low-Dimensional Cybersecurity Model. We begin with a cybersecurity model
introduced by Kolokoltsov & Bensoussan (2016) and studied in (Cohen et al., 2024, Section 7.4).
Players can either protect or defend their computers against infection by malware. Before passing
to the mean-field limit, each player can either be infected by a hacker or by interacting with another
infected player. The player is either defended or undefended (D or U) and susceptible or infected (S
or I), leading to a state space with d = 4 states: {DS,DI, US, UI}. The player determines whether
to defend or not with a switching parameter ρ > 0, and the player pays cost kD > 0 for defending
and kI > 0 if they are infected. The running cost is f(x, a) = kD1{DS,DI}(x) + kI1{DI,UI}(x),
and F (x, η) ≡ 0. The player’s control is simply a ∈ {0, 1}, and this yields a transition matrix
exactly as in (Cohen et al., 2024, Section 7.4). Importantly, we modify the original example by
including a terminal cost, penalizing infected players at the terminal time T according to a parameter
κ ≥ 0: gκ(x, η) = κ1{DI,UI}(x). We use Algo. 1 with n = 2000 samples, mtrain = 2000 epochs
with batches of size mmini = 64. After training the neural network, we evaluate it on several pairs
(η, κ) to obtain û and compare with the solution obtained by solving the ODE system with this pair
of initial and terminal conditions. Fig. 2 shows that our method performs well on random samples
with κ ∈ [0, 10] and arbitrary η ∈ P([4]). Appendix G contains more experiments with this model,
including an illustration of the case that κ = 0 (i.e., the setting considered in (Cohen et al., 2024)).

0 2 4 6 8 10
Time (t)

0

2

4

6

8

u u(DI)
u(DI)
u(DS)
u(DS)
u(UI)
u(UI)
u(US)
u(US)

0 2 4 6 8 10
Time (t)

0

1

2

3

4

u u(DI)
u(DI)
u(DS)
u(DS)
u(UI)
u(UI)
u(US)
u(US)

0 2 4 6 8 10
Time (t)

0

1

2

3

4

5

6

7

8

u u(DI)
u(DI)
u(DS)
u(DS)
u(UI)
u(UI)
u(US)
u(US)

0 2 4 6 8 10
Time (t)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

u

u(DI)
u(DI)
u(DS)
u(DS)
u(UI)
u(UI)
u(US)
u(US)

Figure 2: Learned value function û and true value function u for four random initial distributions η
and final cost parameter κ ∈ [0, 10], both drawn uniformly at random from P([4]) and the interval
[0, 10], respectively. Each curve corresponds to one state in {DS,DI, US,UI}.

Example 2: High-Dimensional Quadratic Models. We also consider the quadratic cost model,
as in (Cohen et al., 2024, Section 7.1), also analyzed in (Cecchin & Pelino, 2019, Example 1) and
(Bayraktar & Cohen, 2018, Example 3.1) via the master equation. This setting allows us to test our
method on high-dimensional MFGs, and the assumptions that we impose on the parametrized family
of terminal costs remain easily verifiable. We take a quadratic running cost and a linear mean-field
cost, given by f(x, a) := b

∑
y ̸=x(ay − 2)2, F (x, η) := ηx, with action space A := [1, 3] and

b = 4. As shown in (Cohen et al., 2024, Section 7.1), letting T = 1 will ensure that the resulting
Hamiltonian satisfies our assumptions. Therein, the authors take g(x, η) ≡ 0, but we convert their
quadratic model into a parametrized family of MFGs by taking instead κ ∈ [0, 1]d =: K and
considering terminal costs of the form gκ(x, η) = κx + ηx. The inclusion of κ in the terminal cost
has the effect of pushing the player away from states x ∈ [d] such that κx is large and towards
states with small κx, with the mean-field term ηx discouraging crowding. As our numerical results
demonstrate, the value function depends heavily on the parameter κ, making this a challenging task,
especially as d increases.

In Fig. 3, we demonstrate the success of our method in learning the flow map for this family of
MFGs in dimensions d = 3, d = 4, d = 5, and d = 10 respectively. Beyond dimension d = 10,
learning becomes increasingly unstable, as the number of samples required to learn to high preci-
sion becomes intractable to generate in a reasonable amount of time using our own computational
resources. However, in Appendix G, we show that by passing to a time discretization, our method

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

still generalizes well to dimension d = 20. Therein, we also provide evidence that using a neu-
ral network architecture with skip connections and layer normalization (e.g., ResNet) can improve
training stability in dimension d = 10. Finally, Fig. 4, we illustrate both the training and test loss
over the course of Algo. 1 for the quadratic model in dimension d = 3. Averaging over five trials,
we provide empirical evidence for both Corollary 4.3 and Corollary 4.5, showing that increasing
width results in models that (1) learn the flow map to greater accuracy (Fig. 4a) and (2) generalize
better to unseen samples (Fig. 4b).

0.0 0.2 0.4 0.6 0.8 1.0
Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

u

u(0)
u(0)
u(1)
u(1)
u(2)
u(2)

(a) d = 3

0.0 0.2 0.4 0.6 0.8 1.0
Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

u
u(0)
u(0)
u(1)
u(1)
u(2)
u(2)
u(3)
u(3)

(b) d = 4

0.0 0.2 0.4 0.6 0.8 1.0
Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

u

(c) d = 5

0.0 0.2 0.4 0.6 0.8 1.0
Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

u

(d) d = 10

Figure 3: Comparison of true value functions u and learned value functions û for randomly sampled
pairs (η, κ) in dimensions d = 3, 4, 5, 10 respectively. Averages are taken across 5 trials, and shaded
regions on approximate curves indicate error bars of one standard deviation, computed across trials.

0 500 1000 1500 2000
Epoch

10 6

10 5

10 4

10 3

10 2

10 1

100

101

Tr
ai

ni
ng

 L
os

s (
Sm

oo
th

ed
 L

1 L
os

s)

Training Loss vs. Epoch for Different Widths
Train Loss, W = 32
Train Loss, W = 32
Train Loss, W = 64
Train Loss, W = 64
Train Loss, W = 128
Train Loss, W = 128

(a) Training loss vs. epoch for d = 3 dimensional
quadratic model and W = 32, 64, 128.

0 500 1000 1500 2000
Epoch

10 3

10 2

Te
st

 L
os

s (
Sm

oo
th

ed
 L

1 L
os

s)

Test Loss vs. Epoch for Different Widths
Test Loss, W = 32
Test Loss, W = 32
Test Loss, W = 64
Test Loss, W = 64
Test Loss, W = 128
Test Loss, W = 128

(b) Test loss vs. epoch for d = 3 dimensional
quadratic model and W = 32, 64, 128.

Figure 4: Comparison of training loss and test loss, evaluated on held-out data every 25 epochs, for
ReLU neural networks with width W = 32, 64, 128, depth L = 4, and n = 4000 samples. Shaded
regions represent one standard deviation above/below the mean of five trials. As W increases, the
optimization procedure becomes more unstable but both the training and test losses decrease.

6 CONCLUSION

We present an operator learning method for solving parametrized families of finite-state MFGs. To
our knowledge, our approach provides the most general learning-based framework for solving finite-
state MFGs. Our theoretical guarantees rigorously quantify the approximation error, parametric
complexity, and generalization performance, and our numerical experiments illustrate the empirical
accuracy of our method for a variety of common finite-state MFGs. Our method extends naturally
to MFGs with parametrized running costs, with only slight modifications to our regularity proofs
required and no modification to Algo. 1. We believe that our sampling algorithm, although intuitive,
could be improved to gain greater coverage of the flow map’s domain, allow for more stable opti-
mization, and enable better generalization. Techniques such as oversampling in regions with poor
coverage or adversarial training may prove beneficial. Future work will also include extending our
results to continuous state-space MFGs and infinite-dimensional spaces of cost functions, for which
powerful operator learning architectures (e.g., DeepONets or FNO) will likely be instrumental.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement. We include a detailed description of our numerical experiments, in-
cluding computational resources used, training methodology, and hyperparameters for all experi-
ments in Appendix A. Additionally, we have submitted all code used for experiments presented in
Section 5 and Appendix G as supplementary material. For our theoretical results, all assumptions
are provided in Section 2.1 and expanded upon in Appendix B, while our technical proofs can all
found be found in Appendix E.

REFERENCES

Alexander Aurell, René Carmona, Gökçe Dayanikli, and Mathieu Laurière. Optimal incentives to
mitigate epidemics: a Stackelberg mean field game approach. SIAM J. Control Optim., 60(2):
S294–S322, 2022. ISSN 0363-0129. doi: 10.1137/20M1377862. URL https://doi-org.
proxy.lib.umich.edu/10.1137/20M1377862.

Erhan Bayraktar and Asaf Cohen. Analysis of a finite state many player game using its master
equation. SIAM Journal on Control and Optimization, 56(5):3538–3568, 2018. doi: 10.1137/
17M113887X. URL https://doi.org/10.1137/17M113887X.

Nicolas Boullé and Alex Townsend. Chapter 3 - A mathematical guide to operator learning. In
Siddhartha Mishra and Alex Townsend (eds.), Numerical Analysis Meets Machine Learning, vol-
ume 25 of Handbook of Numerical Analysis, pp. 83–125. Elsevier, 2024.

Pierre Cardaliaguet, François Delarue, Jean-Michel Lasry, and Pierre-Louis Lions. The master
equation and the convergence problem in mean field games, volume 201 of Annals of Mathematics
Studies. Princeton University Press, Princeton, NJ, 2019. ISBN 978-0-691-19071-6; 978-0-691-
19070-9. doi: 10.2307/j.ctvckq7qf. URL https://doi.org/10.2307/j.ctvckq7qf.

René Carmona and François Delarue. Probabilistic theory of mean field games with applications.
I, volume 83 of Probability Theory and Stochastic Modelling. Springer, Cham, 2018a. ISBN
978-3-319-56437-1; 978-3-319-58920-6. Mean field FBSDEs, control, and games.

René Carmona and François Delarue. Probabilistic theory of mean field games with applications. II,
volume 84 of Probability Theory and Stochastic Modelling. Springer, Cham, 2018b. ISBN 978-
3-319-56435-7; 978-3-319-56436-4. Mean field games with common noise and master equations.

René Carmona and Mathieu Laurière. Convergence analysis of machine learning algorithms for
the numerical solution of mean field control and games I: The ergodic case. SIAM Journal on
Numerical Analysis, 59(3):1455–1485, 2021.

René Carmona and Mathieu Laurière. Convergence analysis of machine learning algorithms for the
numerical solution of mean field control and games: II—the finite horizon case. The Annals of
Applied Probability, 32(6):4065–4105, 2022.

Alekos Cecchin and Markus Fischer. Probabilistic approach to finite state mean field games. Applied
Mathematics & Optimization, 2018. ISSN 1432-0606. URL https://doi.org/10.1007/
s00245-018-9488-7.

Alekos Cecchin and Guglielmo Pelino. Convergence, fluctuations and large deviations for fi-
nite state mean field games via the master equation. Stochastic Processes and their Ap-
plications, 129(11):4510 – 4555, 2019. ISSN 0304-4149. doi: https://doi.org/10.1016/j.
spa.2018.12.002. URL http://www.sciencedirect.com/science/article/pii/
S030441491830694X.

Xu Chen, Yongjie FU, Shuo Liu, and Xuan Di. Physics-informed neural operator for coupled
forward-backward partial differential equations. In 1st Workshop on the Synergy of Scientific
and Machine Learning Modeling @ ICML2023, 2023. URL https://openreview.net/
forum?id=iLwfzf33Ub.

Asaf Cohen, Mathieu Laurière, and Ethan Zell. Deep backward and Galerkin methods for the finite
state master equation. Journal of Machine Learning Research, 25(401):1–50, 2024.

10

https://doi-org.proxy.lib.umich.edu/10.1137/20M1377862
https://doi-org.proxy.lib.umich.edu/10.1137/20M1377862
https://doi.org/10.1137/17M113887X
https://doi.org/10.2307/j.ctvckq7qf
https://doi.org/10.1007/s00245-018-9488-7
https://doi.org/10.1007/s00245-018-9488-7
http://www.sciencedirect.com/science/article/pii/S030441491830694X
http://www.sciencedirect.com/science/article/pii/S030441491830694X
https://openreview.net/forum?id=iLwfzf33Ub
https://openreview.net/forum?id=iLwfzf33Ub

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kai Cui and Heinz Koeppl. Approximately solving mean field games via entropy-regularized deep
reinforcement learning. In International Conference on Artificial Intelligence and Statistics, pp.
1909–1917. PMLR, 2021.

Romuald Elie, Julien Perolat, Mathieu Laurière, Matthieu Geist, and Olivier Pietquin. On the con-
vergence of model free learning in mean field games. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 7143–7150, 2020.

Jean-Pierre Fouque and Zhaoyu Zhang. Deep learning methods for mean field control problems
with delay. Frontiers in Applied Mathematics and Statistics, 6(11), 2020.

Diogo Gomes, Roberto M Velho, and Marie-Therese Wolfram. Socio-economic applications of
finite state mean field games. Phil. Trans. R. Soc. A, 372(2028):20130405, 2014.

Diogo A. Gomes, Joana Mohr, and Rafael Rigão Souza. Continuous time finite state mean
field games. Appl. Math. Optim., 68(1):99–143, 2013. ISSN 0095-4616. doi: 10.1007/
s00245-013-9202-8. URL http://dx.doi.org.proxy.lib.umich.edu/10.1007/
s00245-013-9202-8.

Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang. Learning mean-field games. Advances in
Neural Information Processing Systems, 32:4966–4976, 2019.

Jiequn Han, Ruimeng Hu, and Jihao Long. Learning high-dimensional McKean–Vlasov forward-
backward stochastic differential equations with general distribution dependence. SIAM Journal
on Numerical Analysis, 62(1):1–24, 2024.

Han Huang and Rongjie Lai. Unsupervised solution operator learning for mean-field games. Journal
of Computational Physics, 537:114057, September 2025. ISSN 0021-9991. doi: 10.1016/j.jcp.
2025.114057. URL http://dx.doi.org/10.1016/j.jcp.2025.114057.

Minyi Huang, Roland P. Malhamé, and Peter E. Caines. Large population stochastic dynamic games:
Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf.
Syst., 6(3):221–251, 2006. ISSN 1526-7555. URL http://projecteuclid.org.proxy.
lib.umich.edu/euclid.cis/1183728987.

Yuling Jiao, Yang Wang, and Yunfei Yang. Approximation bounds for norm constrained neural
networks with applications to regression and GANs. Applied and Computational Harmonic
Analysis, 65:249–278, July 2023. ISSN 1063-5203. doi: 10.1016/j.acha.2023.03.004. URL
http://dx.doi.org/10.1016/j.acha.2023.03.004.

Vassili N. Kolokoltsov and Alain Bensoussan. Mean-field-game model for botnet defense in cyber-
security. Appl. Math. Optim., 74(3):669–692, 2016. ISSN 0095-4616,1432-0606. doi: 10.1007/
s00245-016-9389-6. URL https://doi.org/10.1007/s00245-016-9389-6.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural Operator: Learning Maps Between Function Spaces
With Applications to PDEs. Journal of Machine Learning Research, 24(89):1–97, 2023. URL
http://jmlr.org/papers/v24/21-1524.html.

Nikola B. Kovachki, Samuel Lanthaler, and Andrew M. Stuart. Chapter 9 - Operator learning: Algo-
rithms and analysis. In Siddhartha Mishra and Alex Townsend (eds.), Numerical Analysis Meets
Machine Learning, volume 25 of Handbook of Numerical Analysis, pp. 419–467. Elsevier, 2024.
doi: https://doi.org/10.1016/bs.hna.2024.05.009. URL https://www.sciencedirect.
com/science/article/pii/S1570865924000097.

Thorsten Kurth, Shashank Subramanian, Peter Harrington, Jaideep Pathak, Morteza Mardani, David
Hall, Andrea Miele, Karthik Kashinath, and Anima Anandkumar. Fourcastnet: Accelerating
global high-resolution weather forecasting using adaptive fourier neural operators. In Proceedings
of the Platform for Advanced Scientific Computing Conference, PASC ’23, pp. 1–11. ACM, June
2023. doi: 10.1145/3592979.3593412. URL http://dx.doi.org/10.1145/3592979.
3593412.

11

http://dx.doi.org.proxy.lib.umich.edu/10.1007/s00245-013-9202-8
http://dx.doi.org.proxy.lib.umich.edu/10.1007/s00245-013-9202-8
http://dx.doi.org/10.1016/j.jcp.2025.114057
http://projecteuclid.org.proxy.lib.umich.edu/euclid.cis/1183728987
http://projecteuclid.org.proxy.lib.umich.edu/euclid.cis/1183728987
http://dx.doi.org/10.1016/j.acha.2023.03.004
https://doi.org/10.1007/s00245-016-9389-6
http://jmlr.org/papers/v24/21-1524.html
https://www.sciencedirect.com/science/article/pii/S1570865924000097
https://www.sciencedirect.com/science/article/pii/S1570865924000097
http://dx.doi.org/10.1145/3592979.3593412
http://dx.doi.org/10.1145/3592979.3593412

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Fer-
ran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose,
Stephan Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir Mo-
hamed, and Peter Battaglia. Learning skillful medium-range global weather forecasting. Science,
382(6677):1416–1421, December 2023. ISSN 1095-9203. doi: 10.1126/science.adi2336. URL
http://dx.doi.org/10.1126/science.adi2336.

Samuel Lanthaler and Andrew M Stuart. The parametric complexity of operator learning. IMA
Journal of Numerical Analysis, August 2025. ISSN 1464-3642. doi: 10.1093/imanum/draf028.
URL http://dx.doi.org/10.1093/imanum/draf028.

Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Jpn. J. Math., 2(1):229–260, 2007.
ISSN 0289-2316. doi: 10.1007/s11537-007-0657-8. URL http://dx.doi.org.proxy.
lib.umich.edu/10.1007/s11537-007-0657-8.

Mathieu Laurière. Numerical methods for mean field games and mean field type control, 2021.
ISSN 2324-7088. URL http://dx.doi.org/10.1090/psapm/078/06.

Pengdeng Li, Xinrun Wang, Shuxin Li, Hau Chan, and Bo An. Population-size-aware policy opti-
mization for mean-field games. In The Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/forum?id=fB4V-2QvCEm.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier Neural Operator for Parametric Par-
tial Differential Equations. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=c8P9NQVtmnO.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, March 2021. ISSN 2522-5839. doi: 10.1038/
s42256-021-00302-5. URL http://dx.doi.org/10.1038/s42256-021-00302-5.

Shunyuan Mao, Ruobing Dong, Lu Lu, Kwang Moo Yi, Sifan Wang, and Paris Perdikaris. Pp-
donet: Deep operator networks for fast prediction of steady-state solutions in disk–planet sys-
tems. The Astrophysical Journal Letters, 950(2):L12, June 2023. ISSN 2041-8213. doi: 10.3847/
2041-8213/acd77f. URL http://dx.doi.org/10.3847/2041-8213/acd77f.

Weichao Mao, Haoran Qiu, Chen Wang, Hubertus Franke, Zbigniew Kalbarczyk, Ravishankar Iyer,
and Tamer Basar. A mean-field game approach to cloud resource management with function
approximation. Advances in Neural Information Processing Systems, 35:36243–36258, 2022.

Ming Min and Ruimeng Hu. Signatured deep fictitious play for mean field games with common
noise. In International Conference on Machine Learning, pp. 7736–7747. PMLR, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Sarah Perrin, Mathieu Laurière, Julien Pérolat, Romuald Élie, Matthieu Geist, and Olivier Pietquin.
Generalization in mean field games by learning master policies. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 9413–9421, 2022.

Jayakumar Subramanian and Aditya Mahajan. Reinforcement learning in stationary mean-field
games. In Proceedings of the 18th International Conference on Autonomous Agents and MultiA-
gent Systems, pp. 251–259, 2019.

12

http://dx.doi.org/10.1126/science.adi2336
http://dx.doi.org/10.1093/imanum/draf028
http://dx.doi.org.proxy.lib.umich.edu/10.1007/s11537-007-0657-8
http://dx.doi.org.proxy.lib.umich.edu/10.1007/s11537-007-0657-8
http://dx.doi.org/10.1090/psapm/078/06
https://openreview.net/forum?id=fB4V-2QvCEm
https://openreview.net/forum?id=c8P9NQVtmnO
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://dx.doi.org/10.1038/s42256-021-00302-5
http://dx.doi.org/10.3847/2041-8213/acd77f
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric
partial differential equations with physics-informed deeponets. Science Advances, 7(40), October
2021. ISSN 2375-2548. doi: 10.1126/sciadv.abi8605. URL http://dx.doi.org/10.
1126/sciadv.abi8605.

Zida Wu, Mathieu Lauriere, Matthieu Geist, Olivier Pietquin, and Ankur Mehta. Population-aware
online mirror descent for mean-field games with common noise by deep reinforcement learning,
2025. URL https://arxiv.org/abs/2509.03030.

Batuhan Yardim and Niao He. Exploiting approximate symmetry for efficient multi-agent rein-
forcement learning. In Necmiye Ozay, Laura Balzano, Dimitra Panagou, and Alessandro Abate
(eds.), Proceedings of the 7th Annual Learning for Dynamics & Control Conference, volume
283 of Proceedings of Machine Learning Research, pp. 31–44. PMLR, 04–06 Jun 2025. URL
https://proceedings.mlr.press/v283/yardim25a.html.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:
103–114, October 2017. ISSN 0893-6080. doi: 10.1016/j.neunet.2017.07.002. URL http:
//dx.doi.org/10.1016/j.neunet.2017.07.002.

Chenyu Zhang, Xu Chen, and Xuan Di. Stochastic semi-gradient descent for learning mean field
games with population-aware function approximation. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
tfO07iz0b9.

A EXPERIMENTAL DETAILS

As noted in our reproducibility statement, we provide all experimental details in order to recreate
our results from Section 5 and in Appendix G. Smaller experiments in the cybersecurity example
were carried out a 2020 MacBook Pro with an Apple M1 chip and 8GB RAM. For the purposes
of timing (see Appendix G), higher-dimensional experiments in the quadratic example were instead
run on a single NVIDIA A100 TensorCore GPU with 40GB of VRAM via Google Colaboratory.
All experiments were implemented in the PyTorch machine learning library in Python Paszke et al.
(2019). Code for our numerical experiments can be found in our submitted supplementary material.

To best align with our theoretical results in Section 4, we utilize fully-connected ReLU neural
networks for all experiments unless otherwise specified. In all cases, we used mini-batches with
nmini = 64 samples for each gradient step during the training loop. All hyperparameters were se-
lected via a grid search, with tuned parameters being: initial learning rate, number of hidden layers
(depth), width of each hidden layer, number of training epochs, and number of training samples. In
each case, we validated our models by testing on 20% of the training data, held-out from the training
set for validation. In many cases, we found it beneficial to utilize early stopping to prevent overfit-
ting; for higher-dimensional examples, training for fewer epochs appears to provide better results.
Finally, in all cases, we found that a cosine annealing learning rate scheduler performed best for op-
timization; we used the default parameters for the CosineAnnealingLR scheduler, as implemented
in PyTorch’s torch.optim package. We also found that optimization was more slightly stable
for higher-dimensional cases when using: (1) the AdamW optimizer with the default weight decay
parameter, λ = 0.01, and (2) smooth L1-loss in place of L2-loss. Nonetheless, we are able to obtain
similar results with L2-loss, in line with our theoretical framework in Section 4.

In Tables 1 and 2 below, we describe the specific architectures and hyperparameters that we chose
for each experiment in Section 5, including depth, width, number of training epochs, optimizer pa-
rameters, and number of training samples. Finally, in Appendix G, we provide additional numerical
experiments to showcase the accuracy of our method for higher-dimensional quadratic models. De-
parting from feedforward ReLU networks, we are able to obtain even better performance in d = 10
using a ResNet architecture with depth L = 4, two layers of width 128, two hidden layers with width
64, skip connections between all layers, layer normalization, and dropout with probability p = 0.05.
See the results of this experiment in Fig. 5 below.

Our submitted code, provided in the supplementary material, is organized as follows:

13

http://dx.doi.org/10.1126/sciadv.abi8605
http://dx.doi.org/10.1126/sciadv.abi8605
https://arxiv.org/abs/2509.03030
https://proceedings.mlr.press/v283/yardim25a.html
http://dx.doi.org/10.1016/j.neunet.2017.07.002
http://dx.doi.org/10.1016/j.neunet.2017.07.002
https://openreview.net/forum?id=tfO07iz0b9
https://openreview.net/forum?id=tfO07iz0b9

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• utils contains a generic class for MFG operators, as well as two scripts defining the
cybersecurity and quadratic models from Section 5.

• generation contains two scripts for sampling trajectories from the cybersecurity and
quadratic models, respectively.

• tests contains
– train cs operator time.py and train quad operator time.py,

which implement Algorithm 1 for the two models in Section 5, and
– train cs operator fixed.py and train quad operator fixed.py,

which implement a similar algorithm for learning trajectories along a fixed time dis-
cretization.

• Finally, the directories data, models, and plots contain example outputs that can be
reproduced (at least, up to randomness of sampling) by running the above scripts.

For example, running generate quad data.py will generate samples for the quadratic model
in dimension d = 3, stored in data then running train quad operator time.py will train
a model on the generated samples, outputting a model stored in models and a corresponding plot
on four random samples, stored in plots.

Table 1: Optimization details for experiments Section 5 and Appendix G.

Experiment Optimizer Loss Function
Cybersecurity Model Adam L2

Cybersecurity Model (Fixed Discretization) Adam L2

Quadratic Model AdamW Smooth L1

Quadratic Model (Fixed Discretization) Adam L2

Table 2: Selected hyperparameters for experiments in Section 5 and Appendix G.

Experiment # Training Samples (n) # Epochs (mtrain) Width (W) Depth (L) Initial Learning Rate
Cybersecurity Model 2000 2000 64 4 8 × 10−4

Cybersecurity Model (Fixed Discretization) 2000 1000 64 4 8 × 10−4

Quadratic Model (d = 3) 4000 2000 64 4 8 × 10−4

Quadratic Model (d = 3, Fixed Discretization) 4000 1000 64 4 8 × 10−4

Quadratic Model (d = 4) 4000 2000 64 4 8 × 10−4

Quadratic Model (d = 4, Fixed Discretization) 4000 1000 64 4 8 × 10−4

Quadratic Model (d = 5) 4000 2000 64 4 8 × 10−4

Quadratic Model (d = 5, Fixed Discretization) 4000 1000 64 4 8 × 10−4

Quadratic Model (d = 10) 10000 500 128 4 1 × 10−4

Quadratic Model (d = 10, Fixed Discretization) 10000 1000 64 4 8 × 10−4

Quadratic Model (d = 20, Fixed Discretization) 20000 1000 64 4 8 × 10−4

B MARKOVIAN CONTROLS AND REPRESENTATIVE PLAYER’S PROCESS

In this appendix, we formally describe the Markovian controls that the representative player in a
finite-state MFG chooses, presented at a high level in Section 2.1.

Denoting [d] = {1, . . . , d} to be the set of states that the player may switch between, a Markovian
control refers to a measurable function

α : R+ × {1, . . . , d} → Ad
[d] =

⋃
x∈[d]

Ad
−x,

where
Ad

−x :=
{
a ∈ Rd : ∀y ̸= x, ay ∈ A, ax = −

∑
y ̸=x ay

}
.

The value of αy(t, x) := α(t, x)y , where x ̸= y, represents the player’s rate of transition at time
t from the state x to the state y. We require that αx(t, x) = −

∑
y ̸=x αy(t, x) for all x ∈ [d], as

is standard for the transition probabilities of a continuous-time Markov chain. More concisely, let
Q[A] be the set of d×d transition-rate matrices with rates in A := [al, au]. Then, the player chooses
Markovian controls α : [0, T] → Q[A] which we refer to as the set of admissible controls. Under
this interpretation, (α(t))x,y = αy(t, x).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

In Section 2.1, we noted that, given a Markovian control α and an initial distribution η ∈ P([d]), the
player’s dynamics obey a continuous-time Markov chain with transition probabilities

Pr(X η
t+h = y | X η

t = x) = αy(t, x)h+ o(h), h→ 0+.

In fact, this Markov chain arises as the result of a Poisson jump process, which completely describes
the dynamics of the representative player. Our method does not rely on the exact details of the jump
process, however, and we thus refer the interested reader to (Cecchin & Fischer, 2018, Section 2.3)
for additional details on the probabilistic structure of finite-state MFGs that we consider.

In Section 2.1, we provided a condensed version of the assumptions that ensure that the MFG system
has a unique solution. Below, we expand on these assumptions, providing the full suite of assump-
tions that previous work such as Bayraktar & Cohen (2018); Cecchin & Pelino (2019); Cohen et al.
(2024) all utilize.

Our first two assumptions ensure that the Hamiltonian in (2.4) has a unique minimizer and that the
running and terminal costs F and g are monotone in an appropriate sense. Our third assumption is
a technical assumption on the strong concavity of the Hamiltonian. Although this last assumption
may not appear immediately relevant, it is useful later when we analyze the regularity of the flow
map for Equation (2.3) in Appendix E.1 below.

Assumption B.1. The Hamiltonian has a unique minimizer, which we refer to as the optimal rate
selector and is denoted γ∗(x, p) := argmina∈Ad

−x
{f(x, a) + a · p}. The optimal rate selector γ∗ is

a measurable function that, given any (x, p) ∈ [d]× Rd, defines a well-defined (unique) rate vector
a such that for any y ̸= x, ay ∈ A and ax = −

∑
y ̸=x ay . In particular, it is sufficient that f is

strictly convex with respect to a.

Assumption B.2. The functions F and g are continuously differentiable in η with Lipschitz deriva-
tives. Moreover, F and g are Lasry–Lions monotone in the sense that for both ϕ = F, g,∑

x∈[d]

(ϕ(x, η)− ϕ(x, η̂))(ηx − η̂x) ≥ 0, (B.1)

for any η, η̂ ∈ P([d]).
Assumption B.3. Assume that, for some W > 0, the derivatives D2

ppH and DpH of the Hamilto-
nian exist and are Lipschitz in p on [−W,W]. Moreover, H is strictly concave in p: there exists a
positive constant C2,H such that:

D2
ppH(x, p) ≤ −C2,H . (B.2)

When H is differentiable, (Gomes et al., 2013, Proposition 1) implies that

γ∗(x, p) = DpH(x, p), (B.3)

a useful property when establishing regularity of the flow map. Moreover, if Assumption B.3 holds,
then γ∗ is locally Lipschitz.

C THE MASTER EQUATION

The master equation is given by the following nonlinear PDE:{
∂tU(t, x, η) +

∑
y,z∈[d] ηyD

η
yzU(t, x, η)γ∗

z (y,∆yU(t, ·, η)) + H̄(x, η,∆xU(t, ·, η)) = 0,

U(T, x, η) = g(x, η), (t, x, η) ∈ [0, T)× [d]× P([d]),
(C.1)

Above, U : [0, T]× [d]×P([d])→ R, with Dη
yz denoting a directional derivative in the direction of

the vector eyz := ey − ez on the probability simplex, where ey, ez ∈ Rd are standard basis vectors
indexed by y, z ∈ [d]. More precisely, for ϕ : P([d])→ R, we define

Dη
yzϕ(η) := lim

h→0+

ϕ(η + eyzh)− ϕ(η)

h
. (C.2)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Note that this convention respects the geometry of the simplex, in the sense that derivatives are only
allowed in directions along the simplex: if η ∈ P([d]), then η + eyzh ∈ P([d]) for all h sufficiently
small.

We have the following result concerning the master equation, both providing its regularity and estab-
lishing the consistency relation invoked in Corollary 4.1 above. This proposition combines results
from (Cecchin & Pelino, 2019, Proposition 1, Proposition 5, Theorem 6) and (Cardaliaguet et al.,
2019, Section 1.2.4).
Proposition C.1. There exists a unique solution, denoted by (ut0,η, µt0,η), in C1([t0, T]× [d],R)×
C1([t0, T]× [d],P([d])) to (2.3). Let U be defined by:

U(t0, x, η) := ut0,η(t0, x). (C.3)

Then, the master field U is the unique classical solution to the master (C.1). Moreover, we have the
consistency relation such that for all t0 ∈ [0, T],

U(t, x, µt0,η(t)) = ut,µt0,η(t)(t) = ut0,η(t), (t, x, η) ∈ [t0, T]× [d]× P([d]). (C.4)

Finally, U(·, x, ·) ∈ C1,1([0, T]× P([d])) for every x ∈ [d].

Note that the above result is stated in the more general setting, where our MFG begins at time t0 ∈
[0, T], with the initial distribution specified as µ(t0, x) = η(x). Then, ut0,η and µt0,η describe the
evolution of the value function and flow of measures starting at time t0; this formalism is necessary
for results concerning the master equation, but it is not directly relevant to our setting, so we assume
that t0 = 0 throughout.

D PICARD ITERATION FOR FORWARD-BACKWARD SYSTEMS

In this section, we describe the precise details of the Picard iteration map, denoted by Γg , that
we use as a subprocess in Algo. 1 for sampling from parametrized families of finite-state MFGs.
Specifically, we recall the forward-backward MFG system from (2.3):

d

dt
uη,κ(t, x) + H̄(x, µη,κ(t),∆xu

η,κ(t, ·)) = 0, (t, x) ∈ [0, T]× [d],

d

dt
µη,κ(t, x) =

∑
y∈[d]

µη,κ(t, y)γ∗
x(y,∆yu

η,κ(t, ·)), (t, x) ∈ [0, T]× [d],

µη,κ(0, x) = η(x), x ∈ [d],

uη,κ(T, x) = gκ(x, µ
η,κ(T)), x ∈ [d].

To solve this ODE system on the time interval [0, T], we introduce a time discretization with M
points and time step ∆t := 1/M , partitioning the interval [0, T] into subintervals [ti, ti+1] with
ti = i∆t for i = 0, . . . ,M . Then, for each i = 0, . . . ,M − 1, the time-discretized system becomes
a nonlinear system of equations given by

uη,κ(ti+1, x)− uη,κ(ti, x) = −∆tH(x, µη,κ(ti+1),∆xu
η,κ(ti, ·)), x ∈ [d],

µη,κ(ti+1, x)− µη,κ(ti, x) = ∆t
∑
y∈[d]

µη,κ(ti, y)γ
∗
x(y,∆yu

η,κ(ti+1, ·)), x ∈ [d],

µη,κ(t0, x) = η(x), x ∈ [d],

uη,κ(tM , x) = gκ(x, µ
η,κ(tM)), x ∈ [d].

(D.1)

Using fixed point iteration, we produce approximations of the value function {uη,κ(ti, ·)}Mi=0 and
flow of measures of {µη,κ(ti, ·)}Mi=0, evaluated along the time discretization t0, . . . , tM . Now, given
fixed κ ∈ K, the output of the Picard iteration map Γ : P([d])→ (Rd)M+1 is Γ(η)i ≈ uη,κ(ti, ·) ∈
Rd.

For ease of notation, we suppress the dependence of µ and u on (η, κ) ∈ P([d])×K below, noting
that this method solves a single MFG from a parametrized family. To begin, we initialize vectors
µ(0) ∈ RM+1 and u(0) ∈ RM+1 with µ

(0)
0 (x) = η(x) and u

(0)
M (x) = gκ(x, µ

(0)
M) for x ∈ [d]. Then,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

we alternate between updates to u and µ via the finite difference equations in (D.1), producing
iterates u(k) ∈ RM and µ(k) ∈ Rk in an alternating fashion. If the map u(i) 7→ u(i+1) is a
strict contraction, then a standard argument via the Banach fixed point theorem shows that this
iterative procedure will converge the solution u ∈ (Rd)M+1 to the time-discretized Equation (D.1).
Importantly, note that the discretization of the time derivative incurs an error of O(∆t), so we must
take ∆t small in order for fixed point iteration be accurate.

As discussed in (Laurière, 2021, Section 2.3), Picard iteration for such forward-backward systems
may sometimes be numerically unstable. If this is the case, we may introduce a sequence of damping
parameters {δ(k)}k∈N and carry out damped updates to one of the updates. For instance, in (Laurière,
2021), the author includes an auxiliary update µ̃(k), with µ(0) = µ̃(0), and updates the forward
equation via

µ̃(k+1) = δ(k)µ̃(k) + (1− δ(k))µ(k)

to encourage more stable convergence. Then, the backward equation is updated with µ̃(k); the update
to the forward equation remains the same. This algorithm, based on (Laurière, 2021, Algorithm 1),
is included below. In the numerical examples in Section 5, we do not require damping in order for
fixed point iteration to converge quickly and we simply take δ(k) = 0 for all k ∈ N. However, for
more complex MFG systems, damping may be a helpful augmentation of our sampling procedure.
Algo. 2 provides a summary of the procedure outlined above.

Algorithm 2 Picard Iteration for Time-Discretized MFGs

Input: Parameters (η, κ) ∈ P([d]) × K, number of time steps M ∈ N, tolerance ε > 0, damping
schedule {δ(k)}k∈N, initializations u0, µ0 ∈ (Rd)M+1

1: u(0) ← u0

2: µ(0) ← µ0

3: µ̃(0) ← µ0

4: k ← 0
5: while ∥u(k+1) − u(k)∥2 ≥ ε or ∥µ(k+1) − µ(k)∥2 ≥ ε do
6: Solve the discretized backward equation in Equation (D.1) for u(k+1), with input µ̃(k).
7: Solve the discretized foward equation in Equation (D.1) for µ(k+1), with input u(k+1).
8: µ̃(k+1) ← δ(k)µ̃(k) + (1− δ(k))µ(k)

9: k ← k + 1
10: end while
11: return u(k)

E TECHNICAL PROOFS

In this section, we present technical lemmata and proofs for our claims about the regularity of flow
maps for parametrized families of MFGs. First, we recall some useful notation. For any compact
set K ⊆ Rd and a function ϕ : K → R, we define

∥ϕ∥∞ := sup
x∈K
|ϕ(x)|.

All functions such that ∥ϕ∥∞ <∞ form the Banach space C0(K). For instance, for functions such
as u : [0, T [×[d]→ R, we take

∥u∥∞ = sup
t∈T

max
x∈[d]

|u(t, x)|.

We also occasionally refer to the spaces C0,1(K), consisting of all Lipschitz functions on K, and
C0,1(K), consisting of all continuously differentiable functions on K with Lipschitz derivatives. For
functions on the d-dimensional probability simplex P([d]), we only allow directional derivatives
along the directions ey − ex, where ex, ey are standard basis vectors in Rd.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E.1 PROOFS OF REGULARITY RESULT

For our regularity results, (Cecchin & Pelino, 2019, Proposition 5) provides a very useful starting
point. Importantly, the authors of (Cecchin & Pelino, 2019) work under Assumptions 2.1. It remains
to incorporate the added effect of a changing terminal condition, restricted to a parametrized set of
functions under Assumption 2.2, into their results.

First, we define Φ̃(t, η) := U(t, ·, µη(t)) = u(t, ·). due to the consistency relation in Proposition C.1
in Appendix C, where U is the solution to the master equation. Now, Proposition C.1 also provides
that U(·, x, ·) ∈ C1,1([0, T] × P([d])) for every x ∈ [d] under our assumptions, which directly
implies the following:

Lemma E.1. Under Assumption 2.1, The flow map Φ̃ : [0, T] × P([d]) → Rd, given by Φ̃(t, η) =
uη(t, ·), satisfies Φ ∈ C1,1([0, T]× P([d]);Rd).

Including Assumption 2.2, on top of Assumptions 2.1, we show that the flow map

Φ : [0, T]× P([d])×K → Rd, Φ(t, η, κ) = uη,κ(t, ·)

is Lipschitz in all three arguments. Above, recall that the notation uη,κ denotes the value function
that solves the MFG system, with initial distribution η ∈ P([d]) and terminal cost gκ, where κ ∈ K.
In turn, Lipschitz regularity of the flow map on the compact set [0, T] × P([d]) × K, recalling that
Assumption 2.2 requires that K is compact, is sufficient to invoke the approximation guarantees
provided in (Jiao et al., 2023). We begin with a stability estimate for the parametrized family of
MFG systems obeying Assumption 2.2.

Lemma E.2. Let (u1, µ1) and (u2, µ2) solve the MFG system in (2.3) with data (η1, gκ1) and
(η2, gκ2) respectively, with η1, η2 ∈ P([d]) and κ1, κ2 ∈ K ⊂ Rk. If Assumptions 2.1–2.2 hold,
then there exists a constant C > 0 such that

sup
t∈[0,T]

max
x∈[d]

|u1(t, x)− u2(t, x)| ≤ C(|κ1 − κ2|+ ∥µ1 − µ2∥∞). (E.1)

Proof. We proceed as in (Cecchin & Pelino, 2019), taking u := u1−u2 and µ = µ1−µ2. The pair
(u, µ) then solves the system

d

dt
u(t, x) + H̄(x, µ1(t),∆xu1(t, ·))− H̄(x, µ2(t),∆xu2(t, ·)) = 0, (t, x) ∈ [0, T]× [d],

d

dt
µ(t, x) =

∑
y∈[d]

[µ1(t, y)γ
∗
x(y,∆yu1(t, ·))− µ2(t, y)γ

∗
x(y,∆yu2(t, ·))], (t, x) ∈ [0, T]× [d],

µ(0, x) = η1(x)− η2(x), x ∈ [d],

u(T, x) = gκ1(x, µ1(T))− gκ2(x, µ2(T)), x ∈ [d].
(E.2)

To begin, we integrate the backward-in-time HJB equation in (E.2) over the interval [t, T], where
t ∈ [0, T] to obtain

u(t, x) = gκ1(x, µ1(T))− gκ2(x, µ2(T)) +

∫ T

t

[
H̄(x, µ1(s),∆xu1(s, ·))− H̄(x, µ2(s),∆xu2(s, ·))

]
ds

Observe that

|gκ1
(x, µ1(T))− gκ2

(x, µ2(T))| = |gκ1
(x, µ1(T))− gκ2

(x, µ1(T)) + gκ2
(x, µ1(T))− gκ2

(x, µ2(T))|
≤ C(|κ1 − κ2|+ |µ1(T)− µ2(T)|)
≤ C(|κ1 − κ2|+ ∥µ1 − µ2∥∞).

leveraging both Assumption 2.2 and the fact that gκ(x, ·) ∈ C1(P([d])) so that gκ2
is Lipschitz in its

second input. Now, recall that

H̄(x, η, b) = H(x, b) + F (x, η),

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

with H Lipschitz in b and F Lipschitz in η under Assumptions 2.1 and 2.1. Consequently, we have
that

|H̄(x, µ1(s),∆xu1(s, ·))− H̄(x, µ2(s),∆xu2(s, ·))| ≤ C (|µ1(s)− µ2(s)|+ |∆xu1(s, ·)−∆xu2(s, ·)|)
≤ C(|µ1(s)− µ2(s)|+max

x∈[d]
|u(s, x)|),

recognizing that

|∆xu1(s, ·)−∆xu2(s, ·)|2 = |∆xu(s, ·)|2 =
∑
y∈[d]

(u(s, y)− u(s, x))2 ≤ 3dmax
x∈[d]

|u(s, x)|2.

Taking absolute values and the maximum over x ∈ [d] of the integrated HJB equation, we are left
with

max
x∈[d]

|u(t, x)| ≤ C(|κ1 − κ2|+ ∥µ1 − µ2∥∞) + C

∫ T

t

|µ1(s)− µ2(s)|ds+ C

∫ T

t

max
x∈[d]

|u(s, x)|ds

≤ C(|κ1 − κ2|+ ∥µ1 − µ2∥∞) + C

∫ T

t

max
x∈[d]

|u(s, x)|ds.

Applying a reversed version of Gronwall’s inequality, we obtain

max
x∈[d]

|u(t, x)| ≤ C(|κ1 − κ2|+ ∥µ1 − µ2∥∞)

for all t ∈ [0, T] so that

∥u1 − u2∥∞ ≤ C(|κ1 − κ2|+ ∥µ1 − µ2∥∞),

taking the supremum over t ∈ [0, T].

Next, we require an estimate on the difference ∥µ1 − µ2∥∞; this time, the argument from Cecchin
& Pelino (2019) applies without modification.
Lemma E.3. Under the same assumptions as in Lemma E.2, the difference in measures satisfies

∥µ1 − µ2∥∞ ≤ C|η1 − η2|+ C

∫ T

0

√∑
x∈[d]

|∆x(u1 − u2)(s, ·)|2µ1(s, x)ds.

Proof. This estimate follows by integrating the (forward) Kolmogorov equation for µ from (E.2);
see (Cecchin & Pelino, 2019, Proposition 5) for details, which carry over verbatim to our setting.

Equipped with both of the previous lemmata, we proceed to bound ∥u∥∞ and ∥µ∥∞ in terms of the
initial-terminal data (η1, κ1) and (η2, κ2).
Lemma E.4. Let (u1, µ1) and (u2, µ2) solve the MFG system in (2.3) with data (η1, gκ1) and
(η2, gκ2) respectively, with η1, η2 ∈ P([d]) and κ1, κ2 ∈ K ⊂ Rk. If Assumptions 2.1–2.2 hold,
then there exists a constant C > 0 such that

∥µ1(t, x)− µ2(t, x)∥∞ ≤ C(|η1 − η2|+ |κ1 − κ2|), (E.3)
∥u1 − u2∥∞ ≤ C(|η1 − η2|+ |κ1 − κ2|) (E.4)

As a direct corollary, we can extend this stability result to obtain Lipschitz continuity of the flow
map Φ : [0, T]× P([d])×K → Rd.

Proof of Lemma E.4. Taking ϕ(t) = ⟨u(t, ·), µ(t, ·)⟩, we see that

ϕ′(t) =
∑
x∈[d]

u(t, x)
dµ

dt
(t, x) +

∑
x∈[d]

du

dt
(t, x)µ(t, x)

=
∑
x∈[d]

∑
y∈[d]

[µ1(t, y)γ
∗
x(y,∆yu1(t, ·))− µ2(t, y)γ

∗
x(y,∆yu2(t, ·))](u1(t, x)− u2(t, x))

+
∑
x∈[d]

[H̄(x, µ2(t),∆xu1(t, ·))− H̄(x, µ1(t),∆xu2(t, ·))](µ1(t, x)− µ2(t, x)).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Integrating over the interval [0, T], we obtain

ϕ(T)− ϕ(0) =

∫ T

0

∑
x∈[d]

∑
y∈[d]

[µ1(t, y)γ
∗
x(y,∆yu1(t, ·))− µ2(t, y)γ

∗
x(y,∆yu2(t, ·))](u1(t, x)− u2(t, x))

 dt

+

∫ t

0

∑
x∈[d]

[H̄(x, µ2(t),∆xu2(t, ·))− H̄(x, µ1(t),∆xu1(t, ·))](µ1(t, x)− µ2(t, x))

 dt.

In the first integral, we observe that under Assumption 2.1, we have that∑
x∈[d]

γ∗
x(y, ·) = 0.

As a result, we can interchange the order of summation to obtain∑
x∈[d]

∑
y∈[d]

[µ1(t, y)γ
∗
x(y,∆yu1(t, ·))− µ2(t, y)γ

∗
x(y,∆yu2(t, ·))](u1(t, x)− u2(t, x))

=
∑
y∈[d]

∑
x∈[d]

[µ1(t, y)γ
∗
x(y,∆yu1(t, ·))− µ2(t, y)γ

∗
x(y,∆yu2(t, ·))](u1(t, x)− u1(t, y) + u2(t, y)− u2(t, x))

=
∑
y∈[d]

∑
x∈[d]

[µ1(t, y)γ
∗
x(y,∆yu1(t, ·))− µ2(t, y)γ

∗
x(y,∆yu2(t, ·))]∆yu(t, x)

=
∑
x∈[d]

∑
y∈[d]

[µ1(t, x)γ
∗
y(x,∆xu1(t, ·))− µ2(t, x)γ

∗
y(x,∆yu2(t, ·))]∆xu(t, y)

=
∑
x∈[d]

∆xu · [µ1(t, x)γ
∗(x,∆xu1(t, ·))− µ2(t, x)γ

∗(x,∆xu2(t, ·))],

switching the role of x and y in the fourth line for notational consistency below. With this, we see
that∑

x∈[d]

(gκ1
(x, µ1(T))− gκ2

(x, µ2(T)))[µ1(T, x)− µ2(T, x)]

=
∑
x∈[d]

(u1(0, x)− u2(0, x))[η1(x)− η2(x)]

+

∫ T

0

∑
x∈[d]

[H̄(x, µ2(t),∆xu2(t, ·))− H̄(x, µ1(t),∆xu1(t, ·))](µ1(t, x)− µ2(t, x))

 dt

+

∫ T

0

∑
x∈[d]

∆xu · (µ1(t, x)γ
∗(x,∆xu1(t, ·))− µ2(t, x)γ

∗(x,∆xu2(t, ·)))

 dt.

(E.5)

At this point, we note that the lefthand side of the above equality can be decomposed as∑
x∈[d]

(gκ1(x, µ1(T))− gκ2(x, µ2(T)))[µ1(T, x)− µ2(T, x)]

=
∑
x∈[d]

(gκ1(x, µ1(T))− gκ1(x, µ2(T)) + gκ1(x, µ2(T))− gκ2(x, µ2(T)))[µ1(T, x)− µ2(T, x)]

≥
∑
x∈[d]

(gκ1(x, µ2(T))− gκ2(x, µ2(T)))[µ1(T, x)− µ2(T, x)],

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

invoking the fact that gκ1
is Lasry–Lions monotone; see Assumption 2.1. Now, we use Assump-

tion 2.2 to bound∣∣∣∣∣∣
∑
x∈[d]

(gκ1(x, µ2(T))− gκ2(x, µ2(T)))[µ1(T, x)− µ2(T, x)]

∣∣∣∣∣∣
≤

∑
x∈[d]

|gκ1
(x, µ2(T))− gκ2

(x, µ2(T))||µ1(T, x)− µ2(T, x)|

≤ C|κ1 − κ2|∥µ1 − µ2∥∞

absorbing additional constants into C as necessary (e.g., C absorbs a factor of d in the final line). In
summary,∑
x∈[d]

(gκ1
(x, µ1(T))− gκ2

(x, µ2(T)))[µ1(T, x)− µ2(T, x)] ≥ −C(|κ1 − κ2|2 + ∥µ1 − µ2∥2∞).

On the other hand, observe that∑
x∈[d]

[
H̄(x, µ2(t),∆xu2(t, ·))− H̄(x, µ1(t),∆xu1(t, ·))](µ1(t, x)− µ2(t, x))

]
=

∑
x∈[d]

[H(x,∆xu2(t, ·))−H(x,∆xu1(t, ·))(µ1(t, x)− µ2(t, x))]

−
∑
x∈[d]

(F (x, µ1(t))− F (x, µ2(t)))(µ1(t, x)− µ2(t, x))

≤
∑
x∈[d]

[H(x,∆xu2(t, ·))−H(x,∆xu1(t, ·))(µ1(t, x)− µ2(t, x))],

recalling that F also satisfies the Lasry–Lions monotonicity assumption from Assumption 2.1. Now,
(Gomes et al., 2013, Proposition 1) implies that

γ∗(x, p) = DpH(x, p). (E.6)

From this, we have that

γ∗(x,∆xui(t, ·)) = DpH(x,∆xui(t, ·)), i = 1, 2,

allowing us to write

H(x,∆xu2(t, ·))−H(x,∆xu1(t, ·)) + ∆xu · γ∗(x,∆xu1(t, ·))
= H(x,∆xu2(t, ·))− [H(x,∆xu1(t, ·)) + (∆xu2 −∆xu1) ·DpH(x,∆xu1(t, ·)]
≤ −C2,H |∆xu|2

by Assumption (2.1). Namely, the Hessian D2
ppH(x, p) exists and satisfies the bound D2

ppH(x, p) ≤
−C2,H for some constant C2,H ≥ 0 under our strict concavity assumption. By the same reasoning,
we observe that

H(x,∆xu1(t, ·))−H(x,∆xu2(t, ·))−∆xu · γ∗(x,∆xu2(t, ·))
= H(x,∆xu1(t, ·))− [H(x,∆xu2(t, ·)) + (∆xu1 −∆xu2) ·DpH(x,∆xu2(t, ·)]
≤ −C2,H |∆xu|2.

Thus, returning to (E.5), we have that

−C(|κ1 − κ2|∥µ1 − µ2∥∞) ≤
∑
x∈[d]

(u1(0, x)− u2(0, x))[η1(x)− η2(x)]

− C

∫ T

0

∑
x∈[d]

|∆xu(s, ·)|2(µ1(s, x) + µ2(s, x))ds

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Upon rearrangement, and an application of the Cauchy–Schwarz inequality to the first term on the
righthand side of the above inequality, it follows that∫ T

0

∑
x∈[d]

|∆xu(s, ·)|2(µ1(s, x) + µ2(s, x))ds ≤ C(∥u∥∞|η1 − η2|+ |κ1 − κ2|∥µ∥∞)

for some constant C > 0. Now, invoking Lemma E.3, the Cauchy–Schwarz inequality, and the fact
that µ2(s, x) ≥ 0 for all s ∈ [0, T] and x ∈ [d], we have that

∥µ∥∞ ≤ C|η1 − η2|+ C

∫ T

0

√∑
x∈[d]

|∆xu(s, ·)|2µ1(s, x)ds

≤ C|η1 − η2|+ C

√√√√∫ T

0

∑
x∈[d]

|∆xu(s, ·)|2µ1(s, x)ds

≤ C(|η1 − η2|+
√
∥u∥∞|η1 − η2|+ |κ1 − κ2|∥µ∥∞)

≤ C(|η1 − η2|+ ∥u∥1/2∞ |η1 − η2|1/2 + |κ1 − κ2|1/2∥µ∥1/2∞),

recalling that
√
a+
√
b ≥
√
a+ b for any a, b ≥ 0. Now, recall that for any a, b ≥ 0 and ε > 0, we

also have that

ab ≤ εa2 +
1

4ε
b2.

Applying this inequality once with ε = 1
2C , we see that

∥µ∥∞ ≤ C(|η1 − η2|+ |κ1 − κ2|+ ∥u∥1/2∞ |η1 − η2|1/2) +
1

2
∥µ∥∞

taking C > 0 larger if necessary. Applying the same inequality again with ε = 1
4C2 and rearranging,

it follows that

∥µ∥∞ ≤ C(|η1 − η2|+ |κ1 − κ2|) +
1

2C
∥u∥∞. (E.7)

Plugging this into the result of Lemma E.2 and rearranging yields

∥u∥∞ ≤ C(|η1 − η2|+ |κ1 − κ2|), (E.8)

and plugging (E.8) into (E.7) results in

∥µ∥∞ ≤ C(|η1 − η2|+ |κ1 − κ2|)
as claimed.

To conclude, we can present the proof of our main theorem, which follows almost immediately from
the preceding results.

Proof of Theorem 4.1. Observe that we can write

|Φ(t, η1, κ1)− Φ(s, η2, κ2)| = |Φ(t, η1, κ1)− Φ(s, η1, κ1) + Φ(s, η1, κ1)− Φ(s, η2, κ2)|
≤ |Φ(t, η1, κ1)− Φ(s, η1, κ1)|+ |Φ(s, η1, κ1)− Φ(s, η2, κ2)|
≤ C(|t− s|+ |η1 − η2|+ |κ1 − κ2|),

invoking Lemma E.1 to bound the first term and Lemma E.4 to bound the second term.

Remark E.1. Although Lanthaler & Stuart (2025) reference the approximation guarantee from
(Yarotsky, 2017, Theorem 1) to show that their HJ-Net method evades the curse of parametric com-
plexity, most existing guarantees on the generalization performance of ReLU neural networks re-
quire bounds on the weights of the neural network rather than the size of the network. The well-
known result from Yarotsky (2017), however, only provides width and depth bounds on ReLU net-
works approximating a function with prescribed regularity. To this end, we pursue an alternative
approach for obtaining approximation and generalization guarantees, based on the recent results of
Jiao et al. (2023).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E.2 PROOFS OF APPROXIMATION AND GENERALIZATION GUARANTEES

We conclude with proofs of Corollary 4.3 and Corollary 4.5, our approximation and generalization
results respectively. Both follow almost directly from the corresponding results in (Jiao et al., 2023),
in Proposition 4.2 and Proposition 4.4 respectively, but we include the necessary rescaling arguments
here for the sake of completeness.

Proof of Corollary 4.3. First, by Theorem 4.1, the flow map Φ : [0, T] × P([d]) × K belongs to
C0,1([0, T]×P([d])×K). From this, we can apply Proposition 4.2 directly upon scaling the domain
[0, T]× P([d])×K to lie entirely within the (d+ k + 1)-dimensional unit cube.

To carry out this scaling, we embed P([d]) ↪→ [0, 1]d, scale K to lie in the set [0, 1]k, and scale the
interval [0, T] to lie in the interval [0, 1]. The natural embedding P([d]) ↪→ [0, 1]d is simply given
by viewing

P([d]) =

{
η ∈ Rd :

d∑
i=1

ηi = 1, ηi ≥ 0 for all i = 1, . . . , d

}
.

This rescaling may incur constants that depend on the diameter of K, denoted by diam(K), and the
final time T . Importantly, it is always possible for finite T > 0 and compact K ⊂ Rk. The result
then follows upon applying Proposition 4.2, replacing d with d + k + 1 therein. As noted above,
the universal constants c, C > 0 obtained in Proposition 4.2 must also be replaced by constants
c(diam(K), T), C(diam(K), T) > 0 that depends on K and T .

Proof of Corollary 4.5. This follows directly from Proposition 4.4 upon carrying out the same
rescaling argument as in the previous proof, again replacing d with d + k + 1 in the statement
of the result. Again, we note that the universal constant c > 0 from Proposition 4.4 must be replaced
by a constant C̃(diam(K), T) > 0 that can depend on K and T .

F CONNECTION TO HAMILTONIAN FLOW

In this appendix, we expand upon the similarity between the MFG system and the characteristic
ODEs that Lanthaler & Stuart (2025) utilize to obtain parameter-efficient operator learning for first-
order HJB equations. Consider an arbitrary first-order HJB equation on a bounded domain Ω ⊆ Rd,
with Hamiltonian H : Rd × Rd → R:{

∂tu+H(q,∇qu) = 0 (x, t) ∈ Ω× (0, T],

u(x, 0) = u0(x) x ∈ Ω,
(F.1)

Instead of attempting to learn the operator that maps the initial data u0 ∈ Cr(Ω) to u ∈ Cr(Ω ×
[0, T]), for instance, Lanthaler & Stuart (2025) construct a scheme they label HJ-Net with the aim
of learning the Hamiltonian flow (i.e., the characteristics of the HJB equation), which satisfies the
ODE system 

q̇ = ∇pH(q, p) q(0) = q0, ,

ṗ = −∇qH(q, p) p(0) = p0,

ż = L(q, p) z(0) = z0.

(F.2)

Then, the flow map Ψt : Ω × Rd × R → Ω × Rd × R, given by (q0, p0, z0) 7→ (q(t), p(t), z(t)) is
such that z(t) = u(q(t), t) and p(t) = ∇qu(q(t), t) along the characteristics (q(t), t). By learn-
ing the flow map Ψt, instead of the operator u0 7→ u, and reconstructing the solution u from
the characteristics, (Lanthaler & Stuart, 2025, Theorem 5.1) shows that the HJ-Net approach can
beat the so-called curse of parametric complexity, enabling parameter-efficient operator learning for
HJB equations. Observe, nonetheless, that there is a subtle but important difference between the
Hamiltonian flow and the MFG system: the former is independent of the initial condition u0 of
Equation (F.1), while the latter depends explicitly on the terminal condition gκ. In the setting of
Lanthaler & Stuart (2025), this enables parameter-efficient operator learning over initial conditions
belonging to an infinite-dimensional Banach space, as the Hamiltonian flow map remains approx-
imable by neural networks of bounded width and depth regardless of the space to which the initial

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

conditions belong. Conversely, for finite-state MFGs, we must limit ourselves to parametrized ter-
minal costs due to the dependence of the MFG system on the terminal cost. Indeed, the technical
results in both our work and in (Lanthaler & Stuart, 2025) rely upon reducing to a flow map between
subsets of finite-dimensional Euclidean spaces, which is not the case if we allow terminal costs to
belong to an infinite-dimensional Banach space.

G ADDITIONAL NUMERICAL EXPERIMENTS

We provide a comprehensive suite of additional numerical experiments for both the cybersecurity
model and the quadratic model.

As alluded to earlier (see also Appendix A), Fig. 5 demonstrates the improvement in accuracy and
reduced variance over trials that comes with a more powerful neural network architecture. In par-
ticular, we replicate the d = 10 results using a ResNet architecture, with layer normalization, skip
connections between all layers, a dropout rate of p = 0.05. Moreover, the ResNet’s first and layer
layer have width W1 = 128 while the middle two hidden layers have width W2 = 64. We find that
this “bottleneck” helps promote training stability, and Fig. 5 demonstrates the effect that this archi-
tecture choice has on accuracy and variance (the latter is illustrated by smaller standard deviations
about the mean of the five trials).

Next, Figure 6 and Figure 7 provide additional evidence for the accuracy of our method on the
cybersecurity model. Similarly, Figures 9–12 illustrate a variety of random tests for the quadratic
model in dimensions d = 3, 4, 5, and 10. In Table 3, we present statistics for the models used to
produce Figures 9–12 (as well as Figure 3), including average test losses on the held-out test set at
the end of training and average training times.

Finally, we include a handful of figures that learn an operator on a fixed time discretization. Specifi-
cally, suppose that we discretize the time interval [0, T] with M time, yielding times tj = jT/M for
j = 0, . . . ,M . Given a pair (ηi, κi) ∈ P([d])×K, one may instead attempt to learn the augmented
flow map subordinate to the discretization, given by Φ̃ : P([d])×K → (Rd)M+1

Φ̃(ηi, κi) 7→ (uηi,κi(tj))
M
j=0.

In practice, this map can be learned using a slight modification of Algo. 1, where the sampling
step simply takes in a pair x̃i := (ηi, κi) ∈ P([d]) × K and outputs the entire trajectory that
Picard iteration produces as a label, given by ỹi := Γgκi

(ηi). Then, the pairs {(x̃i, ỹi)}ni=1 become
our augmented training data, and we can proceed from Line 7 of Algo. 1 verbatim. Note that the
augmented flow map Φ̃ is less versatile than the flow map Φ from Section 2.2, in the sense that
Φ can be evaluated at any time t ∈ [0, T], while Φ̃ can only be evaluated along the given time
discretization. However, given M sufficiently large, learning the map Φ̃ to high precision still yields
a useful estimate of the MFG equilibrium, so this modified method may still be of interest.

In Fig. 8, we present an example of the learned map value functions for the cybersecurity model, us-
ing the augmented procedure for a fixed time discretization with M = 50 points. In Figures 13–17,
we provide similar experiments for the quadratic model in dimensions d = 3, 4, 5, 10, 20 respec-
tively. Interestingly, the quality of the approximation and optimization stability does not appear to
degrade as quickly with dimension, and using a discretization with M = 10 points, we are able to
learn augmented flow maps to very high precision up to dimension d = 20.

Table 3: Statistics for high-dimensional quadratic model experiments. Test losses and training times
are averaged over 5 trials, and all networks had depth L = 4. The test losses are evaluated using
smooth L1 loss, summed over the test set.

Dimension d Average Test Loss Average Training Time (s) Training Samples Epochs Width
3 0.000831 233.42 4000 2000 64
4 0.00200 219.68 4000 2000 64
5 0.00527 220.24 4000 2000 64
10 0.0208 374.10 10000 500 128

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 5: Learned value functions in the same setting as Fig. 16, using a ResNet architecture with
dropout, layer normalization, and an hidden layer width of 64.

Figure 6: Learned value functions, denoted by û, for κ = 0 and initial distribution µ1 =
[0.25, 0.25, 0.25, 0.25], µ2 = [1, 0, 0, 0], and µ3 = [0, 0, 0, 1], respectively. In particular, our method
can still perform accurately in the event that the parametrization of the underlying MFG is fixed and
only the initial distribution varies.

Figure 7: Learned value function, denoted by û, approximating time-parametrized flow map Φ, for
four random initial distributions and κ ∈ [0, 1].

Figure 8: Learned value function for four randomly sampled pairs (η, κ), with κ ∈ [0, 10], along a
time discretization with M = 50 points for the cybersecurity model. Points indicate the approximate
solution and curves indicate the true solution obtained via Picard iteration.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 9: Learned value functions for three randomly sampled pairs (η, κ), denoted by û, approxi-
mating the flow map Φ for a d = 3 dimensional quadratic model, for three random initial distribu-
tions and parameters κ ∈ [0, 1]3 sampled uniformly at random. Averages are taken across 5 trials,
and shaded regions on approximate curves present error bars of one standard deviation above/below
the mean across trials.

Figure 10: Learned value functions, denoted by û, approximating the flow map Φ for a d = 4
dimensional quadratic model, for three random initial distributions and parameters κ ∈ [0, 1]4 sam-
pled uniformly at random. Averages are taken across 5 trials, and shaded regions on approximate
curves present error bars of one standard deviation above/below the mean across trials.

Figure 11: Learned value functions, denoted by û, approximating the flow map Φ for a d = 5
dimensional quadratic model, for three random initial distributions and parameters κ ∈ [0, 1]5 sam-
pled uniformly at random. Averages are taken across 5 trials, and shaded regions on approximate
curves present error bars of one standard deviation above/below the mean across trials.

Figure 12: Learned value functions, denoted by û, approximating the flow map Φ for a d = 10
dimensional quadratic model, for three random initial distributions and parameters κ ∈ [0, 1]10

sampled uniformly at random. Averages are taken across 5 trials, and shaded regions on approximate
curves present error bars of one standard deviation above/below the mean across trials.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 13: Learned value function for two randomly sampled pairs (η, κ), along a time discretization
with M = 100 points in dimensions d = 3. Points indicate the approximate solution and curves
indicate the true solution obtained via Picard iteration.

Figure 14: Learned value function for two randomly sampled pairs (η, κ), along a time discretization
with M = 100 points in dimensions d = 4. Points indicate the approximate solution and curves
indicate the true solution obtained via Picard iteration.

Figure 15: Learned value function for two randomly sampled pairs (η, κ), along a time discretization
with M = 100 points in dimensions d = 5. Points indicate the approximate solution and curves
indicate the true solution obtained via Picard iteration.

Figure 16: Learned value function for two randomly sampled pairs (η, κ), along a time discretization
with M = 100 points in dimensions d = 10. Points indicate the approximate solution and curves
indicate the true solution obtained via Picard iteration.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 17: A slice of 10 components of the learned value functions, for two randomly sampled pairs
(η, κ), along a time discretization with M = 100 points in dimensions d = 20. Points indicate the
approximate solution and curves indicate the true solution obtained via Picard iteration.

28

	Introduction
	Background
	Finite-State MFGs
	Flow Maps and the Master Equation

	Algorithm to Learn Flow Maps for MFGs
	Theoretical Guarantees
	Numerical Experiments
	Conclusion
	Experimental Details
	Markovian Controls and Representative player's Process
	The Master Equation
	Picard Iteration for Forward-Backward Systems
	Technical Proofs
	Proofs of Regularity Result
	Proofs of Approximation and Generalization Guarantees

	Connection to Hamiltonian Flow
	Additional Numerical Experiments

