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Abstract

High-dimensional data visualization is crucial in big data era
and these techniques such as t-SNE and UMAP have been
widely used in science and engineering. Big data, however,
is often distributed across multiple data centers and subject
to security and privacy concerns, which leads to difficulties
for the standard algorithms of t-SNE and UMAP. To tackle
the challenge, this work proposes Fed-tSNE and Fed-UMAP,
which provide high-dimensional data visualization under the
framework of federated learning, without exchanging data
across clients or sending data to the central server. The main
idea of Fed-tSNE and Fed-UMAP is implicitly learning the
distribution information of data in a manner of federated
learning and then estimating the global distance matrix for
t-SNE and UMAP. To further enhance the protection of data
privacy, we propose Fed-tSNE+ and Fed-UMAP+. We also
extend our idea to federated spectral clustering, yielding al-
gorithms of clustering distributed data. In addition to these
new algorithms, we offer theoretical guarantees of distance
and similarity estimation and analyze the property of differ-
ential privacy. Experiments on multiple datasets demonstrate
that, compared to the original algorithms, the accuracy drops
of our federated algorithms are tiny.

1 Introduction
High-dimensional data are prevalent in science and engi-
neering and their structures are often very complicated,
which makes dimensionality reduction and data visualiza-
tion appealing in knowledge discovery and decision-making
(Jolliffe and Cadima 2016; Hinton and Salakhutdinov 2006;
Van Der Maaten et al. 2009). In the past decades, many al-
gorithms have been proposed for dimensionality and visu-
alization (Pearson 1901; Fisher 1936; Sammon 1969; Baker
1977; Kohonen 1982; Schölkopf, Smola, and Müller 1998;
Roweis and Saul 2000; Tenenbaum, De Silva, and Lang-
ford 2000; Van der Maaten and Hinton 2008; McInnes et al.
2018). Perhaps, the most popular algorithms in recent years
are the t-distributed stochastic neighbor embedding (t-SNE)
developed by (Van der Maaten and Hinton 2008) and the
Uniform Manifold Approximation and Projection (UMAP)
proposed by (McInnes et al. 2018). T-SNE and UMAP map
the data points to a two- or three-dimensional space, exhibit-
ing the intrinsic data distribution or pattern of the original
high-dimensional data. Due to their superiority over other
methods such as PCA (Jolliffe and Cadima 2016), Isomap

(Tenenbaum, De Silva, and Langford 2000), and autoen-
coder (Hinton and Salakhutdinov 2006), they have been used
for visualizing images, tabular data (Hao et al. 2021), text
(Grootendorst 2022), and graphs (Wu, Zhang, and Fan 2023)
in diverse fields and provide huge convenience for scientific
research and engineering practice (Becht et al. 2019). Be-
sides visualization, t-SNE and UMAP are also useful in clus-
tering (Linderman and Steinerberger 2019) and outlier de-
tection (Fu, Zhang, and Fan 2024). There are also a few vari-
ants of t-SNE (Yang et al. 2009; Carreira-Perpinán 2010; Xie
et al. 2011; Van Der Maaten 2014; Gisbrecht, Schulz, and
Hammer 2015; Pezzotti et al. 2016; Linderman et al. 2019;
Chatzimparmpas, Martins, and Kerren 2020; Sun, Han, and
Fan 2023) and UMAP (Sainburg, McInnes, and Gentner
2021; Nolet et al. 2021). For instance, Van Der Maaten
(2014) used tree-based algorithms to accelerate the imple-
mentation of t-SNE. Sainburg, McInnes, and Gentner (2021)
proposed a parametric UMAP that can visualize new data
without re-training the model.

In many real cases such as mobile devices, IoT net-
works, medical records, and social media platforms, the
high-dimensional data are distributed across multiple data
centers and subject to security and privacy concerns (Dwork,
Roth et al. 2014; McMahan et al. 2017; Kairouz et al. 2021),
which leads to difficulties for the standard algorithms of t-
SNE and UMAP. Specifically, in t-SNE and UMAP, we need
to compute the pair-wise distance or similarity between all
data points, meaning that different data centers or clients
should share their data mutually or send their data to a com-
mon central server, which will leak data privacy and lose
information security. To address this challenge, we propose
federated t-SNE and federated UMAP in this work. Our
main idea is implicitly learning the distribution information
of data in a manner of federated learning and then estimat-
ing the global distance matrix for t-SNE and UMAP. The
contribution of this work is summarized as follows:

• We propose Fed-tSNE and Fed-UMAP that are able to
visualize distributed data of high-dimension.

• We further provide Fed-tSNE+ and Fed-UMAP+ to en-
hance privacy protection.

• We extend our idea to federated spectral clustering for
distributed data with privacy protection.

• We provide theoretical guarantees such as reconstruction



error bounds and differential privacy analysis.

2 Related work
t-SNE t-SNE (Van der Maaten and Hinton 2008) aims
to preserve the pair-wise similarities from high-dimension
space P to low-dimension space Q. The pair-wise similari-
ties are measured as the probability that two data points are
neighbors mutually. Specifically, given high-dimensional
data points x1,x2, . . . ,xN in RD, t-SNE computes the joint
probability matrix P ∈ RN×N , in which pij = 0 if i = j,
and pij =

pi|j+pj|i
2N , if i ̸= j, where

pj|i =
exp(−∥xi−xj∥2

2/(2τ
2
i ))∑

ℓ∈[N]\{i} exp(−∥xi−xℓ∥2
2/(2τ

2
i ))

. (1)

In (1), τi is the bandwidth of the Gaussian kernel. Suppose
y1,y2, . . . ,yN are the low-dimensional embeddings in Rd,
where d≪ D, t-SNE constructs a probability matrix Q by

qij =
(1+∥yi−yj∥2

2)
−1∑

ℓ,s∈[N],ℓ ̸=s(1+∥yℓ−ys∥2
2)

−1 (2)

where i ̸= j. Then t-SNE obtain y1,y2, . . . ,yN by mini-
mizing the Kullback-Leibler (KL) divergence

minimize
y1,...,yN

∑
i̸=j

qij log
pij
qij

(3)

UMAP UMAP (McInnes et al. 2018) is a little similar to t-
SNE. It starts by constructing a weighted k-NN graph in the
high-dimensional space. The edge weights between points
xi and xj are defined based on a fuzzy set membership, rep-
resenting the probability that xj is in the neighborhood of
xi. Specifically, the membership strength is computed using

µi|j = exp
(
− ∥xi − xj∥2/σi

)
, (4)

where σi is a local scaling factor determined by the k-NNs
of xi. The final membership strength is symmetrized as

µij = µi|j + µj|i − µi|j · µj|i (5)

In the low-dimensional space, the probability of two points
being neighbors is modeled using a smooth, differentiable
approximation to a fuzzy set membership function. The edge
weights between points yi and yj are given by

µ′
ij =

1
1+a∥yi−yj∥2b (6)

where a and b are hyperparameters typically set based on
empirical data to control the spread of points in the low-
dimensional space. UMAP minimizes the cross-entropy be-
tween the high-dimensional fuzzy simplicial set and the low-
dimensional fuzzy simplicial set, i.e.,

minimize
y1,...,yN

∑
i ̸=j

µij log
(µij

µ′
ij

)
+(1−µij) log

(1− µij

1− µ′
ij

)
(7)

Discussion Studies about federated dimensionality reduc-
tion or data visualization are scarce in the literature. Gram-
menos et al. (2020) proposed a federated, asynchronous,
and (ϵ, δ)-differentially private algorithm for PCA in the
memory-limited setting. Briguglio et al. (2023) developed

a federated supervised PCA for supervised learning. Novoa-
Paradela, Fontenla-Romero, and Guijarro-Berdiñas (2023)
proposed a privacy-preserving training algorithm for deep
autoencoders. Different from PCA and autoencoders, in t-
SNE and UMAP, we need to compute the pair-wise dis-
tance or similarity between data points, which leads to sig-
nificantly higher difficulty in developing federated learning
algorithms. Saha et al. (2022) proposed a decentralized data
stochastic neighbor embedding, dSNE. However, dSNE as-
sumes that there is a shared subset of data among different
clients, which may not hold in real applications.

3 Federated Distribution Learning
3.1 Framework
Suppose data X = {Xp}Pp=1 are distributed at P clients,
where Xp ∈ Rm×np belongs to client p and

∑P
p=1 np = nx.

To implement t-SNE and UMAP, we need to compute a ma-
trix DX,X ∈ Rnx×nx of distances between all data pairs
in X , which requires data sharing between the clients and
central server, leading to data or privacy leaks. We propose
to find an estimate of the distance or similarity matrix with-
out data sharing. To do this, we let the central server con-
struct a set of intermediate data points denoted by Y =
[y1, . . . ,yny ] ∈ Rm×ny and then compute distance matri-
ces DY ,Y and {DXp,Y }Pp=1. These distance matrices can
be used to construct an estimate D̂X,X of DX,X by apply-
ing the Nytröm method (Williams and Seeger 2001) (to be
detailed later). However, the choice of Y = [y1, . . . ,yny

] ∈
Rm×ny affects the accuracy of D̂X,X , further influencing
the performance of t-SNE and UMAP.

Since Nytröm method (Williams and Seeger 2001) aims
to estimate an entire matrix using its small sub-matrices,
the sub-matrices should preserve the key information of the
entire matrix, which means a good Y = [y1, . . . ,yny

] ∈
Rm×ny should capture the distribution information of X .
Therefore, we propose to learn such a Y adaptively from
the P clients via solving the following federated distribution
learning (FedDL) framework:

minimize
Y

F (Y ) ≜
P∑

p=1

ωpfp(Y ) (8)

where fp is the local objective function for each client, and
ω1, . . . , ωP are nonnegative weights for the clients. WLOG,
we set ω1 = · · · = ωP = 1/P for convenience in the re-
maining context. In this work, we set fp to be the Maximum
Mean Discrepancy (MMD) (Gretton et al. 2012) metric:

fp(Y ) = MMD(Xp,Y )

=
1

np(np − 1)

np∑
i=1

np∑
j ̸=i

k ((Xp):,i, (Xp):,j)

− 2

npny

np∑
i=1

ny∑
j=1

k ((Xp):,i, (Y ):,j)

+
1

ny(ny − 1)

ny∑
i=1

ny∑
j ̸=i

k ((Y ):,i, (Y ):,j)

(9)



or in the following compact form

fp(Y ) = MMD(Xp,Y )

= 1
np(np−1)

[
1T
np
KXp,Xp

1np
− np

]
− 2

npny
1T
np
KXp,Y 1ny

+ 1
ny(ny−1)

[
1T
ny
KY ,Y 1ny

− ny

]
(10)

where k(·, ·) is the kernel function and K·,· denotes the ker-
nel matrix computed from two matrices. MMD is a distance
metric between two distributions and (10) is actually an esti-
mation of MMD with finite samples from two distributions.
If we use the Gaussian kernel k(xi,yj) = exp(−γ∥xi −
yj∥2), MMD compares all-order statistics between two dis-
tributions. For any X ∈ Rm×nx and Y ∈ Rm×ny , we cal-
culate the Gaussian kernel matrix as KX,Y = exp(−γD2),
where D2 is the squared pairwise distance matrix between
X and Y , i.e., D2 = Diag(XTX)1T

ny
− 2XTY +

1nx
Diag(Y TY )T .

Combining (8) and (10), we have the following optimiza-
tion problem of federated distribution learning

minimize
Y

P∑
p=1

ωp ×MMD(Xp,Y ) (11)

By solving this problem, the central server or Y equivalently
can learn the distribution information of the data distributed
on the P clients. Based on such an Y , we can estimate the
distance or similarity matrix between all data points in X ,
which will be detailed later.

Algorithm 1: Federated Distribution Learning

Require: Distributed data {X1,X2, . . . ,XP } at P clients.
1: Server broadcast an initial Y 0 to all clients.
2: for round s = 1 to S do
3: Client side:
4: for client p = 1 to P in parallel do
5: Set Y s,0

p = Y s−1

6: Update local variable Y s
p :

7: for t = 1 to Q do
8: Y s,t

p = Y s,t−1
p − ηs∇fp(Y s,t−1

p )
9: end for

10: Denote Y s
p = Y s,Q

p

11: Upload Y s
p (resp., ∇fp(Y s,t

p )) to the server.
12: end for
13: Server side: compute Y s = 1

P

∑P
p=1 Y

s
p .

14:
(

resp.,Y s ← Y s−1 − η′s × 1
P

∑P
p=1∇fp(Y s

p )
)

15: Broadcast Y s to all clients.
16: end for
Ensure: Y

3.2 Optimization
For a client p, we consider the corresponding local optimiza-
tion problem

minimize
Y

fp(Y ) (12)

where fp(Y ) = MMD(Xp,Y ). Due to the presence of ker-
nel function, we have to use some numerical methods like
gradient descent to update the decision variable Y . The gra-
dient of fp at Y is

∇fp(Y ) =
−4γ
npny

[
XpKXp,Y − Y Diag(1T

np
KXp,Y )

]
+

4γ

ny(ny − 1)

[
Y KY ,Y − Y Diag(1T

ny
KY ,Y )

]
(13)

To make it more explicit, we outline the key steps of FedDL
to demonstrate how the central server coordinates local mod-
els for learning global distribution in a federated way.
• Step 1: The central server initializes a global Yg before

the learning cycle begins and broadcasts it to all partici-
pating local models.

• Step 2: The local clients copy the global Yg as their uni-
form initial guess Yp and compute the gradient∇fp(Yp).

• Step 3: Each client p sends its gradient ∇fp(Yp) or the
updated Y , i.e.,

Yp ← Yp − η∇fp(Yp) (14)
to the central server, where η is the step size and can be
set as the reverse of the Lipschitz constant of gradient if
possible.

• Step 4: The central server updates the global Y by aver-
aging all posted Yp, i.e.,

Y =
1

P

P∑
p=1

Yp, (15)

or performing gradient descent with the average of all
∇fp(Yp), i.e.,

Y ← Y − η′ × 1

P

P∑
p=1

∇fp(Yp), (16)

where η′ is a step size.
• Step 5: The central server broadcasts the newly aggre-

gated communication variables so as to trigger the next
local updates.

The optimization details are summarized in Algorithm 1.
In the algorithm, for each client p, the time complexity per
iteration is O(mn2

p + mnpny) and the space complexity is
O(mnp + mny + npny). Since the optimization is similar
to FedSGD or FedAVG (McMahan et al. 2017), for simplic-
ity, we will not repeat the proof of convergence. However,
Figure 2 in Section 6.1 will show the convergence of the op-
timization numerically.

3.3 Privacy protection
In our proposed FedDL Algorithm 1, it is necessary to share
some variables like the global distribution information Y or
the gradient∇fp(Y ) for proceeding the process of training.
This may result in the leakage of data privacy. Data or gradi-
ent perturbation by some special types of noise is a common
way to enhance the security of federated algorithms. In Sec-
tion 5, we present the theoretical guarantees of distance esti-
mation and similarity estimation and analyze the properties
of differential privacy in such two ways, respectively.



Figure 1: MNIST Data Visualization. Row 1: t-SNE, Fed-tSNE, and Fed-tSNE+. Row 2: UMAP, Fed-UMAP, and Fed-UMAP+.

4 Applications of FedDL
4.1 Federated tSNE and UMAP
Nystrom approximation is a technique that can approximate
a positive semi-definite (PSD) matrix merely through a sub-
set of its rows and columns (Williams and Seeger 2001).
Consider a PSD matrix Sn+ ∋ H ⪰ 0 that has a representa-
tion of block matrix

Sn+ ∋H =

[
W BT

B Z

]
(17)

where W ∈ Sc+,B ∈ R(n−c)×c, and Z ∈ Sn−c
+ for which

c≪ n. Specifically, suppose Z is unknown, we can approx-
imate it using W ,B, and BT as

Z ≈ BW †
kB

T ≜ Ẑ (18)

This means we can approximate the incomplete H by Ĥ =

[W ,BT ;B, Ẑ]. By Nyström method, we can approximate
a distance or similarity matrix on large-scale dataset in a rel-
atively low computational complexity. Some literature gives
some useful upper bounds on Nyström approximation in
terms of Frobenius norm and spectral norm for different
sampling techniques (Kumar, Mohri, and Talwalkar 2009b;
Drineas and Mahoney 2005; Zhang, Tsang, and Kwok 2008;
Kumar, Mohri, and Talwalkar 2009a; Li, Kwok, and Lu
2010). Here, we present the upper bounds of Nyström ap-
proximation in (Drineas and Mahoney 2005) for our subse-
quent derivation.
Theorem 1 (Error bounds of Nyström approximation).
Given X = [x1, . . . ,xn] ∈ Rm×n, let Ĥ be the rank-k
Nystrom approximation of H only through c columns sam-
pled uniformly at random without replacement from H , and
Hk be the best rank-k approximation of H . Then, the fol-
lowing inequalities hold for any sample of size c:

∥H − Ĥ∥2 ≤ ∥H −Hk∥2 + 2nρ√
c

∥H − Ĥ∥F ≤ ∥H −Hk∥F + ρ
(
64k
c

)1/4 (19)

where ρ = maxi Hii.
Without the retrieval of raw data from clients, we present

federated tSNE (Fed-tSNE) and federated UMAP (Fe-
dUMAP) to visualize the high-dimensional data distributed
across multiple regional centers. The main idea is to perform
Algorithm 1 to learn a Y and then each client p posts the dis-
tance matrix DXp,Y ∈ Rnp×ny between Xp and Y to the
central server. Consequently, the central server assembles all
DXp,Y to form

B = [D⊤
X1,Y D⊤

X2,Y · · · D
⊤
XP ,Y ]⊤ (20)

and estimate DX,X as

D̂X,X = BW †
kB

⊤ (21)

where W = DY ,Y , i.e., the distance matrix of Y . Note that
in the case that W is singular, we can add an identity matrix
to it, i.e., W +λI , where λ > 0 is a small constant. Finally,
the central server implements either t-SNE or UMAP based
on DX,X . The steps are summarized into Algorithm 2.

Algorithm 2: Fed-tSNE and Fed-UMAP

Require: Distributed data {X1,X2, . . . ,XP } at P clients.
1: Perform Algorithm 1 to compute Y .
2: Each client p computes the distance matrix DXp,Y and

posts it to the central server.
3: The central server constructs B using (20) and com-

putes D̂X,X using (21).
4: The central server runs either t-SNE or UMAP on

D̂X,X to obtain the low-dimensional embeddings Z.
Ensure: Z

Note that sampling data points from clients like in clas-
sical Nyström approximation is prohibitive in the federated
settings. Thus, it motivates us to use FedDL to learn a useful
set of fake points (i.e., landmarks) close enough to the data
across the clients in terms of MMD.



4.2 Federated Spectral Clustering
Note that after running Algorithm 1, if each client post
the kernel matrix KXp,Y rather than the distance matrix
DXp,Y to the central server, the central server can construct
a kernel or similarity matrix K̂X,X that is useful for spec-
tral clustering. Thus we obtain federated spectral clustering,
of which the steps are summarized into Algorithm 3.

Algorithm 3: Fed-SpeClust

Require: Distributed data {X1,X2, . . . ,XP } at P clients.
1: Perform Algorithm 1 to compute Y .
2: Each client p computes the kernel matrix KXp,Y and

posts it to the central server.
3: The central server constructs C =

[K⊤
X1,Y

K⊤
X2,Y

· · · K⊤
XP ,Y ]⊤ and computes

K̂X,X = CW−1C⊤ with W = KY ,Y .
4: The central server runs spectral clustering on K̂X,X to

obtain the clusters C = {C1, C2, . . . , Cc}.
Ensure: C

5 FedDL with differential privacy
5.1 FedDL by data perturbation
We inject noise into the raw data in each client and then run
FedDL to learn the global distribution information. Note that
data perturbation is a one-shot operation before performing
Algorithm 1. Specifically, the data X is perturbed by a noise
matrix E ∈ Rm×nx to form the noisy data matrix X̃ =
X+E, where ei,j ∼ N (0, σ2). Define X̃ = {X̃p}Pp=1 and
we then perform Algorithm 1 on X̃ to obtain Y which gives
the Nyström approximation

ĤX̃,X̃|Y ≃ BW †
kB

T (22)

where B = KX̃,Y (or DX̃,Y ), W = KY ,Y (or DY ,Y ).
Following the logistics of existing literature, we give the

upper bounds on the approximation error of Nyström ap-
proximation involved with FedDL, where we focus only on
the kernel matrix because it is more complex than the dis-
tance matrix.
Theorem 2 (Error bound of Nyström approximation with
FedDL having data perturbation). Given X = {Xp}Pp=1

with Xp ∈ Rm×np having
∑P

p=1 np = nx, Y =

[y1, . . . ,yny ] ∈ Rm×ny , let X̃x
a = [Y , X̃] be the aug-

mented matrix, C = KX̃x
a ,Y

, W = KY ,Y with W †
k being

the Moore-Penrose inverse of the best rank-k approximation
of W , and Cond(·) denote condition number of matrix. De-
noting ĤX̃,X̃|Y = CW †

kC
T , it holds with probability at

least 1− n(n− 1)e−t that

∥ĤX̃,X̃|Y −KX,X∥2

≤Cond(KX̃x
a ,X̃

x
a
)
(

|MMD(X̃,Y )|
nx+ny

+ 1
)
+ 2nx

+
√
2nxγ

[
σ2ξ2m +

√
2∥DX,X∥∞σξm

]

alternatively, it holds that∥∥ĤX̃,X̃|Y −KX,X

∥∥
F

≤
√
nx + ny − kCond(KX̃x

a ,X̃
x
a
)
(

|MMD(X̃,Y )|
nx+ny

+ 1
)

+ 2k1/4nx

√(
1 +

ny

nx

)
+
√
2nxγ

[
σ2ξ2m +

√
2∥DX,X∥∞σξm

]
Theorem 3 (Differential privacy of FedDL with data per-
turbation). Assume maxp,j ∥(Xp):,j∥2 = τX , FedDL with
perturbed data given by Section 5.1 is (ε, δ)−differentially
private if δ ≥ 2cτX/ε, where c2 > 2 ln(1.25/δ).

5.2 FedDL by variable and gradient perturbation
We can also perturb the optimization variable Y or the gra-
dient∇fp(Yp) by Gaussian noise in the training progression
to improve the security of Algorithm 1. No matter which
method we follow, the Y obtained by the central server is
noisy, i.e., Ỹ = Y + E, where E is drawn elementwise
from N (0, σ2). Then, we do Nystrom approximation by

ĤX,X|Ỹ ≃ BW †
kB

T

where B = KX,Ỹ (or DX,Ỹ ), W = KỸ ,Ỹ (or DỸ ,Ỹ ).

Theorem 4 (Error bound of Nyström approximation with
FedDL having gradient perturbation). With the same nota-
tions in Theorem 2, let X̃y

a = [Ỹ ,X] be the augmented
matrix. Then with probability at least 1 − n(n − 1)e−t, it
holds that∥∥ĤX,X|Ỹ −KX,X

∥∥
2
≤ Cond(KX̃y

a ,X̃
y
a
)
(

|MMD(X,Ỹ )|
nx+ny

+ 1
)
+ 2nx

alternatively, it holds that∥∥ĤX,X|Ỹ −KX,X

∥∥
F

≤
√
nx + ny − kCond

(
KX̃y

a ,X̃
y
a

)(
|MMD(X,Ỹ )|

nx+ny
+ 1
)

+ 2k1/4nx

√
1 +

ny

nx

Note that MMD(X, Ỹ ) ≤ MMD(X,Y )+MMD(Y , Ỹ )
is related to σ. A smaller σ leads to a lower estimation error
(higher estimation accuracy) but weaker privacy protection.
We can obtain a precise trade-off between accuracy and pri-
vacy by combining Theorem 4 with Theorem 5.
Theorem 5 (Differential privacy of FedDL with gradi-
ent perturbation). Suppose maxp,j ∥(Xp):,j∥2 = τX ,
maxp,i,j ∥(Yp):,i − (Xp):,j∥ = Υ, ∥Y s

p ∥sp ≤ τY ∀s,
let {∇fp(Y s

p )}Pp=1 for s ∈ [S] be the sequence
that is perturbed by noise drawn from N (0, σ2)
with variance 8S∆2 log(e + (ε/δ))/ε2 where
∆ =

8
√
nyγτX
npny

{1 + 2γ(τX + τY ) (τX +Υ)}. Then, the
Gaussian Mechanism that injects noise to {∇fp(Y s

p )}Sp=1

for s ∈ [S] is (ε, δ)−differentially private.

Note that it is intuitively appropriate to choose a decreas-
ing sequence of noise variance {σ2

s}Ss=1 adapted to the gra-
dient norm, which may make the algorithm converge well.



IID non-IID
Metric tSNE Fed-tSNE Fed-tSNE+ Fed-tSNE Fed-tSNE+
CA 1-NN 0.9618±0.0015 0.9400±0.0017 0.9364±0.0020 0.9412±0.0021 0.9189±0.0030
CA 10-NN 0.9656±0.0017 0.9477±0.0017 0.9443±0.0012 0.9483±0.0019 0.9307±0.0026
CA 50-NN 0.9609±0.0015 0.9401±0.0022 0.9354±0.0022 0.9406±0.0020 0.9209±0.0035
NPA 1-NN 0.4176±0.0016 0.2728±0.0022 0.2543±0.0016 0.2729±0.0022 0.1928±0.0019
NPA 10-NN 0.3905±0.0005 0.3373±0.0007 0.3263±0.0005 0.3375±0.0013 0.2827±0.0010
NPA 50-NN 0.3441±0.0007 0.3301±0.0007 0.3258±0.0007 0.3305±0.0006 0.3030±0.0012
NMI 0.7747±0.0243 0.7534±0.0202 0.7471±0.0073 0.7399±0.0109 0.7025±0.0149
SC 0.4226±0.0082 0.4407±0.0103 0.4478±0.0066 0.4321±0.0058 0.4441±0.0045
Metric UMAP Fed-UMAP Fed-UMAP+ Fed-UMAP Fed-UMAP+
CA 1-NN 0.9322±0.0053 0.9066±0.0031 0.9007±0.0034 0.9064±0.0026 0.8730±0.0041
CA 10-NN 0.9613±0.0048 0.9445±0.0018 0.9416±0.0023 0.9449±0.0022 0.9224±0.0036
CA 50-NN 0.9602±0.0049 0.9432±0.0020 0.9400±0.0025 0.9441±0.0022 0.9219±0.0037
NPA 1-NN 0.0308±0.0009 0.0293±0.0007 0.0277±0.0008 0.0298±0.0011 0.0218±0.0009
NPA 10-NN 0.1227±0.0010 0.1133±0.0008 0.1088±0.0009 0.1131±0.0012 0.0914±0.0006
NPA 50-NN 0.2226±0.0015 0.2099±0.0011 0.2053±0.0011 0.2095±0.0013 0.1860±0.0013
NMI 0.8285±0.0150 0.7844±0.0208 0.7812±0.0153 0.7919±0.0217 0.7368±0.0194
SC 0.6118±0.0207 0.5812±0.0261 0.5746±0.0229 0.5889±0.0248 0.5422±0.0173

Table 1: Performance (mean±std) of dimensionality reduction on MNIST

IID non-IID
Metric tSNE Fed-tSNE Fed-tSNE+ Fed-tSNE Fed-tSNE+
CA 1-NN 0.8112±0.0049 0.7473±0.0029 0.7198±0.0041 0.7453±0.0044 0.6669±0.0044
CA 10-NN 0.8260±0.0039 0.7892±0.0030 0.7706±0.0034 0.7898±0.0039 0.7280±0.0048
CA 50-NN 0.8064±0.0041 0.7754±0.0033 0.7631±0.0037 0.7760±0.0045 0.7280±0.0043
NPA 1-NN 0.3518±0.0018 0.1251±0.0021 0.0718±0.0013 0.1275±0.0017 0.0274±0.0006
NPA 10-NN 0.3635±0.0007 0.2551±0.0010 0.1954±0.0011 0.2571±0.0011 0.1090±0.0010
NPA 50-NN 0.3710±0.0003 0.3363±0.0006 0.3004±0.0006 0.3369±0.0008 0.2204±0.0017
NMI 0.5787±0.0212 0.5780±0.0154 0.5733±0.0149 0.5778±0.0044 0.5162±0.0129
SC 0.4049±0.0101 0.4382±0.0070 0.4638±0.0147 0.4389±0.0085 0.4564±0.0111
Metric UMAP Fed-UMAP Fed-UMAP+ Fed-UMAP Fed-UMAP+
CA 1-NN 0.7146±0.0029 0.6756±0.0036 0.6587±0.0055 0.6766±0.0043 0.6110±0.0037
CA 10-NN 0.7734±0.0039 0.7413±0.0045 0.7287±0.0041 0.7437±0.0030 0.6875±0.0041
CA 50-NN 0.7781±0.0039 0.7491±0.0052 0.7383±0.0039 0.7501±0.0040 0.7006±0.0033
NPA 1-NN 0.0356±0.0012 0.0218±0.0011 0.0156±0.0009 0.0223±0.0011 0.0071±0.0004
NPA 10-NN 0.1401±0.0013 0.1002±0.0015 0.0799±0.0012 0.1020±0.0010 0.0423±0.0007
NPA 50-NN 0.2518±0.0018 0.2152±0.0028 0.1907±0.0018 0.2167±0.0022 0.1226±0.0015
NMI 0.6187±0.0127 0.5915±0.0112 0.5755±0.0090 0.5877±0.0181 0.5191±0.0132
SC 0.5304±0.0286 0.5448±0.0264 0.5476±0.0176 0.5338±0.0252 0.5322±0.0191

Table 2: Performance (mean±std) of dimensionality reduction on Fashion-MNIST

In practice, we do not have to do this and can instead inject
homoscedastic noise while incorporating a carefully chosen
scaling factor into the step size of the gradient descent. By
doing so, the differential privacy of our FedDL with gradient
perturbation can be guaranteed by Theorem 5.

5.3 Fed-tSNE+ and Fed-UMAP+

Based on the above discussion, we propose the security-
enhanced versions of Fed-tSNE and Fed-UMAP, denoted by
Fed-tSNE+ and Fed-UMAP+, for which Algorithm 2 has
noise injection in line 1 (Algorithm 1).

6 Experiments
6.1 Data Visualization
We applied the proposed Fed-tSNE and Fed-UMAP meth-
ods to the MNIST and Fashion-MNIST datasets. We de-
signed the experiment with 10 clients, where IID (indepen-
dent and identically distributed) refers to each client’s data
being randomly sampled from the MNIST dataset, thus in-
cluding all classes. In contrast, non-IID means that each
client’s data contains only a single class. After reducing the
data dimension to two, we visualized them. Figure 1 presents
the results on MNIST, showing the data distribution under
both IID and non-IID conditions. Additionally, we included



IID non-IID
Metric SpeClust Fed-SpeClust Fed-SpeClust+ Fed-SpeClust Fed-SpeClust+

MNIST NMI 0.5415±0.0009 0.5240±0.0038 0.5220±0.0052 0.5235±0.0051 0.5025±0.0068
ARI 0.3837±0.0008 0.3815±0.0076 0.3807±0.0088 0.3806±0.1123 0.3829±0.0102

COIL-20 NMI 0.8885±0.0016 0.8425±0.0218 0.8333±0.0173 0.8339±0.0216 0.8215±0.0163
ARI 0.6066±0.0012 0.5113±0.0557 0.4793±0.0426 0.4895±0.0639 0.4551±0.0322

Mice-Protein NMI 0.3241±0.0063 0.3233±0.0121 0.3220±0.0143 0.3222±0.0190 0.3198±0.0100
ARI 0.1837±0.0037 0.1827±0.0033 0.1802±0.0154 0.1809±0.0024 0.1783±0.0016

Table 3: Performance (mean±std) of spectral clustering

results using Fed-tSNE+ and Fed-UMAP+, where the vari-
ance of noise is the same as that of the gradients. Due to
space limitations, the results on Fashion-MNIST are pro-
vided in the Appendix (Figure 4). Based on the visualiza-
tion results, our proposed methods perform very well in all
settings, with only minor differences compared to the non-
distributed results. They preserved nearly all the essential
information and structure of the data. Tables 1 and 2 provide
quantitative evaluations using the following metrics (de-
tailed in Appendix A): CA (Classification Accuracy) with
k-NN, NPA (Neighbor Preservation Accuracy) with k-
NN, NMI (Normalized Mutual Information) of k-means,
and SC (Silhouette Coefficient) of k-means. It can be ob-
served that the performance of our proposed method shows
a slight decline in various metrics compared to the nondis-
tributed results, which is unavoidable. However, the overall
differences remain within an acceptable range. Notably, the
method performs slightly better on distributed data when the
distribution is IID compared to non-IID. Moreover, the per-
formance of Fed-tSNE+ and Fed-UMAP+ with added noise
to protect privacy is somewhat inferior to the performance
without noise, which is expected, as the non-IID scenario
and the introduction of noise both impact the accuracy of
Y ’s learning on whole X , thereby affecting the final results.

Convergence Analysis We also conducted experiments to
test the convergence of our methods. In Figure 2, the relevant
metrics reached convergence after approximately 50 epochs.
Figure 3 provides a more intuitive demonstration that, with
the increase in epochs, the learning of Y significantly im-
proves the final results of Fed-tSNE and Fed-UMAP, further
confirming the feasibility of our method. (The full process
visualization is included in Figure 5 of Appendix A.)

In addition, we also studied the impact of ny and noise
level β on NMI (Figures 6 and 7 in Appendix A). We see,
regardless of the method or conditions, the larger the Y vol-
ume or the smaller the noise level β (indicating a lower pri-
vacy protection requirement), the better the NMI results.

6.2 Clustering performance
We utilized three datasets MNIST, COIL-20, and Mice-
Protein (detailed in Appendix) to evaluate the effectiveness
of our Fed-SpeClust, and the corresponding results are pre-
sented in Table 3. In addition to the NMI metric used pre-
viously, we also employed the ARI (Adjusted Rand Index)
metric, detailed in Appendix. We see that both NMI and ARI
indicate that Fed-SpeClust achieves results comparable to

Figure 2: Convergence Performance on MNIST

Figure 3: Visualization of Fed-tSNE and Fed-UMAP Con-
vergence from epoch 1 to 10 (MNIST)

the original spectral clustering, despite a slight decrease in
performance, demonstrating the feasibility of our method.

7 Conclusion
This work proposed FedDL and applied it to t-SNE and
UMAP to visualize distributed data. The idea was also ex-
tended for spectral clustering to cluster distributed data. We
provided theoretical guarantees such as differential privacy.
Experimental results demonstrated that the accuracies of our
federated algorithms are close to the original algorithms.
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