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Abstract

We provide a survey and careful empirical com-
parison of the state-of-the-art in neural selective
classification for NLP tasks. Across multiple
trials on multiple datasets, only one of the sur-
veyed techniques — Monte Carlo Dropout — sig-
nificantly outperforms the simple baseline of
using the maximum softmax probability as an
indicator of prediction confidence. Our results
provide a counterpoint to recent claims made
on the basis of single-trial experiments on a
small number of datasets. We also provide a
blueprint and open-source code to support the
future evaluation of selective prediction tech-
niques.

1 Introduction

Despite the massive improvements that deep learn-
ing has brought to natural language processing over
the past decade, neural networks still do make mis-
takes. There has thus been a growing interest in
confidence estimation techniques that perform well
on deep neural networks.

A prominent subarea of confidence estimation is
selective prediction (El-Yaniv et al., 2010; Geifman
and El-Yaniv, 2017). Selective prediction focuses
on developing classifiers that choose to abstain
when sufficiently uncertain. There is less focus
on absolute measures of confidence, and more on a
classifier’s ability to successful rank its predictions,
enabling techniques that maximize prediction qual-
ity given a desired yield (Geifman and El-Yaniv,
2019) or that maximize yield given a desired qual-
ity (Geifman and El-Yaniv, 2017).

This paper provides a survey and rigorous em-
pirical comparison of the state-of-the-art in neural
selective classification (i.e. selective prediction
where the underlying classifier is a neural network)
specifically as it pertains to natural language pro-
cessing. Our main contributions are the following:

* We survey a variety of recent techniques pro-
posed in the ML and NLP literature.

* We compare them across six classification
tasks from the GLUE benchmark (Wang et al.,
2018), we do careful hyperparameter tuning
for all surveyed techniques, and we perform
multiple trials of each technique to get an ade-
quate sense of median and variance.

* We discover and remedy a flaw in an evalu-
ation metric proposed by (Xin et al., 2021),
resulting in a simple metric called worst-case
normalized Kendall-Tau distance that pro-
vides a calibrated measure of the performance
of selective classification techniques.

* We determine that, despite various recent
claims to have identified techniques that out-
perform the simple baseline (Hendrycks and
Gimpel, 2017) of using maximum softmax
probability as a confidence indicator, the only
surveyed technique that demonstrates sig-
nificant improvement across multiple tasks
and trials is Monte Carlo Dropout (Gal and
Ghahramani, 2016).

* We release a documented and unit-tested
Python package called spred (selective
prediction) to make our experiments transpar-
ent and reproducible. To facilitate evaluation
of future techniques, the package provides tu-
torials about how to add and evaluate novel
selective prediction methods.

2 Selective Prediction

2.1 Preliminaries

A prediction function is a function f : X — Y
that maps an instance space X’ to a label space
Y. We refer to the output f(z) of the prediction
function as its prediction for instance x € X. We
use the notation f(z) to refer to the gold prediction
for a particular instance. The following denotes
the correctly and incorrectly predicted instances of
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Figure 1: Three confidence functions for an example
prediction function that has an overall accuracy of 6/10
on the evaluation set.
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Figure 2: Three confidence functions for a stronger
prediction function that has an overall accuracy of 9/10
on the evaluation set.

prediction function f on set x C X:

C(f,x) ={ziex]| f(z:) :f(ﬂii)}
C(f,x) ={ziex| f(z)# fz:)}

If we pair a prediction function with a selection
function g : X — {0,1}, we obtain a selective
model (f,g). For instance x € X, a selective
model h = (f, g) publishes its prediction f(x) if
g(x) = 1, and abstains if g(x) = 0. In short:

wwy [ S o) =1
1 ifgz)=0

where | is a symbol representing abstention.

A convenient way to implement a selection func-
tion is to use a confidence function g : X — R
that assigns a real-valued confidence to any input
x € X. We can derive a selection function gg from
confidence function g by specifying a minimum
confidence threshold 6 for publishing predictions:

g6(x) = 1[g(z) > 6]
2.2 Examples

In Figure 1, we show three confidence functions

§§A), gg"‘), ggA) for an example prediction func-
tion f(4). The first confidence function gﬁf“) is
pretty good; it assigns its highest confidences to
four out of the six correct predictions, though un-

fortunately it also gives its lowest confidence to the

correct prediction f(4)(z1). By contrast, §§A) isa

best-case confidence function (assigning its highest
confidences to the six correct predictions) and §§A)
is a worst-case confidence function (assigning its
lowest confidences to the six correct predictions).

Figure 2 shows three more confidence functions

§§B), ggB), géB) for a stronger prediction function
f(B) This time, the first confidence function g%B)
is not particularly good; it assigns its third-highest
confidence to the only incorrect prediction. Again,
ggB) is a best-case confidence function (assigning
its highest confidences to the nine correct predic-
tions) and géB) is a worst-case confidence function
(assigning its lowest confidences to the nine correct

predictions).

2.3 Evaluation with AUC Metrics

Typically, one evaluates the goodness of a con-
fidence function by quantifying the trade-off
between the quality and quantity of its pub-
lished predictions. The prominent approaches
— risk/coverage curves (El-Yaniv et al., 2010),
receiver-operator (ROC) curves (Davis and Goad-
rich, 2006), and precision-recall curves (Hendrycks
and Gimpel, 2017) — share many of the same ben-
efits and drawbacks. In this paper, we will use
precision-recall curves, mainly due to the NLP
community’s increased familiarity with them.

In Figure 3, we show the precision-recall curves
for the six confidence functions from the previ-
ous subsection. The aspiration of any confidence
function is to achieve an Area Under the Precision-
Recall curve (AUPR) of 1, which means that it
has perfectly separated the correct and incorrect
predictions of the prediction function. Among the
examples, this has been achieved by confidence
functions g§A> and géB).

A drawback with AUPR (and its analogs) is that
its value is not interpretable without knowledge
of the goodness of the prediction function. Con-

sider the two confidence functions gY‘) and §§B).

(B)

Whereas g, ’ is worse than choosing a random

confidence function, g%“‘) is considerably better.
However, the AUPR of the former exceeds that of
the latter. This is because AUPR conflates the good-
ness of the confidence function and the goodness
of the prediction function.

One could imagine calibrating AUPR by taking
into account the worst-case AUPR (i.e. the AUPRs

(A) B))

for worst-case confidence functions g~ and g§
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Figure 3: Precision-recall curves for confidence functions g; . g5

3%, 357, 3% (bottom, green).
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Figure 4: The predictions of Figure 1, sorted by increas-
ing confidence.

but we will adopt an even simpler approach by
amending a recent proposal by (Xin et al., 2021).

2.4 Evaluation with Kendall-Tau Distance

If we sort predictions by increasing confidence
(as in Figure 4), a best-case confidence function
(e.g. ggA)) ranks all incorrect predictions below all
correct predictions, while a worst-case confidence
function (e.g. g}éA)) ranks all correct predictions
below all incorrect predictions. Observing this,
(Xin et al., 2021) proposed a rank-based evalua-
tion metric for selective prediction called Reversed

s géA) (top, blue) and confidence functions

Pair Proportion (RPP), which is a normalized count
of pairwise ranking errors. Although they do not
make this connection in their paper, RPP is a nor-
malized version of Kendall-Tau distance (Kendall,
1948):

> 1[G < §lz))]
xieg(frx)
x;€C(fx)

Tdist (ga fa X)
%[

Taist(G; f,X) =

RPP =

(

For instance, confidence function gf‘) has a 74
of 7 (it ranks correct instance x1 below 4 incorrect
predictions, and instance x3 below 3 incorrect pre-
dictions) and an RPP of %0. For the best-case

confidence function ggA), Taist = RPP = 0.
Unfortunately, choosing |x|? as their denomina-
tor means that RPP suffers the same problem as
AUPR: its value cannot be interpreted’ indepen-
dently of the goodness of the prediction function.
Consider the RPP for our “worse-than-random"
confidence function QJ(LB). Like g%A), it has a 74,4
of 7 (it ranks incorrect instance xg above 7 correct
'(Xin et al., 2021) seem unaware of this issue, directly

comparing the RPP of confidence functions for different pre-
diction functions, leading to some unjustified conclusions.
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Figure 5: The predictions of g§B), sorted by increasing

confidence. Both 74, and RPP for §§A) and ggB) are

equivalent.

predictions) and thus an RPP of %. Even though
§§A) is better than random and §§B) is worse than
random, they end up with the same RPP.

Fortunately, there is a simple remedy. One pos-
sibility is to use alternative ranking statistics that
account for ties in the two lists> we are compar-
ing. Examples of these alternative statistics include
Kendall-Tau-b and Kendall-Tau-c. However, these
are a bit heavyweight for our purposes here. All
we really need to do is normalize by the worst-case
Kendall-Tau distance, which is not |x|?, but rather
c(|x] — ¢), where c is the number of correct predic-
tions made by the prediction function. This gives
us a measurement we will refer to as worst-case
normalized Kendall-Tau distance:

~. o Tdist(g;fax)

Twcn(.gufax) C(‘X| —C)
where ¢ = |C(f,x)|. Worst-case normalized
Kendall-Tau distance has the following attractive
properties:

(1

e For a perfect
Twen (95 f,%) = 0.

confidence function g,

* For a worst-case confidence function g,
Twcn(g; 5 X) =1

e For a random confidence function g, the ex-
pected value of Tyen (G; f, %) is 0.5.

Unlike RPP and the various area under the curve
metrics, Tyen directly assesses the quality of the
confidence function, and its value is interpretable
without knowing the quality of the associated pre-
diction function.

3 Surveyed Techniques

Our main goal in this paper is a reproducible and
rigorous comparison of a broad range of selective
prediction techniques on NLP tasks. In this section,
we describe the techniques we compare.

’In our case, the two lists are the list of confidences and

the O-1 list of prediction correctness. The second of these,
having only zeroes and ones, has lots of ties.
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Figure 6: MAXPROB is the simplest confidence func-
tion. After applying softmax to the neural network out-
put, it uses the maximum probability of the resulting
distribution as its measure of confidence.

3.1 Confidence Functions

The following are ways to create a confidence func-
tion for an already trained neural prediction func-
tion.

MaxProb

For neural prediction functions, the simplest-to-
implement confidence function is likely MAX-
PROB, pictured in Figure 6 for a three-way sen-
timent analysis task. After applying softmax to
the neural network output, MAXPROB (sometimes
known as SOFTMAXRESPONSE) uses the maxi-
mum probability of the resulting distribution as its
measure of confidence. The surprising effective-
ness of such a simple approach was observed by
(Hendrycks and Gimpel, 2017), among others, al-
though more recent papers have claimed to have
made significant improvements over MAXPROB
with more involved techniques.

Monte Carlo Dropout

(Gal and Ghahramani, 2016) proposed leveraging
dropout (Srivastava et al., 2014) to assess the uncer-
tainty of a neural network on a particular instance.
As usual, dropout is disabled at test time to make
the prediction. But then the input instance is re-
decoded k times with dropout enabled. This yields
k samples for the softmax probability of the pre-
diction. There are two common methods (Kamath
et al., 2020) for synthesizing these k£ samples into
a confidence measure: either we take the mean
(Lakshminarayanan et al., 2017) of the samples
(a strategy we refer to as MCDM), or the nega-
tive> variance (Feinman et al., 2017; Smith and
Gal, 2018) of the samples (a strategy we refer to as
McDV).

3We use the negative variance so that a greater value indi-
cates a greater confidence.



Trustscore

(Jiang et al., 2018) advocated a nearest-neighbor-
based confidence function. First, the training in-
stances are converted* into vector encodings, and
grouped according to their gold labels. Outliers are
then filtered from each labeled group. Specifically,
they sort the vectors (i.e. points in R? space) by
the radius of the minimal ball centered at that vec-
tor that contains & points from their labeled group.
The percentage «v € [0, 1] of points with the largest
such radii (i.e. the outliers) are removed. This
filtered set’ is called an a-high density set.

The confidence assigned to an instance predic-
tion, called TRUSTSCORE, is the ratio of (a) the dis-
tance between the instance’s vector encoding and
the closest a-high density set of a non-predicted
label, (b) the distance between the instance’s vector
encoding and the a-high density set of the pre-
dicted label.

3.2 Specialized Loss Functions

We also survey techniques that simultaneously train
a prediction function and an associated confidence
function.

Error Regularization

(Xin et al., 2021) suggests adding an “error regu-
larization" term to the task’s loss function L that
directly penalizes ranking errors made by the con-
fidence function g:

e(f,b)

D

béebatches(x)

where A € R™ is a tunable hyperparameter and
batches(x) is the set of minibatches of training set
X.

At training time, (Xin et al., 2021) uses MAX-
PROB for the confidence function g, though at test
time, they additionally experiment with MCDM
and McDV.

Deep Abstaining Classifiers

A Deep Abstaining Classifier (Thulasidasan et al.,
2019), abbreviated DAC, explicitly introduces an
extra abstention output L to the neural network,

“They are agnostic about how best to do so. We will return
to this issue.
They fix k = 10, but treat « as a tunable hyperparameter.

and trains with a loss function that allows the pre-
diction function to gain benefit from abstaining on
difficult instances:

(1 —pr)L(f,x)+ alog l (2)

—pPL

where p is the probability according to absten-
tion output L after applying softmax, L(f,x) is
standard cross-entropy loss over the non-abstention
outputs, and « is a real-valued weight that is zero
for the first k (warmup) epochs of training, and is
linearly scaled from i, tO Qg during the re-
maining epochs. The initial value cv;, is set to be
a fixed fraction 1 of a moving average of the loss
during the warmup epochs. The authors provide
code that we use in our experiments.

At test time, MAXPROB is used® as the confi-
dence function, though with a slight modification
— if the probability associated with the abstention
label is the maximum softmax probability, then the
next highest probability is used as the confidence.

4 Experiment Design

To draw reliable conclusions on a sufficiently var-
ied set of NLP tasks, we evaluated the techniques
on six classification’ tasks of the GLUE bench-
mark (Wang et al., 2018): COLA, MNLI, MRPC,
QNLI, RTE, and SST-2.

Bearing in mind that our goal is to compare se-
lective classification techniques, not to produce
state-of-the-art prediction functions, we randomly
partitioned each training set into two halves, us-
ing GLUETRAIN-A for training and GLUETRAIN-
B for early stopping and hyperparameter tuning.
Since the gold labels for GLUE test sets are not
all publicly available, we reserved the development
set (GLUEDEYV) of each task for final evaluation.

We trained the prediction function by fine-tuning
BERT-BASE-CASED using the transformers
package (Wolf et al., 2020), mostly using
the training parameters recommended by its
run_glue.py script (the sole deviation is that
we run each training for 6 epochs, rather than 3).

®We also experimented with using 1 — p, (i.e. the total
probability mass accorded to non-abstention outputs) as the
confidence, but this yielded poor results.

"We did not include WNLI because the training set was
too small to train a prediction function that does better than
random guessing. We did not include QQP because we had
training difficulties that we could not resolve before the sub-
mission deadline. STS-B is a regression task, not a classifica-
tion task. For evaluating MNLI, we used matched accuracy,
since the focus of this paper is not on domain shift.



For the techniques that required specialized loss
functions, we substituted the default BERT loss
function with the alternative specified by the selec-
tive prediction technique.

4.1 Hyperparameter Tuning

In an effort to fairly evaluate each technique, we
began with smaller-scale experiments to determine
an appropriate setting of a technique’s hyperpa-
rameters for the GLUE tasks. For these experi-
ments, we used GLUETRAIN-A for training and
GLUETRAIN-B for validation. We selected three
GLUE tasks of various sizes and genres (one
single-sentence task, one similarity-and-paraphrase
task, and one inference task) as proxies: SST-2,
MRPC, and RTE. We ran 5 trials® for each hyperpa-
rameter setting.

Monte Carlo Dropout

Monte Carlo Dropout has a single hyperparam-
eter k: the number of decodings of the training
instance with dropout enabled. We experimented
with k£ € {10, 30, 50}. We found little discernible
difference (see Figure 10) between £ = 30 and
k = 50. Slightly better results with £ = 30 versus
k = 10 convinced us to use k& = 30 for further
experiments.

TrustScore

To use TRUSTSCORE, we need to encode each in-
stance as a vector. Following common practice, we
used BERT’s final layer encoding (after finetuning)
of the [CLS] token.

To select the hyperparameter settings for
TRUSTSCORE, we followed (Jiang et al., 2018) and
experimented with several powers of two for hyper-
parameter «, specifically a € {0.5,0.25,0.125}.
Also, since TRUSTSCORE is too slow in practice to
run on large training sets, we sample /V training in-
stances (without replacement) prior to running the
TrustScore algorithm. In our tuning experiments,
we tried the values N € {800, 1600}.

We found little difference between the six hyper-
parameter settings (see Figure 11) and set N = 800
and o = 0.25 for further experiments.

Error Regularization

Error Regularization has hyperparameter A (the
multiplier for the regularization term). Following
the appendix of (Xin et al., 2021), we experimented

8More detailed results from these experiments are provided
in the appendix.

with A € {0.01,0.05,0.1,0.5}. Because Error
Regularization uses an alternative loss function that
can potentially affect the overall quality of the pre-
diction function, we used AUPR (which blends the
quality of the prediction function with the quality
of the selection function) as our main evaluation
metric. We found high variance between trials,
and selected A = 0.05 (with the most consistent
performance) for further experiments.

Deep Abstaining Classifier

One of the virtues of the Deep Abstaining Clas-
sifier is that it automatically adjusts its weights
according to the cross-entropy loss observed dur-
ing the warmup epochs, but it still has hyperpa-
rameters p and ., to determine precisely how
this is done. In the code accompanying (Thulasi-
dasan et al., 2019), the default settings are p = 64
and a4 = 1.0. Given these defaults, we ex-
perimented with p € {32,64,128} and aax €
{0.5,1.0,2.0}. The technique did not appear to be
particularly sensitive to the choice of hyperparame-
ters (see Figure 13) and so we kept the default set-
tings for further experiments. We used two warmup
epochs (sufficient to reach decent baseline accuracy
for all GLUE tasks), and accordingly increased the
total number of training epochs from 6 to 8.

5 Results

For final evaluation, we ran ten experiment trials
on the six GLUE tasks. Specifically, we trained ten
prediction functions with different random seeds
for each loss function: the basic BERT loss (“ba-
sic"), BERT loss with error regularization (“ereg"),
and the Deep Abstaining Classifier loss (“dac").
For each resulting prediction function, we evalu-
ated the various confidence functions. In all exper-
iment trials, we used the hyperparameter settings
established in Section 4.

Figure 7 uses a violin plot’ to visualize the re-
sults!® for two GLUE datasets (MRPC and SST-2).
Each "string" of the violin corresponds to the 7,cy,
of a single trial on GLUEDEV, while the "body"
of the violin is a kernel density estimation of the
result distribution. We include a random baseline,

"We used the seaborn package to create the plots:
https://seaborn.pydata.org/generated/
seaborn.violinplot.html.

OFor brevity, we omit certain loss/confidence pairs, for in-
stance ereg (mcdm) and ereg (mcdv), from the reported
results. In our experiments, the improvement provided by the
MC Dropout techniques provided similar improvement for all
loss functions.
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Figure 7: Results of several selective prediction tech-
niques on two GLUE datasets. Each "string" of the
violin corresponds to the 7., of a single trial on
GLUEDEV, while the "body" of the violin is a kernel
density estimation of the result distribution.

which assigns a random confidence to each predic-
tion. This provides empirical validation that the
expected value of 7., for a random confidence
function is 0.5, and also gives a sense of the experi-
mental variance for a particular dataset.

Figure 7 indicates that all techniques have con-
siderable variation from trial to trial, and suggests
that it would be easy to draw incorrect conclusions
from a single-trial study. Beyond this, it is diffi-
cult to eyeball the results and make an informed
decision about which technique to use. One can
possibly dismiss TRUSTSCORE (or our particular
implementation of it) based on Figure 8, but what
should we make of the advantages that MCDM and
McDV seem to offer over the basic MAXPROB
approach? The MC Dropout techniques are consid-
erably more expensive to run (since they require
multiple independent decodings). Are they mean-
ingfully better than MAXPROB?

Let’s quantify the phrase “meaningfully better"
by estimating the likelihood that a candidate tech-
nique outperforms the basic MAXPROB baseline.
For a candidate technique ¢ and performance met-
ric m, define random variable X ,,, as the result of
the following trial:

* Choose a random task from a probability dis-
tribution P, over tasks.

* Execute the candidate selective prediction
technique ¢ and the baseline technique (i.e.
MAXPROB) and evaluate each using metric
m (e.g. Tywen O AUPR).
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8
o
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Figure 8: Estimate of the likelihood E(X, .., ) that
technique ¢ outperforms the basic MAXPROB baseline
according to the Ty, metric. The bars show a 95%
confidence interval for this estimate.

* If the candidate technique ¢ outperforms the
baseline according to metric m, return 1. Oth-
erwise, return 0.

The expected value E(X ) tells us the likelihood
that technique ¢ will outperform the baseline ac-
cording to metric m . Since we performed 10 tri-
als for each of 6 GLUE tasks, we therefore have
60 samples'! for estimating E(X;,,). Figure 8
shows the E(X; 7., ) estimate for the techniques
from Figure 7, along with a 95% confidence inter-
val. Somewhere between 62% to 85% of the time
(with 95% confidence), both MCDM and MCcDV
improve upon the MAXPROB baseline according
to the 7, metric.

None of the other techniques provide signifi-
cant advantage over the basic MAXPROB baseline.
Moreover, there is a further complication. Worst-
case normalized Kendall-tau distance specifically
focuses on the quality of the confidence function.
Modifications to the basic loss function (e.g. error-
regularization or DAC loss) might improve the ef-
ficiency of the confidence function while simul-
taneously sacrificing the quality of the prediction
function. To check the extent to which this occurs,
we should also evaluate the performance of our
techniques using AUPR.

Figure 9 shows the F(X; aupr) estimate, along

"n this case, the task distribution P; sy, is a uniform distri-
bution over 6 GLUE tasks. Whether this is an effective proxy
for NLP tasks in general is a legitimate question, but the NLP
community does seem to have adopted GLUE as an important
benchmark.
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Figure 9: Estimate of the likelihood E(X; aupr) that
technique ¢ outperforms the basic MAXPROB baseline
according to the AUPR metric. The bars show a 95%
confidence interval for this estimate.

with a 95% confidence interval. In particular, the
results for DAC loss are noticeably worse from an
AUPR perspective.

6 Related Work

Selective prediction has a long tradition in machine
learning, dating back to the 1950s (Chow, 1957).
There is an extensive literature (Hellman, 1970;
Fumera and Roli, 2002; Cortes et al., 2016) on
training classifiers with the ability to abstain (also
known as the "reject option"), usually specific to
alternative classifiers like support vector machines.

There is also a significant literature (Platt et al.,
1999; Guo et al., 2017; Kumar et al., 2018; Wang
et al., 2020; Desai and Durrett, 2020) on the topic
of calibration, i.e. the development of probabilis-
tically interpretable confidence measures. In this
paper, we restrict our focus to the relative rank-
ings of selective predictors, and not the confidence
values themselves.

While our survey focuses on techniques de-
signed to identify ambiguous instances in the evalu-
ation set (and, for certain techniques, to also ignore
label noise in the training set), there is also interest
in selective prediction techniques that operate suc-
cessfully under domain shift (Kamath et al., 2020;
Liu et al., 2020), i.e. when the distribution of eval-
uation instances differs from the training instances.
Evaluation of such techniques is beyond the scope
of the work described here, but we have plans to
expand the spred package to evaluate selective
prediction under domain shift.

7 Conclusion

With this effort, we have tried to write a paper that
we would like to see more of in the NLP litera-
ture: a careful survey and empirical comparison of
a diverse selection of recent techniques on a broad
set of tasks. We have purposefully avoided intro-
ducing new techniques to avoid “having a horse
in the race," instead focusing on doing our best to
optimize each evaluated technique and provide a
fair comparison. As a companion to the paper, the
documented and unit-tested Python package spred
affords the following benefits:

1. reproducibility: JSON configurations for
each experiment performed'? are provided
with the library, as well as instructions for
replicating them.

2. transparency: The documented code and
unit tests can be easily inspected to indepen-
dently confirm the accuracy of our implemen-
tations.

3. extensibility: We designed the code to make
it simple to add new techniques and tasks.
We provide tutorials'? demonstrating how to
do so. These are intended both for selective
prediction techniques that we have invariably
overlooked in our survey, as well as novel
contributions to the literature.

Ever since (Hendrycks and Gimpel, 2017) identi-
fied MAXPROB as a strong baseline for selective
prediction, many papers have proposed techniques
that reportedly improve upon it. By and large, these
papers reported improvements based on single-trial
experiments on a small selection of datasets. In
our more comprehensive study, the only technique
that demonstrated significant improvement over
MAXPROB was Monte Carlo Dropout (Gal and
Ghahramani, 2016). Our results should make it
clear that, at least in the realm of selective predic-
tion, there is significant variance between tasks,
and between trials of the same experiment. Thus,
this paper suggests caution in drawing conclusions
from single-trial experiments, especially when one
may be subconsciously invested in a particular tech-
nique.

12With the submission, we also provide a CSV file contain-
ing the final experiment results.

BReviewers are invited to try the tutorials to learn more
about the spred package. See the README . md file in the
7 1P file provided with the submission for more details.
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Figure 10: Results of the hyperparameter tuning experi-
ments for Monte Carlo Dropout.
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A Hyperparameter Tuning Results

Figure 10, Figure 11, Figure 12, and Figure 13
show the experimental results for our hyperparam-
eter tuning experiments. As with the final results,
we visualize these using violin plots — each “string"
of the violin corresponds to the result of a single
trial.

10

— T —
ts(0.5, 800) >
— T T——
— T T ——
ts(0.25, 800) >
— T T
o 1s(0.125,800) <[>
2 ——
© —_— ]
£ (0.5, 1600) %
—T T ——
t5(0.25, 1600) task >
H rte
B mrpc
t5(0.125, 1600) sstz P
0.1 0.2 0.3 0.4 0.5
kendall_tau

Figure 11: Results of the hyperparameter tuning experi-
ments for TrustScore.
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Figure 12: Results of the hyperparameter tuning experi-
ments for Error Regularization.
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Figure 13: Results of the hyperparameter tuning experi-
ments for the Deep Abstaining Classifier.
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B Machine Architecture and Running
Time

The experiments were run on a single workstation
with the following specifications:

* Operating System: Ubuntu 20.04

* Processor: AMD Threadripper 3990X: 64
cores, 2.90 GHz, 256 MB cache

GPUs: 2x RTX 3090
* Memory: 256 GB

* Operating System Drive: 2 TB SSD
(NVMe)

e Data Drive: 2 TB SSD (SATA)

To give the reader a sense of the relative cost of
running each technique, we provide a representa-
tive result of a single trial on the above machine for
the RTE task:

 Training time for basic BERT loss: 201s

* Training time for BERT loss + error regu-
larization: 200s

* Training time for DAC loss: 266s
¢ Evaluation time for MAXPROB: 1.72s
¢ Evaluation time for MCDM/MCDV: 56s

¢ Evaluation time for TRUSTSCORE: 40s
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