
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RILE: REINFORCED IMITATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning has achieved significant success in generating complex
behavior but often requires extensive reward function engineering. Adversarial vari-
ants of Imitation Learning and Inverse Reinforcement Learning offer an alternative
by learning policies from expert demonstrations via a discriminator. However, these
methods struggle in complex tasks where randomly sampling expert-like behaviors
is challenging. This limitation stems from their reliance on policy-agnostic dis-
criminators, which provide insufficient guidance for agent improvement, especially
as task complexity increases and expert behavior becomes more distinct. We intro-
duce RILe (Reinforced Imitation Learning environment), a novel trainer-student
system that learns a dynamic reward function based on the student’s performance
and alignment with expert demonstrations. In RILe, the student learns an action
policy while the trainer, using reinforcement learning, continuously updates itself
via the discriminator’s feedback to optimize the alignment between the student
and the expert. The trainer optimizes for long-term cumulative rewards from the
discriminator, enabling it to provide nuanced feedback that accounts for the com-
plexity of the task and the student’s current capabilities. This approach allows for
greater exploration of agent actions by providing graduated feedback rather than bi-
nary expert/non-expert classifications. By reducing dependence on policy-agnostic
discriminators, RILe enables better performance in complex settings where tradi-
tional methods falter, outperforming existing methods by 2x in complex simulated
robot-locomotion tasks.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a powerful framework for teaching agents to perform
complex tasks. In recent years, deep reinforcement learning has demonstrated remarkable success in
replicating sophisticated behaviors, including playing Atari games, chess, and Go (Mnih et al., 2013;
Silver et al., 2018). However, these achievements often come at a cost: the tedious and challenging
process of designing reward functions, as predicting the policy outcome from a manually crafted
reward function remains notoriously difficult.

To overcome the reward engineering problem, Imitation Learning (IL) leverages expert demonstra-
tions to learn a policy. Since vast amounts of expert data are required to accurately learn expert
behaviors, Adversarial Imitation Learning (AIL) approaches, such as GAIL (Ho & Ermon, 2016),
have been proposed as data-efficient alternatives. AIL employs a discriminator to measure similarity
between learned behavior and expert behavior, rewarding the agent accordingly. While computa-
tionally efficient, AIL methods suffer from a critical limitation: the policy-agnostic nature of their
discriminators. The discriminator lacks any inherent incentive to guide the agent towards expert-
like behavior, in contrast to engineered reward functions in RL. Consequently, AIL methods face
challenges in complex tasks requiring extensive exploration to find optimal actions. For instance, in
digital locomotion tasks, AIL methods often struggle to consistently replicate expert performance
(Peng et al., 2018).

Inverse Reinforcement Learning (IRL) is another approach to alleviate reward engineering. Unlike
IL, which directly learns expert behavior, IRL seeks to infer the underlying reward function that
motivates the agent to acquire expert behaviors. The reward function and the agent are trained
iteratively, with updates to the reward function based on the agent’s behavior. This iterative process
renders IRL computationally expensive (Zheng et al., 2022). Adversarial Inverse Reinforcement
Learning (AIRL) (Fu et al., 2018) attempts to address this inefficiency by introducing a discriminator

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

that enables simultaneous learning of the policy and reward function. However, in AIRL, the reward
function is tightly coupled to the discriminator, potentially limiting its ability to capture complex task
structures or long-term dependencies and inheriting the limitations of a policy-agnostic discriminators.
This highlights the need for a method that can learn a more flexible reward function without the
computational overhead of traditional IRL methods.

To overcome these challenges and effectively learn behaviors in complex settings, we propose
Reinforced Imitation Learning (RILe) (Fig. 1-(d)). RILe aims to combine the ability to learn a reward
function that actively guides the agent to imitate expert behavior with the computational efficiency of
adversarial frameworks. At the core of RILe is a novel trainer-student system designed to address the
shortcomings of existing methods:

• A student agent that learns to replicate the expert’s policy via RL in the environment
• A trainer agent that learns a reward function via RL and guides the student agent during

training

By integrating the trainer-student dynamic, RILe decouples reward learning from policy learning and
the discriminator, allowing each component to specialize and thereby overcome the limitations of
policy-agnostic discriminators. While RILe utilizes a discriminator similar to those in adversarial
frameworks, its role is fundamentally redefined. In RILe, the discriminator’s primary function is
to provide feedback to the trainer agent by distinguishing expert data from student roll-outs. This
feedback serves as the reward signal for the trainer, not directly influencing the student agent. The
trainer leverages the discriminator’s feedback to learn a reward function that effectively guides the
student agent. This approach enables more nuanced reward shaping, particularly beneficial in tasks
requiring complex decision-making and extensive exploration.

Our contributions are two-fold:

1. Decoupled Reward-function Learning: We introduce a novel approach where the trainer
agent learns the reward function independently from both the student agent and the discrim-
inator. Unlike existing methods that derive rewards directly from discriminator outputs,
our trainer agent uses reinforcement learning to optimize the reward function based on
the feedback from the discriminator. By focusing on long-term reward maximization, RL
enables the trainer to distill inconsistent feedback from the discriminator into meaningful
rewards, leading to better student performance.

2. Dynamic Reward Customization: Our trainer agent dynamically adjusts rewards based on
the student agent’s progress, facilitating a better learning experience and enabling accurate
imitation of expert behavior in complex settings. This adaptive approach allows for more
gradual learning, particularly in tasks where the optimal behavior may change depending on
the agent’s current capabilities.

We evaluate RILe against state-of-the-art methods in AIL, and AIRL, specifically GAIL Ho & Ermon
(2016) AIRL Fu et al. (2018), GAIfO Torabi et al. (2018b), BCO Torabi et al. (2018a), IQ-Learn
Garg et al. (2021) and DRAIL Lai et al. (2024). Our experiments span three scenarios: (1) Tailoring a
reward function dynamically in a discrete maze task, (2) Investigating the impact of expert data on the
trainer-student dynamics in a humanoid locomotion task, and (3) Imitating expert data in continuous
control tasks. The results demonstrate RILe’s superior performance, especially in complex tasks, and
its ability to learn an effective dynamic reward function where baseline methods fail.

2 RELATED WORK

We review literature on learning from expert demonstrations, focusing on Imitation Learning (IL)
and Inverse Reinforcement Learning (IRL), which form the conceptual foundation of RILe.

Imitation Learning Early work introduced Behavioral Cloning (BC) (Bain & Sammut, 1995),
which learns a policy congruent with expert demonstrations through supervised learning. DAgger
(Ross et al., 2011) introduces data aggregation. GAIL (Ho & Ermon, 2016) introduces adversarial
methods, where a discriminator aims to discriminate expert demonstrations, while a generator tries
to fool the discriminator. BCO (Torabi et al., 2018a) extends BC and GAIfO (Torabi et al., 2018b)
extends GAIL to state-only observation scenarios. DQfD (Hester et al., 2018) proposes two-stage
approach with pre-training, and ValueDice (Kostrikov et al., 2020) uses a distribution-matching

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

objective between policy and expert. DRAIL (Lai et al., 2024) enhances adversarial imitation learning
via a diffusion-based discriminator, which improves learning efficiency. Despite progress, IL faces
challenges in efficacy and generalization (Zheng et al., 2022; Toyer et al., 2020). RILe addresses
these by introducing an adaptive teacher agent to guide the student beyond expert demonstrations.

Inverse Reinforcement Learning IRL, introduced by Ng & Russell (2000), learns the expert’s
intrinsic reward function. Key developments include Apprenticeship Learning (Abbeel & Ng, 2004),
Maximum Entropy IRL (Ziebart et al., 2008), and adversarial approaches like AIRL (Fu et al.,
2018). IQ-Learn (Garg et al., 2021) reformulates IRL integrates inverse learning of the reward
function into Q-learning. Recent work explores handling unstructured data (Chen et al., 2021) and
cross-embodiment scenarios (Zakka et al., 2022). Despite advancements, IRL faces challenges in
computational efficiency and scalability (Arora & Doshi, 2021). RILe addresses these by jointly
learning policy and reward function in a single process.

3 BACKGROUND

3.1 MARKOV DECISION PROCESS

A standard Markov Decision Process (MDP) is defined by (S,A,R, T,K, γ). S is the state space
consisting of all possible environment states s, and A is action space containing all possible envi-
ronment actions a. R = R(s, a) : S × A → R is the reward function. T = {P (·|s, a)} is the
transition dynamics where P (·|s, a) is an unknown state state transition probability function upon
taking action a ∈ A in state s ∈ S. K(s) is the initial state distribution, i.e., s0 ∼ K(s) and γ is
the discount factor. The policy π = π(a|s) : S → A is a mapping from states to actions. In this
work, we consider γ-discounted infinite horizon settings. Following Ho & Ermon (2016), expectation
with respect to the policy π ∈ Π refers to the expectation when actions are sampled from π(s):
Eπ[R(s, a)] ≜ Eπ[

∑∞
t=0 γ

tR(st, at)], where s0 is sampled from an initial state distribution K(s),
at is given by π(·|st) and st+1 is determined by the unknown transition model as P (·|st, at). The
unknown reward function R(s, a) generates a reward given a state-action pair (s, a). We consider a
setting where R = R(s, a) is parameterized by θ as Rθ(s, a) ∈ R (Finn et al., 2016).

Our work considers an imitation learning problem from expert trajectories, consisting of states s and
actions a. The set of expert trajectories τE are sampled from an expert policy πE ∈ Π, where Π is
the set of all possible policies. We assume that we have access to m expert trajectories, all of which
have n time-steps, τE = {(si0, ai0), (si1, ai1), . . . , (sin, ain)}mi=1.

3.2 REINFORCEMENT LEARNING (RL)

Reinforcement learning seeks to find an optimal policy, π∗. that maximizes the discounted cumulative
reward given from the reward function R = R(s, a) (Fig. 1-(a)). In this work, we incorporate
entropy regularization using the γ-discounted casual entropy function H(π) = Eπ[−log π(a|s)] (Ho
& Ermon, 2016; Bloem & Bambos, 2014). The RL problem with a parameterized reward function
and entropy regularization is defined as

RL(Rθ(s, a)) = π∗ = argmax
π

Eπ[Rθ(s, a)] +H(π). (1)

3.3 INVERSE REINFORCEMENT LEARNING (IRL)

Given sample trajectories τE from an optimal expert policy πE , inverse reinforcement learning
aims to recover a reward function R∗

θ(s, a) that maximally rewards the expert’s behavior (Fig.
1-(b)). Formally, IRL seeks a reward function, R∗

θ(s, a), satisfying: EπE
[
∑∞
t=0 γ

tR∗
θ(st, at)] ≥

Eπ[
∑∞
t=0 γ

tR∗
θ(st, at) +H(π)] ∀π. Optimizing this reward function with reinforcement learning

yields a policy that replicates expert behavior: RL(R∗
θ(s, a)) = π∗. Since only the expert’s trajec-

tories are observed, expectations over πE are estimated from samples in τE . Incorporating entropy
regularization H(π), maximum causal entropy inverse reinforcement learning (Ziebart et al., 2008) is
defined as

IRL(τE) = argmax
Rθ(s,a)∈R

(
Es,a∈τE [Rθ(s, a)]−max

π
(Eπ[Rθ(s, a)] +H(π))

)
. (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) RL (b) IRL

(c) GAIL + AIRL (terms in green) (d) RILe

Figure 1: Overview of the related works. (a) Reinforcement Learning (RL): learning a policy
that maximizes hand-defined reward function; (b) Inverse RL (IRL): learning a reward function
from data. IRL has two stages: 1. training a policy with frozen reward function, and 2. updating
the reward function by comparing the converged policy with data. These stages repeated several
times; (C) Generative Adversarial Imitation Learning (GAIL) + Adversarial IRL (AIRL): using
discriminator as a reward function. GAIL trains both policy and the discriminator at the same time.
AIRL implements a new structure on the discriminator, seperating reward from environment dynamics
by using two networks under the discriminator (see additional terms in green). (D) RILe: similar to
IRL, learning a reward function from data. RILe learns the reward function at the same time with the
policy, using discriminator as a guide for learning the reward.

3.4 ADVERSARIAL IMITATION LEARNING (AIL) AND ADVERSARIAL INVERSE
REINFORCEMENT LEARNING (AIRL)

Imitation Learning (IL) aims to directly approximate the expert policy from given expert trajectory
samples τE . It can be formulated as IL(τE) = argminπ E(s,a)∼τE [L(π(·|s), a)], where L is a loss
function, that captures the difference between policy and expert data.

GAIL (Ho & Ermon, 2016) introduces an adversarial imitation learning setting by quantifying the
difference between the agent and the expert with a discriminator Dϕ(s, a), parameterized by ϕ
(Fig. 1-(c)). The discriminator distinguishes between between expert-generated state-action pairs
(s, a) ∼ τE and non-expert ones (s, a) /∈ τE . The goal of GAIL is to find the optimal policy that
fools the discriminator while maximizing an entropy constraint. The optimization is formulated as a
zero-sum game between the discriminator Dϕ(s, a) and the policy π:

min
π

max
ϕ

Eπ[log Dϕ(s, a)] + EτE [log (1−Dϕ(s, a))]− λH(π). (3)

In other words, the reward function that is maximized by the policy is defined as a similarity function,
expressed as R(s, a) = −log (Dϕ(s, a)).

AIRL (Fu et al., 2018) extends AIL to inverse reinforcement learning, aiming to recover a reward
function decoupled from environment dynamics (Fig. 1-(c)). AIRL structures the discriminator as:

Dϕ,ψ(s, a, s
′) =

exp(fϕ(s, a, s
′))

exp(fϕ(s, a, s′)) + π(a|s)
, (4)

where fϕ(s, a, s
′) = rψ(s, a) + γVϕ(s

′) − Vϕ(s). Here, rψ(s, a) represents the learned reward
function that is decoupled from the environment dynamics, γVϕ(s′)−Vϕ(s). The AIRL optimization

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

problem is formulated equivalently to GAIL (see Eqn. 3). The reward function rψ(s, a) is learned
through minimizing the cross-entropy loss inherent in this adversarial setup. Therefore, the reward
function remains tightly coupled with the discriminator’s learning process.

4 RILE: REINFORCED IMITATION LEARNING

We propose Reinforced Imitation Learning (RILe) to learn the reward function and acquire a policy
that emulates expert-like behavior simultaneously in one learning process. Our RILe framework
introduces a novel trainer-student dynamic to overcome limitations in existing imitation learning
methods. Figure 2 illustrates our approach.

In RILe, the student agent learns an action policy by interacting with the environment, while the
trainer agent learns a reward function that effectively guides the student toward expert-like behavior.
Both agents are trained simultaneously via reinforcement learning, with assistance from an adversarial
discriminator.

Unlike traditional AIL, where the discriminator directly influences the student, RILe decouples this
process by introducing the trainer agent. The discriminator provides immediate feedback solely to the
trainer agent. This decoupling allows the trainer to adjust the reward function on-the-fly considering
the current stage of the student’s learning process, and guiding the student without waiting for its
policy to converge, a significant efficiency improvement over traditional IRL.

In our framework, the trainer agent takes the key role. Trained via RL, the trainer learns to pro-
vide tailored feedback to the student by maximizing the cumulative rewards it receives from the
discriminator. This approach equips RILe with three key advantages that set it apart from existing
AIL frameworks: (1) the trainer associates its reward signals to future improvements in the student’s
behavior, even if these improvements occur after many steps, (2) the trainer encourages the student to
explore actions that steer it in the right direction, even when immediate expert-like behavior isn’t
achieved yet, and (3) the trainer adjusts its reward function based on the student’s current policy,
creating a learning path that gradually guides the student toward expert behavior.

This approach enables RILe to overcome limitations of previous methods, particularly in complex
tasks requiring extensive exploration, by promoting the discovery of expert-like strategies even when
the student’s initial policy significantly diverges from expert behavior.

In the following, we define the components of RILe and explain how they can efficiently learn
behavior from imperfect data.

Student Agent The student agent learns a policy πS by interacting with an environment in a
standard RL setting within an MDP. For each of its actions aS ∈ A, the environment returns a new
state sS ∈ S. However, rather than from a hand-crafted reward function, the student agent receives its
reward from the policy of the trainer agent πT . Therefore, the reward function is represented by the
trainer policy. Thus, the student agent is guided by the actions of the trainer agent, i.e., the action of
the trainer is the reward of the student: rS = πT ((s

S , aS)). The optimization problem of the student
agent is then defined as

min
πS

−E(sS ,aS)∼πS
[πT

(
(sS , aS)

)
]. (5)

Discriminator The discriminator differentiates between expert-generated state-action pairs (s, a) ∼
τE and state-action pairs from the student (s, a) ∼ πS . In RILe, the discriminator is defined as a
feed-forward deep neural network, parameterized by ϕ. Hence, the optimization problem is

max
ϕ

E(s,a)∼τE [log(Dϕ(s, a))] + E(s,a)∼πS
[log(1−Dϕ(s, a))]. (6)

To provide effective guidance, the discriminator needs to accurately distinguish whether a given
state-action pair originates from the expert distribution (s, a) ∼ τE or not (s, a) /∈ τE . The feasibility
of this discrimination has been demonstrated by GAIL (Ho & Ermon, 2016). The according lemma
and proof are presented in the Appendix B.

Trainer Agent The trainer agent guides the student to imitate expert behavior by operating
as its reward mechanism. Because the trainer cannot directly observe the student’s policy πS ,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: Reinforced Imitation Learning (RILe). The framework consists of three key components:
a student agent, a trainer agent, and a discriminator. The student agent learns a policy πS by
interacting with an environment, and the trainer agent learns a reward function as a policy πT . (1)
The student receives the environment state sS . (2) The student takes an action aS , forwards it to
the environment which is updated based on aS . (3) The student forwards its state and action to the
trainer, whose state is sT = (sS , aS). (4) Trainer, πT , evaluates the state action pair of the student
agent sT = (sS , aS) and chooses an action aT that then becomes the reward of the student agent
aT = rS . (5) The trainer agent forwards the sT = (sS , aS) to the discriminator. (6) Discriminator
compares student state-action pair with expert demonstrations (sD). (7) Discriminator gives reward
to the trainer, based on the similarity between student- and expert-behavior.

we model the trainer’s environment as a Partially Observable MDP (POMDP): POMDPT =
(ST , AT ,ΩT , TT , OT , RT , γ). The state space ST = S ×A× πS includes all possible state-action
pairs from the standard MDP and the student’s policy πS , which is hidden from the trainer, intro-
ducing partial observability. AT is the action space, a mapping from ST → R, so the action is a
scalar value. The observation space ΩT = S × A consists of the observable state-action pairs of
the student. The transition dynamics TT and the observation function OT are defined formally in
Appendix A. The reward function RT (s

T , aT) evaluates the effectiveness of the trainer’s action in
guiding the student, where sT = (sS , aS) is the observation of the trainer. γ is the discount factor.

The trainer agent learns a policy πT that produces adequate reward signals to guide the student
agent, by learning in a standard RL setting, within POMDPT . The trainer operates under partial
observability and observes the student’s state-action pair sT = (sS , aS) ∈ S ×A, without observing
πS . It generates a scalar action aT , bounded between −1 and 1, which is given to the student agent as
the reward rS . If the trainer’s reward depends only on the discriminator’s output, the trainer receives
the same reward regardless of its action, offering no immediate feedback on whether rewarding
or penalizing the student was effective. For example, when the student behaves like the expert
(discriminator output is ∼1), the trainer should reward the student (action close to +1). If the trainer’s
action isn’t part of its reward, it receives the same reward even if it punishes the student (action close
to -1), requiring the trainer to explore extensively via trial and error to understand the impact of
its actions. To help the trainer better understand how its actions impact the reward it receives, we
define the reward function such that it multiplies the scaled discriminator’s output by trainer’s actions.
Therefore, the trainer agent’s reward function is defined as RT = υ(Dϕ(s

T))(aT), where Dϕ(s
T) is

the output of the discriminator and υ(x) = 2x− 1 is the scaling function. By incorporating aT into
the reward function, the trainer learns to adjust its policy based on the effectiveness of its previous
actions. The optimization problem of the trainer can be defined as

max
πT

E(s,a)∼πS

aT∼πT

[υ(Dϕ(s, a))a
T]. (7)

RILe RILe combines the three components defined previously in order to find a student policy that
mimics expert behaviors presented in τE . In RILe, the student policy πS and the trainer policy πT
can be trained via any single-agent online reinforcement learning method. The training algorithm is
given in Appendix J. Overall, the student agent aims to recover the optimal policy π∗

S defined as

π∗
S = argmax

πS

E(sS ,aS)∼πS

[∞∑
t=0

γt[πT
(
(sSt , a

S
t)
)
]

]
. (8)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

At the same time, the trainer agent aims to recover the optimal policy π∗
T as

π∗
T = argmax

πT

EsT∼πS

aT∼πT

[∞∑
t=0

γt[υ(Dϕ(s
T
t))a

T
t]

]
. (9)

We outline the employed training strategies in Appendix C.

5 EXPERIMENTS

We evaluate the performance of RILe by addressing three key questions:

1. How does RILe’s adaptive reward function evolve compared to baseline methods and how
does this evolution enhance the learning process?

2. How dynamic is RILe’s adaptive reward function, and how does this adaptability benefit the
student agent compared to the policy-agnostic discriminator in AIL?

3. Is RILe efficient and scalable to high-dimensional continuous control tasks?
4. Can RILe use expert-data explicitly to imitate expert behavior?

To answer the first question, we compare RILe’s performance with AI(R)L baselines in a maze setting,
where we demonstrate how the trainer agent modifies the reward function to guide the student during
training. For the second question, we evaluate the dynamics of the learned reward function and
analyze the correlation between these changes and improvements in the student’s performance. For
the third question, we evaluate RILe’s effectiveness in imitating motion-capture data within robotic
control tasks, using LocoMujoco (Al-Hafez et al., 2023), and imitating expert demonstrations in
standard tasks, using (Brockman et al., 2016; Todorov et al., 2012). To answer the last question, we
use a humanoid character from MuJoCo (Brockman et al., 2016; Todorov et al., 2012) to evaluate
RILe’s performance when expert data is explicitly used by the agents. Additional experimental results
are provided in the Appendix, where we evaluate the robustness of the learned reward function and
analyze the noise resilience of our method.

Baselines We compare RILe with seven baseline methods: Behavioral cloning (BC (Bain & Sammut,
1995; Ross & Bagnell, 2010), BCO (Torabi et al., 2018a)), adversarial imitation learning (GAIL (Ho
& Ermon, 2016), GAIfO (Torabi et al., 2018b) and DRAIL (Lai et al., 2024)), adversarial inverse
reinforcement learning (AIRL (Fu et al., 2018)), and inverse reinforcement learning (IQ-Learn (Garg
et al., 2021)). DRAIL (Lai et al., 2024) introduces a diffusion-based discriminator implementation,
which is applied to both GAIL and RILe, and referred as DRAIL-GAIL and DRAIL-RILe.

Additional experimental details are provided in the Appendix D, and hyperparameter selections are
discussed in the Appendix H.

5.1 EVOLVING REWARD FUNCTION

To evaluate the impact of RILe’s trainer agent on the learning process in an interpretable manner,
we designed a maze experiment. Using a single expert demonstration, we trained RILe, GAIL, and
AIRL, in a maze where the agent must navigate from a fixed start to a goal, avoiding obstacles.

Fig. 3 shows how each method’s reward function evolves during training. For RILe, we plot the
reward function learned by the trainer. For GAIL and AIRL, we visualize the discriminator outputs.
The columns represent reward landscapes at 25%, 50%, 75%, and 100% of training completion. The
student’s trajectory from the previous epoch is overlaid to demonstrate how reward functions adapt to
the student’s progress.

RILe’s reward function dynamically adapts to the student’s current policy, providing meaningful
guidance even when the discriminator easily distinguish non-expert policies. In contrast, although
GAIL and AIRL’s reward functions converge faster, they remain relatively static and lack RILe’s
adaptability, which is essential in more complex tasks. RILe’s dynamic adaptation creates a learning
curriculum that encourages exploration and gradual improvement toward expert-like behavior.

Specifically, the first column shows RILe’s trainer encourage exploration towards the expert path
when the student does not resemble the expert, which shows the trainer provides informative rewards

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) RILe

(b) GAIL

(c) AIRL

Figure 3: Reward Function Comparison. Evolution of reward functions during training for (a)
RILe, (b) GAIL, and (c) AIRL in a continuous maze environment. Columns show reward landscapes
at 25%, 50%, 75%, and 100% of training completion (left to right). The expert’s trajectory is shown in
red, while the student agent’s trajectory from the previous training epoch is in black. Color gradients
represent reward values, with darker colors indicating lower rewards and brighter colors indicating
higher rewards. Purple squares represent obstacles. RILe demonstrates a more adaptive reward
function that evolves with the student’s progress, while GAIL and AIRL maintain relatively static
reward landscapes throughout training.

despite negative discriminator feedback. The second column presents when the student learns to
reach the bottom-right, the trainer shifts high rewards to the top-left, guiding the agent to explore that
area. Third column shows as the student approaches the goal, the trainer increases rewards around it
while maintaining rewards in specific areas (e.g., the left part) to prevent the agent from getting stuck.

All in all, RILe’s evolving reward function demonstrates its ability to provide meaningful guidance
even when the discriminator easily identifies non-expert policies. By adapting to the student’s current
capabilities, RILe creates a dynamic learning curriculum that encourages exploration and gradual
improvement towards expert-like behavior.

5.2 REWARD FUNCTION DYNAMICS

To understand the dynamics of the learned reward functions, we evaluated the adaptability of the
reward functions and analyzed the correlation between the changes in the reward function and
improvements in the student’s performance. We compared RILe with GAIL, DRAIL-GAIL, and
DRAIL-RILe in a task of learning to walk with the UnitreeH1 robot in LocoMujoco.

We introduced three metrics (see D.2 for more details): Reward Function Distribution Change (RFDC),
Fixed-State Reward Function Distribution Change (FS-RFDC), and Correlation between Performance
and Reward (CPR). RFDC measures the Wasserstein distance between reward distributions over
consecutive training intervals, quantifying the overall shift in the reward function. FS-RFDC assesses
how reward values for a fixed set of expert states change over time, where fixed states are all states
present in the expert demonstration. CPR asseses how the performance improvement in the student
agent is related to the updates in the reward function.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) RFDC (b) FS-RFDC (c) CPR

Figure 4: Dynamics of Reward Functions. (a) Reward Function Distribution Change (RFDC):
Wasserstein distance between reward function distributions. (b) Fixed-State Reward Function
Distribution Change (FS-RFDC): Mean absolute deviation of reward values for a fixed set of expert
states. (c) Correlation between Performance and Reward (CPR): Pearson correlation between
changes in the reward function and changes in the student’s performance.

5.2.1 ADAPTABILITY OF THE LEARNED REWARD FUNCTION

We assess how dynamic the reward function learned by the trainer is compared to that of AIL. Fig. 4a
presents changes in reward distributions over 10,000 consecutive steps. RILe exhibits the highest
adaptability in its reward function, aligning with our goal of having the reward function adapt based
on the student’s learning stage. The advanced discriminator in DRAIL reduces the need for drastic
reward function changes, yet RILe remains more adaptive than GAIL. Additionally, Fig. 4b shows
deviations in reward values for the fixed set of states. Again, RILe’s reward function is the most
adaptive among all methods.

5.2.2 CORRELATION BETWEEN THE LEARNED REWARD AND THE STUDENT PERFORMANCE

We evaluate how changes in the reward function correlate with improvements in student performance.
To this end, Fig. 4c presents the Pearson correlation between student’s performance and reward
updates. DRAIL-RILe achieves the highest positive correlation, indicating that it learns the most
effective rewards for improving student performance. RILe ranks second, demonstrating that the
trainer agent effectively helps the student achieve better scores. In contrast, for GAIL, the correlation
starts positive but quickly becomes negative, which persists throughout training. This highlights the
limitations of the policy-agnostic discriminator in effectively guiding the student.

5.3 MOTION-CAPTURE DATA IMITATION FOR ROBOTIC CONTINUOUS CONTROL

We evaluate RILe’s performance on the LocoMujoco benchmark, which presents a challenging task
of imitating motion-capture data for various robotic control tasks. This benchmark is particularly
demanding due to its high dimensionality and the absence of action data in the motion-capture
recordings which precludes the use of methods such as BC that require complete state-action pairs.

Table 1: Test results on seven LocoMujoco tasks.

RILe GAIL AIRL IQ BCO GAIfO DRAIL
GAIL

DRAIL
RILe Expert

W
al

k

Atlas 870.6 792.7 300.5 30.9 21.0 834.2 834.4 899.1 1000
Talos 842.5 442.3 102.1 4.5 11.9 710.0 787.7 896.6 1000
UnitreeH1 966.2 950.2 568.1 8.8 34.8 526.8 940.8 995.8 1000
Humanoid 831.3 181.4 80.1 4.5 3.5 706.5 814.6 527.6 1000

C
ar

ry Atlas 850.8 669.3 256.4 36.8 20.3 810.1 516.6 317.1 1000
Talos 220.1 186.3 134.2 10.5 10.3 212.5 836.7 840.5 1000
UnitreeH1 788.3 634.6 130.5 14.4 21.1 604.5 796.7 909.5 1000

Table 1 presents the results for seven LocoMujoco tasks across test seeds (see D.3 for more details).
RILe demonstrates superior performance in all scenarios, particularly excelling in generalization to
new initial conditions as evidenced by the test seed results.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.4 LEARNING FROM DEMONSTRATIONS Table 2: Test results on four MuJoCo tasks.

RILe GAIL AIRL IQ
Humanoid 5928 5709 5623 327
Walker2d 4435 4906 4823 270
Hopper 3417 3361 3014 310
HalfCheetah 5205 4173 3991 755

We evaluate RILe’s performance on four Mu-
JoCo tasks (see D.4 for more details), where
baselines have been previously evaluated. Table
2 presents RILe effectively learns to perform
close to or better than baselines.

5.5 IMPACT OF EXPERT
DATA ON TRAINER-STUDENT DYNAMICS

Figure 5: Explicit Usage of Expert Data.
Red and yellow markers show normalized
scores and steps, respectively. Expert data
usage speeds the training of RILe but reduce
final performance.

We study how explicitly incorporating expert data
into RILe’s training affects the trainer’s ability to
adapt to the student’s needs, in MuJoCo’s Humanoid
environment (Todorov et al., 2012; Brockman et al.,
2016) using a single expert trajectory from (Garg
et al., 2021). We varied the proportion of expert data
in the replay buffers from 0% to 100%; for example,
25% means a quarter of the buffer is expert data and
75% is from the agent (see D.5 for more details).

Fig. 5 presents introducing the expert data led to
faster convergence but decreased performance. No-
tably, when environmental interactions were com-
pletely replaced by expert data (100% case), the stu-
dent’s performance declined significantly. Excessive
expert data appears to hinder the trainer’s ability to
adapt to the student, disrupting RILe’s dynamic learn-
ing process. We include results from IQLearn and
BC, which rely explicitly on expert data. Neither
matches RILe’s performance, even when RILe used
substantial amounts of expert data.

6 DISCUSSION

As our experiments demonstrate, RILe consistently outperforms baseline models across various
settings thanks to its adaptive learning approach, where the trainer agent dynamically adjusts the
reward function based on the student’s current learning stage.

Our Maze experiments exemplify how the trainer agent adapts rewards based on the student’s current
training stage. The trainer encourages the student to take actions that are suboptimal in terms
of immediate imitation but optimal for long-term learning. This adaptive strategy enables RILe
to achieve better performance compared to baselines in our continuous control experiments. In
contrast, as shown in Section 5.2, the policy-agnostic discriminators of AIL methods fail to provide
constructive guidance in complex settings, limiting the student’s improvement, limiting the student’s
ability to improve. Meanwhile, RILe’s trainer continues to offer informative rewards, highlighting
the importance of adaptive reward mechanisms.

However, RILe faces challenges in maintaining policy stability with a changing reward function.
Freezing the trainer is effective but limits further adaptation, and the discriminator tends to overfit
quickly. Future work could focus on exploring methods from fully cooperative multi-agent reinforce-
ment learning to allow continuous adaptation, establishing bounds for trainer updates, and exploring
discriminator-less approaches.

Despite these challenges, RILe demonstrates significant advantages in adaptability, robustness, and
generalization. By providing dynamic and tailored rewards, it effectively guides the student through
complex learning processes, making it a promising direction for future research in imitation learning
and opening up new possibilities for dynamic and responsive learning frameworks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Firas Al-Hafez, Guoping Zhao, Jan Peters, and Davide Tateo. Locomujoco: A comprehensive
imitation learning benchmark for locomotion. In 6th Robot Learning Workshop, NeurIPS, 2023.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, methods
and progress. Artificial Intelligence, 297:103500, 2021.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelligence
15, pp. 103–129, 1995.

Michael Bloem and Nicholas Bambos. Infinite time horizon maximum causal entropy inverse
reinforcement learning. 53rd IEEE Conference on Decision and Control, pp. 4911–4916, 2014.
URL https://api.semanticscholar.org/CorpusID:14981371.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Annie S Chen, Suraj Nair, and Chelsea Finn. Learning generalizable robotic reward functions from”
in-the-wild” human videos. In Robotics: Science and Systems, 2021.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization. In International conference on machine learning, pp. 49–58. PMLR, 2016.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse reinforce-
ment learning. In International Conference on Learning Representations, 2018.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn:
Inverse soft-q learning for imitation. Advances in Neural Information Processing Systems, 34:
4028–4039, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning from demonstrations. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
matching. In International Conference on Learning Representations, 2020.

Chun-Mao Lai, Hsiang-Chun Wang, Ping-Chun Hsieh, Yu-Chiang Frank Wang, Min-Hung Chen, and
Shao-Hua Sun. Diffusion-reward adversarial imitation learning. arXiv preprint arXiv:2405.16194,
2024.

Xu-Hui Liu, Feng Xu, Xinyu Zhang, Tianyuan Liu, Shengyi Jiang, Ruifeng Chen, Zongzhang
Zhang, and Yang Yu. How to guide your learner: Imitation learning with active adaptive expert
involvement. In Proceedings of the 2023 International Conference on Autonomous Agents and
Multiagent Systems, pp. 1276–1284, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Andrew Y Ng and Stuart J Russell. Algorithms for inverse reinforcement learning. In Proceedings of
the Seventeenth International Conference on Machine Learning, pp. 663–670, 2000.

11

https://api.semanticscholar.org/CorpusID:14981371

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. Deepmimic: Example-
guided deep reinforcement learning of physics-based character skills. ACM Transactions On
Graphics (TOG), 37(4):1–14, 2018.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pp. 661–668. JMLR
Workshop and Conference Proceedings, 2010.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference Proceedings,
2011.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):
1140–1144, 2018.

Voot Tangkaratt, Nontawat Charoenphakdee, and Masashi Sugiyama. Robust imitation learning from
noisy demonstrations. In International Conference on Artificial Intelligence and Statistics, pp.
298–306. PMLR, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence, pp. 4950–4957, 2018a.

Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation.
arXiv preprint arXiv:1807.06158, 2018b.

Sam Toyer, Rohin Shah, Andrew Critch, and Stuart Russell. The magical benchmark for robust
imitation. Advances in Neural Information Processing Systems, 33:18284–18295, 2020.

Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi Sugiyama. Imita-
tion learning from imperfect demonstration. In International Conference on Machine Learning, pp.
6818–6827. PMLR, 2019.

Yiqing Xu, Wei Gao, and David Hsu. Receding horizon inverse reinforcement learning. Advances in
Neural Information Processing Systems, 35:27880–27892, 2022.

Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tompson, Jeannette Bohg, and Debidatta Dwibedi.
Xirl: Cross-embodiment inverse reinforcement learning. In Conference on Robot Learning, pp.
537–546. PMLR, 2022.

Boyuan Zheng, Sunny Verma, Jianlong Zhou, Ivor W Tsang, and Fang Chen. Imitation learning:
Progress, taxonomies and challenges. IEEE Transactions on Neural Networks and Learning
Systems, pp. 1–16, 2022.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 8,
pp. 1433–1438. Chicago, IL, USA, 2008.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A POMDP OF THE TRAINER

Partially Observable Markov Decision Process (POMDP) of the trainer is defined as POMDPT =
(ST , AT ,ΩT , TT , OT , RT , γ). Here, TT = {P (. | fT , aT)} is the transition dynamics where
P (. | fT , aT) is the state distribution upon taking action a ∈ AT in state f ∈ ST . The transition
function incorporates the student’s policy πS , which evolves in response to the rewards provided,
reflecting the hidden dynamics due to the unobserved πS . The observation function OT = {P (sT |
fT , aT)} defines the probability of observing sT ∈ ΩT given the state (fT , aT). The trainer
deterministically observes the student’s state-action pair, so P (sT = (sS , aS) | fT , aT) = 1, where
fT = (sS , aS , πS).

B JUSTIFICATION OF RILE

Assumptions:

• The discriminator loss curve is complex and the discriminator function, Dϕ(s, a), is suffi-
ciently expressive since it is parameterized by a neural network with adequate capacity.

• For the trainer’s and student’s policy functions (πθT) and (πθS), and the Q-functions
(QθS), each is Lipschitz continuous with respect to its parameters with constants
(LθT), (LθS), and(LQ), respectively. This means for all (s, a) and for any pair of parameter
settings (θ, θ′) : [|πθ(s, a)−πθ′(s, a)| ≤ Lθ|θ−θ′|,][|Qθ(s, a)−Qθ′(s, a)| ≤ LQ|θ−θ′|.]

To prove that the student agent can learn expert-like behavior, we need to show that the trainer agent
learns to give higher rewards to student experiences that match with the expert state-action pair
distribution, as this would enable a student policy to eventually mimic expert behavior.

B.1 LEMMA 1:

Given the discriminator Dϕ, the trainer agent optimizes its policy πθT via policy gradients to provide
rewards that guide the student agent to match expert’s state-action distributions.

Proof for Lemma 1 The student agent, πS(aSt |sSt), interacts with the environment and generates
state-action pairs as (sSt , a

S
t). The trainer agent observes these pairs and provides a reward rSt =

aTt = πT (a
T
t |(sSt , aSt)) to the student, where aTt ∈ [−1, 1] is the trainer’s action. We have Dϕ :

S ×A → [0, 1] as the discriminator, parameterized by ϕ, which outputs the likelihood that a given
state-action pair (s, a) originates from the expert, as opposed to the student.

The trainer’s reward at timestep t is:
rTt = υ(Dϕ(s

T
t))a

T
t (10)

where sTt = (sSt , a
S
t) is the trainer’s observation, Dϕ(s

T
t) is the discrimantor output that estimates

the likelihood that sTt comes from the expert data, and υ(D) = 2D − 1 is a scaling function that
maps discriminator’s output to the range [−1, 1].
The trainer maximizes the expected cumulative reward:

JT (πT) = EπT ,πS

[∞∑
t=0

γtrTt

]
(11)

where γ ∈ [0, 1) is the discount factor. In other words, trainer aims to find the policy that maximizes
JT (πT): π∗T = argmaxπT JT (πT).

From the policy gradient theorem, the gradient of the trainer’s objective with respect to the policy
parameters, θT , is:

∇θT JT (πT) = EπT ,πS

[
∇θT log πT (a

T
t |sTt)QT (s

T
t , a

T
t)

]
(12)

where QT (s
T
t , a

T
t) is the action-value function of the trainer. The action-value function, QT (s

T
t , a

T
t),

and the value function, VT (sTt) is defined by Bellman equation as:
QT (s

T
t , a

T
t) = rTt + γEsTt+1

[
VT (s

T
t+1)

]
(13)

VT (s
T
t+1) = EaTt ∼πT

[
QT (s

T
t , a

T
t))

]
(14)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

The trainer aims to maximize QT (s
T
t , a

T
t) to satisfy Equation 12. Since rTt depends directly on

Dϕ(s
T
t) and aTt , the trainer learns to select aTt that maximizes QT (s

T
t , a

T
t) . Considering that

aTt ∈ [−1, 1], the immediate reward rTt is maximized when aTt has the same sign as υ(Dϕ(s
T
t)) .

Therefore, the optimal action a∗Tt is:

α∗T
t =


1, if Dϕ(sTt) > 0.5,

−1, if Dϕ(sTt) < 0.5,

any value in [−1, 1], if Dϕ(sTt) = 0.5.

(15)

Equation 15 implies the trainer assigns positive rewards to student state-action pairs that the discrimi-
nator assesses as more likely to be from the expert (Dϕ(s

T
t) > 0.5) and negative rewards to those

unlikely to be from the expert (Dϕ(s
T
t) < 0.5). By this mechanism, the trainer’s policy optimization

relies on the discriminator’s assessment to assign rewards that encourage expert-like behavior.

All in all, the derivative of the trainer’s expected reward, Equation 12, with respect to its policy
parameters is rewritten as:

∇θT JT (πT) = EπT ,πS

[
∇θT log πT (a

T
t |sTt)

(
(2Dϕ(s

T
t)− 1)aTt + γQT (s

T
t+1, a

T
t+1)

)]
(16)

The trainer adjusts πT to output high rewards when Dϕ(s
T
t) is high. Therefore the trainer learns to

assign higher rewards to student behaviors that are more similar to the expert behaviors, according to
the discriminator.

B.2 LEMMA 2:

The discriminator Dϕ, parameterized by ϕ will converge to a function that estimates the probability
of a state-action pair being generated by the expert policy, when trained on samples generated by
both a student policy πθS and an expert policy πE .

Proof for Lemma 2: The discriminator’s objective is to distinguish between state-action pairs
generated by the expert and those generated by the student. The training objective for the discriminator
is framed as a binary classification problem over expert demonstrations and student-generated
trajectories. The discriminator’s loss function LD(ϕ) is the binary cross-entropy loss, which is
defined as:

LD(ϕ) = −E(s,a)∼pE [log(Dϕ(s, a))]− E(s,a)∼pπS
[log(1−Dϕ(s, a))]. (17)

where pE(s, a) is the state-action distribution of the expert policy, and pπS
(s, a) is the state-action

distribution of the student agent. Considering that x = (s, a), this loss can be rewritten as:

LD(ϕ) = −
∫
[pE(s, a) logDϕ(s, a) + pπS

(s, a) log(1−Dϕ(s, a))] ds da (18)

LD(ϕ) = −
∫
[pE(x) logDϕ(x) + pπS

(x) log(1−Dϕ(x))] dx . (19)

As presented in Goodfellow et al. (2014), the optimal discriminator that minimizes this loss, D∗
ϕ, is:

D∗
ϕ(x) =

pE(x)

pE(x) + pπS
(x)

, (20)

D∗
ϕ(s, a) =

pE(s, a)

pE(s, a) + pπS
(s, a)

. (21)

This shows that the optimal discriminator estimates the probability that a state-action pair comes
from the expert policy, normalized by the total probability from both expert and student policies.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C TRAINING STRATEGIES

The introduction of the trainer agent into the AIL framework introduces instabilities that can hinder
the learning process. To address these challenges, we employ three strategies.

Freezing the Trainer Agent Midway: Continuing to train the trainer agent throughout the entire
process can lead to overfitting on minor fluctuations in the student’s behavior. This overfitting causes
the trainer to assign inappropriate negative rewards, which diverts the student away from expert
behavior—especially since the student agent may fail to interpret these subtle nuances correctly in
the later stages of training. To prevent this, we freeze the trainer agent once its critic network within
the actor-critic framework converges during the training process.

We consider the trainer’s critic network to have converged when the change in the exponential moving
average (with a smoothing factor of 0.99) of the critic output and its variance over a window of
50000 training iterations fall below a certain threshold. In all our experiments, this threshold is set to
0.1, which we found empirically after our hyperparameter search (see Appendix H). This threshold
works for all settings where the reward is bounded between −1 and 1, which is the case for all our
experiments.

Reducing the Trainer’s Target Network Update Frequency: We decrease the target network
update frequency of the trainer agent to half that of the student agent. After our hyperparameter
sweeps (see Appendix H), we empirically found that updating at half the student agent’s frequency
works best. This adjustment aims to prevent overestimation bias in the trainer’s value function and to
slow down its learning pace. By updating less frequently, the trainer provides more consistent and
reliable reward signals. This steadier guidance helps the student agent better understand and adapt to
the trainer’s rewards, facilitating more stable learning.

Increasing the Student Agent’s Exploration: We increase the exploration rate of the student agent
compared to standard AIL methods. We implement an epsilon-greedy strategy within the actor-critic
framework, allowing the student to occasionally take random actions. This increased exploration
enables the student to visit a wider range of state-action pairs. Consequently, the trainer agent receives
diverse input, helping it learn a more effective reward function. This diversity is crucial for the trainer
to observe the outcomes of various actions and to guide the student more effectively toward expert
behavior.

D EXPERIMENTAL SETTINGS

D.1 EVOLVING REWARD FUNCTION

We use single expert demonstration in this experiment. For RILe, we plot the reward function learned
by the trainer. For GAIL, we visualize the discriminator output, and for AIRL, the reward term under
the discriminator.

D.2 REWARD FUNCTION DYNAMICS

In this experiment, we select the student agent’s hyperparameters to be identical to those used
in GAIL, ensuring that the only difference between the agents is the reward function. Therefore,
we use the best hyperparameters identified for GAIL, applied to both GAIL and RILe, from our
hyperparameter sweeps in Appendix H.

RFDC: We calculate the Wasserstein distance between reward distributions over consecutive 10,000-
step training intervals, denoted as times t and t + 10, 000. This metric quantifies how much the
overall reward distribution shifts over time. Changes in reward distributions depend both on the
reward function and the student policy updates. Since we use the same student agent with the
same hyperparameters, higher RFDC values still indicate that the reward function is adapting more
dynamically in response to the student’s learning progress.

FS-RFDC: We compute the mean absolute deviation of rewards between consecutive 10,000-step
training intervals for a fixed set of states derived from expert data. As the fixed set, we use all the
states in the expert data. Since the states used for calculating rewards are fixed, changes in this value

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

purely depend on the reward function updates. This metric assesses how the reward values for specific
states change over time.

CPR: We evaluate how changes in the reward function correlate with improvements in student
performance. We store rewards from both the learned reward function and the environment-defined
rewards in separate buffers. In other words, we collect samples from two reward functions: the
learned reward function and the environment-defined reward function. The environment rewards
consider the agent’s velocity and stability. Every 10,000 steps, we calculate the Pearson correlation
between these rewards and empty the buffers. This metric evaluates whether increases in the learned
rewards relate to performance enhancements.

D.3 MOTION-CAPTURE DATA IMITATION FOR ROBOTIC CONTINUOUS CONTROL

During training, we use 8 different random seeds and 8 distinct initial positions for the robot. The
validation setting mirrors the training conditions: we sample initial positions from the same set
of 8 possibilities and use the same random seeds. In this setting, the student agent selects actions
deterministically, allowing us to assess its performance under familiar conditions.

For the test setting, we evaluate the policy’s ability to generalize to new, unseen scenarios. We modify
the initial positions of the robot by randomly initializing it in stable configurations not included in the
fixed set used during training. Additionally, we use different random seeds from those in training,
introducing new random variations that affect the environment’s dynamics during state transitions.
This setup enables us to assess how well the learned policy performs when faced with novel initial
conditions and environmental changes.

D.4 LEARNING FROM DEMONSTRATIONS

Each method is trained using 25 expert trajectories provided in the IQ-Learn paper Garg et al. (2021).
We use single seed for the training, and after the training, run experiments with 10 different random
seeds and report the mean and standard deviation of the results.

D.5 IMPACT OF EXPERT DATA ON TRAINER-STUDENT DYNAMICS

In this experiment, both seeds and initial positions in the test setting are different from the training
one, and we report values from the test setting.

For every percentage of the expert-data in buffers, we continue trainings of both the trainer agent
and the student agent of RILe. For instance, in 100% expert data in the trainer’s buffer case, both the
student and the discriminator are trained normally using samples from the student agent. However,
we didn’t include student’s state-action pairs to the trainer’s buffer, instead, we filled that buffer with
a batch of expert data, and updated the trainer regularly using this modified buffer. Similarly, in 100%
expert data in the student’s buffer case , we trained the trainer agent and the discriminator normally,
using samples from the student agent. However, student’s state-actions pairs are not included in the
student’s buffer, and student agent is updated just by using expert state-action pairs, using rewards
coming from the trainer agent for these expert pairs.

Regarding the normalizations, we trained Behavioral Cloning (BC) and RILe across various data
leakage levels, selecting the highest-scoring run (0% leakage RILe) as the baseline. Other scores and
convergence steps are normalized by dividing by the score and convergence steps of the baseline (0%
leakage RILe). For IQLearn, we used their reported numbers in their paper, as we couldn’t replicate
their results with their code and hyperparameters.

E ADDITIONAL EXPERIMENTS

E.1 NOISY EXPERT DATA

To demonstrate the advantage of using RL to learn the reward function in RILe, as opposed to deriving
the reward directly from the discriminator in AIL and AIRL, we designed a 5x5 MiniGrid experiment.
The grid consists of 4 lava tiles that immediately kill the agent if it steps in it, representing terminal
conditions. The goal condition of the environment is reaching the green tile.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) Expert traj. (b) RILe traj. (c) GAIL traj. (d) AIRL traj. (e) IQLearn traj.

(f) RILe val. (g) GAIL val. (h) AIRL val. (i) IQLearn val.

Figure 6: In a 5x5 grid environment with lava, (a) the expert trajectory is characterized by noisy data
that passes through lava without resulting in death. (c) GAIL, (d) AIRL and (e) IQLearn learn to
imitate the expert’s path precisely, leading them to either get stuck near the lava or enter it and perish.
(b) RILe avoids the noisy data, better mimics the expert in later stages, and successfully reaches the
goal. Subfigures (f-i) display the value tables for RILe, GAIL, AIRL, and IQLearn respectively. The
optimal path, derived from the reward of the trainer or discriminator, is highlighted with green lines.

The expert demonstrations are imperfect, depicting an expert that passes through a lava tile without
being killed and still reaches the green goal tile. Using this data, we trained the adversarial approaches
with a perfect discriminator, which provides a reward of 0.99 if the visited state-action pair stems
from the expert and 0.01 otherwise. These values were chosen over 1 and 0 because both AIRL and
GAIL use the logarithm of the discriminator output to calculate rewards.

Results are presented in Fig. 6. The value graphs (Fig. 6e-g) are attained by computing the value
of each grid cell ci as

∑
a∈AD(ci, a) for AIRL and GAIL, and

∑
a∈A πT (ci, a) for RILe. Fig. 6a

shows the expert trajectory.

GAIL (Fig. 6c), AIRL (Fig. 6d) and IQLearn (Fig. 6e) fail to reach the goal, as their agents either
become stuck or are directed into lava.

In contrast, RILe (Fig. 6d) successfully reaches the goal, demonstrating its ability to navigate around
imperfections in expert data. The difference in the value graphs between RILe and the baselines
intuitively explains this outcome. In AIL and AIRL (Fig. 6f-g), the optimal paths, defined by the
actions most rewarded by their discriminators, follow the noisy expert data perfectly. Similarly, in
IQLearn, the agent tries to match expert state-actions as closely as possible, minimizing any deviation
from the expert trajectory. In contrast, RILe’s trainer agent, trained using RL, adds an extra degree of
freedom in the adversarial IL/IRL setting. By providing rewards that maximize cumulative returns
from the discriminator, rather than deriving the reward directly from its output, the value graph
(Fig. 6f) can learn to circumvent the lava tile in order to follow the expert trajectory to the goal.
Consequently, the optimal path of the student agent can overcome the sub-optimal state suggested by
the noisy expert demonstration. Since the student agent is guided by the trainer to also match the
expert trajectory, it remains close to this path after passing the lava tiles.

E.2 ROBUSTNESS TO NOISE IN THE EXPERT DATA

To evaluate the robustness of RILe and baseline methods to noise in the expert data, we conducted
experiments in the MuJoCo Humanoid-v2 environment. Artificial noise sampled from a zero-mean
Gaussian distribution with varying standard deviations (Σ) was added to a single expert trajectory,
affecting either the actions or the states. The baselines used for comparison were GAIL (Ho & Ermon,
2016), AIRL (Fu et al., 2018), RIL-Co (Tangkaratt et al., 2021), IC-GAIL (Wu et al., 2019), and
IQ-Learn (Garg et al., 2021).

As shown in Table 3, RILe consistently outperforms the baselines across different noise levels,
demonstrating superior robustness even when a high amount of noise is present in the expert data (Σ =

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 3: Test results in MuJoCo Humanoid-v2 environment, where artificial noise sampled from a
zero-mean Gaussian distribution is added to a single expert trajectory. Results are aggregated over 20
different-seed environments. IQ-Learn* is trained using the official code and hyperparameters of the
IQ-Learn algorithm.

Noise-Free Action Noise State Noise
Σ = 0 Σ = 0.2 Σ = 0.5 Σ = 0.2 Σ = 0.5

RILe 5681 5280 5154 5350 5205
GAIL 5430 5275 902 5147 917
AIRL 5276 4869 4589 4898 4780
RIL-Co 576 491 493 505 501
IC-GAIL 610 601 568 590 591
IQ-Learn* 312 192 153 243 277

0.5). These results indicate that RILe is less sensitive to imperfections in the expert demonstrations
compared to existing methods.

E.3 ROBUSTNESS OF THE LEARNED REWARD FUNCTION

We evaluated the robustness of the reward functions learned by RILe and AIRL (Fu et al., 2018)
through an experiment similar to that conducted by Xu et al. (2022). Initially, both methods were
trained to learn reward functions in a noise-free MuJoCo Humanoid-v2 environment. After training,
these reward functions were frozen. Subsequently, new student agents were trained using these
fixed reward functions in environments where Gaussian noise was added to the agents’ actions, with
varying noise levels.

Table 4 presents the results of this evaluation. The reward function learned by RILe demonstrates
superior robustness to noise, maintaining high performance even under increased noise levels. In
contrast, the performance of agents using the reward function learned by AIRL decreases more
significantly as noise increases. These findings indicate that the reward function learned by RILe is
more resilient to environmental noise, contributing to better agent performance in noisy conditions.

Table 4: We test the robustness of learned reward functions. After training reward
functions in a noise-free setting, reward functions are frozen, and used to train
a new agent in a noisy environment, where Gaussian noise is added to agent’s
actions in every step.

No Noise Mild Noise High Noise
Σ = 0 Σ = 0.2 Σ = 0.5

RILe 5748 5201 5196
AIRL 5334 5005 4967

E.4 REWARD CURVES

We compare the reward curves of RILe, GAIL (Ho & Ermon, 2016), AIRL (Fu et al., 2018), IQ-Learn
(Garg et al., 2021), and AdapMen (Liu et al., 2023) in the MuJoCo Humanoid-v2 experiment. Since
the task involves learning from expert trajectories, we combined AdapMen with an adversarial
discriminator to enable training without an expert policy.

As shown in the reward curves, despite RILe having multiple components, it is the most efficient
method. This efficiency is achieved through the dynamic guidance of the trainer during training,
which adapts the reward function to meet the student’s needs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 7: Training reward curves for the MuJoCo Humanoid-v2 experiment comparing RILe, AIRL,
GAIL, IQ-Learn*, and adapted AdapMen. AdapMen is combined with an adversarial discriminator
to be able to train it without expert policy.

F EXTENDED MUJOCO RESULTS

We present MuJoCo results for the test setting, with standard errors, in Table 5.

Table 5: Test results on four MuJoCo tasks with standard errors.

RILe GAIL AIRL IQLearn DRAIL
Humanoid-v2 5928 ± 188 5709 ± 63 5623 ± 252 327 ± 105 5755 ± 34
Walker2d-v2 4435 ± 206 4906 ± 159 4823 ± 221 270 ± 43 4016 ± 127
Hopper-v2 3417 ± 155 3361 ± 51 3014 ± 190 310 ± 47 1230 ± 73
HalfCheetah-v2 5205 ± 31 4173 ± 94 3991 ± 126 755 ± 211 4133 ± 41

G EXTENDED LOCOMUJOCO RESULTS

We present LocoMujoco results for the validation setting and test setting, with standard errors, in
Table 6 and 7, respectively.

Table 6: Validation results on seven LocoMujoco tasks.

RILe GAIL AIRL IQ BCO GAIfO DRAIL
GAIL

DRAIL
RILe Expert

W
al

k

Atlas 895.4
±25

918.6
±133

356.0
±68

32.1
±4

28.7
±4

831.6
±41

741.3
±46

773.9
±13 1000

Talos 884.7
±8

675.5
±105

103.4
±22

7.2
±2

19.9
±4

718.8
±16

963.7
±48

949.4
±54 1000

UnitreeH1 980.7
±15

965.1
±20

716.2
±124

12.5
±6

43.7
±8.4

586.6
±102

954.7
±20

973.5
±8 1000

Humanoid 970.3
±101

216.2
±18

78.2
±6

6.8
±1

8.3
±1

345.7
±34

550.8
±148

595.3
±73 1000

C
ar

ry

Atlas 889.7
±44

974.2
±80

271.9
±30

39.5
±8

42.7
±9

306.2
±9

654.1
±109

344.1
±28 1000

Talos 503.3
±72

338.5
±48

74.1
±8

11.7
±3

8.1
±1

444.5
±96

889.8
±163

874.3
±174 1000

UnitreeH1 850.6
±80

637.4
±90

140.9
±21

12.3
±2

30.2
±5

503.6
±55

620.8
±60

878.1
±46 1000

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: Test results on seven LocoMujoco tasks.

RILe GAIL AIRL IQ BCO GAIfO DRAIL
GAIL

DRAIL
RILe Expert

W
al

k

Atlas 870.6
±13

792.7
±105

300.5
±74

30.9
±10

21.0
±3

803.1
±68

834.4
±23

899.1
±17 1000

Talos 842.5
±24

442.3
±76

102.1
±17

4.5
±3

11.9
±1

687.2
±44

787.7
±11

896.6
±12 1000

UnitreeH1 966.2
±14

950.2
±13

568.1
±156

8.8
±3

34.8
±10

526.8
±72

940.8
±20

995.8
±6 1000

Humanoid 831.3
±98

181.4
±24

80.1
±9

4.5
±2

3.5
±2

292.1
±25

814.6
±80

527.6
±39 1000

C
ar

ry

Atlas 850.8
±62

669.3
±55

256.4
±47

36.8
±14

20.3
±1

402.9
±39

516.6
±60

317.1
±19 1000

Talos 220.1
±88

186.3
±28

134.2
±18

10.5
±3

10.3
±2

212.5
±32

836.7
±160

840.5
±133 1000

UnitreeH1 788.3
±71

634.6
±45

130.5
±22

14.4
±2

21.1
±6

504.5
±30

796.7
±131

909.5
±9 1000

H HYPERPARAMETERS

We present hyperparameters in Table 8. For DRAIL, we replaced the discriminators with the
implementation provided by DRAIL and adopted their hyperparameters for the HandRotate task.

Our experiments revealed that RILe’s performance is particularly sensitive to certain hyperparameters.
We highlight three key observations:

• RILe is more sensitive to the hyperparameters of the discriminator compared to other
methods. Specifically, increasing the discriminator’s capacity or training speed, by using
a larger network architecture or increasing the number of updates per iteration, adversely
affects RILe’s performance. A powerful discriminator tends to overfit quickly to the expert
data, resulting in high confidence when distinguishing between expert and student behaviors.
This poses challenges for the trainer agent, as the discriminator’s feedback becomes less
informative.

• The update frequency of the trainer agent’s target network influences the stability of the
RILe framework. Lower update frequencies lead to improved stability. A slower-updating
trainer provides more consistent reward signals, allowing the student agent to better adapt
to the rewards. However, a lower update frequency slows down the learning process, as
the trainer adapts more slowly to changes in the student’s behavior. Therefore, there is a
trade-off between stability and learning speed that needs to be balanced.

• Enhancing the exploration rate of the student agent benefits RILe more than it does baseline
methods. By encouraging the student to explore more, through strategies like higher entropy
regularization or implementing an epsilon-greedy policy, the student visits a broader range of
state-action pairs. This increased diversity provides the trainer agent with more varied data,
enabling it to learn a more effective and robust reward function. The additional exploration
helps the trainer to better capture the effects of different actions.

I COMPUTE RESOURCES

For the training of RILe and baselines, following computational sources are employed:

• AMD EPYC 7742 64-Core Processor
• 1 x Nvidia A100 GPU
• 32GB Memory

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Ta
bl

e
8:

H
yp

er
pa

ra
m

et
er

Sw
ee

ps
an

d
B

es
tH

yp
er

pa
ra

m
et

er
s

fo
rL

oc
oM

uj
oc

o
an

d
H

um
an

oi
d

E
xp

er
im

en
ts

H
yp

er
pa

ra
m

et
er

s
R

IL
e

G
A

IL
A

IR
L

IQ
-L

ea
rn

Discriminator

U
pd

at
es

pe
rR

ou
nd

1,
2,

8
1,

2,
8

1,
2,

8
-

B
at

ch
Si

ze
32

,6
4,

12
8

32
,6

4,
12

8
32

,6
4,

12
8

-
B

uf
fe

rS
iz

e
81

92
,1

63
84

,1
e5

81
92

,1
63

84
,1

e5
81

92
,1

63
84

,1
e5

-

N
et

w
or

k
[5

12
FC

,5
12

FC
]

[2
56

FC
,2

56
FC

]
[6

4F
C

,6
4F

C
]

[5
12

FC
,5

12
FC

]
[2

56
FC

,2
56

FC
]

[6
4F

C
,6

4F
C

]

[5
12

FC
,5

12
FC

]
[2

56
FC

,2
56

FC
]

[6
4F

C
,6

4F
C

]
-

G
ra

di
en

tP
en

al
ty

0.
5,

1
0.

5,
1

0.
5,

1
-

L
ea

rn
in

g
R

at
e

3e
-4

,1
e-

4,
3e

-5
,1

e-
5

3e
-4

,1
e-

4,
3e

-5
,1

e-
5

3e
-4

,1
e-

4,
3e

-5
,1

e-
5

-

Student

B
uf

fe
rS

iz
e

1e
5,

1e
6

1e
5,

1e
6

1e
5,

1e
6

1e
5,

1e
6

B
at

ch
Si

ze
32

,2
56

32
,2

56
32

,2
56

32
,2

56
N

et
w

or
k

[2
56

FC
,2

56
FC

]
[2

56
FC

,2
56

FC
]

[2
56

FC
,2

56
FC

]
[2

56
FC

,2
56

FC
]

A
ct

iv
at

io
n

Fu
nc

tio
n

R
eL

U
,T

an
h

R
eL

U
,T

an
h

R
eL

U
,T

an
h

R
eL

U
,T

an
h

D
is

co
un

tF
ac

to
r(
γ

)
0.

99
,0

.9
7,

0.
95

0.
99

,0
.9

7,
0.

95
0.

99
,0

.9
7,

0.
95

0.
99

,0
.9

7,
0.

95
L

ea
rn

in
g

R
at

e
3e

-4
,1

e-
4,

3e
-5

,1
e-

5
3e

-4
,1

e-
4,

3e
-5

,1
e-

5
3e

-4
,1

e-
4,

3e
-5

,1
e-

5
3e

-4
,1

e-
4,

3e
-5

,1
e-

5
Ta

u
(τ

)
0.

05
,0

.0
1,

0.
00

5
0.

05
,0

.0
1,

0.
00

5
0.

05
,0

.0
1,

0.
00

5
0.

05
,0

.0
1,

0.
00

5
E

ps
ilo

n-
gr

ee
dy

0,
0.

1,
0.

2
0,

0.
1,

0.
2

0,
0.

1,
0.

2
0,

0.
1,

0.
2

E
nt

ro
py

0.
2,

0.
5,

1
0.

2,
0.

5,
1

0.
2,

0.
5,

1
0.

05
,0

.1
,0

.2
,0

.5
,1

Trainer

B
uf

fe
rS

iz
e

81
92

,1
63

84
,1

e5
,1

e6
-

-
-

B
at

ch
Si

ze
32

,2
56

-
-

-

N
et

w
or

k
[2

56
FC

,2
56

FC
]

[6
4F

C
,6

4F
C

]
-

-
-

A
ct

iv
at

io
n

Fu
nc

tio
n

R
eL

U
,T

an
h

-
-

-
D

is
co

un
tF

ac
to

r(
γ

)
0.

99
,0

.9
7,

0.
95

-
-

-
L

ea
rn

in
g

R
at

e
3e

-4
,1

e-
4,

3e
-5

,1
e-

5
-

-
-

Ta
u

(τ
)

0.
05

,0
.0

1,
0.

00
5

-
-

-
E

nt
ro

py
0.

2,
0.

5,
1

-
-

-
Fr

ee
ze

T
hr

es
ho

ld
1,

0.
5,

0.
1,

0.
01

,0
.0

01
-

-
-

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

J ALGORITHM

Algorithm 1 RILe Training Process

1: Initialize student policy πS and trainer policy πT with random weights, and the discriminator D
with random weights.

2: Initialize an empty replay buffer B
3: for each iteration do
4: Sample trajectory τS using current student policy πS
5: Store τS in replay buffer B
6: for each transition (s, a) in τS do
7: Calculate student reward RS using trainer policy:

RS ← πT (22)

8: Update πS using policy gradient with reward RS

9: end for
10: Sample a batch of transitions from B
11: Train discriminator D to classify student and expert transitions

max
D

EπS
[log(D(s, a))] + EπE

[log(1−D(s, a))] (23)

12: for each transition (s, a) in τS do
13: Calculate trainer reward RT using discriminator:

RT ← υ(D(s, a))aT (24)

14: Update πT using policy gradient with reward RT

15: end for
16: end for

Algorithm 2 RILe Training Process with Off-policy RL

1: Initialize student policy πS , trainer policy πT , and the discriminator D with random weights.
2: Initialize an empty replay buffers BD, BS , BT with different sizes
3: for each iteration do
4: Sample trajectory τS using current student policy πS
5: Store τS in replay buffers BD, BS , BT a batch of transitions, bS from BS
6: for each transition (s, a) in bS do
7: Calculate student reward RS using trainer policy:

RS ← πT (25)

8: Update πS using calculated rewards
9: end for

10: Sample a batch of transitions bD from BD
11: Train discriminator D to classify student and expert transitions

max
D

EπS
[log(D(s, a))] + EπE

[log(1−D(s, a))] (26)

12: Sample a batch of transitions, bT from BT
13: for each transition (s, a) in bT do
14: Calculate trainer reward RT using discriminator:

RT ← υ(D(s, a))aT (27)

15: Update πT using calculated rewards
16: end for
17: end for

22

	Introduction
	Related Work
	Background
	Markov Decision Process
	Reinforcement Learning (RL)
	Inverse Reinforcement Learning (IRL)
	Adversarial Imitation Learning (AIL) and Adversarial Inverse Reinforcement Learning (AIRL)

	RILe: Reinforced Imitation Learning
	Experiments
	Evolving Reward Function
	Reward Function Dynamics
	Adaptability of the Learned Reward Function
	Correlation between the Learned Reward and the Student Performance

	Motion-Capture Data Imitation for Robotic Continuous Control
	Learning from Demonstrations
	Impact of Expert Data on Trainer-Student Dynamics

	Discussion
	POMDP of the Trainer
	Justification of RILe
	Lemma 1:
	Lemma 2:

	Training Strategies
	Experimental Settings
	Evolving Reward Function
	Reward Function Dynamics
	Motion-Capture Data Imitation for Robotic Continuous Control
	Learning from Demonstrations
	Impact of Expert Data on Trainer-Student Dynamics

	Additional Experiments
	Noisy Expert Data
	Robustness to Noise in the Expert Data
	Robustness of the Learned Reward Function
	Reward Curves

	Extended MuJoCo Results
	Extended LocoMujoco Results
	Hyperparameters
	Compute Resources
	Algorithm

