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ABSTRACT

Reinforcement Learning has achieved significant success in generating complex
behavior but often requires extensive reward function engineering. Adversarial vari-
ants of Imitation Learning and Inverse Reinforcement Learning offer an alternative
by learning policies from expert demonstrations via a discriminator. However, these
methods struggle in complex tasks where randomly sampling expert-like behaviors
is challenging. This limitation stems from their reliance on policy-agnostic dis-
criminators, which provide insufficient guidance for agent improvement, especially
as task complexity increases and expert behavior becomes more distinct. We intro-
duce RILe (Reinforced Imitation Learning environment), a novel trainer-student
system that learns a dynamic reward function based on the student’s performance
and alignment with expert demonstrations. In RILe, the student learns an action
policy while the trainer, using reinforcement learning, continuously updates itself
via the discriminator’s feedback to optimize the alignment between the student
and the expert. The trainer optimizes for long-term cumulative rewards from the
discriminator, enabling it to provide nuanced feedback that accounts for the com-
plexity of the task and the student’s current capabilities. This approach allows for
greater exploration of agent actions by providing graduated feedback rather than bi-
nary expert/non-expert classifications. By reducing dependence on policy-agnostic
discriminators, RILe enables better performance in complex settings where tradi-
tional methods falter, outperforming existing methods by 2x in complex simulated
robot-locomotion tasks.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a powerful framework for teaching agents to perform
complex tasks. In recent years, deep reinforcement learning has demonstrated remarkable success in
replicating sophisticated behaviors, including playing Atari games, chess, and Go (Mnih et al., 2013;
Silver et al., 2018). However, these achievements often come at a cost: the tedious and challenging
process of designing reward functions, as predicting the policy outcome from a manually crafted
reward function remains notoriously difficult.

To overcome the reward engineering problem, Imitation Learning (IL) leverages expert demonstra-
tions to learn a policy. Since vast amounts of expert data are required to accurately learn expert
behaviors, Adversarial Imitation Learning (AIL) approaches, such as GAIL (Ho & Ermon, 2016),
have been proposed as data-efficient alternatives. AIL employs a discriminator to measure similarity
between learned behavior and expert behavior, rewarding the agent accordingly. While computa-
tionally efficient, AIL methods suffer from a critical limitation: the policy-agnostic nature of their
discriminators. The discriminator lacks any inherent incentive to guide the agent towards expert-
like behavior, in contrast to engineered reward functions in RL. Consequently, AIL methods face
challenges in complex tasks requiring extensive exploration to find optimal actions. For instance, in
digital locomotion tasks, AIL methods often struggle to consistently replicate expert performance
(Peng et al., 2018).

Inverse Reinforcement Learning (IRL) is another approach to alleviate reward engineering. Unlike
IL, which directly learns expert behavior, IRL seeks to infer the underlying reward function that
motivates the agent to acquire expert behaviors. The reward function and the agent are trained
iteratively, with updates to the reward function based on the agent’s behavior. This iterative process
renders IRL computationally expensive (Zheng et al., 2022). Adversarial Inverse Reinforcement
Learning (AIRL) (Fu et al., 2018) attempts to address this inefficiency by introducing a discriminator

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

that enables simultaneous learning of the policy and reward function. However, in AIRL, the reward
function is tightly coupled to the discriminator, potentially limiting its ability to capture complex task
structures or long-term dependencies and inheriting the limitations of a policy-agnostic discriminators.
This highlights the need for a method that can learn a more flexible reward function without the
computational overhead of traditional IRL methods.

To overcome these challenges and effectively learn behaviors in complex settings, we propose
Reinforced Imitation Learning (RILe) (Fig. 1-(d)). RILe aims to combine the ability to learn a reward
function that actively guides the agent to imitate expert behavior with the computational efficiency of
adversarial frameworks. At the core of RILe is a novel trainer-student system designed to address the
shortcomings of existing methods:

• A student agent that learns to replicate the expert’s policy via RL in the environment
• A trainer agent that learns a reward function via RL and guides the student agent during

training

By integrating the trainer-student dynamic, RILe decouples reward learning from policy learning and
the discriminator, allowing each component to specialize and thereby overcome the limitations of
policy-agnostic discriminators. While RILe utilizes a discriminator similar to those in adversarial
frameworks, its role is fundamentally redefined. In RILe, the discriminator’s primary function is
to provide feedback to the trainer agent by distinguishing expert data from student roll-outs. This
feedback serves as the reward signal for the trainer, not directly influencing the student agent. The
trainer leverages the discriminator’s feedback to learn a reward function that effectively guides the
student agent. This approach enables more nuanced reward shaping, particularly beneficial in tasks
requiring complex decision-making and extensive exploration.

Our contributions are two-fold:

1. Decoupled Reward-function Learning: We introduce a novel approach where the trainer
agent learns the reward function independently from both the student agent and the discrim-
inator. Unlike existing methods that derive rewards directly from discriminator outputs,
our trainer agent uses reinforcement learning to optimize the reward function based on
the feedback from the discriminator. By focusing on long-term reward maximization, RL
enables the trainer to distill inconsistent feedback from the discriminator into meaningful
rewards, leading to better student performance.

2. Dynamic Reward Customization: Our trainer agent dynamically adjusts rewards based on
the student agent’s progress, facilitating a better learning experience and enabling accurate
imitation of expert behavior in complex settings. This adaptive approach allows for more
gradual learning, particularly in tasks where the optimal behavior may change depending on
the agent’s current capabilities.

We evaluate RILe against state-of-the-art methods in AIL, and AIRL, specifically GAIL Ho & Ermon
(2016) AIRL Fu et al. (2018), GAIfO Torabi et al. (2018b), BCO Torabi et al. (2018a), IQ-Learn
Garg et al. (2021) and DRAIL Lai et al. (2024). Our experiments span three scenarios: (1) Tailoring a
reward function dynamically in a discrete maze task, (2) Investigating the impact of expert data on the
trainer-student dynamics in a humanoid locomotion task, and (3) Imitating expert data in continuous
control tasks. The results demonstrate RILe’s superior performance, especially in complex tasks, and
its ability to learn an effective dynamic reward function where baseline methods fail.

2 RELATED WORK

We review literature on learning from expert demonstrations, focusing on Imitation Learning (IL)
and Inverse Reinforcement Learning (IRL), which form the conceptual foundation of RILe.

Imitation Learning Early work introduced Behavioral Cloning (BC) (Bain & Sammut, 1995),
which learns a policy congruent with expert demonstrations through supervised learning. DAgger
(Ross et al., 2011) introduces data aggregation. GAIL (Ho & Ermon, 2016) introduces adversarial
methods, where a discriminator aims to discriminate expert demonstrations, while a generator tries
to fool the discriminator. BCO (Torabi et al., 2018a) extends BC and GAIfO (Torabi et al., 2018b)
extends GAIL to state-only observation scenarios. DQfD (Hester et al., 2018) proposes two-stage
approach with pre-training, and ValueDice (Kostrikov et al., 2020) uses a distribution-matching
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objective between policy and expert. DRAIL (Lai et al., 2024) enhances adversarial imitation learning
via a diffusion-based discriminator, which improves learning efficiency. Despite progress, IL faces
challenges in efficacy and generalization (Zheng et al., 2022; Toyer et al., 2020). RILe addresses
these by introducing an adaptive teacher agent to guide the student beyond expert demonstrations.

Inverse Reinforcement Learning IRL, introduced by Ng & Russell (2000), learns the expert’s
intrinsic reward function. Key developments include Apprenticeship Learning (Abbeel & Ng, 2004),
Maximum Entropy IRL (Ziebart et al., 2008), and adversarial approaches like AIRL (Fu et al.,
2018). IQ-Learn (Garg et al., 2021) reformulates IRL integrates inverse learning of the reward
function into Q-learning. Recent work explores handling unstructured data (Chen et al., 2021) and
cross-embodiment scenarios (Zakka et al., 2022). Despite advancements, IRL faces challenges in
computational efficiency and scalability (Arora & Doshi, 2021). RILe addresses these by jointly
learning policy and reward function in a single process.

3 BACKGROUND

3.1 MARKOV DECISION PROCESS

A standard Markov Decision Process (MDP) is defined by (S,A,R, T,K, γ). S is the state space
consisting of all possible environment states s, and A is action space containing all possible envi-
ronment actions a. R = R(s, a) : S × A → R is the reward function. T = {P (·|s, a)} is the
transition dynamics where P (·|s, a) is an unknown state state transition probability function upon
taking action a ∈ A in state s ∈ S. K(s) is the initial state distribution, i.e., s0 ∼ K(s) and γ is
the discount factor. The policy π = π(a|s) : S → A is a mapping from states to actions. In this
work, we consider γ-discounted infinite horizon settings. Following Ho & Ermon (2016), expectation
with respect to the policy π ∈ Π refers to the expectation when actions are sampled from π(s):
Eπ[R(s, a)] ≜ Eπ[

∑∞
t=0 γ

tR(st, at)], where s0 is sampled from an initial state distribution K(s),
at is given by π(·|st) and st+1 is determined by the unknown transition model as P (·|st, at). The
unknown reward function R(s, a) generates a reward given a state-action pair (s, a). We consider a
setting where R = R(s, a) is parameterized by θ as Rθ(s, a) ∈ R (Finn et al., 2016).

Our work considers an imitation learning problem from expert trajectories, consisting of states s and
actions a. The set of expert trajectories τE are sampled from an expert policy πE ∈ Π, where Π is
the set of all possible policies. We assume that we have access to m expert trajectories, all of which
have n time-steps, τE = {(si0, ai0), (si1, ai1), . . . , (sin, ain)}mi=1.

3.2 REINFORCEMENT LEARNING (RL)

Reinforcement learning seeks to find an optimal policy, π∗. that maximizes the discounted cumulative
reward given from the reward function R = R(s, a) (Fig. 1-(a)). In this work, we incorporate
entropy regularization using the γ-discounted casual entropy function H(π) = Eπ[−log π(a|s)] (Ho
& Ermon, 2016; Bloem & Bambos, 2014). The RL problem with a parameterized reward function
and entropy regularization is defined as

RL(Rθ(s, a)) = π∗ = argmax
π

Eπ[Rθ(s, a)] +H(π). (1)

3.3 INVERSE REINFORCEMENT LEARNING (IRL)

Given sample trajectories τE from an optimal expert policy πE , inverse reinforcement learning
aims to recover a reward function R∗

θ(s, a) that maximally rewards the expert’s behavior (Fig.
1-(b)). Formally, IRL seeks a reward function, R∗

θ(s, a), satisfying: EπE
[
∑∞
t=0 γ

tR∗
θ(st, at)] ≥

Eπ[
∑∞
t=0 γ

tR∗
θ(st, at) +H(π)] ∀π. Optimizing this reward function with reinforcement learning

yields a policy that replicates expert behavior: RL(R∗
θ(s, a)) = π∗. Since only the expert’s trajec-

tories are observed, expectations over πE are estimated from samples in τE . Incorporating entropy
regularization H(π), maximum causal entropy inverse reinforcement learning (Ziebart et al., 2008) is
defined as

IRL(τE) = argmax
Rθ(s,a)∈R

(
Es,a∈τE [Rθ(s, a)]−max

π
(Eπ[Rθ(s, a)] +H(π))

)
. (2)
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(a) RL (b) IRL

(c) GAIL + AIRL (terms in green) (d) RILe

Figure 1: Overview of the related works. (a) Reinforcement Learning (RL): learning a policy
that maximizes hand-defined reward function; (b) Inverse RL (IRL): learning a reward function
from data. IRL has two stages: 1. training a policy with frozen reward function, and 2. updating
the reward function by comparing the converged policy with data. These stages repeated several
times; (C) Generative Adversarial Imitation Learning (GAIL) + Adversarial IRL (AIRL): using
discriminator as a reward function. GAIL trains both policy and the discriminator at the same time.
AIRL implements a new structure on the discriminator, seperating reward from environment dynamics
by using two networks under the discriminator (see additional terms in green). (D) RILe: similar to
IRL, learning a reward function from data. RILe learns the reward function at the same time with the
policy, using discriminator as a guide for learning the reward.

3.4 ADVERSARIAL IMITATION LEARNING (AIL) AND ADVERSARIAL INVERSE
REINFORCEMENT LEARNING (AIRL)

Imitation Learning (IL) aims to directly approximate the expert policy from given expert trajectory
samples τE . It can be formulated as IL(τE) = argminπ E(s,a)∼τE [L(π(·|s), a)], where L is a loss
function, that captures the difference between policy and expert data.

GAIL (Ho & Ermon, 2016) introduces an adversarial imitation learning setting by quantifying the
difference between the agent and the expert with a discriminator Dϕ(s, a), parameterized by ϕ
(Fig. 1-(c)). The discriminator distinguishes between between expert-generated state-action pairs
(s, a) ∼ τE and non-expert ones (s, a) /∈ τE . The goal of GAIL is to find the optimal policy that
fools the discriminator while maximizing an entropy constraint. The optimization is formulated as a
zero-sum game between the discriminator Dϕ(s, a) and the policy π:

min
π

max
ϕ

Eπ[log Dϕ(s, a)] + EτE [log (1−Dϕ(s, a))]− λH(π). (3)

In other words, the reward function that is maximized by the policy is defined as a similarity function,
expressed as R(s, a) = −log (Dϕ(s, a)).

AIRL (Fu et al., 2018) extends AIL to inverse reinforcement learning, aiming to recover a reward
function decoupled from environment dynamics (Fig. 1-(c)). AIRL structures the discriminator as:

Dϕ,ψ(s, a, s
′) =

exp(fϕ(s, a, s
′))

exp(fϕ(s, a, s′)) + π(a|s)
, (4)

where fϕ(s, a, s
′) = rψ(s, a) + γVϕ(s

′) − Vϕ(s). Here, rψ(s, a) represents the learned reward
function that is decoupled from the environment dynamics, γVϕ(s′)−Vϕ(s). The AIRL optimization
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problem is formulated equivalently to GAIL (see Eqn. 3). The reward function rψ(s, a) is learned
through minimizing the cross-entropy loss inherent in this adversarial setup. Therefore, the reward
function remains tightly coupled with the discriminator’s learning process.

4 RILE: REINFORCED IMITATION LEARNING

We propose Reinforced Imitation Learning (RILe) to learn the reward function and acquire a policy
that emulates expert-like behavior simultaneously in one learning process. Our RILe framework
introduces a novel trainer-student dynamic to overcome limitations in existing imitation learning
methods. Figure 2 illustrates our approach.

In RILe, the student agent learns an action policy by interacting with the environment, while the
trainer agent learns a reward function that effectively guides the student toward expert-like behavior.
Both agents are trained simultaneously via reinforcement learning, with assistance from an adversarial
discriminator.

Unlike traditional AIL, where the discriminator directly influences the student, RILe decouples this
process by introducing the trainer agent. The discriminator provides immediate feedback solely to the
trainer agent. This decoupling allows the trainer to adjust the reward function on-the-fly considering
the current stage of the student’s learning process, and guiding the student without waiting for its
policy to converge, a significant efficiency improvement over traditional IRL.

In our framework, the trainer agent takes the key role. Trained via RL, the trainer learns to pro-
vide tailored feedback to the student by maximizing the cumulative rewards it receives from the
discriminator. This approach equips RILe with three key advantages that set it apart from existing
AIL frameworks: (1) the trainer associates its reward signals to future improvements in the student’s
behavior, even if these improvements occur after many steps, (2) the trainer encourages the student to
explore actions that steer it in the right direction, even when immediate expert-like behavior isn’t
achieved yet, and (3) the trainer adjusts its reward function based on the student’s current policy,
creating a learning path that gradually guides the student toward expert behavior.

This approach enables RILe to overcome limitations of previous methods, particularly in complex
tasks requiring extensive exploration, by promoting the discovery of expert-like strategies even when
the student’s initial policy significantly diverges from expert behavior.

In the following, we define the components of RILe and explain how they can efficiently learn
behavior from imperfect data.

Student Agent The student agent learns a policy πS by interacting with an environment in a
standard RL setting within an MDP. For each of its actions aS ∈ A, the environment returns a new
state sS ∈ S. However, rather than from a hand-crafted reward function, the student agent receives its
reward from the policy of the trainer agent πT . Therefore, the reward function is represented by the
trainer policy. Thus, the student agent is guided by the actions of the trainer agent, i.e., the action of
the trainer is the reward of the student: rS = πT ((s

S , aS)). The optimization problem of the student
agent is then defined as

min
πS

−E(sS ,aS)∼πS
[πT

(
(sS , aS)

)
]. (5)

Discriminator The discriminator differentiates between expert-generated state-action pairs (s, a) ∼
τE and state-action pairs from the student (s, a) ∼ πS . In RILe, the discriminator is defined as a
feed-forward deep neural network, parameterized by ϕ. Hence, the optimization problem is

max
ϕ

E(s,a)∼τE [log(Dϕ(s, a))] + E(s,a)∼πS
[log(1−Dϕ(s, a))]. (6)

To provide effective guidance, the discriminator needs to accurately distinguish whether a given
state-action pair originates from the expert distribution (s, a) ∼ τE or not (s, a) /∈ τE . The feasibility
of this discrimination has been demonstrated by GAIL (Ho & Ermon, 2016). The according lemma
and proof are presented in the Appendix B.

Trainer Agent The trainer agent guides the student to imitate expert behavior by operating
as its reward mechanism. Because the trainer cannot directly observe the student’s policy πS ,
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Figure 2: Reinforced Imitation Learning (RILe). The framework consists of three key components:
a student agent, a trainer agent, and a discriminator. The student agent learns a policy πS by
interacting with an environment, and the trainer agent learns a reward function as a policy πT . (1)
The student receives the environment state sS . (2) The student takes an action aS , forwards it to
the environment which is updated based on aS . (3) The student forwards its state and action to the
trainer, whose state is sT = (sS , aS). (4) Trainer, πT , evaluates the state action pair of the student
agent sT = (sS , aS) and chooses an action aT that then becomes the reward of the student agent
aT = rS . (5) The trainer agent forwards the sT = (sS , aS) to the discriminator. (6) Discriminator
compares student state-action pair with expert demonstrations (sD). (7) Discriminator gives reward
to the trainer, based on the similarity between student- and expert-behavior.

we model the trainer’s environment as a Partially Observable MDP (POMDP): POMDPT =
(ST , AT ,ΩT , TT , OT , RT , γ). The state space ST = S ×A× πS includes all possible state-action
pairs from the standard MDP and the student’s policy πS , which is hidden from the trainer, intro-
ducing partial observability. AT is the action space, a mapping from ST → R, so the action is a
scalar value. The observation space ΩT = S × A consists of the observable state-action pairs of
the student. The transition dynamics TT and the observation function OT are defined formally in
Appendix A. The reward function RT (s

T , aT ) evaluates the effectiveness of the trainer’s action in
guiding the student, where sT = (sS , aS) is the observation of the trainer. γ is the discount factor.

The trainer agent learns a policy πT that produces adequate reward signals to guide the student
agent, by learning in a standard RL setting, within POMDPT . The trainer operates under partial
observability and observes the student’s state-action pair sT = (sS , aS) ∈ S ×A, without observing
πS . It generates a scalar action aT , bounded between −1 and 1, which is given to the student agent as
the reward rS . If the trainer’s reward depends only on the discriminator’s output, the trainer receives
the same reward regardless of its action, offering no immediate feedback on whether rewarding
or penalizing the student was effective. For example, when the student behaves like the expert
(discriminator output is ∼1), the trainer should reward the student (action close to +1). If the trainer’s
action isn’t part of its reward, it receives the same reward even if it punishes the student (action close
to -1), requiring the trainer to explore extensively via trial and error to understand the impact of
its actions. To help the trainer better understand how its actions impact the reward it receives, we
define the reward function such that it multiplies the scaled discriminator’s output by trainer’s actions.
Therefore, the trainer agent’s reward function is defined as RT = υ(Dϕ(s

T ))(aT ), where Dϕ(s
T ) is

the output of the discriminator and υ(x) = 2x− 1 is the scaling function. By incorporating aT into
the reward function, the trainer learns to adjust its policy based on the effectiveness of its previous
actions. The optimization problem of the trainer can be defined as

max
πT

E(s,a)∼πS

aT∼πT

[υ(Dϕ(s, a))a
T ]. (7)

RILe RILe combines the three components defined previously in order to find a student policy that
mimics expert behaviors presented in τE . In RILe, the student policy πS and the trainer policy πT
can be trained via any single-agent online reinforcement learning method. The training algorithm is
given in Appendix J. Overall, the student agent aims to recover the optimal policy π∗

S defined as

π∗
S = argmax

πS

E(sS ,aS)∼πS

[ ∞∑
t=0

γt[πT
(
(sSt , a

S
t )
)
]

]
. (8)
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At the same time, the trainer agent aims to recover the optimal policy π∗
T as

π∗
T = argmax

πT

EsT∼πS

aT∼πT

[ ∞∑
t=0

γt[υ(Dϕ(s
T
t ))a

T
t ]

]
. (9)

We outline the employed training strategies in Appendix C.

5 EXPERIMENTS

We evaluate the performance of RILe by addressing three key questions:

1. How does RILe’s adaptive reward function evolve compared to baseline methods and how
does this evolution enhance the learning process?

2. How dynamic is RILe’s adaptive reward function, and how does this adaptability benefit the
student agent compared to the policy-agnostic discriminator in AIL?

3. Is RILe efficient and scalable to high-dimensional continuous control tasks?
4. Can RILe use expert-data explicitly to imitate expert behavior?

To answer the first question, we compare RILe’s performance with AI(R)L baselines in a maze setting,
where we demonstrate how the trainer agent modifies the reward function to guide the student during
training. For the second question, we evaluate the dynamics of the learned reward function and
analyze the correlation between these changes and improvements in the student’s performance. For
the third question, we evaluate RILe’s effectiveness in imitating motion-capture data within robotic
control tasks, using LocoMujoco (Al-Hafez et al., 2023), and imitating expert demonstrations in
standard tasks, using (Brockman et al., 2016; Todorov et al., 2012). To answer the last question, we
use a humanoid character from MuJoCo (Brockman et al., 2016; Todorov et al., 2012) to evaluate
RILe’s performance when expert data is explicitly used by the agents. Additional experimental results
are provided in the Appendix, where we evaluate the robustness of the learned reward function and
analyze the noise resilience of our method.

Baselines We compare RILe with seven baseline methods: Behavioral cloning (BC (Bain & Sammut,
1995; Ross & Bagnell, 2010), BCO (Torabi et al., 2018a)), adversarial imitation learning (GAIL (Ho
& Ermon, 2016), GAIfO (Torabi et al., 2018b) and DRAIL (Lai et al., 2024)), adversarial inverse
reinforcement learning (AIRL (Fu et al., 2018)), and inverse reinforcement learning (IQ-Learn (Garg
et al., 2021)). DRAIL (Lai et al., 2024) introduces a diffusion-based discriminator implementation,
which is applied to both GAIL and RILe, and referred as DRAIL-GAIL and DRAIL-RILe.

Additional experimental details are provided in the Appendix D, and hyperparameter selections are
discussed in the Appendix H.

5.1 EVOLVING REWARD FUNCTION

To evaluate the impact of RILe’s trainer agent on the learning process in an interpretable manner,
we designed a maze experiment. Using a single expert demonstration, we trained RILe, GAIL, and
AIRL, in a maze where the agent must navigate from a fixed start to a goal, avoiding obstacles.

Fig. 3 shows how each method’s reward function evolves during training. For RILe, we plot the
reward function learned by the trainer. For GAIL and AIRL, we visualize the discriminator outputs.
The columns represent reward landscapes at 25%, 50%, 75%, and 100% of training completion. The
student’s trajectory from the previous epoch is overlaid to demonstrate how reward functions adapt to
the student’s progress.

RILe’s reward function dynamically adapts to the student’s current policy, providing meaningful
guidance even when the discriminator easily distinguish non-expert policies. In contrast, although
GAIL and AIRL’s reward functions converge faster, they remain relatively static and lack RILe’s
adaptability, which is essential in more complex tasks. RILe’s dynamic adaptation creates a learning
curriculum that encourages exploration and gradual improvement toward expert-like behavior.

Specifically, the first column shows RILe’s trainer encourage exploration towards the expert path
when the student does not resemble the expert, which shows the trainer provides informative rewards
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(a) RILe

(b) GAIL

(c) AIRL

Figure 3: Reward Function Comparison. Evolution of reward functions during training for (a)
RILe, (b) GAIL, and (c) AIRL in a continuous maze environment. Columns show reward landscapes
at 25%, 50%, 75%, and 100% of training completion (left to right). The expert’s trajectory is shown in
red, while the student agent’s trajectory from the previous training epoch is in black. Color gradients
represent reward values, with darker colors indicating lower rewards and brighter colors indicating
higher rewards. Purple squares represent obstacles. RILe demonstrates a more adaptive reward
function that evolves with the student’s progress, while GAIL and AIRL maintain relatively static
reward landscapes throughout training.

despite negative discriminator feedback. The second column presents when the student learns to
reach the bottom-right, the trainer shifts high rewards to the top-left, guiding the agent to explore that
area. Third column shows as the student approaches the goal, the trainer increases rewards around it
while maintaining rewards in specific areas (e.g., the left part) to prevent the agent from getting stuck.

All in all, RILe’s evolving reward function demonstrates its ability to provide meaningful guidance
even when the discriminator easily identifies non-expert policies. By adapting to the student’s current
capabilities, RILe creates a dynamic learning curriculum that encourages exploration and gradual
improvement towards expert-like behavior.

5.2 REWARD FUNCTION DYNAMICS

To understand the dynamics of the learned reward functions, we evaluated the adaptability of the
reward functions and analyzed the correlation between the changes in the reward function and
improvements in the student’s performance. We compared RILe with GAIL, DRAIL-GAIL, and
DRAIL-RILe in a task of learning to walk with the UnitreeH1 robot in LocoMujoco.

We introduced three metrics (see D.2 for more details): Reward Function Distribution Change (RFDC),
Fixed-State Reward Function Distribution Change (FS-RFDC), and Correlation between Performance
and Reward (CPR). RFDC measures the Wasserstein distance between reward distributions over
consecutive training intervals, quantifying the overall shift in the reward function. FS-RFDC assesses
how reward values for a fixed set of expert states change over time, where fixed states are all states
present in the expert demonstration. CPR asseses how the performance improvement in the student
agent is related to the updates in the reward function.
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(a) RFDC (b) FS-RFDC (c) CPR

Figure 4: Dynamics of Reward Functions. (a) Reward Function Distribution Change (RFDC):
Wasserstein distance between reward function distributions. (b) Fixed-State Reward Function
Distribution Change (FS-RFDC): Mean absolute deviation of reward values for a fixed set of expert
states. (c) Correlation between Performance and Reward (CPR): Pearson correlation between
changes in the reward function and changes in the student’s performance.

5.2.1 ADAPTABILITY OF THE LEARNED REWARD FUNCTION

We assess how dynamic the reward function learned by the trainer is compared to that of AIL. Fig. 4a
presents changes in reward distributions over 10,000 consecutive steps. RILe exhibits the highest
adaptability in its reward function, aligning with our goal of having the reward function adapt based
on the student’s learning stage. The advanced discriminator in DRAIL reduces the need for drastic
reward function changes, yet RILe remains more adaptive than GAIL. Additionally, Fig. 4b shows
deviations in reward values for the fixed set of states. Again, RILe’s reward function is the most
adaptive among all methods.

5.2.2 CORRELATION BETWEEN THE LEARNED REWARD AND THE STUDENT PERFORMANCE

We evaluate how changes in the reward function correlate with improvements in student performance.
To this end, Fig. 4c presents the Pearson correlation between student’s performance and reward
updates. DRAIL-RILe achieves the highest positive correlation, indicating that it learns the most
effective rewards for improving student performance. RILe ranks second, demonstrating that the
trainer agent effectively helps the student achieve better scores. In contrast, for GAIL, the correlation
starts positive but quickly becomes negative, which persists throughout training. This highlights the
limitations of the policy-agnostic discriminator in effectively guiding the student.

5.3 MOTION-CAPTURE DATA IMITATION FOR ROBOTIC CONTINUOUS CONTROL

We evaluate RILe’s performance on the LocoMujoco benchmark, which presents a challenging task
of imitating motion-capture data for various robotic control tasks. This benchmark is particularly
demanding due to its high dimensionality and the absence of action data in the motion-capture
recordings which precludes the use of methods such as BC that require complete state-action pairs.

Table 1: Test results on seven LocoMujoco tasks.

RILe GAIL AIRL IQ BCO GAIfO DRAIL
GAIL

DRAIL
RILe Expert

W
al

k

Atlas 870.6 792.7 300.5 30.9 21.0 834.2 834.4 899.1 1000
Talos 842.5 442.3 102.1 4.5 11.9 710.0 787.7 896.6 1000
UnitreeH1 966.2 950.2 568.1 8.8 34.8 526.8 940.8 995.8 1000
Humanoid 831.3 181.4 80.1 4.5 3.5 706.5 814.6 527.6 1000

C
ar

ry Atlas 850.8 669.3 256.4 36.8 20.3 810.1 516.6 317.1 1000
Talos 220.1 186.3 134.2 10.5 10.3 212.5 836.7 840.5 1000
UnitreeH1 788.3 634.6 130.5 14.4 21.1 604.5 796.7 909.5 1000

Table 1 presents the results for seven LocoMujoco tasks across test seeds (see D.3 for more details).
RILe demonstrates superior performance in all scenarios, particularly excelling in generalization to
new initial conditions as evidenced by the test seed results.
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5.4 LEARNING FROM DEMONSTRATIONS Table 2: Test results on four MuJoCo tasks.

RILe GAIL AIRL IQ
Humanoid 5928 5709 5623 327
Walker2d 4435 4906 4823 270
Hopper 3417 3361 3014 310
HalfCheetah 5205 4173 3991 755

We evaluate RILe’s performance on four Mu-
JoCo tasks (see D.4 for more details), where
baselines have been previously evaluated. Table
2 presents RILe effectively learns to perform
close to or better than baselines.

5.5 IMPACT OF EXPERT
DATA ON TRAINER-STUDENT DYNAMICS

Figure 5: Explicit Usage of Expert Data.
Red and yellow markers show normalized
scores and steps, respectively. Expert data
usage speeds the training of RILe but reduce
final performance.

We study how explicitly incorporating expert data
into RILe’s training affects the trainer’s ability to
adapt to the student’s needs, in MuJoCo’s Humanoid
environment (Todorov et al., 2012; Brockman et al.,
2016) using a single expert trajectory from (Garg
et al., 2021). We varied the proportion of expert data
in the replay buffers from 0% to 100%; for example,
25% means a quarter of the buffer is expert data and
75% is from the agent (see D.5 for more details).

Fig. 5 presents introducing the expert data led to
faster convergence but decreased performance. No-
tably, when environmental interactions were com-
pletely replaced by expert data (100% case), the stu-
dent’s performance declined significantly. Excessive
expert data appears to hinder the trainer’s ability to
adapt to the student, disrupting RILe’s dynamic learn-
ing process. We include results from IQLearn and
BC, which rely explicitly on expert data. Neither
matches RILe’s performance, even when RILe used
substantial amounts of expert data.

6 DISCUSSION

As our experiments demonstrate, RILe consistently outperforms baseline models across various
settings thanks to its adaptive learning approach, where the trainer agent dynamically adjusts the
reward function based on the student’s current learning stage.

Our Maze experiments exemplify how the trainer agent adapts rewards based on the student’s current
training stage. The trainer encourages the student to take actions that are suboptimal in terms
of immediate imitation but optimal for long-term learning. This adaptive strategy enables RILe
to achieve better performance compared to baselines in our continuous control experiments. In
contrast, as shown in Section 5.2, the policy-agnostic discriminators of AIL methods fail to provide
constructive guidance in complex settings, limiting the student’s improvement, limiting the student’s
ability to improve. Meanwhile, RILe’s trainer continues to offer informative rewards, highlighting
the importance of adaptive reward mechanisms.

However, RILe faces challenges in maintaining policy stability with a changing reward function.
Freezing the trainer is effective but limits further adaptation, and the discriminator tends to overfit
quickly. Future work could focus on exploring methods from fully cooperative multi-agent reinforce-
ment learning to allow continuous adaptation, establishing bounds for trainer updates, and exploring
discriminator-less approaches.

Despite these challenges, RILe demonstrates significant advantages in adaptability, robustness, and
generalization. By providing dynamic and tailored rewards, it effectively guides the student through
complex learning processes, making it a promising direction for future research in imitation learning
and opening up new possibilities for dynamic and responsive learning frameworks.
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A POMDP OF THE TRAINER

Partially Observable Markov Decision Process (POMDP) of the trainer is defined as POMDPT =
(ST , AT ,ΩT , TT , OT , RT , γ). Here, TT = {P (. | fT , aT )} is the transition dynamics where
P (. | fT , aT ) is the state distribution upon taking action a ∈ AT in state f ∈ ST . The transition
function incorporates the student’s policy πS , which evolves in response to the rewards provided,
reflecting the hidden dynamics due to the unobserved πS . The observation function OT = {P (sT |
fT , aT )} defines the probability of observing sT ∈ ΩT given the state (fT , aT ). The trainer
deterministically observes the student’s state-action pair, so P (sT = (sS , aS) | fT , aT ) = 1, where
fT = (sS , aS , πS).

B JUSTIFICATION OF RILE

Assumptions:

• The discriminator loss curve is complex and the discriminator function, Dϕ(s, a), is suffi-
ciently expressive since it is parameterized by a neural network with adequate capacity.

• For the trainer’s and student’s policy functions (πθT ) and (πθS ), and the Q-functions
(QθS ), each is Lipschitz continuous with respect to its parameters with constants
(LθT ), (LθS ), and(LQ), respectively. This means for all (s, a) and for any pair of parameter
settings (θ, θ′) : [|πθ(s, a)−πθ′(s, a)| ≤ Lθ|θ−θ′|, ][|Qθ(s, a)−Qθ′(s, a)| ≤ LQ|θ−θ′|.]

To prove that the student agent can learn expert-like behavior, we need to show that the trainer agent
learns to give higher rewards to student experiences that match with the expert state-action pair
distribution, as this would enable a student policy to eventually mimic expert behavior.

B.1 LEMMA 1:

Given the discriminator Dϕ, the trainer agent optimizes its policy πθT via policy gradients to provide
rewards that guide the student agent to match expert’s state-action distributions.

Proof for Lemma 1 The student agent, πS(aSt |sSt ), interacts with the environment and generates
state-action pairs as (sSt , a

S
t ). The trainer agent observes these pairs and provides a reward rSt =

aTt = πT (a
T
t |(sSt , aSt )) to the student, where aTt ∈ [−1, 1] is the trainer’s action. We have Dϕ :

S ×A → [0, 1] as the discriminator, parameterized by ϕ, which outputs the likelihood that a given
state-action pair (s, a) originates from the expert, as opposed to the student.

The trainer’s reward at timestep t is:
rTt = υ(Dϕ(s

T
t ))a

T
t (10)

where sTt = (sSt , a
S
t ) is the trainer’s observation, Dϕ(s

T
t ) is the discrimantor output that estimates

the likelihood that sTt comes from the expert data, and υ(D) = 2D − 1 is a scaling function that
maps discriminator’s output to the range [−1, 1].
The trainer maximizes the expected cumulative reward:

JT (πT ) = EπT ,πS

[ ∞∑
t=0

γtrTt

]
(11)

where γ ∈ [0, 1) is the discount factor. In other words, trainer aims to find the policy that maximizes
JT (πT ): π∗T = argmaxπT JT (πT ).

From the policy gradient theorem, the gradient of the trainer’s objective with respect to the policy
parameters, θT , is:

∇θT JT (πT ) = EπT ,πS

[
∇θT log πT (a

T
t |sTt )QT (s

T
t , a

T
t )

]
(12)

where QT (s
T
t , a

T
t ) is the action-value function of the trainer. The action-value function, QT (s

T
t , a

T
t ),

and the value function, VT (sTt ) is defined by Bellman equation as:
QT (s

T
t , a

T
t ) = rTt + γEsTt+1

[
VT (s

T
t+1)

]
(13)

VT (s
T
t+1) = EaTt ∼πT

[
QT (s

T
t , a

T
t ))

]
(14)
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The trainer aims to maximize QT (s
T
t , a

T
t ) to satisfy Equation 12. Since rTt depends directly on

Dϕ(s
T
t ) and aTt , the trainer learns to select aTt that maximizes QT (s

T
t , a

T
t ) . Considering that

aTt ∈ [−1, 1], the immediate reward rTt is maximized when aTt has the same sign as υ(Dϕ(s
T
t )) .

Therefore, the optimal action a∗Tt is:

α∗T
t =


1, if Dϕ(sTt ) > 0.5,

−1, if Dϕ(sTt ) < 0.5,

any value in [−1, 1], if Dϕ(sTt ) = 0.5.

(15)

Equation 15 implies the trainer assigns positive rewards to student state-action pairs that the discrimi-
nator assesses as more likely to be from the expert (Dϕ(s

T
t ) > 0.5) and negative rewards to those

unlikely to be from the expert (Dϕ(s
T
t ) < 0.5). By this mechanism, the trainer’s policy optimization

relies on the discriminator’s assessment to assign rewards that encourage expert-like behavior.

All in all, the derivative of the trainer’s expected reward, Equation 12, with respect to its policy
parameters is rewritten as:

∇θT JT (πT ) = EπT ,πS

[
∇θT log πT (a

T
t |sTt )

(
(2Dϕ(s

T
t )− 1)aTt + γQT (s

T
t+1, a

T
t+1)

)]
(16)

The trainer adjusts πT to output high rewards when Dϕ(s
T
t ) is high. Therefore the trainer learns to

assign higher rewards to student behaviors that are more similar to the expert behaviors, according to
the discriminator.

B.2 LEMMA 2:

The discriminator Dϕ, parameterized by ϕ will converge to a function that estimates the probability
of a state-action pair being generated by the expert policy, when trained on samples generated by
both a student policy πθS and an expert policy πE .

Proof for Lemma 2: The discriminator’s objective is to distinguish between state-action pairs
generated by the expert and those generated by the student. The training objective for the discriminator
is framed as a binary classification problem over expert demonstrations and student-generated
trajectories. The discriminator’s loss function LD(ϕ) is the binary cross-entropy loss, which is
defined as:

LD(ϕ) = −E(s,a)∼pE [log(Dϕ(s, a))]− E(s,a)∼pπS
[log(1−Dϕ(s, a))]. (17)

where pE(s, a) is the state-action distribution of the expert policy, and pπS
(s, a) is the state-action

distribution of the student agent. Considering that x = (s, a), this loss can be rewritten as:

LD(ϕ) = −
∫
[pE(s, a) logDϕ(s, a) + pπS

(s, a) log(1−Dϕ(s, a))] ds da (18)

LD(ϕ) = −
∫
[pE(x) logDϕ(x) + pπS

(x) log(1−Dϕ(x))] dx . (19)

As presented in Goodfellow et al. (2014), the optimal discriminator that minimizes this loss, D∗
ϕ, is:

D∗
ϕ(x) =

pE(x)

pE(x) + pπS
(x)

, (20)

D∗
ϕ(s, a) =

pE(s, a)

pE(s, a) + pπS
(s, a)

. (21)

This shows that the optimal discriminator estimates the probability that a state-action pair comes
from the expert policy, normalized by the total probability from both expert and student policies.
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C TRAINING STRATEGIES

The introduction of the trainer agent into the AIL framework introduces instabilities that can hinder
the learning process. To address these challenges, we employ three strategies.

Freezing the Trainer Agent Midway: Continuing to train the trainer agent throughout the entire
process can lead to overfitting on minor fluctuations in the student’s behavior. This overfitting causes
the trainer to assign inappropriate negative rewards, which diverts the student away from expert
behavior—especially since the student agent may fail to interpret these subtle nuances correctly in
the later stages of training. To prevent this, we freeze the trainer agent once its critic network within
the actor-critic framework converges during the training process.

We consider the trainer’s critic network to have converged when the change in the exponential moving
average (with a smoothing factor of 0.99) of the critic output and its variance over a window of
50000 training iterations fall below a certain threshold. In all our experiments, this threshold is set to
0.1, which we found empirically after our hyperparameter search (see Appendix H). This threshold
works for all settings where the reward is bounded between −1 and 1, which is the case for all our
experiments.

Reducing the Trainer’s Target Network Update Frequency: We decrease the target network
update frequency of the trainer agent to half that of the student agent. After our hyperparameter
sweeps (see Appendix H), we empirically found that updating at half the student agent’s frequency
works best. This adjustment aims to prevent overestimation bias in the trainer’s value function and to
slow down its learning pace. By updating less frequently, the trainer provides more consistent and
reliable reward signals. This steadier guidance helps the student agent better understand and adapt to
the trainer’s rewards, facilitating more stable learning.

Increasing the Student Agent’s Exploration: We increase the exploration rate of the student agent
compared to standard AIL methods. We implement an epsilon-greedy strategy within the actor-critic
framework, allowing the student to occasionally take random actions. This increased exploration
enables the student to visit a wider range of state-action pairs. Consequently, the trainer agent receives
diverse input, helping it learn a more effective reward function. This diversity is crucial for the trainer
to observe the outcomes of various actions and to guide the student more effectively toward expert
behavior.

D EXPERIMENTAL SETTINGS

D.1 EVOLVING REWARD FUNCTION

We use single expert demonstration in this experiment. For RILe, we plot the reward function learned
by the trainer. For GAIL, we visualize the discriminator output, and for AIRL, the reward term under
the discriminator.

D.2 REWARD FUNCTION DYNAMICS

In this experiment, we select the student agent’s hyperparameters to be identical to those used
in GAIL, ensuring that the only difference between the agents is the reward function. Therefore,
we use the best hyperparameters identified for GAIL, applied to both GAIL and RILe, from our
hyperparameter sweeps in Appendix H.

RFDC: We calculate the Wasserstein distance between reward distributions over consecutive 10,000-
step training intervals, denoted as times t and t + 10, 000. This metric quantifies how much the
overall reward distribution shifts over time. Changes in reward distributions depend both on the
reward function and the student policy updates. Since we use the same student agent with the
same hyperparameters, higher RFDC values still indicate that the reward function is adapting more
dynamically in response to the student’s learning progress.

FS-RFDC: We compute the mean absolute deviation of rewards between consecutive 10,000-step
training intervals for a fixed set of states derived from expert data. As the fixed set, we use all the
states in the expert data. Since the states used for calculating rewards are fixed, changes in this value
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purely depend on the reward function updates. This metric assesses how the reward values for specific
states change over time.

CPR: We evaluate how changes in the reward function correlate with improvements in student
performance. We store rewards from both the learned reward function and the environment-defined
rewards in separate buffers. In other words, we collect samples from two reward functions: the
learned reward function and the environment-defined reward function. The environment rewards
consider the agent’s velocity and stability. Every 10,000 steps, we calculate the Pearson correlation
between these rewards and empty the buffers. This metric evaluates whether increases in the learned
rewards relate to performance enhancements.

D.3 MOTION-CAPTURE DATA IMITATION FOR ROBOTIC CONTINUOUS CONTROL

During training, we use 8 different random seeds and 8 distinct initial positions for the robot. The
validation setting mirrors the training conditions: we sample initial positions from the same set
of 8 possibilities and use the same random seeds. In this setting, the student agent selects actions
deterministically, allowing us to assess its performance under familiar conditions.

For the test setting, we evaluate the policy’s ability to generalize to new, unseen scenarios. We modify
the initial positions of the robot by randomly initializing it in stable configurations not included in the
fixed set used during training. Additionally, we use different random seeds from those in training,
introducing new random variations that affect the environment’s dynamics during state transitions.
This setup enables us to assess how well the learned policy performs when faced with novel initial
conditions and environmental changes.

D.4 LEARNING FROM DEMONSTRATIONS

Each method is trained using 25 expert trajectories provided in the IQ-Learn paper Garg et al. (2021).
We use single seed for the training, and after the training, run experiments with 10 different random
seeds and report the mean and standard deviation of the results.

D.5 IMPACT OF EXPERT DATA ON TRAINER-STUDENT DYNAMICS

In this experiment, both seeds and initial positions in the test setting are different from the training
one, and we report values from the test setting.

For every percentage of the expert-data in buffers, we continue trainings of both the trainer agent
and the student agent of RILe. For instance, in 100% expert data in the trainer’s buffer case, both the
student and the discriminator are trained normally using samples from the student agent. However,
we didn’t include student’s state-action pairs to the trainer’s buffer, instead, we filled that buffer with
a batch of expert data, and updated the trainer regularly using this modified buffer. Similarly, in 100%
expert data in the student’s buffer case , we trained the trainer agent and the discriminator normally,
using samples from the student agent. However, student’s state-actions pairs are not included in the
student’s buffer, and student agent is updated just by using expert state-action pairs, using rewards
coming from the trainer agent for these expert pairs.

Regarding the normalizations, we trained Behavioral Cloning (BC) and RILe across various data
leakage levels, selecting the highest-scoring run (0% leakage RILe) as the baseline. Other scores and
convergence steps are normalized by dividing by the score and convergence steps of the baseline (0%
leakage RILe). For IQLearn, we used their reported numbers in their paper, as we couldn’t replicate
their results with their code and hyperparameters.

E ADDITIONAL EXPERIMENTS

E.1 NOISY EXPERT DATA

To demonstrate the advantage of using RL to learn the reward function in RILe, as opposed to deriving
the reward directly from the discriminator in AIL and AIRL, we designed a 5x5 MiniGrid experiment.
The grid consists of 4 lava tiles that immediately kill the agent if it steps in it, representing terminal
conditions. The goal condition of the environment is reaching the green tile.
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(a) Expert traj. (b) RILe traj. (c) GAIL traj. (d) AIRL traj. (e) IQLearn traj.

(f) RILe val. (g) GAIL val. (h) AIRL val. (i) IQLearn val.

Figure 6: In a 5x5 grid environment with lava, (a) the expert trajectory is characterized by noisy data
that passes through lava without resulting in death. (c) GAIL, (d) AIRL and (e) IQLearn learn to
imitate the expert’s path precisely, leading them to either get stuck near the lava or enter it and perish.
(b) RILe avoids the noisy data, better mimics the expert in later stages, and successfully reaches the
goal. Subfigures (f-i) display the value tables for RILe, GAIL, AIRL, and IQLearn respectively. The
optimal path, derived from the reward of the trainer or discriminator, is highlighted with green lines.

The expert demonstrations are imperfect, depicting an expert that passes through a lava tile without
being killed and still reaches the green goal tile. Using this data, we trained the adversarial approaches
with a perfect discriminator, which provides a reward of 0.99 if the visited state-action pair stems
from the expert and 0.01 otherwise. These values were chosen over 1 and 0 because both AIRL and
GAIL use the logarithm of the discriminator output to calculate rewards.

Results are presented in Fig. 6. The value graphs (Fig. 6e-g) are attained by computing the value
of each grid cell ci as

∑
a∈AD(ci, a) for AIRL and GAIL, and

∑
a∈A πT (ci, a) for RILe. Fig. 6a

shows the expert trajectory.

GAIL (Fig. 6c), AIRL (Fig. 6d) and IQLearn (Fig. 6e) fail to reach the goal, as their agents either
become stuck or are directed into lava.

In contrast, RILe (Fig. 6d) successfully reaches the goal, demonstrating its ability to navigate around
imperfections in expert data. The difference in the value graphs between RILe and the baselines
intuitively explains this outcome. In AIL and AIRL (Fig. 6f-g), the optimal paths, defined by the
actions most rewarded by their discriminators, follow the noisy expert data perfectly. Similarly, in
IQLearn, the agent tries to match expert state-actions as closely as possible, minimizing any deviation
from the expert trajectory. In contrast, RILe’s trainer agent, trained using RL, adds an extra degree of
freedom in the adversarial IL/IRL setting. By providing rewards that maximize cumulative returns
from the discriminator, rather than deriving the reward directly from its output, the value graph
(Fig. 6f) can learn to circumvent the lava tile in order to follow the expert trajectory to the goal.
Consequently, the optimal path of the student agent can overcome the sub-optimal state suggested by
the noisy expert demonstration. Since the student agent is guided by the trainer to also match the
expert trajectory, it remains close to this path after passing the lava tiles.

E.2 ROBUSTNESS TO NOISE IN THE EXPERT DATA

To evaluate the robustness of RILe and baseline methods to noise in the expert data, we conducted
experiments in the MuJoCo Humanoid-v2 environment. Artificial noise sampled from a zero-mean
Gaussian distribution with varying standard deviations (Σ) was added to a single expert trajectory,
affecting either the actions or the states. The baselines used for comparison were GAIL (Ho & Ermon,
2016), AIRL (Fu et al., 2018), RIL-Co (Tangkaratt et al., 2021), IC-GAIL (Wu et al., 2019), and
IQ-Learn (Garg et al., 2021).

As shown in Table 3, RILe consistently outperforms the baselines across different noise levels,
demonstrating superior robustness even when a high amount of noise is present in the expert data (Σ =
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Table 3: Test results in MuJoCo Humanoid-v2 environment, where artificial noise sampled from a
zero-mean Gaussian distribution is added to a single expert trajectory. Results are aggregated over 20
different-seed environments. IQ-Learn* is trained using the official code and hyperparameters of the
IQ-Learn algorithm.

Noise-Free Action Noise State Noise
Σ = 0 Σ = 0.2 Σ = 0.5 Σ = 0.2 Σ = 0.5

RILe 5681 5280 5154 5350 5205
GAIL 5430 5275 902 5147 917
AIRL 5276 4869 4589 4898 4780
RIL-Co 576 491 493 505 501
IC-GAIL 610 601 568 590 591
IQ-Learn* 312 192 153 243 277

0.5). These results indicate that RILe is less sensitive to imperfections in the expert demonstrations
compared to existing methods.

E.3 ROBUSTNESS OF THE LEARNED REWARD FUNCTION

We evaluated the robustness of the reward functions learned by RILe and AIRL (Fu et al., 2018)
through an experiment similar to that conducted by Xu et al. (2022). Initially, both methods were
trained to learn reward functions in a noise-free MuJoCo Humanoid-v2 environment. After training,
these reward functions were frozen. Subsequently, new student agents were trained using these
fixed reward functions in environments where Gaussian noise was added to the agents’ actions, with
varying noise levels.

Table 4 presents the results of this evaluation. The reward function learned by RILe demonstrates
superior robustness to noise, maintaining high performance even under increased noise levels. In
contrast, the performance of agents using the reward function learned by AIRL decreases more
significantly as noise increases. These findings indicate that the reward function learned by RILe is
more resilient to environmental noise, contributing to better agent performance in noisy conditions.

Table 4: We test the robustness of learned reward functions. After training reward
functions in a noise-free setting, reward functions are frozen, and used to train
a new agent in a noisy environment, where Gaussian noise is added to agent’s
actions in every step.

No Noise Mild Noise High Noise
Σ = 0 Σ = 0.2 Σ = 0.5

RILe 5748 5201 5196
AIRL 5334 5005 4967

E.4 REWARD CURVES

We compare the reward curves of RILe, GAIL (Ho & Ermon, 2016), AIRL (Fu et al., 2018), IQ-Learn
(Garg et al., 2021), and AdapMen (Liu et al., 2023) in the MuJoCo Humanoid-v2 experiment. Since
the task involves learning from expert trajectories, we combined AdapMen with an adversarial
discriminator to enable training without an expert policy.

As shown in the reward curves, despite RILe having multiple components, it is the most efficient
method. This efficiency is achieved through the dynamic guidance of the trainer during training,
which adapts the reward function to meet the student’s needs.
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Figure 7: Training reward curves for the MuJoCo Humanoid-v2 experiment comparing RILe, AIRL,
GAIL, IQ-Learn*, and adapted AdapMen. AdapMen is combined with an adversarial discriminator
to be able to train it without expert policy.

F EXTENDED MUJOCO RESULTS

We present MuJoCo results for the test setting, with standard errors, in Table 5.

Table 5: Test results on four MuJoCo tasks with standard errors.

RILe GAIL AIRL IQLearn DRAIL
Humanoid-v2 5928 ± 188 5709 ± 63 5623 ± 252 327 ± 105 5755 ± 34
Walker2d-v2 4435 ± 206 4906 ± 159 4823 ± 221 270 ± 43 4016 ± 127
Hopper-v2 3417 ± 155 3361 ± 51 3014 ± 190 310 ± 47 1230 ± 73
HalfCheetah-v2 5205 ± 31 4173 ± 94 3991 ± 126 755 ± 211 4133 ± 41

G EXTENDED LOCOMUJOCO RESULTS

We present LocoMujoco results for the validation setting and test setting, with standard errors, in
Table 6 and 7, respectively.

Table 6: Validation results on seven LocoMujoco tasks.

RILe GAIL AIRL IQ BCO GAIfO DRAIL
GAIL

DRAIL
RILe Expert

W
al

k

Atlas 895.4
±25

918.6
±133

356.0
±68

32.1
±4

28.7
±4

831.6
±41

741.3
±46

773.9
±13 1000

Talos 884.7
±8

675.5
±105

103.4
±22

7.2
±2

19.9
±4

718.8
±16

963.7
±48

949.4
±54 1000

UnitreeH1 980.7
±15

965.1
±20

716.2
±124

12.5
±6

43.7
±8.4

586.6
±102

954.7
±20

973.5
±8 1000

Humanoid 970.3
±101

216.2
±18

78.2
±6

6.8
±1

8.3
±1

345.7
±34

550.8
±148

595.3
±73 1000

C
ar

ry

Atlas 889.7
±44

974.2
±80

271.9
±30

39.5
±8

42.7
±9

306.2
±9

654.1
±109

344.1
±28 1000

Talos 503.3
±72

338.5
±48

74.1
±8

11.7
±3

8.1
±1

444.5
±96

889.8
±163

874.3
±174 1000

UnitreeH1 850.6
±80

637.4
±90

140.9
±21

12.3
±2

30.2
±5

503.6
±55

620.8
±60

878.1
±46 1000
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Table 7: Test results on seven LocoMujoco tasks.

RILe GAIL AIRL IQ BCO GAIfO DRAIL
GAIL

DRAIL
RILe Expert

W
al

k

Atlas 870.6
±13

792.7
±105

300.5
±74

30.9
±10

21.0
±3

803.1
±68

834.4
±23

899.1
±17 1000

Talos 842.5
±24

442.3
±76

102.1
±17

4.5
±3

11.9
±1

687.2
±44

787.7
±11

896.6
±12 1000

UnitreeH1 966.2
±14

950.2
±13

568.1
±156

8.8
±3

34.8
±10

526.8
±72

940.8
±20

995.8
±6 1000

Humanoid 831.3
±98

181.4
±24

80.1
±9

4.5
±2

3.5
±2

292.1
±25

814.6
±80

527.6
±39 1000

C
ar

ry

Atlas 850.8
±62

669.3
±55

256.4
±47

36.8
±14

20.3
±1

402.9
±39

516.6
±60

317.1
±19 1000

Talos 220.1
±88

186.3
±28

134.2
±18

10.5
±3

10.3
±2

212.5
±32

836.7
±160

840.5
±133 1000

UnitreeH1 788.3
±71

634.6
±45

130.5
±22

14.4
±2

21.1
±6

504.5
±30

796.7
±131

909.5
±9 1000

H HYPERPARAMETERS

We present hyperparameters in Table 8. For DRAIL, we replaced the discriminators with the
implementation provided by DRAIL and adopted their hyperparameters for the HandRotate task.

Our experiments revealed that RILe’s performance is particularly sensitive to certain hyperparameters.
We highlight three key observations:

• RILe is more sensitive to the hyperparameters of the discriminator compared to other
methods. Specifically, increasing the discriminator’s capacity or training speed, by using
a larger network architecture or increasing the number of updates per iteration, adversely
affects RILe’s performance. A powerful discriminator tends to overfit quickly to the expert
data, resulting in high confidence when distinguishing between expert and student behaviors.
This poses challenges for the trainer agent, as the discriminator’s feedback becomes less
informative.

• The update frequency of the trainer agent’s target network influences the stability of the
RILe framework. Lower update frequencies lead to improved stability. A slower-updating
trainer provides more consistent reward signals, allowing the student agent to better adapt
to the rewards. However, a lower update frequency slows down the learning process, as
the trainer adapts more slowly to changes in the student’s behavior. Therefore, there is a
trade-off between stability and learning speed that needs to be balanced.

• Enhancing the exploration rate of the student agent benefits RILe more than it does baseline
methods. By encouraging the student to explore more, through strategies like higher entropy
regularization or implementing an epsilon-greedy policy, the student visits a broader range of
state-action pairs. This increased diversity provides the trainer agent with more varied data,
enabling it to learn a more effective and robust reward function. The additional exploration
helps the trainer to better capture the effects of different actions.

I COMPUTE RESOURCES

For the training of RILe and baselines, following computational sources are employed:

• AMD EPYC 7742 64-Core Processor
• 1 x Nvidia A100 GPU
• 32GB Memory
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J ALGORITHM

Algorithm 1 RILe Training Process

1: Initialize student policy πS and trainer policy πT with random weights, and the discriminator D
with random weights.

2: Initialize an empty replay buffer B
3: for each iteration do
4: Sample trajectory τS using current student policy πS
5: Store τS in replay buffer B
6: for each transition (s, a) in τS do
7: Calculate student reward RS using trainer policy:

RS ← πT (22)

8: Update πS using policy gradient with reward RS

9: end for
10: Sample a batch of transitions from B
11: Train discriminator D to classify student and expert transitions

max
D

EπS
[log(D(s, a))] + EπE

[log(1−D(s, a))] (23)

12: for each transition (s, a) in τS do
13: Calculate trainer reward RT using discriminator:

RT ← υ(D(s, a))aT (24)

14: Update πT using policy gradient with reward RT

15: end for
16: end for

Algorithm 2 RILe Training Process with Off-policy RL

1: Initialize student policy πS , trainer policy πT , and the discriminator D with random weights.
2: Initialize an empty replay buffers BD, BS , BT with different sizes
3: for each iteration do
4: Sample trajectory τS using current student policy πS
5: Store τS in replay buffers BD, BS , BT a batch of transitions, bS from BS
6: for each transition (s, a) in bS do
7: Calculate student reward RS using trainer policy:

RS ← πT (25)

8: Update πS using calculated rewards
9: end for

10: Sample a batch of transitions bD from BD
11: Train discriminator D to classify student and expert transitions

max
D

EπS
[log(D(s, a))] + EπE

[log(1−D(s, a))] (26)

12: Sample a batch of transitions, bT from BT
13: for each transition (s, a) in bT do
14: Calculate trainer reward RT using discriminator:

RT ← υ(D(s, a))aT (27)

15: Update πT using calculated rewards
16: end for
17: end for
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