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Abstract
We provide a survey and careful empirical com-001
parison of the state-of-the-art in neural selective002
classification for NLP tasks. Across multiple003
trials on multiple datasets, only one of the sur-004
veyed techniques – Monte Carlo Dropout – sig-005
nificantly outperforms the simple baseline of006
using the maximum softmax probability as an007
indicator of prediction confidence. Our results008
provide a counterpoint to recent claims made009
on the basis of single-trial experiments on a010
small number of datasets. We also provide a011
blueprint and open-source code to support the012
future evaluation of selective prediction tech-013
niques.014

1 Introduction015

Despite the massive improvements that deep learn-016

ing has brought to natural language processing over017

the past decade, neural networks still do make mis-018

takes. There has thus been a growing interest in019

confidence estimation techniques that perform well020

on deep neural networks.021

A prominent subarea of confidence estimation is022

selective prediction (El-Yaniv et al., 2010; Geifman023

and El-Yaniv, 2017). Selective prediction focuses024

on developing classifiers that choose to abstain025

when sufficiently uncertain. There is less focus026

on absolute measures of confidence, and more on a027

classifier’s ability to successful rank its predictions,028

enabling techniques that maximize prediction qual-029

ity given a desired yield (Geifman and El-Yaniv,030

2019) or that maximize yield given a desired qual-031

ity (Geifman and El-Yaniv, 2017).032

This paper provides a survey and rigorous em-033

pirical comparison of the state-of-the-art in neural034

selective classification (i.e. selective prediction035

where the underlying classifier is a neural network)036

specifically as it pertains to natural language pro-037

cessing. Our main contributions are the following:038

• We survey a variety of recent techniques pro-039

posed in the ML and NLP literature.040

• We compare them across six classification 041

tasks from the GLUE benchmark (Wang et al., 042

2018), we do careful hyperparameter tuning 043

for all surveyed techniques, and we perform 044

multiple trials of each technique to get an ade- 045

quate sense of median and variance. 046

• We discover and remedy a flaw in an evalu- 047

ation metric proposed by (Xin et al., 2021), 048

resulting in a simple metric called worst-case 049

normalized Kendall-Tau distance that pro- 050

vides a calibrated measure of the performance 051

of selective classification techniques. 052

• We determine that, despite various recent 053

claims to have identified techniques that out- 054

perform the simple baseline (Hendrycks and 055

Gimpel, 2017) of using maximum softmax 056

probability as a confidence indicator, the only 057

surveyed technique that demonstrates sig- 058

nificant improvement across multiple tasks 059

and trials is Monte Carlo Dropout (Gal and 060

Ghahramani, 2016). 061

• We release a documented and unit-tested 062

Python package called spred (selective 063

prediction) to make our experiments transpar- 064

ent and reproducible. To facilitate evaluation 065

of future techniques, the package provides tu- 066

torials about how to add and evaluate novel 067

selective prediction methods. 068

2 Selective Prediction 069

2.1 Preliminaries 070

A prediction function is a function f : X → Y 071

that maps an instance space X to a label space 072

Y . We refer to the output f(x) of the prediction 073

function as its prediction for instance x ∈ X . We 074

use the notation f(x) to refer to the gold prediction 075

for a particular instance. The following denotes 076

the correctly and incorrectly predicted instances of 077
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Figure 1: Three confidence functions for an example
prediction function that has an overall accuracy of 6/10
on the evaluation set.

Figure 2: Three confidence functions for a stronger
prediction function that has an overall accuracy of 9/10
on the evaluation set.

prediction function f on set x ⊆ X :078

C(f,x) = {xi ∈ x | f(xi) = f(xi)}079

C(f,x) = {xi ∈ x | f(xi) 6= f(xi)}080

If we pair a prediction function with a selection081

function g : X → {0, 1}, we obtain a selective082

model (f, g). For instance x ∈ X , a selective083

model h = (f, g) publishes its prediction f(x) if084

g(x) = 1, and abstains if g(x) = 0. In short:085

h(x) =

{
f(x) if g(x) = 1

⊥ if g(x) = 0
086

where ⊥ is a symbol representing abstention.087

A convenient way to implement a selection func-088

tion is to use a confidence function g̃ : X → R089

that assigns a real-valued confidence to any input090

x ∈ X . We can derive a selection function gθ from091

confidence function g̃ by specifying a minimum092

confidence threshold θ for publishing predictions:093

gθ(x) = 1[g̃(x) > θ]094

2.2 Examples095

In Figure 1, we show three confidence functions096

g̃
(A)
1 , g̃(A)2 , g̃(A)3 for an example prediction func-097

tion f (A). The first confidence function g̃
(A)
1 is098

pretty good; it assigns its highest confidences to099

four out of the six correct predictions, though un-100

fortunately it also gives its lowest confidence to the101

correct prediction f (A)(x1). By contrast, g̃(A)2 is a 102

best-case confidence function (assigning its highest 103

confidences to the six correct predictions) and g̃(A)3 104

is a worst-case confidence function (assigning its 105

lowest confidences to the six correct predictions). 106

Figure 2 shows three more confidence functions 107

g̃
(B)
1 , g̃(B)

2 , g̃(B)
3 for a stronger prediction function 108

f (B). This time, the first confidence function g̃(B)
1 109

is not particularly good; it assigns its third-highest 110

confidence to the only incorrect prediction. Again, 111

g̃
(B)
2 is a best-case confidence function (assigning 112

its highest confidences to the nine correct predic- 113

tions) and g̃(B)
3 is a worst-case confidence function 114

(assigning its lowest confidences to the nine correct 115

predictions). 116

2.3 Evaluation with AUC Metrics 117

Typically, one evaluates the goodness of a con- 118

fidence function by quantifying the trade-off 119

between the quality and quantity of its pub- 120

lished predictions. The prominent approaches 121

– risk/coverage curves (El-Yaniv et al., 2010), 122

receiver-operator (ROC) curves (Davis and Goad- 123

rich, 2006), and precision-recall curves (Hendrycks 124

and Gimpel, 2017) – share many of the same ben- 125

efits and drawbacks. In this paper, we will use 126

precision-recall curves, mainly due to the NLP 127

community’s increased familiarity with them. 128

In Figure 3, we show the precision-recall curves 129

for the six confidence functions from the previ- 130

ous subsection. The aspiration of any confidence 131

function is to achieve an Area Under the Precision- 132

Recall curve (AUPR) of 1, which means that it 133

has perfectly separated the correct and incorrect 134

predictions of the prediction function. Among the 135

examples, this has been achieved by confidence 136

functions g̃(A)2 and g̃(B)
2 . 137

A drawback with AUPR (and its analogs) is that 138

its value is not interpretable without knowledge 139

of the goodness of the prediction function. Con- 140

sider the two confidence functions g̃(A)1 and g̃(B)
1 . 141

Whereas g̃(B)
1 is worse than choosing a random 142

confidence function, g̃(A)1 is considerably better. 143

However, the AUPR of the former exceeds that of 144

the latter. This is because AUPR conflates the good- 145

ness of the confidence function and the goodness 146

of the prediction function. 147

One could imagine calibrating AUPR by taking 148

into account the worst-case AUPR (i.e. the AUPRs 149

for worst-case confidence functions g̃(A)3 and g̃(B)
3 ) 150
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Figure 3: Precision-recall curves for confidence functions g̃(A)
1 , g̃(A)

2 , g̃(A)
3 (top, blue) and confidence functions

g̃
(B)
1 , g̃(B)

2 , g̃(B)
3 (bottom, green).

Figure 4: The predictions of Figure 1, sorted by increas-
ing confidence.

but we will adopt an even simpler approach by151

amending a recent proposal by (Xin et al., 2021).152

2.4 Evaluation with Kendall-Tau Distance153

If we sort predictions by increasing confidence154

(as in Figure 4), a best-case confidence function155

(e.g. g̃(A)2 ) ranks all incorrect predictions below all156

correct predictions, while a worst-case confidence157

function (e.g. g̃(A)3 ) ranks all correct predictions158

below all incorrect predictions. Observing this,159

(Xin et al., 2021) proposed a rank-based evalua-160

tion metric for selective prediction called Reversed161

Pair Proportion (RPP), which is a normalized count 162

of pairwise ranking errors. Although they do not 163

make this connection in their paper, RPP is a nor- 164

malized version of Kendall-Tau distance (Kendall, 165

1948): 166

τdist(g̃; f,x) =
∑

xi∈C(f,x)
xj∈C(f,x)

1[g̃(xi) < g̃(xj)] 167

RPP =
τdist(g̃; f,x)

|x|2
168

For instance, confidence function g̃(A)1 has a τdist 169

of 7 (it ranks correct instance x1 below 4 incorrect 170

predictions, and instance x3 below 3 incorrect pre- 171

dictions) and an RPP of 7
100 . For the best-case 172

confidence function g̃(A)2 , τdist = RPP = 0. 173

Unfortunately, choosing |x|2 as their denomina- 174

tor means that RPP suffers the same problem as 175

AUPR: its value cannot be interpreted1 indepen- 176

dently of the goodness of the prediction function. 177

Consider the RPP for our “worse-than-random" 178

confidence function g̃(B)
1 . Like g̃(A)1 , it has a τdist 179

of 7 (it ranks incorrect instance x8 above 7 correct 180

1(Xin et al., 2021) seem unaware of this issue, directly
comparing the RPP of confidence functions for different pre-
diction functions, leading to some unjustified conclusions.
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Figure 5: The predictions of g̃(B)
1 , sorted by increasing

confidence. Both τdist and RPP for g̃(A)
1 and g̃(B)

1 are
equivalent.

predictions) and thus an RPP of 7
100 . Even though181

g̃
(A)
1 is better than random and g̃(B)

1 is worse than182

random, they end up with the same RPP.183

Fortunately, there is a simple remedy. One pos-184

sibility is to use alternative ranking statistics that185

account for ties in the two lists2 we are compar-186

ing. Examples of these alternative statistics include187

Kendall-Tau-b and Kendall-Tau-c. However, these188

are a bit heavyweight for our purposes here. All189

we really need to do is normalize by the worst-case190

Kendall-Tau distance, which is not |x|2, but rather191

c(|x| − c), where c is the number of correct predic-192

tions made by the prediction function. This gives193

us a measurement we will refer to as worst-case194

normalized Kendall-Tau distance:195

τwcn(g̃; f,x) =
τdist(g̃; f,x)

c(|x| − c)
(1)196

where c = |C(f,x)|. Worst-case normalized197

Kendall-Tau distance has the following attractive198

properties:199

• For a perfect confidence function g̃,200

τwcn(g̃; f,x) = 0.201

• For a worst-case confidence function g̃,202

τwcn(g̃; f,x) = 1.203

• For a random confidence function g̃, the ex-204

pected value of τwcn(g̃; f,x) is 0.5.205

Unlike RPP and the various area under the curve206

metrics, τwcn directly assesses the quality of the207

confidence function, and its value is interpretable208

without knowing the quality of the associated pre-209

diction function.210

3 Surveyed Techniques211

Our main goal in this paper is a reproducible and212

rigorous comparison of a broad range of selective213

prediction techniques on NLP tasks. In this section,214

we describe the techniques we compare.215

2In our case, the two lists are the list of confidences and
the 0-1 list of prediction correctness. The second of these,
having only zeroes and ones, has lots of ties.

Figure 6: MAXPROB is the simplest confidence func-
tion. After applying softmax to the neural network out-
put, it uses the maximum probability of the resulting
distribution as its measure of confidence.

3.1 Confidence Functions 216

The following are ways to create a confidence func- 217

tion for an already trained neural prediction func- 218

tion. 219

MaxProb 220

For neural prediction functions, the simplest-to- 221

implement confidence function is likely MAX- 222

PROB, pictured in Figure 6 for a three-way sen- 223

timent analysis task. After applying softmax to 224

the neural network output, MAXPROB (sometimes 225

known as SOFTMAXRESPONSE) uses the maxi- 226

mum probability of the resulting distribution as its 227

measure of confidence. The surprising effective- 228

ness of such a simple approach was observed by 229

(Hendrycks and Gimpel, 2017), among others, al- 230

though more recent papers have claimed to have 231

made significant improvements over MAXPROB 232

with more involved techniques. 233

Monte Carlo Dropout 234

(Gal and Ghahramani, 2016) proposed leveraging 235

dropout (Srivastava et al., 2014) to assess the uncer- 236

tainty of a neural network on a particular instance. 237

As usual, dropout is disabled at test time to make 238

the prediction. But then the input instance is re- 239

decoded k times with dropout enabled. This yields 240

k samples for the softmax probability of the pre- 241

diction. There are two common methods (Kamath 242

et al., 2020) for synthesizing these k samples into 243

a confidence measure: either we take the mean 244

(Lakshminarayanan et al., 2017) of the samples 245

(a strategy we refer to as MCDM), or the nega- 246

tive3 variance (Feinman et al., 2017; Smith and 247

Gal, 2018) of the samples (a strategy we refer to as 248

MCDV). 249

3We use the negative variance so that a greater value indi-
cates a greater confidence.
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Trustscore250

(Jiang et al., 2018) advocated a nearest-neighbor-251

based confidence function. First, the training in-252

stances are converted4 into vector encodings, and253

grouped according to their gold labels. Outliers are254

then filtered from each labeled group. Specifically,255

they sort the vectors (i.e. points in Rd space) by256

the radius of the minimal ball centered at that vec-257

tor that contains k points from their labeled group.258

The percentage α ∈ [0, 1] of points with the largest259

such radii (i.e. the outliers) are removed. This260

filtered set5 is called an α-high density set.261

The confidence assigned to an instance predic-262

tion, called TRUSTSCORE, is the ratio of (a) the dis-263

tance between the instance’s vector encoding and264

the closest α-high density set of a non-predicted265

label, (b) the distance between the instance’s vector266

encoding and the α-high density set of the pre-267

dicted label.268

3.2 Specialized Loss Functions269

We also survey techniques that simultaneously train270

a prediction function and an associated confidence271

function.272

Error Regularization273

(Xin et al., 2021) suggests adding an “error regu-274

larization" term to the task’s loss function L that275

directly penalizes ranking errors made by the con-276

fidence function g̃:277

ε(f,x) =
∑

xi∈C(f,x)
xj∈C(f,x)

RELU(g̃(xi)− g̃(xj))2278

Lereg(f,x) = L(f,x) + λ ·
∑

b∈batches(x)

ε(f,b)279

where λ ∈ R+ is a tunable hyperparameter and280

batches(x) is the set of minibatches of training set281

x.282

At training time, (Xin et al., 2021) uses MAX-283

PROB for the confidence function g̃, though at test284

time, they additionally experiment with MCDM285

and MCDV.286

Deep Abstaining Classifiers287

A Deep Abstaining Classifier (Thulasidasan et al.,288

2019), abbreviated DAC, explicitly introduces an289

extra abstention output ⊥ to the neural network,290

4They are agnostic about how best to do so. We will return
to this issue.

5They fix k = 10, but treat α as a tunable hyperparameter.

and trains with a loss function that allows the pre- 291

diction function to gain benefit from abstaining on 292

difficult instances: 293

(1− p⊥)L(f,x) + α log
1

1− p⊥
(2) 294

where p⊥ is the probability according to absten- 295

tion output ⊥ after applying softmax, L(f,x) is 296

standard cross-entropy loss over the non-abstention 297

outputs, and α is a real-valued weight that is zero 298

for the first k (warmup) epochs of training, and is 299

linearly scaled from αmin to αmax during the re- 300

maining epochs. The initial value αmin is set to be 301

a fixed fraction 1
ρ of a moving average of the loss 302

during the warmup epochs. The authors provide 303

code that we use in our experiments. 304

At test time, MAXPROB is used6 as the confi- 305

dence function, though with a slight modification 306

– if the probability associated with the abstention 307

label is the maximum softmax probability, then the 308

next highest probability is used as the confidence. 309

4 Experiment Design 310

To draw reliable conclusions on a sufficiently var- 311

ied set of NLP tasks, we evaluated the techniques 312

on six classification7 tasks of the GLUE bench- 313

mark (Wang et al., 2018): COLA, MNLI, MRPC, 314

QNLI, RTE, and SST-2. 315

Bearing in mind that our goal is to compare se- 316

lective classification techniques, not to produce 317

state-of-the-art prediction functions, we randomly 318

partitioned each training set into two halves, us- 319

ing GLUETRAIN-A for training and GLUETRAIN- 320

B for early stopping and hyperparameter tuning. 321

Since the gold labels for GLUE test sets are not 322

all publicly available, we reserved the development 323

set (GLUEDEV) of each task for final evaluation. 324

We trained the prediction function by fine-tuning 325

BERT-BASE-CASED using the transformers 326

package (Wolf et al., 2020), mostly using 327

the training parameters recommended by its 328

run_glue.py script (the sole deviation is that 329

we run each training for 6 epochs, rather than 3). 330

6We also experimented with using 1 − p⊥ (i.e. the total
probability mass accorded to non-abstention outputs) as the
confidence, but this yielded poor results.

7We did not include WNLI because the training set was
too small to train a prediction function that does better than
random guessing. We did not include QQP because we had
training difficulties that we could not resolve before the sub-
mission deadline. STS-B is a regression task, not a classifica-
tion task. For evaluating MNLI, we used matched accuracy,
since the focus of this paper is not on domain shift.
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For the techniques that required specialized loss331

functions, we substituted the default BERT loss332

function with the alternative specified by the selec-333

tive prediction technique.334

4.1 Hyperparameter Tuning335

In an effort to fairly evaluate each technique, we336

began with smaller-scale experiments to determine337

an appropriate setting of a technique’s hyperpa-338

rameters for the GLUE tasks. For these experi-339

ments, we used GLUETRAIN-A for training and340

GLUETRAIN-B for validation. We selected three341

GLUE tasks of various sizes and genres (one342

single-sentence task, one similarity-and-paraphrase343

task, and one inference task) as proxies: SST-2,344

MRPC, and RTE. We ran 5 trials8 for each hyperpa-345

rameter setting.346

Monte Carlo Dropout347

Monte Carlo Dropout has a single hyperparam-348

eter k: the number of decodings of the training349

instance with dropout enabled. We experimented350

with k ∈ {10, 30, 50}. We found little discernible351

difference (see Figure 10) between k = 30 and352

k = 50. Slightly better results with k = 30 versus353

k = 10 convinced us to use k = 30 for further354

experiments.355

TrustScore356

To use TRUSTSCORE, we need to encode each in-357

stance as a vector. Following common practice, we358

used BERT’s final layer encoding (after finetuning)359

of the [CLS] token.360

To select the hyperparameter settings for361

TRUSTSCORE, we followed (Jiang et al., 2018) and362

experimented with several powers of two for hyper-363

parameter α, specifically α ∈ {0.5, 0.25, 0.125}.364

Also, since TRUSTSCORE is too slow in practice to365

run on large training sets, we sample N training in-366

stances (without replacement) prior to running the367

TrustScore algorithm. In our tuning experiments,368

we tried the values N ∈ {800, 1600}.369

We found little difference between the six hyper-370

parameter settings (see Figure 11) and setN = 800371

and α = 0.25 for further experiments.372

Error Regularization373

Error Regularization has hyperparameter λ (the374

multiplier for the regularization term). Following375

the appendix of (Xin et al., 2021), we experimented376

8More detailed results from these experiments are provided
in the appendix.

with λ ∈ {0.01, 0.05, 0.1, 0.5}. Because Error 377

Regularization uses an alternative loss function that 378

can potentially affect the overall quality of the pre- 379

diction function, we used AUPR (which blends the 380

quality of the prediction function with the quality 381

of the selection function) as our main evaluation 382

metric. We found high variance between trials, 383

and selected λ = 0.05 (with the most consistent 384

performance) for further experiments. 385

Deep Abstaining Classifier 386

One of the virtues of the Deep Abstaining Clas- 387

sifier is that it automatically adjusts its weights 388

according to the cross-entropy loss observed dur- 389

ing the warmup epochs, but it still has hyperpa- 390

rameters ρ and αmax to determine precisely how 391

this is done. In the code accompanying (Thulasi- 392

dasan et al., 2019), the default settings are ρ = 64 393

and αmax = 1.0. Given these defaults, we ex- 394

perimented with ρ ∈ {32, 64, 128} and αmax ∈ 395

{0.5, 1.0, 2.0}. The technique did not appear to be 396

particularly sensitive to the choice of hyperparame- 397

ters (see Figure 13) and so we kept the default set- 398

tings for further experiments. We used two warmup 399

epochs (sufficient to reach decent baseline accuracy 400

for all GLUE tasks), and accordingly increased the 401

total number of training epochs from 6 to 8. 402

5 Results 403

For final evaluation, we ran ten experiment trials 404

on the six GLUE tasks. Specifically, we trained ten 405

prediction functions with different random seeds 406

for each loss function: the basic BERT loss (“ba- 407

sic"), BERT loss with error regularization (“ereg"), 408

and the Deep Abstaining Classifier loss (“dac"). 409

For each resulting prediction function, we evalu- 410

ated the various confidence functions. In all exper- 411

iment trials, we used the hyperparameter settings 412

established in Section 4. 413

Figure 7 uses a violin plot9 to visualize the re- 414

sults10 for two GLUE datasets (MRPC and SST-2). 415

Each "string" of the violin corresponds to the τwcn 416

of a single trial on GLUEDEV, while the "body" 417

of the violin is a kernel density estimation of the 418

result distribution. We include a random baseline, 419

9We used the seaborn package to create the plots:
https://seaborn.pydata.org/generated/
seaborn.violinplot.html.

10For brevity, we omit certain loss/confidence pairs, for in-
stance ereg(mcdm) and ereg(mcdv), from the reported
results. In our experiments, the improvement provided by the
MC Dropout techniques provided similar improvement for all
loss functions.
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Figure 7: Results of several selective prediction tech-
niques on two GLUE datasets. Each "string" of the
violin corresponds to the τwcn of a single trial on
GLUEDEV, while the "body" of the violin is a kernel
density estimation of the result distribution.

which assigns a random confidence to each predic-420

tion. This provides empirical validation that the421

expected value of τwcn for a random confidence422

function is 0.5, and also gives a sense of the experi-423

mental variance for a particular dataset.424

Figure 7 indicates that all techniques have con-425

siderable variation from trial to trial, and suggests426

that it would be easy to draw incorrect conclusions427

from a single-trial study. Beyond this, it is diffi-428

cult to eyeball the results and make an informed429

decision about which technique to use. One can430

possibly dismiss TRUSTSCORE (or our particular431

implementation of it) based on Figure 8, but what432

should we make of the advantages that MCDM and433

MCDV seem to offer over the basic MAXPROB434

approach? The MC Dropout techniques are consid-435

erably more expensive to run (since they require436

multiple independent decodings). Are they mean-437

ingfully better than MAXPROB?438

Let’s quantify the phrase “meaningfully better"439

by estimating the likelihood that a candidate tech-440

nique outperforms the basic MAXPROB baseline.441

For a candidate technique t and performance met-442

ric m, define random variable Xt,m as the result of443

the following trial:444

• Choose a random task from a probability dis-445

tribution Ptask over tasks.446

• Execute the candidate selective prediction447

technique t and the baseline technique (i.e.448

MAXPROB) and evaluate each using metric449

m (e.g. τwcn or AUPR).450

Figure 8: Estimate of the likelihood E(Xt,τwcn
) that

technique t outperforms the basic MAXPROB baseline
according to the τwcn metric. The bars show a 95%
confidence interval for this estimate.

• If the candidate technique t outperforms the 451

baseline according to metric m, return 1. Oth- 452

erwise, return 0. 453

The expected value E(Xt,m) tells us the likelihood 454

that technique t will outperform the baseline ac- 455

cording to metric m . Since we performed 10 tri- 456

als for each of 6 GLUE tasks, we therefore have 457

60 samples11 for estimating E(Xt,m). Figure 8 458

shows the E(Xt,τwcn) estimate for the techniques 459

from Figure 7, along with a 95% confidence inter- 460

val. Somewhere between 62% to 85% of the time 461

(with 95% confidence), both MCDM and MCDV 462

improve upon the MAXPROB baseline according 463

to the τwcn metric. 464

None of the other techniques provide signifi- 465

cant advantage over the basic MAXPROB baseline. 466

Moreover, there is a further complication. Worst- 467

case normalized Kendall-tau distance specifically 468

focuses on the quality of the confidence function. 469

Modifications to the basic loss function (e.g. error- 470

regularization or DAC loss) might improve the ef- 471

ficiency of the confidence function while simul- 472

taneously sacrificing the quality of the prediction 473

function. To check the extent to which this occurs, 474

we should also evaluate the performance of our 475

techniques using AUPR. 476

Figure 9 shows the E(Xt,AUPR) estimate, along 477

11In this case, the task distribution Ptask is a uniform distri-
bution over 6 GLUE tasks. Whether this is an effective proxy
for NLP tasks in general is a legitimate question, but the NLP
community does seem to have adopted GLUE as an important
benchmark.
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Figure 9: Estimate of the likelihood E(Xt,AUPR) that
technique t outperforms the basic MAXPROB baseline
according to the AUPR metric. The bars show a 95%
confidence interval for this estimate.

with a 95% confidence interval. In particular, the478

results for DAC loss are noticeably worse from an479

AUPR perspective.480

6 Related Work481

Selective prediction has a long tradition in machine482

learning, dating back to the 1950s (Chow, 1957).483

There is an extensive literature (Hellman, 1970;484

Fumera and Roli, 2002; Cortes et al., 2016) on485

training classifiers with the ability to abstain (also486

known as the "reject option"), usually specific to487

alternative classifiers like support vector machines.488

There is also a significant literature (Platt et al.,489

1999; Guo et al., 2017; Kumar et al., 2018; Wang490

et al., 2020; Desai and Durrett, 2020) on the topic491

of calibration, i.e. the development of probabilis-492

tically interpretable confidence measures. In this493

paper, we restrict our focus to the relative rank-494

ings of selective predictors, and not the confidence495

values themselves.496

While our survey focuses on techniques de-497

signed to identify ambiguous instances in the evalu-498

ation set (and, for certain techniques, to also ignore499

label noise in the training set), there is also interest500

in selective prediction techniques that operate suc-501

cessfully under domain shift (Kamath et al., 2020;502

Liu et al., 2020), i.e. when the distribution of eval-503

uation instances differs from the training instances.504

Evaluation of such techniques is beyond the scope505

of the work described here, but we have plans to506

expand the spred package to evaluate selective507

prediction under domain shift.508

7 Conclusion 509

With this effort, we have tried to write a paper that 510

we would like to see more of in the NLP litera- 511

ture: a careful survey and empirical comparison of 512

a diverse selection of recent techniques on a broad 513

set of tasks. We have purposefully avoided intro- 514

ducing new techniques to avoid “having a horse 515

in the race," instead focusing on doing our best to 516

optimize each evaluated technique and provide a 517

fair comparison. As a companion to the paper, the 518

documented and unit-tested Python package spred 519

affords the following benefits: 520

1. reproducibility: JSON configurations for 521

each experiment performed12 are provided 522

with the library, as well as instructions for 523

replicating them. 524

2. transparency: The documented code and 525

unit tests can be easily inspected to indepen- 526

dently confirm the accuracy of our implemen- 527

tations. 528

3. extensibility: We designed the code to make 529

it simple to add new techniques and tasks. 530

We provide tutorials13 demonstrating how to 531

do so. These are intended both for selective 532

prediction techniques that we have invariably 533

overlooked in our survey, as well as novel 534

contributions to the literature. 535

Ever since (Hendrycks and Gimpel, 2017) identi- 536

fied MAXPROB as a strong baseline for selective 537

prediction, many papers have proposed techniques 538

that reportedly improve upon it. By and large, these 539

papers reported improvements based on single-trial 540

experiments on a small selection of datasets. In 541

our more comprehensive study, the only technique 542

that demonstrated significant improvement over 543

MAXPROB was Monte Carlo Dropout (Gal and 544

Ghahramani, 2016). Our results should make it 545

clear that, at least in the realm of selective predic- 546

tion, there is significant variance between tasks, 547

and between trials of the same experiment. Thus, 548

this paper suggests caution in drawing conclusions 549

from single-trial experiments, especially when one 550

may be subconsciously invested in a particular tech- 551

nique. 552

12With the submission, we also provide a CSV file contain-
ing the final experiment results.

13Reviewers are invited to try the tutorials to learn more
about the spred package. See the README.md file in the
ZIP file provided with the submission for more details.
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Figure 10: Results of the hyperparameter tuning experi-
ments for Monte Carlo Dropout.
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A Hyperparameter Tuning Results685

Figure 10, Figure 11, Figure 12, and Figure 13686

show the experimental results for our hyperparam-687

eter tuning experiments. As with the final results,688

we visualize these using violin plots – each “string"689

of the violin corresponds to the result of a single690

trial.691

Figure 11: Results of the hyperparameter tuning experi-
ments for TrustScore.

Figure 12: Results of the hyperparameter tuning experi-
ments for Error Regularization.

Figure 13: Results of the hyperparameter tuning experi-
ments for the Deep Abstaining Classifier.

10

https://doi.org/10.18653/v1/2020.acl-main.278
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.acl-long.84
https://doi.org/10.18653/v1/2021.acl-long.84
https://doi.org/10.18653/v1/2021.acl-long.84


B Machine Architecture and Running692

Time693

The experiments were run on a single workstation694

with the following specifications:695

• Operating System: Ubuntu 20.04696

• Processor: AMD Threadripper 3990X: 64697

cores, 2.90 GHz, 256 MB cache698

• GPUs: 2x RTX 3090699

• Memory: 256 GB700

• Operating System Drive: 2 TB SSD701

(NVMe)702

• Data Drive: 2 TB SSD (SATA)703

To give the reader a sense of the relative cost of704

running each technique, we provide a representa-705

tive result of a single trial on the above machine for706

the RTE task:707

• Training time for basic BERT loss: 201s708

• Training time for BERT loss + error regu-709

larization: 200s710

• Training time for DAC loss: 266s711

• Evaluation time for MAXPROB: 1.72s712

• Evaluation time for MCDM/MCDV: 56s713

• Evaluation time for TRUSTSCORE: 40s714
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