
ScionFL: Efficient and Robust
Secure Quantized Aggregation

Yaniv Ben-Itzhak ∗, Helen Möllering †, Benny Pinkas ‡, Thomas Schneider †, Ajith Suresh §,
Oleksandr Tkachenko ¶, Shay Vargaftik ∗, Christian Weinert ∥, Hossein Yalame †, Avishay Yanai ∗

∗ VMware Research Group † Technical University of Darmstadt ‡ Aptos Labs and Bar-Ilan University
§ Technology Innovation Institute ¶ DFINITY Foundation ∥ Royal Holloway, University of London

Abstract—Secure aggregation is commonly used in federated
learning (FL) to alleviate privacy concerns related to the central
aggregator seeing all parameter updates in the clear. Unfor-
tunately, most existing secure aggregation schemes ignore two
critical orthogonal research directions that aim to (i) significantly
reduce client-server communication and (ii) mitigate the impact
of malicious clients. However, both of these additional properties
are essential to facilitate cross-device FL with thousands or even
millions of (mobile) participants.

In this paper, we unite both research directions by
introducing ScionFL, the first secure aggregation framework
for FL that operates efficiently on quantized inputs and
simultaneously provides robustness against malicious clients. Our
framework leverages (novel) multi-party computation (MPC)
techniques and supports multiple linear (1-bit) quantization
schemes, including ones that utilize the randomized Hadamard
transform and Kashin’s representation.

Our theoretical results are supported by extensive evaluations.
We show that with no overhead for clients and moderate overhead
for the server compared to transferring and processing quantized
updates in plaintext, we obtain comparable accuracy for stan-
dard FL benchmarks. Moreover, we demonstrate the robustness
of our framework against state-of-the-art poisoning attacks.

I. INTRODUCTION

Federated learning (FL) [94] is a paradigm for large-scale
distributed machine learning, where in each training round a
subset of clients locally updates a global model that is then
centrally aggregated. FL quickly gained popularity due to its
promises of data privacy, resource efficiency, and ability to
handle dynamic participants.

However, in terms of privacy, the central aggregator learns
the individual client updates in the clear and thus can infer
sensitive details about the clients’ private input data [95],
[109], [57], [120], [132]. Hence, many secure aggregation
schemes, e.g., [26], [54], [99], have been developed, where the
aggregator only learns the aggregation result, i.e., the global
model (we refer to [69], [103] for a discussion of differential
privacy in FL as an orthogonal privacy-enhancing paradigm).
Most prominently, in the “SecAgg” protocol [26], clients
exchange masks with peers to blind their model updates such
that the masks cancel out during aggregation and reveal only
the exact result. However, this approach requires an interactive
setup between clients and thus is less reliable when dealing
with real-world problems such as client dropouts (except for
special variants [137], [68], [84]). Moreover, recent research
has shown that a single malicious aggregator can reconstruct

individual training data from clients’ inputs, despite the use of
secure aggregation [24], [104], [25].

In terms of resource efficiency of plain FL, clients have
to send parameter updates (also known as gradients), which
typically consist of thousands or millions of coordinates with
one floating point number per coordinate. For cross-device FL
involving mobile clients with limited upload bandwidth, this
quickly becomes infeasible when dealing with increasingly
large model architectures, where gradients consist of millions
of coordinates. Therefore, quantization schemes that exploit
the noise resiliency of gradient-based FL methods (e.g., fed-
erated averaging [94]) have been proposed to significantly
compress client updates (typically replacing the representation
of each coordinate by a single bit, instead of a 32-bit floating
point number), e.g., [126], [31], [129], [4], [12], [18], [117].

Unfortunately, so far the ML community has worked on op-
timizing FL for resource efficiency, while the security commu-
nity has separately worked on optimizing secure aggregation
for privacy. One of the very few exceptions is a work [36]
that combines SecAgg with sketching [114] to compress
gradients. Besides the mentioned disadvantages of SecAgg,
their work considers only one compression method. However,
because of the trade-offs between accuracy and computational
efficiency offered by various forms of quantization, which
become particularly relevant for gradients with millions of
coordinates, it is important to adopt a modular approach.

Beyond data privacy threats, FL was also shown to be
vulnerable to manipulations by malicious clients who alter
their local models/updates, affecting the characteristics of the
final global model [119], [52], [136], [10], [20], [118]. This
highlights the need for effective defense measures capable
of thwarting such attacks. While there exists a plethora of
such attacks and defenses in the FL literature (see §A-F), we
focus on defending against untargeted poisoning attacks, in
which the attacker attempts to damage the trained model’s
performance for a large number of test inputs, typically
resulting in a final global model with a high error rate [52],
[118], [11]. Unfortunately, existing defenses for such attacks
cannot be efficiently translated to secure aggregation in the
quantized setting [102], [141].

A. Our Contributions

We propose ScionFL, a framework that enables efficient
and robust secure aggregation for FL with a distributed aggre-

https://orcid.org/0000-0002-3844-5940
https://orcid.org/0000-0001-9371-3592
https://orcid.org/0000-0002-9053-3024
https://orcid.org/0000-0001-8090-1316
https://orcid.org/0000-0002-5164-7758
https://orcid.org/0000-0001-9232-6902
https://orcid.org/0000-0002-0982-7894
https://orcid.org/0000-0003-4906-6871
https://orcid.org/0000-0001-6438-534X
https://orcid.org/0000-0003-4060-0150

gator that operates directly on quantized parameter updates.
Specifically, ScionFL has virtually no additional communica-
tion overhead for clients compared to the insecure transfer
of quantized plaintext updates. Achieving this is non-trivial
for prior single-server solutions that are based on masking
techniques or homomorphic encryption (HE) [26], [140].

In ScionFL, we use outsourced multi-party computa-
tion (MPC), where the clients apply computationally efficient
secret-sharing techniques to distribute their sensitive (quan-
tized) parameter updates among multiple servers that together
form a distributed aggregator. These servers then use MPC
protocols [41], [42], [17] to securely compute the aggregation
and only reveal the updated global model.

The distributed aggregator model is well established [54],
[90], [110], [58] (although prior works cannot efficiently han-
dle quantized inputs), offering practical benefits over single-
server solutions, such as not requiring an interactive setup be-
tween clients [102], [99] and efficient dropout handling. More-
over, in recent years, numerous studies have demonstrated that
single server aggregation methods are susceptible to privacy
attacks when an aggregator is corrupt [121], [24], [104], [25],
[55], [135]. The vulnerability of these methods stems from the
fact that the aggregator holds complete authority in selecting
clients and the data transmitted to and received from them. On
the other hand, with our MPC protocols, data privacy can be
guaranteed even if all servers except one are compromised or
their operators receive subpoena requests.

As MPC protocols typically induce significant overhead
in terms of (inter-server) communication, we propose
optimizations for secure aggregation that support any “linear”
quantization scheme, including 1-bit quantization schemes that
uses preprocessing like random rotations [126] and Kashin’s
representation [31]. We also study novel approximate MPC
variants that leverage FL’s noise tolerance and might be of
independent interest. We formally prove that our resultant
secure aggregation scheme is an unbiased estimator of the
arithmetic mean and explore efficiency-accuracy trade-offs.

We implement a combined end-to-end FL evaluation
and MPC simulation environment. Our prototype implemen-
tation allows to assess the performance and accuracy of our
solution for stochastic quantization schemes, including recent
state-of-the-art distributed mean estimation techniques [126],
[31]. Our results demonstrate that standard FL benchmarks’
accuracy is barely impacted while our optimizations and
approximation can significantly reduce inter-server commu-
nication. For example, when training the LeNet architecture
for image classification on the MNIST data set [83] using 1-
bit stochastic quantization with Kashin’s representation [31],
training accuracy is only slightly reduced from 99.04%
to 98.71% after 1000 rounds, while inter-server communica-
tion drops from 16.14 GB to 0.94 GB compared to naive MPC-
based secure aggregation when considering 500 clients per
round, an improvement by factor 17.2×.

Since clients may act maliciously and try to degrade accu-
racy with their updates, we design a novel bipartite defense
mechanism called ScionFL-Aura to ensure the robustness of

our framework. Specifically, we provide protection against
state-of-the-art untargeted poisoning attacks [118], combin-
ing magnitude clipping and directional filtering based on
the gradients’ approximate L2-norms and cosine distances.
Notably, ScionFL-Aura is the first defense mechanism to
work directly on quantized inputs and thus enables a highly
efficient realization in MPC, whereas existing works require
expensive MPC conversions of all individual parameters [5],
[102]. We summarize our contributions as follows:

1) First secure aggregation framework called ScionFL to
consider (1-bit) quantization with almost no communication
overhead for clients compared to plaintext quantized FL.
2) Novel optimizations and approximations to reduce
MPC-induced inter-server communication, with
performance/accuracy trade-offs.
3) End-to-end FL evaluation and MPC simulation environ-
ment, demonstrating the efficiency and accuracy of ScionFL.
4) First efficient and effective FL (poisoning) defense operat-
ing directly on quantized updates.

Though we study FL as our primary application, our secure
aggregation protocols have numerous other applications like
privacy-preserving aggregate statistics, for which there are cur-
rently (less efficient) real-world deployments that also rely on
distributed aggregators (e.g., telemetry reporting in Mozilla’s
Firefox browser [1], [2]). For these settings, we achieve
improvements in communication of up to 4× over prior works
like Prio+ [2] and the details are provided in §III-E.

B. Related Work

We present a summary of the most relevant related works
here, with a more comprehensive discussion in §A.

Quantization and Compression in FL: In this work, we fo-
cus on quantization to reduce communication in FL. However,
an alternative line of work investigates compression techniques
for the same purpose. There are three main directions for
gradient compression in cross-device FL: (i) gradient sparsifi-
cation (e.g., [53], [123], [3], [76]), (ii) client-side memory and
error-feedback (e.g., [117], [4], [112], [19]), and (iii) entropy
encodings (e.g., [126], [128], [4]). Reviews of current state-
of-the-art gradient compression techniques and some open
challenges can be found in [69].

Compression techniques are less suited for the requirements
of secure aggregation for cross-device FL than quantization,
e.g., due to computational overhead, incompatibility with
secure aggregation, and state-requirements on the client side.
We discuss more details in §II-B and §A-B.

Secure Aggregation & Model Inference Attacks: In conven-
tional FL with a single aggregator, clients share locally trained
model updates with a central party to train a global model.
However, sharing those updates makes the system vulnerable
to data leakage. Attacks exploiting this leakage are called
inference attacks [23], [82], [101]. Even a semi-honest central
server can learn confidential information about the used private
training data by analyzing the received local model updates.

2

A common countermeasure against inference attacks is to
use secure aggregation [50], [81] (cf. §A-E). As FL poses spe-
cific challenges such as a large number of clients and drop-out
tolerance, tailored secure aggregation protocols for FL have
been proposed [26], [54], [16], [116], [68], [122]. Those hide
individual updates, ensuring that the server has only access
to global updates, hence, effectively prohibiting the analysis
of individual updates for inference attacks. The first scheme,
SecAgg [26], combines secret sharing with authenticated sym-
metric encryption, but requires 4 communication rounds per
training iteration among servers and client. Bell et al. [16]
improve upon SecAgg [26] by reducing client communication
and computation to poly-logarithmic complexity. However,
from a practical point of view also [16] as well as other
existing secure aggregation protocols designed for FL still
exhibit significant computation and communication overhead:
Due to underlying secret sharing or encryption, those protocols
typically encode each local update in 32-bit and add compu-
tational overhead caused by the required cryptographic oper-
ations. In contrast, ScionFL enables highly communication-
efficient secure aggregation thanks to 1-bit quantization and
causes almost no additional communication overhead on the
client side compared to plaintext FL. Fereidonni et al. [54]
provide more details by comparing several secure aggregation
protocols with respect to efficiency and practicality. Mansouri
et al. [90] provide a comprehensive analysis of secure aggre-
gation schemes w.r.t. their suitability for FL.

To the best of our knowledge, only Chen et al. [36] and
Beguier et al. [15] have considered both compression and
secure aggregation in combination for FL. Specifically, Chen et
al. [36] combine SecAgg [26] with sparse random projection
and count-sketching [114] for compression. Moreover, they
add noise using a distributed discrete Gaussian mechanism to
generate a differential private output. Beguier et al. [15] com-
bine arithmetic secret-sharing with Top-k sparsification [123]
and 1-bit quantization [18]. As we point out in §A-B, both
sketching and sparsification are sub-optimal for our envisioned
cross-device setting given that they require memory and error-
feedback on the client side. In contrast, we focus on a dynamic
scenario where clients might drop-out at any time and may
contribute only once to the training.

Poisoning Attacks & Defenses: FL was shown vulnerable
to manipulations by malicious clients [10], [11], [52], [118],
[142]. Targeted or backdoor attacks aim at manipulating the
inference results for specific attacker-chosen inputs [10], [142],
while untargeted poisoning attacks [11], [52], [118] reduce
the overall global model accuracy. As untargeted attacks are
considered to be more severe (given they are harder to detect,
cf. §IV), we focus on defending those using Byzantine-robust
defenses like [141], [102]. In §A-F, we provide a more detailed
overview of poisoning attacks and defenses.

Comparison: We compare ScionFL qualitatively in Tab. I to
the state-of-the-art related work with respect to aggregation
and quantization, as well as robustness against poisoning.

Categories Reference Technique M.P. Quant. P.R. Dist.
Servers

No Client
Interaction

Aggregation [39] MPC ✓ ✗ ✗ ✓ ✓
[16] Masking ✓ ✗ ✗ ✗ ✗

Quantization
[126] – ✗ ✓ ✗ ✗ ✓
[15] MPC ✓ ✗ ✗ ✓ ✓
[36] Masking+DP ✓ ✓ ✗ ✗ ✗

Robustness [102] MPC ✓ ✗ ✓ ✓ ✓
[141] – ✗ ✗ ✓ ✗ ✓

ScionFL This MPC ✓ ✓ ✓ ✓ ✓

TABLE I: High-level comparison of ScionFL and previous works.
Notation: MPC—Secure Multi-Party Computation, DP—Differential
Privacy, M.P.—Model Privacy, Quant.—Quantization (refers to the
schemes where compressed gradients are communicated by the clients
to the aggregator(s)), P.R.—Poisoning Resilience, Dist.—Distributed.
Client Interaction refers to interaction among clients. Since the body
of literature is vast, comparison is made against only a subset
representing each category.

II. PROBLEM STATEMENT

We now define the precise problem of secure quantized
aggregation for FL, which we address in our work. We first
introduce the necessary preliminaries on FL and quantization
schemes, formalize the functionality we want to compute
securely, and finally define our threat and system model for
common (cross-device) FL scenarios.

A. Aggregation for Federated Learning

Google introduced federated learning (FL) as a distributed
machine learning (ML) paradigm in 2016 [76], [94]. In FL,
N data owners collaboratively train a ML model G with
the help of a central aggregator S while keeping their input
data locally private. In each training iteration t, the following
three steps are executed:
1) The server S randomly selects n out of N available clients
and provides the most recent global model Gt.
2) Each selected client Ci, i ∈ [n], sets its local model wt+1

i =
Gt and improves it using its local dataset Di for E epochs
(i.e., local optimization steps):

wt+1
i ← wt+1

i − ηCi

∂L(wt+1
i , Bi,e)

∂wt+1
i

, (1)

where L is a loss function, ηCi
is the clients’ learning rate,

and Bi,e ⊆ Di is a batch drawn from Di in epoch e,
where e ∈ [E]. After finishing the local training, Ci sends
its local update wt+1

i to S.
3) The server updates to a new global model Gt+1 by com-
bining all wt+1

i with an aggregation rule fagg:

Gt+1 ← Gt − ηS · fagg(w
t+1
1 , . . . , wt+1

n), (2)

where ηS is the server’s learning rate. The most commonly
used aggregation rule, which we also focus on, is FedAvg [94].
It averages the local updates as follows:

FedAvg(wt+1
1 , . . . , wt+1

n) =

n∑
i=1

|Di|
n
wt+1

i (3)

This process is repeated until some stopping criterion is
met (e.g., a fixed number of training iterations or a certain
accuracy is reached).

3

B. Stochastic Quantization

Quantization is a central building block in FL, where
data transmission is often a bottleneck. Thus, compressing
the (thousands or millions of) gradients is essential to adhere
to client bandwidth constraints, reducing training time, and
allowing better inclusion and scalability. We now review the
desired properties and constructions of quantization schemes
that will play a key role in our system design and additional
details are provided in §A-A.
Unbiasedness: A well-known and desired design property of
gradient compression techniques is being unbiased. That is, for
an estimate ŵ of a gradient w ∈ Rd, being unbiased means
that E[ŵ] = w. Unbiasedness is desired because it guarantees
that the mean squared error (MSE) of the mean’s estimation
decays linearly with respect to the number of clients, which
can be substantial in FL. In FL and other optimization tech-
niques based on stochastic gradient descent (SGD) and its
variants (e.g., [94], [86], [70]), the MSE measure (or normal-
ized MSE, a.k.a. NMSE, cf. §III-D) is indeed the quantity of
interest since it affects the convergence rate and often the final
accuracy of models. In fact, provable convergence rates for the
non-convex compressed SGD-based algorithms have a linear
dependence on the NMSE. Accordingly, to keep the estimates
unbiased, modern quantization techniques employ stochastic
quantization (SQ) and its variants to compress the gradients.
1-bit SQ: Our focus is on the appealing communication
budget of a single bit for each gradient entry, resulting in
a 32× compression ratio compared to regular 32-bit floating
point entries. Using 1-bit quantization has been the focus of
many recent works concerning distributed and FL network
efficiency (e.g., [129], [18], [127], [117], [65]). These works
repeatedly demonstrated that a budget of 1-bit per coordinate
is sufficient to achieve model accuracy that is competitive to
that of a non-compressed baseline.

In particular, 1-bit SQ (i.e., SQ using two quantization
values) can be done as follows: For a vector X with m
dimensions, the client sends each coordinate as σi =

Bernoulli(Xi−smin
X

smax
X −smin

X
), where smax

X = max(X) and smin
X =

min(X). The coordinate is then reconstructed by the receiver
as X⃗i

σ = smin
X + σ⃗i

X · (smax
X − smin

X). This simple technique
results in an unbiased quantization as desired, i.e., E[X⃗i

σ] =
E[smin

X + σ⃗i
X · (smax

X − smin
X)] = Xi.

Linear SQ Techniques: A key requirement of being able
to perform secure aggregation efficiently is being able to
aggregate client gradients in their compressed (i.e., quantized)
form. The schemes with this property are called “linear”
henceforth. One approach involves a “global scales” method,
where each client securely learns the maximal and the minimal
value across all gradients, i.e., smax = maxc{smax

Xc
} and

smin = minc{smin
Xc
}.1 Despite its simplicity, this method has

several drawbacks: (i) it requires a preliminary communica-
tion stage, (ii) it reveals the global extreme values (even if
they are computed securely across all clients), and (iii) the

1This approach resembles “scaler sharing” in TernGrad [134].

reconstruction error (i.e., the NMSE) is increased as it now
depends on the extreme values across all round participants.
Accordingly, we also consider a second approach where each
client continues to use its own “local scales”. Since plainly
using individual scales is not “linear”, i.e., it does not allow
for aggregating the quantized gradients efficiently without
decoding them, to realize this approach, we use a known
approximation [15] and adapt it to our setting (cf. §III-A).

While we focus on the mentioned vanilla SQ, SQ with ran-
dom rotation [126] and SQ with Kashin’s representation [31],
[88], [115], our framework seamlessly supports any “linear”
quantization scheme, namely, any quantization technique that
allows for aggregation in a compressed form (cf. §C-A).
Other Approaches: We acknowledge recent advances in
gradient quantization [129], [128], [46], [13]), but these non-
linear techniques are less applicable to our framework.

C. MPC for Secure Aggregation

Secure computation in the form of multi-party compu-
tation (MPC) allows a set of parties to privately evaluate
any efficiently computable function on confidential inputs.
This paradigm can be utilized to securely run the FedAvg
aggregation algorithm [54], [102], [99], [48]: The set of
selected FL clients uses additive secret sharing to distribute
their sensitive inputs among a set of MPC servers, which
resemble a distributed aggregator. The MPC servers securely
add the received shares and reconstruct the public result from
the resulting shares. In the next iteration, the public model
is distributed to a new set of clients chosen at random, and
the process is repeated until the desired accuracy is attained.
A visualization of this outsourced MPC setting for secure
aggregation is provided in Fig. 1.

2. Compute agg =
FedAvg({⟨wt+1⟩})

1. ⟨wt+1
i ⟩

3. Gt+1 ← Gt − ηS · agg

MPC Servers

C1

Ci

Cn

Fig. 1: Secure aggregation in FL for n clients using outsourced MPC; ⟨wt+1
i ⟩

denotes the secret-shares of gradient wt+1
i that client Ci has in round t+1;

Gt is the model of the previous round and ηS the server-side learning rate.

In the remainder of this paper, we work towards a secure
aggregation for FL using FedAvg on quantized inputs. In the
following, we give our assumptions in terms of the threat
model and refine the description of our system model.
MPC Servers: The MPC servers are assumed to be semi-
honest. This means, they follow the protocol specification, but
may try to learn additional information from the protocol tran-
scripts. This well-established assumption, both in theory [7],
[67], [96], [102], [105], [22], [62] and in practice [1], [130],
[6], is motivated by the fact that companies who run FL with a
secure aggregation scheme try to actively protect their clients’
data but want to make sure that someone who monitors or

4

breaks into their systems cannot get plaintext access to the data
that is being processed. Additionally, this assumption is justi-
fied as organizations usually cannot afford the reputational and
monetary risk when being caught betraying their users’ trust.
The protocols that we design provide this security guarantee
in a dishonest majority setting, where data is protected even
when an adversary A corrupts all except one of the involved
servers. Furthermore, our framework is easily extendable to
provide malicious privacy, which ensures input privacy even
when the corrupted servers try to actively cheat [110].
Malicious Clients: We anticipate that some clients might
behave maliciously to negatively affect the quality of the
global model with manipulated updates (i.e., poisoning attacks,
cf. §IV). This is because there are significantly less incentives
for clients to behave honestly. Also, due to the sheer number of
clients in cross-device FL, it is hard to verify their reputation.
We assume an honest majority of clients as is standard in FL,
yet our framework is secure even when malicious clients
collude with corrupted servers.
Preprocessing Model: We use MPC in the preprocessing
model [45], [43], [14], [44]. This means, we try to shift as
much computation and communication as possible to a data-
independent preprocessing or offline phase that can be exe-
cuted at an arbitrary time before the actual computation. This
gives several advantages, e.g., service providers can exploit
cheap spot instances. It also guarantees faster results when
the data-dependent online phase of the protocol is executed.
Shared Randomness: We assume that clients and MPC
servers have access to a shared randomness source, e.g., by
agreeing on a PRNG seed. Such a configuration has been
widely employed in MPC protocols [7], [56], [34], [97], [78]
and in ML systems [126], [12] to optimize communication.

D. Secure Quantized Aggregation

To introduce the problem of secure quantized aggregation,
without loss of generality, we consider a simple stochastic
binary quantization scheme to begin with. In this scheme, a m-
dimensional vector of the form X⃗ = {x1, . . . , xm} comprising
of ℓ-bit values will be quantized to obtain a triple X⃗σ =
(σ⃗X , s

min
X , smax

X). Here, σ⃗X is an m-dimensional binary vector
with a zero at an index indicating the value smin

X and a one
indicating the value smax

X . Also, smin
X and smax

X correspond to
the minimum and maximum values in the vector X⃗ . With this
binary quantization (cf. §II-B), the quantized value at the ith
dimension, denoted by X⃗i

σ , can be written as

X⃗i
σ = smin

X + σ⃗i
X · (smax

X − smin
X). (4)

Before going into the details of aggregation, we provide some
of the basic notation that will be utilized throughout the paper.
Notation: Y⃗α×β denotes a matrix of dimension α × β

with Y⃗i being the ith row and Y⃗j being the jth column.
An element in the ith row and jth column is denoted by Yj

i .
Also, Agg-R(Y⃗α×β) returns a row vector corresponding to an
aggregate of the rows of Y⃗. Likewise, Agg-C(Y⃗α×β) returns
an aggregate of the columns of Y⃗.

Given U⃗α×β and V⃗α×1, we use U⃗ ◦ V⃗ to denote the
column-wise Hadamard product. Similarly, U⃗⊕ V⃗ denote the
sum of two matrices in a column-wise fashion. Concretely,
for M⃗α×β = U⃗ ◦ V⃗ and N⃗α×β = U⃗⊕ V⃗, we have

Mj
i = Uj

i ·V1
i and Nj

i = Uj
i+V1

i , where i ∈ [α], j ∈ [β].

Quantized Aggregation: To perform aggregation on quan-
tized inputs, a set of n clients first locally prepares their
quantized triples, (σ⃗X , s

min
X , smax

X), corresponding to their
locally trained ML model updates (i.e., gradients) and sub-
mits these to a parameter server for aggregation. Let m be
the dimension of the underlying ML model. The quantized
triples can then be consolidated to a matrix triple of the
form (B⃗n×m, U⃗n×1, V⃗n×1). Here, B⃗ is a binary matrix that
corresponds to the σ⃗X vector of the clients. Similarly, U⃗
and V⃗ correspond to the smin

X and smax
X values of the above-

mentioned triple. The quantized aggregate is defined as

X⃗1×m = Agg-R
(
U⃗n×1 ⊕ B⃗n×m ◦ (V⃗n×1 − U⃗n×1)

)
. (5)

Ideal Functionality: To perform secure aggregation of quan-
tized updates using MPC, we model the aggregation as an ideal
functionality FSecAgg (Fig. 2). We consider a set of τ servers to
which the clients secret-share their quantized updates. The goal
is to compute the aggregate of the inputs as shown in Eq. 5.
Let ⟨·⟩ denote the underlying secret sharing scheme. Looking
ahead, we will use linear secret sharing techniques for MPC,
in which linear operations such as addition and subtraction are
local. As a result, we will concentrate on efficiently computing
the column-wise Hadamard product.

FSecAgg interacts with all the τ servers in S and an adversary A that
controls a subset of the servers in S.
Input: FSecAgg receives ⟨·⟩-shares of the matrix triple
(B⃗n×m, U⃗n×1, V⃗n×1) from the honest servers in S, while the
adversary A provides the ⟨·⟩-shares on behalf of the corrupt servers. Here
Bj

i ∈ {0, 1} and Uj
i ,V

j
i ∈ Z2ℓ .

Computation: FSecAgg reconstructs (B⃗, U⃗, V⃗) from its ⟨·⟩-shares.
– Set S⃗n×1 = V⃗n×1 − U⃗n×1 and compute W⃗n×m = B⃗n×m ◦ S⃗n×1.
– Compute X⃗n×m = U⃗n×1 ⊕ W⃗n×m.
– Compute Y⃗1×m = Agg-R(X⃗n×m), i.e., Y⃗j =

∑n
i=1 X

j
i for j ∈ [m].

Output: FSecAgg computes ⟨·⟩-shares of Y⃗ and sends the respective
shares to the servers in S.

Functionality FSecAgg

Fig. 2: Ideal functionality for semi-honest secure quantized aggre-
gation for linear stochastic binary quantization.

III. OUR FRAMEWORK: SCIONFL

We now detail our framework “ScionFL” from an MPC
standpoint, covering the sharing semantics, client interaction
with MPC servers, and secure aggregation of client updates.
Our generic constructions utilize MPC in a black-box fash-
ion [45], [41], [42], [17], [113], however, the full MPC
protocols, including inner product computation, multiplication,
and bit-to-arithmetic conversion, are detailed in §B-A.

Masked Evaluation: In our MPC protocols, we use the
masked evaluation technique [60], [17], [35], [93], [125],

5

[78], which enables costly data-independent calculations to
be completed in a preprocessing phase, thus enabling a fast
and efficient data-dependent online phase (cf. §II-C). In this
model, the secret-share of every element v ∈ Z2ℓ , denoted
by ⟨v⟩, is associated with two values: a random mask λv ∈ Z2ℓ

and a masked value mv ∈ Z2ℓ such that v = mv+λv. While λv
is split and distributed as q shares as per the underlying MPC
scheme (cf. §B-A), mv is given to all MPC servers.2 Since λv
is random and independent of v, all operations involving λv
values alone can be computed during the preprocessing phase
and thereby leading to a fast online phase.
Client-Server Interaction: Before going into the details of
aggregation among τ MPC servers, we discuss input sharing
and the reconstruction of the aggregated vector for clients.

To generate the ⟨·⟩-shares of a value v ∈ Z2ℓ owned by
client C, it first non-interactively computes the additive shares
of the mask λv using the shared randomness setup discussed
in §II-C. The masked value is then computed as mv = v− λv
and sent to a single designated MPC server, say S1. The input
sharing is completed when S1 sends mv to all remaining MPC
servers.3 For Boolean values (i.e., in Z2) the procedure is
similar except that addition/subtraction is replaced with XOR
and multiplication with AND. We use ⟨·⟩B to denote the secret
sharing over the domain Z2 .

After the servers have received all inputs in ⟨·⟩-shared form,
they instantiate the FSecAgg functionality specified in Fig. 2
and obtain the aggregated vectors in ⟨·⟩-shared form. Recall
from §II-A that the values to be aggregated in our case
correspond to FL gradients, and the aggregated result can
also be made public. As a result, the servers reconstruct the
aggregated result towards a chosen server, say S1, which
updates the global model according to Eq. (3). In the next
iteration, S1 distributes the updated global model to a fresh
set of clients, and the process is repeated.

From a client’s perspective, it interacts solely with a single
server (apart from a one-time shared-randomness setup), as in
the privacy-free variant with a single parameter server [94].

A. MPC-based Aggregation

We now discuss three approaches for instantiating FSecAgg

using MPC protocols that operate on secret-shared values.
Recall from Eq. (5) that the MPC servers for the aggrega-
tion of quantized values possess ⟨·⟩-shares of matrices U⃗n×1

and V⃗n×1 along with the ⟨·⟩B-shares of B⃗n×m.
Approach I: A naive instantiation of FSecAgg would be to
have the servers convert binary shares of the matrix B⃗ to their
arithmetic shares first, as in Prio+ [2]. This is possible in MPC
with a bit-to-arithmetic conversion protocol ΠBitA [97], [107],
[2], [78], which computes the arithmetic shares of b ∈ Z2 from
its Boolean sharing. Once the arithmetic shares are generated,
the servers can use the inner-product protocol ΠIP on each

2Due to differences in the underlying setting, there may be minor differ-
ences in how the values mv and λv are distributed among the servers.

3If malicious privacy is desired, C can send a hash digest of all the mv

values to the remaining MPC servers, who can verify the correctness of
messages from S1.

of the m columns of matrix B⃗ with the locally computed
column vector (V⃗n×1 − U⃗n×1) to obtain the row aggregate.
They complete the protocol by adding a row aggregate of U⃗
to each column of the matrix computed in the previous step.
The formal protocol ΠI

SecAgg is given in Fig. 3.

1. Locally compute ⟨S⃗n×1⟩ = ⟨V⃗n×1⟩ − ⟨U⃗n×1⟩.
2. Compute ⟨B⃗⟩ = ΠBitA(⟨B⃗⟩B).
3. Compute ⟨W⃗j⟩ = ΠIP(⟨B⃗j⟩, ⟨S⃗⟩), for each j ∈ [m].
4. Locally compute ⟨Z⃗1×1⟩ = Agg-R(⟨U⃗n×1⟩).
5. Locally compute ⟨Y⃗1×m⟩ = ⟨Z⃗1×1⟩ ⊕ ⟨W⃗1×m⟩.

Protocol ΠI
SecAgg(⟨B⃗n×m⟩B, ⟨U⃗n×1⟩, ⟨V⃗n×1⟩)

Fig. 3: Secure aggregation – Approach I.

In Fig. 3, ΠI
SecAgg invokes ΠBitA for each bit in matrix B⃗,

resulting in n · m invocations. Using the masked evaluation
technique [79], [125], the online communication of the inner
product protocol ΠIP can be made independent of the dimen-
sion n, which in our case corresponds to the number of clients.

Approach II: We use the bit injection protocol [97], [107],
[77], denoted by ΠBI, which computes the arithmetic sharing
of b · s given the Boolean sharing of b ∈ Z2 and the
arithmetic sharing of s ∈ Z2ℓ . Given ⟨M⃗α×1⟩B and ⟨N⃗α×1⟩,
the high-level idea is to effectively combine the ΠBitA and ΠIP

protocol to a slightly modified instance of ΠBI that directly
computes the sum [79], [125] (denoted by

∑α
i=1 M

1
i · N1

i)
instead of the individual positions. This can be achieved
following Eq. (16) and the details appear in Fig. 17 in §B-A.
One significant advantage of this technique is that the overall
online communication is no longer dependent on the number
of clients n. ΠII

SecAgg denotes the resulting protocol and the
formal details are given in Fig. 4.

1. Locally compute ⟨S⃗n×1⟩ = ⟨V⃗n×1⟩ − ⟨U⃗n×1⟩.
2. Compute ⟨W⃗j⟩ = ΠBI(⟨B⃗j⟩B, ⟨S⃗⟩), for each j ∈ [m].
3. Locally compute ⟨Z⃗1×1⟩ = Agg-R(⟨U⃗n×1⟩).
4. Locally compute ⟨Y⃗1×m⟩ = ⟨Z⃗1×1⟩ ⊕ ⟨W⃗1×m⟩.

Protocol ΠII
SecAgg(⟨B⃗n×m⟩B, ⟨U⃗n×1⟩, ⟨V⃗n×1⟩)

Fig. 4: Secure aggregation – Approach II.

Approach III using SepAgg: In a closely related work [15],
the authors combine the SIGNSGD compression technique
of [18] with additive secret sharing for FL. Unlike our work,
which investigates secure aggregation using various linear
quantization algorithms in a cross-device environment, they
aim for a cross-silo setting in which clients distribute arith-
metically shared values to servers rather than single bits. In
terms of client-server communication, this indicates a non-
optimal communication overhead of factor log2 2n, where n is
the number of involved participants each round.

However, the authors of [15] introduce an interesting ap-
proximation called “SepAgg” for computing the averaged
inner product between bits and scales:

1

n

n∑
i

σ⃗i
X · s⃗iX ≈

1

n2

(
n∑
i

σ⃗i
X

)(
n∑
i

s⃗iX

)
. (6)

6

We adopt the SepAgg method to our setting to com-
pute Agg-R(B⃗ ◦ (V⃗ − U⃗)) in Eq. (5). In particular, we
aggregate the matrices B⃗ and (V⃗ − U⃗) independently and
then perform one secure multiplication per coordinate, with
the other operations being linear and free in our MPC protocol.
As a result, we can utilize linear quantization schemes with
local scales at the cost of global scales (ignoring the overhead
for global scales to securely determine smin

X and smin
X across

all participants). The formal protocol ΠIII
SecAgg utilizing SepAgg

appears in Fig. 5.

1. Locally compute ⟨S⃗1×1⟩ = Agg-R(⟨V⃗n×1⟩ − ⟨U⃗n×1⟩).
2. Compute ⟨T⃗j⟩ = Πsum

BitA(⟨B⃗
j⟩B), for each j ∈ [m].

3. Compute ⟨W⃗j⟩ = ΠMult(⟨T⃗j⟩, ⟨S⃗⟩), for each j ∈ [m].
4. Locally compute ⟨Z⃗1×1⟩ = Agg-R(⟨U⃗n×1⟩).
5. Locally compute ⟨Y⃗1×m⟩ = ⟨Z⃗1×1⟩ ⊕ 1

n
· ⟨W⃗1×m⟩.

Protocol ΠIII
SecAgg(⟨B⃗n×m⟩B, ⟨U⃗n×1⟩, ⟨V⃗n×1⟩)

Fig. 5: Secure aggregation – Approach III (SepAgg [15]).

Accuracy Evaluation: We next provide strong empirical
evidence that applying SepAgg for SQ with preprocessing
preserves the linear NMSE decay with respect to the number
of clients (i.e., unbiased estimates). For this, we simulate the
aggregation of random vectors v⃗i with dimension d drawn
from a (0, 1)-log-normal distribution.4 Then, we measure
the normalized mean square error (NMSE) when comparing
the averaged aggregation result agg computed on secret-
shared and quantized inputs to the plain averaged aggrega-
tion aggorig =

∑n
i v⃗i/n. Concretely, we measure

NMSE =
∥aggorig − agg∥22∑n

i ∥v⃗i∥22/n
, (7)

where agg is computed using various linear quantization
schemes for (i) a regular dot product between converted
bits and scales and (ii) with SepAgg. The code for the
implementation of our simulation framework is available at
https://encrypto.de/code/ScionFL. Our results shown in Fig. 6
are the average of 10 trials for each experiment with q = 3
shares (representing a three-server dishonest majority setting
using the masked evaluation technique). While for smaller
dimensions we observe a visible effect for SQ without pre-
processing, there is only a minor difference for the other two
quantization schemes, and sometimes the NMSE for SepAgg
is even smaller than for the exact computation.

Formally proving that applying SepAgg after different pre-
processing techniques (e.g., random rotation and Kashin’s rep-
resentation) results in an unbiased aggregation is a significant
theoretical challenge, left for future work.

Communication Costs: Tab. II provides the theoretical
communication costs for our approaches when aggregating n
quantized single-dimension vectors. Clearly, our Approach-
III (cf. Fig. 5) is the most efficient, with the multiplication-
related cost being completely independent of the number of

4We use this distribution for preliminary measurements as it was commonly
observed in neural network gradients, e.g., [38].

10−3

10−1

101 NMSE SQ d = 210 Exact

d = 215 SepAgg

d = 220

100 101 102 103 104
10−3

10−1

101 NMSE HSQ

number of clients n

100 101 102 103 104

NMSE KSQ

number of clients n

Fig. 6: NMSE comparison between exact and SepAgg-based aggre-
gation for vanilla SQ, SQ using the randomized Hadamard trans-
form (HSQ), and SQ using Kashin’s representation (KSQ) for various
vector dimensions d and number of clients n.

clients n due to SepAgg [15]. The concrete communication
costs are provided in §III-E.

The communication costs are primarily determined by the
cost of BitApre. In our masked evaluation technique (cf. §B-A),
this relates to the conversion of a random secret-shared bit
from Boolean sharing to its additive sharing form [42], [113].
Thus, we propose approximate variants for improving the cost
of this operation.

Approach Offline Online

Approach-I n · BitApre + n ·Multpre n · BitAon +Multon

Approach-II n · BitApre + n ·Multpre Multon

Approach-III n · BitApre + Multpre Multon

TABLE II: Communication costs for aggregating quantized vectors
with a single dimension for n clients. Protocols ΠBitA and ΠMult

are treated as black-boxes, and their costs are represented as BitA
and Mult, respectively. The superscript pre in the costs denotes
preprocessing and on denotes the online phase.

B. Approximate Bit Conversion in MPC

We reduce communication and computation costs with a
novel approximate bit conversion method. Consider a bit b
represented using two Boolean shares b1, b2 ∈ {0, 1}, such
that b = b1 ⊕ b2. Note that when embedding b1 and b2 in a
larger field/ring5, it holds that b = b1+b2−2b1b2. Similarly,
for b = b1 ⊕ b2 ⊕ b3, b = b1 + b2 + b3 − 2b1b2 − 2b1b3 −
2b2b3 + 4b1b2b3 holds true. This concept generalizes to an
arbitrary number of shares, denoted by q, as discussed below.

For b = ⊕q
i=1bi, let Q = {bi}i∈[q] denote the set of all q

shares of b, and b̃i the arithmetic equivalent of the share bi.
Let 2Q be the powerset of Q and Q|c| the set of all size-
c subsets in 2Q, that is, 2Q =

∑q
i=0Q|i|. The arithmetic

equivalent of b, denoted by b̃, is given as

b̃ =
∑

{be}∈Q|1|

b̃e − 2 ·
∑

{be1 ,be2}∈Q|2|

b̃e1 b̃e2 + . . .+ (−2)q−1 ·
∏

{be1 ,...,beq}∈Q|q|

b̃e

=

q∑
k=1

(−2)k−1
∑

{be1 ,...,bek}∈Q|k|

b̃e1 b̃e2 . . . b̃ek (8)

5The bit (either 0 or 1) is treated as a ring element in Z2ℓ in our protocols.

7

https://encrypto.de/code/ScionFL

Note that the Eq. (8) can be viewed as sum of three
terms: Sum (terms), Middle (termm), and Product (termp)
as shown in Eq. (9) below. (Note that Q|q| = Q).

b̃ =
∑

{be}∈Q|1|

b̃e︸ ︷︷ ︸
Sum Term: terms

+

q−1∑
k=2

(−2)k−1
∑

{be1 ,...,bek}∈Q|k|

b̃e1 b̃e2 . . . b̃ek︸ ︷︷ ︸
Middle Term: termm

+(−2)q−1
∏
be∈Q

b̃e︸ ︷︷ ︸
Product Term: termp

(9)
Our Approach. Performing this conversion in MPC requires
many additions and multiplications. While linear operations
like additions can be calculated for “free” in most MPC
protocols, non-linear operations such as multiplications require
some form of communication between the MPC servers.
Hence, computing the middle term is costly, especially when
a large number of shares is involved.

To approximate b̃ in Eq. (9), we replace only term termm

with its expected value E[termm] such that the approximate
value of b̃, denoted by b̂, retains E[b̂] = b. The expectation
of terms and termp in Eq. (9) is first calculated, and E[termm]
is inferred using the fact that E[b̂] = b. This analysis is
summarised in Lem. III.1 and the proof is provided in §C-B.

Lemma III.1 (Expected Values). Given a bit b = ⊕q
i=1bi

and b = terms + termm + termp with

terms =
∑

{be}∈Q|1|

b̃e, termm =

q−1∑
k=2

(−2)k−1
∑

{be1 ,...,bek}∈Q|k|

b̃e1 b̃e2 . . . b̃ek ,

termp = (−2)q−1
∏
be∈Q

b̃e,

we have E[terms | b] = q/2, E[termm | b] = (q-1) mod 2 −
q/2, and E[termp | b] = b− (q-1) mod 2.

Our Approximation. We define the approximate arithmetic
equivalent of b, denoted by b̂, as follows:

b̂ =
∑
be∈Q

b̃e︸ ︷︷ ︸
terms

+
(
(q-1) mod 2− q

2

)
︸ ︷︷ ︸

terma
m

+(−2)q−1
∏
be∈Q

b̃e︸ ︷︷ ︸
termp

(10)

While terms is kept because it only involves linear operations
on the shares of b (which are free in MPC for any linear
secret sharing scheme), we observe that termp is required to
keep the expected values for b = 0 and b = 1 different. This
is evident from Lem. III.1 where E[termp | b] is the only term
that depends on b.

In general, if a term that depends on all the q shares of b
is missing from the approximation, we get E[b = 0] = E[b =
1]. The intuition is that only such a term can differentiate
between b = 0 and b = 1, while all other terms will be
symmetrically distributed. For instance, consider q = 3 and
let b̃ = c1b̃1 + c2b̃2 + c3b̃3 + c4b̃1b̃2 + c5b̃2b̃3 + c6b̃1b̃3 + c7
for some random combiners ci ∈ Z2ℓ and i ∈ [7]. Using the
truth table Tb given in Tab. VII, it is easy to verify that

E[b̃ = 0] = E[b̃ = 1] =
1

4
· (2c1 +2c2 +2c3 + c4 + c5 + c6 +4c7)

(11)
This argument can be generalized to any value of q.

Claim III.2. The approximate arithmetic equivalent b̂
in Eq. (10) preserves the expectation of the exact bit b
in Eq. (8), i.e., E[b̂ = 0] = 0 and E[b̂ = 1] = 1.

Proof. The proof is straightforward as we replace the middle
term (termm) in Eq. (8) with its expected value terma

m.

We provide more details regarding the efficiency of the
approximation in §C-B.

C. Secure Bit Aggregation with Global Scales

Here, we consider secure bit aggregation in the context
of “global scales”, as discussed in §II-B. In this case, all the
clients use the same set of scales for quantization, denoted
by smin

G and smax
G . Therefore, it is sufficient to compute

X⃗1×m = smin
G ⊕ Agg-R

(
B⃗n×m

)
◦ (smax

G − smin
G) (12)

as the aggregation result. Interestingly, when smin
G = 0

and smax
G = 1, this can also be viewed as an instance of

privacy-preserving aggregate statistics computation, as demon-
strated in the works of Prio [39] and Prio+ [2].

As shown in Eq. (12), the computation becomes simpler in
the case of global scales since all clients utilize the same set
of public scales, denoted by smin and smax, to compute their
quantized vector that corresponds to the rows of B⃗. Hence,
we just need to compute the column-wise aggregate of the B⃗
matrix and use protocol Πsum

BitA (Fig. 16 in §B-A) to do so. The
resulting protocol ΠGlobal

SecAgg appears in Fig. 7.

1. Compute ⟨W⃗j⟩ = Πsum
BitA(⟨B⃗

j⟩B), for each j ∈ [m].
2. Locally compute ⟨Y⃗1×m⟩ = smin ⊕

(
⟨W⃗1×m⟩ · (smax − smin)

)
.

Protocol ΠGlobal
SecAgg(⟨B⃗n×m⟩B, smin, smax)

Fig. 7: Secure aggregation – Global Scales.

D. Accuracy Evaluation

In §III-B, we showed that our approximate bit conversion
preserves the expectation of the exact bits. However, we
also want to understand the concrete accuracy impact on the
aggregation result due to the increased variance. For this,
we run a simulation similar to the one described in §III-A.
Here, we compare the NMSE computed as in Eq. (7) for
an aggregation agg when using various linear quantization
schemes with global scales (i) with an exact bit-to-arithmetic
conversion and (ii) with our approximation enabled. The im-
plementation is available at https://encrypto.de/code/ScionFL.
Our results in Fig. 8 are the average of 10 trials for each
experiment with q = 3 shares. Consistently, we observe that
our approximation increases the NMSE by about three orders
of magnitude for stochastic quantization without rotation, and
by about one and a half orders of magnitude for rotation-
based algorithms. In Fig. 9, we provide results considering
local scales. In contrast to global scales, we can observe
that for stochastic quantization without rotation the effect on
the NMSE is reduced from three to one order of magnitude.
Also, for rotation-based algorithms there are significant con-
crete improvements. Furthermore, as shown in §III-F, the error

8

https://encrypto.de/code/ScionFL

is still so small that the impact on the accuracy in common FL
settings is negligible.

10−3

101

105 NMSE SQ d = 210 Exact

d = 215 Approx.

d = 220

100 101 102 103 104
10−3

101

105 NMSE HSQ

number of clients n

100 101 102 103 104

NMSE KSQ

number of clients n

Fig. 8: NMSE comparison between exact and approximation-based
aggregation for vanilla SQ, SQ using the randomized Hadamard
transform (HSQ), and SQ using Kashin’s representation (KSQ) for
global scales with q = 3 shares and various vector dimensions d and
number of clients n.

10−3

101

105 d = 210 Exact

d = 215 Approx.

d = 220

NMSE SQ

100 101 102 103 104
10−3

101

105

number of clients n

NMSE HSQ

100 101 102 103 104

number of clients n

NMSE KSQ

Fig. 9: NMSE comparison between exact and approximation-based
aggregation for SQ, Hadamard SQ (HSQ), and Kashin SQ (KSQ)
for local scales with q = 3 shares, various vector dimensions d, and
number of clients n.

E. Detailed Communication Costs

Here, we provide more insights into the concrete commu-
nication costs for our secure aggregation protocols in §III-A.

In Tab. III we provide the detailed communication costs
for the secure aggregation approaches discussed in §III-A
when training the LeNet architecture for image classification
on the MNIST data set [83] using 1-bit SQ with Kashin’s
representation [31]. We instantiate the OT instances required
in the preprocessing phase, as discussed in §B-A, with silent
OT [40], following Prio+ [2]. Here, we can observe the signif-
icant impact of including SepAgg [15] in practice with perfor-
mance improvements between Approach-II and Approach-III
of up to 16.6× in the offline phase.

In Tab. IV, we compare the aggregation of bits (i.e., when
not considering quantized inputs that require scale multi-
plication and hence without SepAgg [15] being applicable)
to Prio+ [2]. For a fair comparison, we translate the approach
in Prio+ [2] to our three party dishonest-majority setting. As
we can see, even for exact bit-to-arithmetic conversion, we
improve over Prio+ by factor 2.4× for n = 105. When apply-

ing our approximate bit-to-arithmetic conversion (cf. §III-B),
this improvement increases to a factor of 4×.

Exact Approx.
n Method Offline Online Offline Online

20
Approach-I 644.50 1.70 620.27 1.70
Approach-II 644.50 0.59 620.27 0.59
Approach-III 89.77 0.59 65.54 0.59

100
Approach-I 3222.51 6.12 3101.36 6.12
Approach-II 3222.51 0.59 3101.36 0.59
Approach-III 332.08 0.59 210.93 0.59

500
Approach-I 16112.56 28.24 15506.80 28.24
Approach-II 16112.56 0.59 15506.80 0.59
Approach-III 1543.62 0.59 937.85 0.59

TABLE III: Inter-server communication per round in MiB for
our MNIST/LeNet benchmark for different numbers of clients n per
round. Training is done using 1-bit SQ with Kashin’s representa-
tion (KSQ). We compare Approach-I (cf. Fig. 3 in §III-A), Approach-
II (cf. Fig. 4 in §III-A), and Approach-III (cf. Fig. 5 in §III-A).
Additionally, we distinguish between using an exact bit-to-arithmetic
conversion and our approximation (cf. §III-B).

Approach n = 102 n = 103 n = 104 n = 105

Prio+ [2] 9.45 94.50 945.04 9450.44
Approach-III (Exact) 3.94 39.42 394.17 3941.66
Approach-III (Approx.) 2.37 23.75 237.45 2374.53

TABLE IV: Total communication in MiB of Approach-III (cf. Fig. 5
in §III-A) compared to Prio+ [2] to calculate the sum of bits for differ-
ent numbers of clients n and dimension m = 1000. For Approach-III,
we distinguish between using an exact bit-to-arithmetic conversion as
in Prio+ [2] and our approximation (cf. §III-B).

F. Performance Evaluation

We implemented an extensive end-to-end FL evaluation
and MPC simulation framework. We describe our implemen-
tation, the parameters for our accuracy evaluation, and present
the results.

Implementation: Our implementation is written in Python
based on PyTorch. It supports multi-GPU acceleration, also
for our MPC simulation. We used a subset of this framework
for measuring the accuracy of SepAgg (cf. §III-A) and our
approximate bit conversion (cf. §III-D), and we will describe
extensions in §IV-B to incorporate evaluations of poisoning
attacks and defenses.

Our framework provides a command-line interface to run FL
training tasks and observe the resulting training as well as
test accuracy. Upon execution, the framework distributes train-
ing data among the specified number of virtual clients that
locally perform training. The server(s) perform aggregation
using FedAvg. When the MPC simulation is enabled, the
clients’ input will be secret-shared before aggregation and the
protocol described in §III-A will be executed locally. Note that
our goal is not to assess the run-time performance of the MPC
protocol but rather precisely measure the impact on accuracy.
Our implementation supports all exact and approximate secure
aggregation variants described in this paper.

Parameters: We evaluate the accuracy on the following
standard FL tasks for image classification: training (i) LeNet

9

30
40
50
60
70
80
90

100

V
al

id
at

io
n

A
cc

u
ra

cy

HSQ with 200 clients / 20 per-round

Exact

Approx.

KSQ with 200 clients / 20 per-round

Exact

Approx.

30
40
50
60
70
80
90

100

V
al

id
at

io
n

A
cc

u
ra

cy

HSQ with 1000 clients / 100 per-round

Exact

Approx.

KSQ with 1000 clients / 100 per-round

Exact

Approx.

0 200 400 600 800 1000
Round

30
40
50
60
70
80
90

100

V
al

id
at

io
n

A
cc

u
ra

cy

HSQ with 5000 clients / 500 per-round

Exact

Approx.

0 200 400 600 800 1000
Round

KSQ with 5000 clients / 500 per-round

Exact

Approx.

Val. Accuracy: LeNet on MNIST data

Fig. 10: Validation accuracy for training LeNet on the MNIST data
set for n ∈ {200, 1000, 5000} clients when selecting 10% of the
clients at random per round (n) for SQ with Hadamard (HSQ,
left) and with Kashin’s representation (KSQ, right); “Exact” denotes
the insecure baseline, “Approx” the simulation of our MPC-based
approximate secure aggregation including SepAgg (cf. Fig. 5).

on MNIST [83] for 1000 rounds and (ii) ResNet9 on CIFAR-
10 [80] for 8000 rounds. For all tasks, we set a client batch
size of 8, a learning rate of 0.05, and perform 5 local client
train steps per round. For MNIST, we run training using N ∈
{200, 1000, 5000} clients and choose 10% of the clients at
random per round. Due to the memory constraints of our
system (that simulates all clients at once), we restrict training
for CIFAR10 to N = 1000 clients and select n = 40 per round.
As we observed a significant loss in accuracy for plain SQ
in our accuracy evaluation for approximate bit conversion as
well as SepAgg (cf. §III-D), we focus our evaluation on more
accurate linear quantization schemes, i.e., HSQ and KSQ. For
the MPC simulation of our approximate secure aggregation
following Approach-III (cf. Fig. 5), we choose a three-server
dishonest majority setting.

Results: The results for the MNIST/LeNet training are given
in Fig. 10. Validation accuracy for our approximate version
converges to almost the same final accuracy as the insecure ex-
act aggregation. Specifically, in the final round of training, the
difference between the two is diminished to 0.77% and 0.33%
for HSQ and KSQ for N = 5000, respectively. Similar
observations apply to CIFAR10/ResNet9 in Fig. 11. However,
here the difference between the exact and approximate version
for KSQ is higher with 3.14% in the final round. This gap is
expected due to the significantly lower number of clients per
round, for which our approximate bit conversion and SepAgg
technique result in a comparatively high NMSE over the
baseline (cf. Figs. 6 and 8). We expect this effect to vanish for
a real cross-device setting with thousands of participants per
round (due to the demonstrated linear decay of the NMSE
when increasing n), which we unfortunately cannot simulate
with complex model architectures due to hardware limitations.

0 1 2 3 4 5 6 7 8
Round ×103

20

40

60

80

100

V
al

id
at

io
n

A
cc

u
ra

cy

HSQ with 1000 clients / 40 per-round

Exact

Approx.

0 1 2 3 4 5 6 7 8
Round ×103

KSQ with 1000 clients / 40 per-round

Exact

Approx.

Val. Accuracy: ResNet9 on CIFAR10 data

Fig. 11: Validation accuracy for training ResNet9 on the CIFAR10
data set for N = 1000 clients with random n = 40 selected per
round for quantization techniques and protocols as in Fig. 10.

Additionally, one may use a hybrid approach, where training
uses the approximate version for initial rounds until a baseline
accuracy is reached, whereas secure exact training (potentially
including only the SepAgg [15] approximation but not our
approximate bit-to-arithmetic conversion) is used for fine
tuning up to the desired target accuracy.

In Tab. V, we additionally compare the exact inter-
server MPC communication cost for a naive MPC implemen-
tation of the exact computation to our optimized approximate
version including SepAgg. As we can see, we improve the
offline communication by factor ≈ 15×. For the online
communication, we can see a wide range of improvement
factors from 2.9× to 48× for MNIST with n = 500. This
highlights the positive impact when utilizing the SepAgg
approach for aggregating an increasingly large number of
rows non-interactively. Note that there are slight differences in
communication overhead for HSQ and KSQ. This is because
for an efficient GPU-friendly implementation of the random-
ized Hadamard transform, which we use for both rotating the
gradients in HSQ and for calculating Kashin’s coefficients
in KSQ, we require that the gradients’ size are a power
of 2. In §B-C, we detail how we can minimize the resulting
overhead by dividing the gradients into chunks, and we also
give the exact number of bits per gradient that we assume in
our calculations for each algorithm.

Naive Exact (cf. Fig. 3) Our Approx. (cf. Fig. 5)
Benchmark n Method Offline Online Offline Online

MNIST/
LeNet 20 HSQ 572.89 1.51 58.26 0.52

KSQ 644.50 1.70 65.54 0.59

MNIST/
LeNet 100 HSQ 2864.46 5.44 187.49 0.52

KSQ 3222.51 6.12 210.93 0.59

MNIST/
LeNet 500 HSQ 14322.28 25.10 833.64 0.52

KSQ 16112.56 28.24 937.85 0.59

CIFAR10/
ResNet9 40 HSQ 87079.45 189.27 6883.13 39.85

KSQ 100828.84 219.15 7969.94 46.14

TABLE V: Inter-server communication per round for our benchmarks
for different numbers of clients n in MiB.

IV. DEFENDING UNTARGETED POISONING ATTACKS

Our defense called ScionFL-Aura is designed to mitigate
untargeted poisoning attacks in the context of secure quantized
aggregation. These attacks pose a significant threat to the
deployment of FL for two reasons: (i) Untargeted attacks are
particularly difficult to detect because, ignorant of the attack,
service providers are unaware that they could have achieved a

10

greater accuracy. (ii) Even a minor drop in accuracy can cause
enormous (competitive) damage [119].

Most proposed untargeted poisoning attacks on FL use
the (unrealistic) assumption that the adversary A is aware of
either the aggregation rule [52] or all benign updates [11].
However, the Min-Max attack proposed by [118] defies this
assumption and constitutes the state-of-the-art attack. This
attack prevents the manipulations from being detected by
allowing the adversary to compute representative benign up-
dates using some clean training data; the attacker can then
limit the maximum distance of the manipulated update to
any other update by the maximum distances of any two
benign updates. This ensures that the malicious gradients are
sufficiently similar to the set of benign gradients. We refer
to [118, §IV] for more specifics on the attack.

In addition to removing assumptions about the adversary’s
knowledge, [118] empirically shows that the Min-Max attack
outperforms the former state-of-the-art poisoning attack [11]
for almost all tested datasets. However, since all benchmarks
in [11], [118] were performed on FL schemes without quanti-
zation, the impact of the Min-Max attack on quantized FL
schemes is unclear. Hence, we first test the attack’s effec-
tiveness in our framework using the open-sourced code6 as
baseline. As we discuss in §IV-B, we observe that the attacks
are effective even in the context of quantization.

A. Our Defense: ScionFL-Aura

From an intuitive standpoint, the adversary in an untargeted
poisoning attack seeks to manipulate the global update with
malicious updates to deviate it as much as possible from the
result of an ideal benign training while evading potentially
deployed detection mechanisms. This baseline observation
was also used by earlier works to propose defense mecha-
nisms [118], [102], [110], however, those cannot be combined
trivially with ScionFL without having to de-quantize all up-
dates and running expensive secure computation machinery.

We now outline the general design of ScionFL-Aura and
show its effectiveness against the Min-Max attack [118].
In §IV-A, we describe how to efficiently instantiate it in
an MPC-friendly manner to reduce communication overhead.

Approach: ScionFL-Aura uses a hybrid approach, combining
ideas from existing FL defenses based on the L2-norm [10],
[102], [124] and cosine similarity [102], [32]. Several works
like [102] compute these metrics for each client pair, resulting
in expensive computation. In contrast, we aggregate all up-
dates, including the poisoned ones, to produce the vector X⃗agg,
which we then utilize as the reference. At a high level, L2-norm
based scaling of the gradient vectors is used at first to bound
the impact of malicious contributions that are potentially
overlooked (i.e., not filtered) in later stages. In a second step,
local updates that significantly deviate from the average update
direction are considered to be manipulated and, thus, excluded.
Concretely, ScionFL-Aura consists of the following steps:

6https://github.com/vrt1shjwlkr/NDSS21-Model-Poisoning

Algorithm 1 Our Defense: ScionFL-Aura

1: procedure SCIONFL-AURA({σ⃗Xi , s
min
Xi

, smax
Xi
}i∈[n])

// Gradient Aggregation including poisoned ones.
2: X⃗agg ← AGGREGATE({σ⃗Xi , s

min
Xi

, smax
Xi
}i∈n)

// L2-norm Computation
3: Lavg

2 ← 0
4: for k ← 1 to n do
5: Lk

2 ← L2-NORMQ(σ⃗Xk , s
min
Xk

, smax
Xk

)
6: Lavg

2 ← Lavg
2 + Lk

2

7: end for
// L2-norm based Scaling

8: Lavg
2 ← Lavg

2 /n // Average of L2-norms
9: for k ← 1 to n do

10: if Lk
2 > µth · Lavg

2 then
11: smin

Xk
← smin

Xk
· (µth · Lavg

2)/Lk
2

12: smax
Xk
← smax

Xk
· (µth · Lavg

2)/Lk
2

13: end if
14: end for

// Cosine-distance based Filtering
15: for k ← 1 to n do
16: θk ← COSINE((σ⃗Xk , s

min
Xk

, smax
Xk

), X⃗agg)
17: end for
18: X ← TOP-K(θ⃗, ψ) // Returns k for which θk > ψ

// Aggregation of filtered updates
19: X⃗aggd ← AGGREGATE({σ⃗Xi , s

min
Xi

, smax
Xi
}i∈[n],i/∈X)

20: end procedure

1) L2-norm-based Scaling. In this step, the L2-norm of each
gradient vector is compared against a public threshold mul-
tiplied with the average of the L2-norms. Let µth denote the
threshold and Lavg2 denote the average of the L2-norms across
all clients. If LX2 > µth · Lavg2 for a gradient vector X⃗ , the
vector is scaled7 by a factor of µth · Lavg2 /LX2 . This ensures
that no gradient has an L2-norm greater than µth · Lavg2 .
2) Cosine-distance-based Filtering. This step computes the
cosine distance for each gradient from the reference vec-
tor X⃗agg. After that, another aggregation is carried out on
the updated vectors, excluding the top-ψ vectors with the
highest cosine distances using a secure TOP-K algorithm,
which involves sorting and selecting the first K items. Here,
ψ is either a a known bound (i.e., defined in advance by the
service provider) or an accepted percentile determined based
on an assumed attacker ratio following a normal distribution.

Alg. 1 provides the formal details of ScionFL-Aura, includ-
ing support for quantized aggregation. Note that we use an
optimizer with momentum for FedAvg which ensures that even
if the majority of clients picked at random in a training round
happens to be malicious, the optimization is still based on
benign contributions from the previous round.

MPC-friendly Variant: A naive secure realization
of ScionFL-Aura outlined in Alg. 1 utilizing MPC will yield an
inefficient solution, particularly over a ring architecture. This
is due to some of the algorithm’s non-MPC friendly primitives,
for which we discuss viable alternatives below.
1) (Line 5 in Alg. 1). The computation of L2-norm within L2-
NORMQ (cf. Alg. 3 in §C-C) involves calculating the square

7Scaling a quantized vector requires simply scaling the scales (cf. §II-D).

11

https://github.com/vrt1shjwlkr/NDSS21-Model-Poisoning

0 500 1000 1500

0.6

0.8

V
al

id
at

io
n

A
cc

u
ra

cy

No compression

0 500 1000 1500

0.6

0.8

HSQ

0 500 1000 1500

0.6

0.8

KSQ

0 500 1000 1500

0.75

1.00
T

ra
in

A
cc

u
ra

cy

0 500 1000 1500

0.75

1.00

0 500 1000 1500

0.75

1.00

0 500 1000 1500
0

2

N
u

m
of

at
ta

ck
er

s

0 500 1000 1500
0

2

0 500 1000 1500
0

2

Baseline

Attack only

Attack + defense

Num of attackers with defense

Num of attackers w/o defense

Fig. 12: Effect of Min-Max attack [118] on training ResNet9 with CIFAR10 for 1500 aggregation rounds with and without our
defense ScionFL-Aura assuming 20% of N = 50 clients are corrupted. Note that the number of attackers included in the global update
varies even without defense due to random client selection.

root of a ring element, which corresponds to a decimal value.
To alleviate this, we ask the clients to submit the L2-norm of
their gradient vectors and the MPC servers verify them. To be
more specific, the provided L2-norm is squared and compared
to a squared-L2-norm computed by the MPC servers via a
secure comparison protocol [33], [89].
2) (Lines 11 & 12 in Alg. 1). When using L2-norm scaling,
the scales of the gradient vector must be bounded if the
corresponding L2-norm is greater than the limit. In particular,
the procedure entails dividing the vector by its L2-norm.
Because division is expensive in MPC over rings, we ask the
client to submit the reciprocal of the L2 norm as well, similar
to the method suggested above. The provided value is validated
by multiplying it by the L2-norm supplied by the client and
checking whether the product is a 1.
3) (Line 16 in Alg. 1). The calculation of the cosine distance
between the gradient vector and the reference X⃗agg requires
computing the L2-norm of X⃗agg and dividing by it, as shown
in COSINE (cf. Alg. 4 in §C-C). However, the cosine distances
are only used to filter out the top-ψ vectors with the highest
cosine distance, as shown in Alg. 1 (Line 18). As a result,
we may safely disregard the division by the L2-norm of X⃗agg

when computing the cosine distance for our purpose.

In addition to the aforementioned optimizations, most of
the values computed as part of the X⃗agg computation in
the AGGREGATE function (Line 2 in Alg. 1) can be reused
in the next steps, thus lowering the overhead of the defense
scheme over simple aggregation. §C-C provides details on the
sub-protocols utilized in our defense algorithm given in Alg. 1.

B. Effectiveness Evaluation

To analyze the effectiveness of ScionFL-Aura, we test it
against the Min-Max attack [118].
Setup: Training involves N = 50 clients of which 20% (as
in [118]) are corrupted. Per training iteration, a random subset
of n = 10 clients is chosen to train the global model. Each
client C runs its local training for 10 iterations with batches

of B = 128 samples and a learning rate of ηC = 0.1. The
defense threshold µth is set to 3 and the momentum is 0.9.8

Experimental Results: Our results when training ResNet9
on CIFAR10 (i) without an attack, (ii) under attack without
defense, and (iii) under attack with ScionFL-Aura in place
are given in Fig. 12. We compare the attack’s effect when no
compression is in place as well as when applying SQ with
the randomized Hadamard transform (HSQ) or with Kashin’s
representation (KSQ). We also provide similar results for
training VGG11 in §C-C. As shown in Fig. 12, our re-
implementation of the Min-Max attack substantially reduces
the validation accuracy by up to 20% when no defense is in
place. This is in line with [118], where the authors report an
accuracy degradation between 10.1% and 42.1% for CIFAR10,
depending on the model architecture and the aggregation
scheme. Furthermore, our experiments show that quantiza-
tion does not significantly change the impact of the attack.
When ScionFL-Aura is enabled, we can remove more than half
of the malicious updates in each training iteration compared
to when no defense is in place. In fact, quantization supports
our defense as the additional noise added to synchronized
malicious updates overturns the attacker’s ability of staying
just below the detection threshold. As a result, compared to
unprotected training, the validation accuracy decreases by at
most 7.7% for HSQ and 10.7% for KSQ.

ACKNOWLEDGMENTS

This project received funding from the ERC under the
EU’s Horizon 2020 research and innovation program (grant
agreement No. 850990 PSOTI). It was co-funded by the DFG
within SFB 1119 CROSSING/236615297 and GRK 2050 Pri-
vacy & Trust/251805230, and by the Private AI Collaborative
Research Institute, funded by Intel, Avast, and VMware.

8[119] points out that assuming more than 1% of corrupted clients is
unrealistic for most scenarios. However, in our experiments the attack failed
to notably reduce the accuracy with such a low corruption level. Thus, we
tested against 20% of corrupted clients as in the original attack paper [118].

12

REFERENCES

[1] J. Aas and T. Geoghegan. Introducing ISRG Prio Services
for Privacy Respecting Metrics. https://www.abetterinternet.org/post/
introducing-prio-services/.

[2] S. Addanki, K. Garbe, E. Jaffe, R. Ostrovsky, and A. Polychroniadou,
“Prio+: Privacy Preserving Aggregate Statistics via Boolean Shares,”
in SCN, 2022.

[3] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” in EMNLP, 2017.

[4] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat,
and C. Renggli, “The Convergence of Sparsified Gradient Methods,”
in NeurIPS, 2018.

[5] S. Andreina, G. A. Marson, H. Möllering, and G. Karame, “BaFFLe:
Backdoor Detection via Feedback-based Federated Learning,” in IEEE
ICDCS, 2021.

[6] Apple and Google, “Exposure Notification Privacy-preserving
Analytics (ENPA) White Paper,” https://covid19-static.cdn-apple.com/
applications/covid19/current/static/contact-tracing/pdf/ENPA White
Paper.pdf.

[7] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara, “High-
Throughput Semi-Honest Secure Three-Party Computation with an
Honest Majority,” in ACM CCS, 2016.

[8] G. Asharov, S. Halevi, Y. Lindell, and T. Rabin, “Privacy-Preserving
Search of Similar Patients in Genomic Data,” PETS, vol. 2018, 2018.

[9] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient
oblivious transfer and extensions for faster secure computation,” in
ACM CCS, 2013.

[10] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
To Backdoor Federated Learning,” in AISTATS, 2020.

[11] G. Baruch, M. Baruch, and Y. Goldberg, “A Little Is Enough: Circum-
venting Defenses For Distributed Learning,” in NeurIPS, 2019.

[12] R. B. Basat, M. Mitzenmacher, and S. Vargaftik, “How to Send a
Real Number Using a Single Bit (And Some Shared Randomness),” in
ICALP, 2021.

[13] R. B. Basat, S. Vargaftik, A. Portnoy, G. Einziger, Y. Ben-Itzhak,
and M. Mitzenmacher, “QUIC-FL: Quick Unbiased Compression for
Federated Learning,” 2022, https://arxiv.org/abs/2205.13341.

[14] C. Baum, I. Damgård, T. Toft, and R. W. Zakarias, “Better Preprocess-
ing for Secure Multiparty Computation,” in ACNS, 2016.

[15] C. Beguier, M. Andreux, and E. W. Tramel, “Efficient Sparse Secure
Aggregation for Federated Learning,” 2020, https://arxiv.org/abs/2007.
14861.

[16] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova,
“Secure Single-Server Aggregation with (Poly)Logarithmic Overhead,”
in ACM CCS, 2020.

[17] A. Ben-Efraim, M. Nielsen, and E. Omri, “Turbospeedz: Double Your
Online SPDZ! Improving SPDZ Using Function Dependent Prepro-
cessing,” in ACNS, 2019.

[18] J. Bernstein, Y. Wang, K. Azizzadenesheli, and A. Anandkumar,
“SIGNSGD: Compressed Optimisation for Non-Convex Problems,” in
ICML, 2018.

[19] A. Beznosikov, S. Horváth, P. Richtárik, and M. Safaryan, “On Biased
Compression for Distributed Learning,” 2020, https://arxiv.org/abs/
2002.12410.

[20] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. B. Calo, “Analyzing
Federated Learning through an Adversarial Lens,” in ICML, 2019.

[21] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, “Machine
Learning with Adversaries: Byzantine Tolerant Gradient Descent,” in
NeurIPS, 2017.

[22] F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and H. Yalame,
“MP2ML: a mixed-protocol machine learning framework for private
inference,” in ARES, 2020.

[23] F. Boenisch, A. Dziedzic, R. Schuster, A. S. Shamsabadi, I. Shumailov,
and N. Papernot, “When the Curious Abandon Honesty: Federated
Learning Is Not Private,” 2021, https://arxiv.org/abs/2112.02918.

[24] ——, “All You Need Is Matplotlib,” http://www.cleverhans.io/2022/04/
17/fl-privacy.html, 2022.

[25] ——, “Is Federated Learning a Practical PET Yet?” CoRR, 2023.
[26] K. A. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMa-

han, S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical Secure
Aggregation for Privacy-Preserving Machine Learning,” in ACM CCS,
2017.

[27] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl,
“Efficient Pseudorandom Correlation Generators: Silent OT Extension
and More,” in CRYPTO, 2019.

[28] L. Braun, D. Demmler, T. Schneider, and O. Tkachenko, “MOTION
- A Framework for Mixed-Protocol Multi-Party Computation,” ACM
Trans. Priv. Secur., 2022.

[29] A. Brüggemann, O. Schick, T. Schneider, A. Suresh, and H. Yalame,
“Don’t Eject the Impostor: Fast Three-Party Computation With a
Known Cheater,” in IEEE S&P, 2024.

[30] M. Byali, H. Chaudhari, A. Patra, and A. Suresh, “FLASH: Fast and
Robust Framework for Privacy-preserving Machine Learning,” PETS,
2020.

[31] S. Caldas, J. Konečný, H. B. McMahan, and A. Talwalkar, “Expand-
ing the Reach of Federated Learning by Reducing Client Resource
Requirements,” 2018, http://arxiv.org/abs/1812.07210.

[32] X. Cao, M. Fang, J. Liu, and N. Z. Gong, “Fltrust: Byzantine-robust
federated learning via trust bootstrapping,” in NDSS, 2021.

[33] O. Catrina and A. Saxena, “Secure Computation with Fixed-Point
Numbers,” in FC, 2010.

[34] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh, “ASTRA:
High Throughput 3PC over Rings with Application to Secure Predic-
tion,” in ACM Conference on Cloud Computing Security Workshop,
CCSW@CCS, 2019.

[35] H. Chaudhari, R. Rachuri, and A. Suresh, “Trident: Efficient 4PC
Framework for Privacy Preserving Machine Learning,” in NDSS, 2020.

[36] W. Chen, C. A. Choquette-Choo, P. Kairouz, and A. T. Suresh, “The
Fundamental Price of Secure Aggregation in Differentially Private
Federated Learning,” in ICML, 2022.

[37] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song, “Homomorphic
Encryption for Arithmetic of Approximate Numbers,” in ASIACRYPT.
Springer, 2017.

[38] B. Chmiel, L. Ben-Uri, M. Shkolnik, E. Hoffer, R. Banner, and
D. Soudry, “Neural gradients are near-lognormal: improved quantized
and sparse training,” in ICLR, 2021.

[39] H. Corrigan-Gibbs and D. Boneh, “Prio: Private, Robust, and Scalable
Computation of Aggregate Statistics,” in USENIX NSDI, 2017.

[40] G. Couteau, P. Rindal, and S. Raghuraman, “Silver: Silent VOLE
and Oblivious Transfer from Hardness of Decoding Structured LDPC
Codes,” in CRYPTO, 2021.

[41] R. Cramer, I. Damgård, D. Escudero, P. Scholl, and C. Xing, “SPDZ2k:
Efficient MPC mod 2k for Dishonest Majority,” in CRYPTO, 2018.

[42] I. Damgård, D. Escudero, T. K. Frederiksen, M. Keller, P. Scholl, and
N. Volgushev, “New Primitives for Actively-Secure MPC over Rings
with Applications to Private Machine Learning,” in IEEE S&P, 2019.

[43] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart,
“Practical Covertly Secure MPC for Dishonest Majority - Or: Breaking
the SPDZ Limits,” in ESORICS, 2013.

[44] I. Damgård, C. Orlandi, and M. Simkin, “Yet Another Compiler for
Active Security or: Efficient MPC Over Arbitrary Rings,” in CRYPTO,
2018.

[45] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty compu-
tation from somewhat homomorphic encryption,” in CRYPTO, 2012.

[46] P. Davies, V. Gurunanthan, N. Moshrefi, S. Ashkboos, and D. Alistarh,
“New bounds for distributed mean estimation and variance reduction,”
in ICLR, 2021.

[47] D. Demmler, T. Schneider, and M. Zohner, “ABY - A Framework for
Efficient Mixed-Protocol Secure Two-Party Computation,” in NDSS,
2015.

[48] Y. Dong, X. Chen, K. Li, D. Wang, and S. Zeng, “FLOD: oblivious
defender for private byzantine-robust federated learning with dishonest-
majority,” in ESORICS, 2021.

[49] T. Elahi, G. Danezis, and I. Goldberg, “PrivEx: Private Collection of
Traffic Statistics for Anonymous Communication Networks,” in ACM
CCS, 2014.

[50] Z. Erkin, J. R. Troncoso-Pastoriza, R. L. Lagendijk, and F. Pérez-
González, “Privacy-Preserving Data Aggregation in Smart Metering
Systems: An Overview,” IEEE Signal Process. Mag., 2013.

[51] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl, “Im-
proved Primitives for MPC over Mixed Arithmetic-Binary Circuits,”
in CRYPTO, 2020.

[52] M. Fang, X. Cao, J. Jia, and N. Z. Gong, “Local Model Poisoning
Attacks to Byzantine-Robust Federated Learning,” in USENIX Security,
2020.

13

https://www.abetterinternet.org/post/introducing-prio-services/
https://www.abetterinternet.org/post/introducing-prio-services/
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://arxiv.org/abs/2205.13341
https://arxiv.org/abs/2007.14861
https://arxiv.org/abs/2007.14861
https://arxiv.org/abs/2002.12410
https://arxiv.org/abs/2002.12410
https://arxiv.org/abs/2112.02918
http://www.cleverhans.io/2022/04/17/fl-privacy.html
http://www.cleverhans.io/2022/04/17/fl-privacy.html
http://arxiv.org/abs/1812.07210

[53] J. Fei, C. Ho, A. N. Sahu, M. Canini, and A. Sapio, “Efficient sparse
collective communication and its application to accelerate distributed
deep learning,” in ACM SIGCOMM Conference, 2021.

[54] H. Fereidooni, S. Marchal, M. Miettinen, A. Mirhoseini, H. Möllering,
T. D. Nguyen, P. Rieger, A. Sadeghi, T. Schneider, H. Yalame, and
S. Zeitouni, “SAFELearn: Secure Aggregation for private FEderated
Learning,” in IEEE S&P Workshops, 2021.

[55] L. H. Fowl, J. Geiping, W. Czaja, M. Goldblum, and T. Goldstein,
“Robbing the Fed: Directly Obtaining Private Data in Federated Learn-
ing with Modified Models,” in ICLR, 2022.

[56] J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein, “High-Throughput
Secure Three-Party Computation for Malicious Adversaries and an
Honest Majority,” in EUROCRYPT, 2017.

[57] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov, “Property
Inference Attacks on Fully Connected Neural Networks using Permu-
tation Invariant Representations,” in ACM CCS, 2018.

[58] T. Gehlhar, F. Marx, T. Schneider, T. Wehrle, A. Suresh, and H. Yalame,
“SafeFL: MPC-friendly framework for Private and Robust Federated
Learning,” in IEEE S&P Workshops, 2023.

[59] O. Goldreich, S. Micali, and A. Wigderson, “How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Major-
ity,” in ACM STOC, 1987.

[60] S. D. Gordon, S. Ranellucci, and X. Wang, “Secure Computation with
Low Communication from Cross-Checking,” in ASIACRYPT, 2018.

[61] V. Goyal, H. Li, R. Ostrovsky, A. Polychroniadou, and Y. Song,
“ATLAS: Efficient and Scalable MPC in the Honest Majority Setting,”
in CRYPTO, 2021.

[62] A. Hegde, H. Möllering, T. Schneider, and H. Yalame, “SoK: Efficient
Privacy-preserving Clustering,” PETS, 2021.

[63] E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright, “Privacy-
preserving Machine Learning as a Service,” PETS, 2018.

[64] N. Ivkin, D. Rothchild, E. Ullah, V. Braverman, I. Stoica, and
R. Arora, “Communication-efficient Distributed SGD with Sketching,”
in NeurIPS, 2019.

[65] R. Jin, Y. Huang, X. He, H. Dai, and T. Wu, “Stochastic-Sign SGD for
Federated Learning with Theoretical Guarantees,” 2020, https://arxiv.
org/abs/2002.10940.

[66] M. Joye and B. Libert, “A Scalable Scheme for Privacy-Preserving
Aggregation of Time-Series Data,” in FC, 2013.

[67] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE:
A low latency framework for secure neural network inference,” in
USENIX Security, 2018.

[68] S. Kadhe, N. Rajaraman, O. O. Koyluoglu, and K. Ramchandran, “Fast-
SecAgg: Scalable Secure Aggregation for Privacy-Preserving Federated
Learning,” 2020, https://arxiv.org/abs/2009.11248.

[69] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, and et al.,
“Advances and Open Problems in Federated Learning,” Found. Trends
Mach. Learn., 2021.

[70] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T.
Suresh, “SCAFFOLD: Stochastic Controlled Averaging for Federated
Learning,” in ICML, 2020.

[71] M. Keller, E. Orsini, and P. Scholl, “MASCOT: Faster Malicious
Arithmetic Secure Computation with Oblivious Transfer,” in ACM
SIGSAC, 2016.

[72] M. Keller, V. Pastro, and D. Rotaru, “Overdrive: Making SPDZ Great
Again,” in EUROCRYPT, 2018.

[73] M. Keller, P. Scholl, and N. P. Smart, “An architecture for practical
actively secure MPC with dishonest majority,” in ACM CCS, 2013.

[74] D. Kim, Y. Son, D. Kim, A. Kim, S. Hong, and J. H. Cheon, “Privacy-
preserving Approximate GWAS computation based on Homomorphic
Encryption,” 2019, https://eprint.iacr.org/2019/152.

[75] V. Kolesnikov and T. Schneider, “Improved Garbled Circuit: Free XOR
Gates and Applications,” in ICALP, 2008.

[76] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated Learning: Strategies for Improving Communica-
tion Efficiency,” 2016, http://arxiv.org/abs/1610.05492.

[77] N. Koti, M. Pancholi, A. Patra, and A. Suresh, “SWIFT: Super-fast
and robust privacy-preserving machine learning,” in USENIX Security,
2021.

[78] N. Koti, S. Patil, A. Patra, and A. Suresh, “MPClan: Protocol suite for
privacy-conscious computations,” J. Cryptol., 2023.

[79] N. Koti, A. Patra, R. Rachuri, and A. Suresh, “Tetrad: Actively Secure
4PC for Secure Training and Inference,” in NDSS, 2022.

[80] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[81] K. Kursawe, G. Danezis, and M. Kohlweiss, “Privacy-Friendly Aggre-
gation for the Smart-Grid,” in PETS, 2011.

[82] M. Lam, G. Wei, D. Brooks, V. J. Reddi, and M. Mitzenmacher,
“Gradient disaggregation: Breaking privacy in federated learning by
reconstructing the user participant matrix,” in ICML, 2021.

[83] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, 1998.

[84] K. H. Li, P. P. B. de Gusmão, D. J. Beutel, and N. D. Lane, “Secure
aggregation for federated learning in flower,” in ACM International
Workshop on Distributed Machine Learning, 2021.

[85] L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “RSA: Byzantine-
Robust Stochastic Aggregation Methods for Distributed Learning from
Heterogeneous Datasets,” in AAAI, 2019.

[86] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated Optimization in Heterogeneous Networks,” in MLSys, 2020.

[87] Y. Lindell, B. Pinkas, N. P. Smart, and A. Yanai, “Efficient Constant
Round Multi-party Computation Combining BMR and SPDZ,” in
CRYPTO, 2015.

[88] Y. Lyubarskii and R. Vershynin, “Uncertainty principles and vector
quantization,” IEEE Trans. Inf. Theory, 2010.

[89] E. Makri, D. Rotaru, F. Vercauteren, and S. Wagh, “Rabbit: Efficient
Comparison for Secure Multi-Party Computation,” in FC, 2021.

[90] M. Mansouri, M. Önen, W. Ben Jaballah, and M. Conti, “SoK: Secure
aggregation based on cryptographic schemes for federated Learning,”
in PETS, 2023.

[91] T. Marchand, R. Loeb, U. Marteau-Ferey, J. O. du Terrail, and
A. Pignet, “SRATTA: sample re-attribution attack of secure aggregation
in federated learning,” in ICML, 2023.

[92] F. Marx, T. Schneider, A. Suresh, T. Wehrle, C. Weinert, and
H. Yalame, “Hyfl: A hybrid approach for private federated learning,”
2023, https://arxiv.org/abs/2302.09904.

[93] S. Mazloom, P. H. Le, S. Ranellucci, and S. D. Gordon, “Secure parallel
computation on national scale volumes of data,” in USENIX Security,
2020.

[94] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decen-
tralized Data,” in AISTATS, 2017.

[95] L. Melis, C. Song, E. D. Cristofaro, and V. Shmatikov, “Exploiting
Unintended Feature Leakage in Collaborative Learning,” in IEEE S&P,
2019.

[96] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in
USENIX Security, 2020.

[97] P. Mohassel and P. Rindal, “ABY3: A Mixed Protocol Framework for
Machine Learning,” in ACM CCS, 2018.

[98] P. Mohassel and Y. Zhang, “SecureML: A System for Scalable Privacy-
Preserving Machine Learning,” in IEEE S&P, 2017.

[99] A. Mondal, Y. More, P. Ramachandran, P. Panda, H. Virk, and
D. Gupta, “Scotch: An Efficient Secure Computation Framework for
Secure Aggregation,” 2022, https://arxiv.org/abs/2201.07730.

[100] J. Münch, T. Schneider, and H. Yalame, “VASA: Vector AES Instruc-
tions for Security Applications,” in ACM ACSAC, 2021.

[101] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive Privacy
Analysis of Deep Learning: Passive and Active White-box Inference
Attacks against Centralized and Federated Learning,” in IEEE S&P,
2019.

[102] T. D. Nguyen, P. Rieger, H. Chen, H. Yalame, H. Möllering, H. Ferei-
dooni, S. Marchal, M. Miettinen, A. Mirhoseini, F. Koushanfar, A.-R.
Sadeghi, T. Schneider, and S. Zeitouni, “FLAME: Taming Backdoors
in Federated Learning,” in USENIX Security, 2022.

[103] A. E. Ouadrhiri and A. Abdelhadi, “Differential Privacy for Deep and
Federated Learning: A Survey,” IEEE Access, 2022.

[104] D. Pasquini, D. Francati, and G. Ateniese, “Eluding Secure Aggregation
in Federated Learning via Model Inconsistency,” in CCS, 2022.

[105] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “ABY2.0: Improved
Mixed-Protocol Secure Two-Party Computation,” in USENIX Security,
2021.

[106] ——, “SynCirc: Efficient Synthesis of Depth-Optimized Circuits for
Secure Computation,” in IEEE HOST, 2021.

[107] A. Patra and A. Suresh, “BLAZE: Blazing Fast Privacy-Preserving
Machine Learning,” in NDSS, 2020.

14

https://arxiv.org/abs/2002.10940
https://arxiv.org/abs/2002.10940
https://arxiv.org/abs/2009.11248
https://eprint.iacr.org/2019/152
http://arxiv.org/abs/1610.05492
https://arxiv.org/abs/2302.09904
https://arxiv.org/abs/2201.07730

[108] R. A. Popa, A. J. Blumberg, H. Balakrishnan, and F. H. Li, “Privacy and
accountability for location-based aggregate statistics,” in ACM CCS,
2011.

[109] A. Pyrgelis, C. Troncoso, and E. D. Cristofaro, “Knock Knock, Who’s
There? Membership Inference on Aggregate Location Data,” in NDSS,
2018.

[110] M. Rathee, C. Shen, S. Wagh, and R. A. Popa, “ELSA: Secure
Aggregation for Federated Learning with Malicious Actors,” in IEEE
S&P, 2023.

[111] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. E. Lauter, and
F. Koushanfar, “XONN: XNOR-based Oblivious Deep Neural Network
Inference,” in USENIX Security, 2019.

[112] P. Richtárik, I. Sokolov, and I. Fatkhullin, “EF21: A New, Simpler, The-
oretically Better, and Practically Faster Error Feedback,” in NeurIPS,
2021.

[113] D. Rotaru and T. Wood, “MArBled Circuits: Mixing Arithmetic and
Boolean Circuits with Active Security,” in INDOCRYPT, 2019.

[114] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman,
J. Gonzalez, and R. Arora, “FetchSGD: Communication-Efficient Fed-
erated Learning with Sketching,” in ICML, 2020.

[115] M. Safaryan, E. Shulgin, and P. Richtárik, “Uncertainty Principle for
Communication Compression in Distributed and Federated Learning
and the Search for an Optimal Compressor,” 2020, https://arxiv.org/
abs/2002.08958.

[116] S. Sav, A. Pyrgelis, J. R. Troncoso-Pastoriza, D. Froelicher, J.-
P. Bossuat, J. S. Sousa, and J.-P. Hubaux, “POSEIDON: Privacy-
preserving federated neural network learning,” in NDSS, 2021.

[117] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
DNNs,” in INTERSPEECH, 2014.

[118] V. Shejwalkar and A. Houmansadr, “Manipulating the Byzantine:
Optimizing Model Poisoning Attacks and Defenses for Federated
Learning,” in NDSS, 2021.

[119] V. Shejwalkar, A. Houmansadr, P. Kairouz, and D. Ramage, “Back
to the Drawing Board: A Critical Evaluation of Poisoning Attacks on
Production Federated Learning,” in IEEE S&P, 2022.

[120] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
Inference Attacks Against Machine Learning Models,” in IEEE S&P,
2017.

[121] J. So, R. E. Ali, B. Guler, J. Jiao, and S. Avestimehr, “Securing Secure
Aggregation: Mitigating Multi-Round Privacy Leakage in Federated
Learning,” AAAI, 2021.

[122] J. So, B. Güler, and A. S. Avestimehr, “Turbo-Aggregate: Breaking the
Quadratic Aggregation Barrier in Secure Federated Learning,” IEEE J.
Sel. Areas Inf. Theory, 2021.

[123] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with
Memory,” in NeurIPS, 2018.

[124] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you really
backdoor federated learning?” in NeurIPS FL Workshop, 2019.

[125] A. Suresh, “MPCLeague: Robust MPC Platform for Privacy-Preserving
Machine Learning,” PhD Thesis, 2021, https://arxiv.org/abs/2112.
13338.

[126] A. T. Suresh, F. X. Yu, S. Kumar, and H. B. McMahan, “Distributed
Mean Estimation with Limited Communication,” in ICML, 2017.

[127] H. Tang, S. Gan, A. A. Awan, S. Rajbhandari, C. Li, X. Lian, J. Liu,
C. Zhang, and Y. He, “1-bit Adam: Communication Efficient Large-
Scale Training with Adam’s Convergence Speed,” in ICML, 2021.

[128] S. Vargaftik, R. B. Basat, A. Portnoy, G. Mendelson, Y. Ben-Itzhak,
and M. Mitzenmacher, “EDEN: Communication-Efficient and Robust
Distributed Mean Estimation for Federated Learning,” in ICML, 2022.

[129] S. Vargaftik, R. Ben-Basat, A. Portnoy, G. Mendelson, Y. Ben-Itzhak,
and M. Mitzenmacher, “DRIVE: One-bit Distributed Mean Estima-
tion,” in NeurIPS, 2021.

[130] T. Verma and S. Singanamalla, “Improving DNS Privacy with Oblivi-
ous DoH in 1.1.1.1,” https://blog.cloudflare.com/oblivious-dns/l, 2020.

[131] J. Wang, Z. Charles, Z. Xu, G. Joshi, H. B. McMahan, and et al.,
“A Field Guide to Federated Optimization,” 2021, https://arxiv.org/abs/
2107.06917.

[132] L. Wang, S. Xu, X. Wang, and Q. Zhu, “Eavesdrop the Composition
Proportion of Training Labels in Federated Learning,” 2019, http://
arxiv.org/abs/1910.06044.

[133] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Be-
yond inferring class representatives: User-level privacy leakage from
federated learning,” in INFOCOM, 2019.

[134] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li,
“TernGrad: Ternary Gradients to Reduce Communication in Distributed
Deep Learning,” in NeurIPS, 2017.

[135] Y. Wen, J. Geiping, L. Fowl, M. Goldblum, and T. Goldstein, “Fishing
for User Data in Large-Batch Federated Learning via Gradient Mag-
nification,” in ICML, 2022.

[136] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli, “Is
Feature Selection Secure against Training Data Poisoning?” in ICML,
2015.

[137] C. Yang, J. So, C. He, S. Li, Q. Yu, and S. Avestimehr, “LightSecAgg:
Rethinking Secure Aggregation in Federated Learning,” 2021, https:
//arxiv.org/abs/2109.14236.

[138] A. C.-C. Yao, “Protocols for Secure Computations (Extended Ab-
stract),” in FOCS, 1982.

[139] D. Yin, Y. Chen, K. Ramchandran, and P. L. Bartlett, “Byzantine-
Robust Distributed Learning: Towards Optimal Statistical Rates,” in
ICML, 2018.

[140] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “BatchCrypt:
Efficient Homomorphic Encryption for Cross-Silo Federated Learning,”
in USENIX ATC, 2020.

[141] Z. Zhang, X. Cao, J. Jia, and N. Z. Gong, “FLDetector: Defending
Federated Learning Against Model Poisoning Attacks via Detecting
Malicious Clients,” in KDD, 2022.

[142] Z. Zhang, A. Panda, L. Song, Y. Yang, M. W. Mahoney, P. Mittal,
K. Ramchandran, and J. Gonzalez, “Neurotoxin: Durable Backdoors
in Federated Learning,” in ICML, 2022.

APPENDIX A
RELATED WORK & BACKGROUND INFORMATION

A. Stochastic Quantization

This section provides additional details regarding stochastic
quantization schemes discussed in §II-B.

Preprocessing via Random Rotations: To deal with possible
limitations of vanilla SQ, recent state-of-the-art works suggest
to randomly rotate the input vector prior to SQ [126]. That
is, the clients and the aggregator draw rotation matrices
according to some known distribution; the clients then send
the quantization of the rotated vectors while the aggregator
applies the inverse rotation on the estimated rotated vector.
Intuitively, the coordinates of a randomly rotated vector are
identically distributed, and thus the expected difference be-
tween the coordinates is smaller, allowing for a more accurate
quantization. For n clients and a gradient with m coordinates,
this approach achieves a NMSE9 of O(logm

n) using O(m) bits,
which asymptotically improves over the O(mn) NMSE bound
of vanilla SQ. The computational complexity, on the other
hand, is increased from O(m) to O(m logm) when utilizing
the randomized Hadamard transform for rotations.

Preprocessing via Kashin’s Representation: The rotation
approach was recently improved using Kashin’s representa-
tion [31], [88], [115]. Roughly speaking, it allows represent-
ing an m-dimensional vector using a slightly larger vector
with λ · m smaller coefficients (λ > 1). It can be shown
that applying SQ to the Kashin coefficients allows for an
optimal NMSE of O(1n) using O(λ · m) bits. Compared
with [126], Kashin’s representation yields a lower NMSE
bound by a factor of logm at the cost of increasing the
computational complexity by the same factor [13], [31].

9The normalized MSE is the mean’s estimate MSE normalized by the mean
clients’ gradient squared norms

15

https://arxiv.org/abs/2002.08958
https://arxiv.org/abs/2002.08958
https://arxiv.org/abs/2112.13338
https://arxiv.org/abs/2112.13338
https://blog.cloudflare.com/oblivious-dns/l
https://arxiv.org/abs/2107.06917
https://arxiv.org/abs/2107.06917
http://arxiv.org/abs/1910.06044
http://arxiv.org/abs/1910.06044
https://arxiv.org/abs/2109.14236
https://arxiv.org/abs/2109.14236

B. Additional Compression Techniques

In this work, we focus on quantization as a means to reduce
bandwidth. We nevertheless briefly overview some additional
techniques considered for FL gradient compression.

Sparsification: Some works like [53], [123], [3], [76]
consider sparsifying the gradients. Quantization can also be
applied to these sparsified gradients as it reduces the number
of bits used per entry, while sparsification reduces the number
of entries.

Client-side Memory-based Techniques: Some compression
techniques, including Top-k [123] and sketching [64], rely on
client-side memory and error-feedback [117], [4], [112], [19]
to ensure convergence. We consider the cross-device FL setup
where clients are stateless (e.g., a client may appear only once
during a training procedure). Therefore, client-side-memory-
based techniques are mostly designed for the cross-silo FL
setup and are less applicable to cross-device FL.

Entropy Encodings: Some techniques use entropy encoding
such as arithmetic encoding and Huffman encoding (e.g.,
[126], [128], [4]). While such techniques are appealing in their
bandwidth-to-accuracy trade-offs, it is unclear how to allow for
an efficient secure aggregation as gradients must be decoded
before being averaged. Also, such techniques usually incur a
higher computational overhead at the clients than fixed-length
representations. An additional review of current state-of-the-
art gradient compression techniques and some open challenges
can be found in [69], [76], [131].

C. Secure Multi-party Computation

The field of secure multi-party computation (MPC) started
with the seminal work of Yao [138] in 1982. It enables to
securely compute arbitrary functions on private inputs without
leaking anything beyond what can be inferred from the output.
Since then, the field of MPC has seen a variety of advance-
ments of used primitives effectively improving communication
and computation efficiency, e.g., [75], [9], [27], [51], [100].
Also, tailored efficient optimizations for varying number of
computation parties have been explored, e.g., [47], [105],
[34], [35], [79], [106]. Moreover, MPC research considers
different assumptions regarding adversarial behavior such as
the well-known semi-honest [47], [28] and malicious security
model [42], [71], [73], [72], [29]) as well as numbers of
corrupted computation parties (e.g., honest majority [59],
[61] or dishonest majority/full threshold security [41], [73],
[28], [105], [47]). Beyond running the computation among
several non-colluding parties, another well-established system
model (which we use in our work) is outsourcing, where the
data owners secret-share their private input data among a set
of non-colluding computing parties which then run the private
computation on their behalf [1], [130], [6].

D. Approximate Secure Computation

To improve efficiency of MPC, few works already consid-
ered approximations of the exact computation. Such approxi-
mations in MPC include using integer or fixed-point instead of

floating-point operations (too many works to cite), approxima-
tions in genomic computation [8], and in privacy-preserving
machine learning such as for division [33], activation func-
tions [98], [63], [30], and completely changing the classifier
to be MPC-friendly [111]. Also, for FHE, approximations are
used such as in the approximate HE scheme CKKS [37], which
is implemented in the HEAAN library10 and was used for
approximate genomic computations in [74]. In this work, we
propose for the first time to use approximations to substantially
improve efficiency of FL when combined with MPC and give
detailed evaluations on the errors introduced thereby.

E. Secure Aggregation

Performing secure aggregation without revealing anything
about the aggregated input values beyond what can be inferred
from the output was already investigated more than 10 years
ago, for example, in the context of smart metering, e.g., [50],
[81]. It has come a long way since then, resulting in practical
solutions for real-world applications nowadays.

For example, Prio [39] introduces secure protocols for
aggregate statistics such as sum, mean, variance, standard
deviation, min/max, and frequency. It uses additive arithmetic
secret sharing, offers full-threshold security among a small
set of servers running the secure computation, and validates
inputs to protect against malicious clients. Prio+ [2] optimizes
client computation and communication compared to [39] with
a Boolean secret sharing-based client input validation and
an additional conversion from Boolean to arithmetic sharing.
Similar to our work, it has a multi-server setup to jointly
compute statistical functions on private inputs. Compared to
Prio+ [2], we optimize the naive bit-to-arithmetic conversion
presented in [2] for our FSecAgg protocol (cf. §III-A), resulting
in reduced communication cost of 2.4× with exact results and
4× with our novel approximating variant for n = 105, where n
is the number of clients. Popa et al. [108] specifically focus on
secure location-based aggregation statistics, Joye et al. [66] on
time-series data, and PrivEx [49] on traffic data in anonymous
communication.

So et al. [121] point out that differences among securely
aggregated updates across multiple training iterations can also
leak information about the contribution of individual clients.
Most existing secure aggregation schemes are executed on one
training iteration, i.e., they cannot protect against multi-round
attacks. An exception is POSEIDON [116] which runs FL fully
under encryption, but at the cost of significant computational
overhead on clients’ and server’s side. Instead, So et al. [121]
propose to organize clients in batches that can only be chosen
together for a training iteration. This approach is orthogonal
and fully compatible with ScionFL.

F. Poisoning Attacks & Defenses

Poisoning attacks can be categorized into untargeted and
targeted attacks based on the goals of the attacker [52]. In the
former case, the attacker aims to corrupt the global model so
that it reduces or even destroys the performance of the trained

10https://github.com/snucrypto/HEAAN

16

https://github.com/snucrypto/HEAAN

model for a large number of test inputs, yielding a final global
model with a high error rate [52], [118], [11]. In the latter case,
the attacker aims to activate attacker-defined triggers that cause
a victim model to do targeted misclassifications, which can
then be activated in the inference phase [20], [124]. Notably,
other classification results without the trigger behave normally
and main task accuracy remains high. The second class of
attacks is sometimes also referred to as backdoor attacks [10].
As discussed in §IV, we consider only untargeted poisoning
following the argument in [119]: This class of attacks is
particularly challenging as service providers may not notice
they are under attack given they do not know which accuracy is
achievable in a fresh training of a new model. Also, even small
accuracy reductions can lead to serious economical losses.

Below, we detail three state-of-the-art untargeted poisoning
attacks, LIE [11], Fang [52], and Shejwalkar et al. [118], which
are most relevant to our work.

– Little is Enough (LIE) attack [11]: In LIE [11], malicious
clients manipulate their local updates by adding noise drawn
from the normal distribution to “clean” updates they created
following the normal training process to cause a disorienta-
tion. LIE assumes independent and identically distributed (iid)
data and was tested against various robust aggregations such
as trimmed-mean [139].

– Fang et al. [52]: The authors of [52] formulate their
untargeted poisoning attack as an optimization problem where
the manipulated updates aim at maximally disorienting the
global model from the benign direction. However, they assume
the adversary to either know or guess the deployed (robust)
aggregation mechanism. Additionally, the attack was shown
to be ineffective for iid as well as severely unbalanced non-iid
training datasets [118].

– Shejwalkar and Houmansadr [118]: The attacks of [118]
follow a similar idea as [52]: they maximize the distances
between benign and malicious updates while using the evasion
of outlier-based detection mechanisms as a boundary. Con-
cretely, they formalize the following “Min-Max” optimization
problem:

argmax
γ

max
i∈[n]
∥∇m −∇i∥2 ≤ max

i,j∈[n]
∥∇i −∇j∥2 (13)

∇m = favg(∇{i∈[n]}) + γ∇p, (14)

where favg(∇{i∈[n]}) is the average gradient and γ ∇p is the
adversary’s perturbation vector, i.e., either the inverse unit
vector of the (simulated) benign gradients, the inverse average
standard deviations, or the average gradient with flipped sign
of all updates. For details, we refer to §IV in [118].

Note that although the authors of [118] suggest several
flavours of their attack based on different levels of adversarial
knowledge, we compare to their Min-Max attack as it (i) does
not make the unrealistic assumption that an adversary knows
defenses in place and (ii) it is more destructive than LIE [11]
for almost all datasets [118]. We do not consider Fang et
al. [52]’s attack as it requires the guess of the robust ag-
gregation rule, i.e., defense mechanism, which is unrealistic

in a real-world deployment. Taking those considerations into
account, we evaluate the robustness of ScionFL-Aura against
the state-of-the-art Min-Max attack of [118] in §IV-B.

Poisoning Defenses: Simple parameter-wise averaging is very
sensitive to outliers and, thus, can easily hamper accuracy.
Therefore, Byzantine-robust defenses aim to make FL robust
against (untargeted) attacks. To do so, Krum [21] selects only
one local update, namely the one with the closest n−m− 2
local updates as update for the global model, where n is
the number of clients and m the number of anticipated
malicious clients. Multi-krum [21] extends this idea to a
selection of c (instead of just one) updates. Median [139] is an
another coordinate-wise aggregation selecting the coordinate-
wise median of each update parameter. A straightforward idea
to assess (to some extent) if a specific gradient is malicious
is to use an auxiliary dataset (rootset) at the aggregator to
validate the performance of the updated global model [32],
[48], [85]. FLTrust [32] and FLOD [48] use the ReLU-clipped
cosine-similarity/Hamming distance between each received
update and the aggregator-computed baseline update based
on the auxiliary dataset. FLDetector [141] detects malicious
clients by checking their model updates’ consistency based on
historical model updates. RSA [85] uses an L1-norm-based
regularization, which is also comparing to the aggregator-
computed baseline update. The recently proposed Divider
and Conquer (DnC) aggregation [118] combines dimension-
ality reduction using random sampling with an outlier-based
filtering.

The so far discussed poisoning defenses are not compat-
ible with secure aggregation protocols in a straight-forward
manner or lead to an intolerable overhead. Only two works,
namely FLAME [102] and BaFFLe [5] simultaneously con-
sider both threats. Concretely, FLAME [102] uses a density-
based clustering to remove updates with significantly different
cosine distances (i.e., different directions) combined with clip-
ping (for more subtle manipulations). BaFFLe [5] introduces
a feedback loop enabling a subset of clients to evaluate each
global model update, while being compatible with arbitrary
secure aggregation schemes.

Recently, ELSA [110] considered a distributed aggregator
setup and proposed methods to address poisoning attacks
from malicious clients. However, ELSA’s defense methods are
designed to work independently on the gradients of each client,
specifically using L2 and L∞ norms. ELSA does not support
defenses such as trimmed mean, median, or Krum [21],
as already mentioned in their work. Consequently, ELSA’s
defense mechanism is not sufficiently robust to guard against
stronger attacks like Min-Max. The defenses against these
types of attacks require collective information about the
gradients instead of treating each gradient individually. To
illustrate this point, we conducted an evaluation of ELSA
against the Min-Max attack with 10% corruption on a three-
layer Convolutional Neural Network using the FashionMNIST
dataset. Even after 1000 epochs of training, we observed a
significant drop in accuracy to below 70%.

17

G. Global Model Privacy

Secure aggregation addresses the concern of the aggregator
observing individual model updates in the clear, potentially
leading to the leakage of private information (cf. §I-B).
However, existing works (e.g., [91]) have noted that even
from the aggregated global model (computed via secure ag-
gregation but distributed in the clear), attackers can deduce
private information of individual clients, e.g., through model
inversion attacks [133]. To mitigate such issues, one can
apply orthogonal techniques such as differential privacy on
top of ScionFL [69], [103]. Additionally, there are works
like HyFL [92] proposing a framework to ensure full model
privacy in FL, but, they do not consider communication-
efficient secure aggregation, as in ScionFL.

APPENDIX B
PRELIMINARIES

This section provides relevant details regarding the primi-
tives used in this work. We begin with providing the necessary
MPC background and protocols. The protocols are presented
in a generic manner because our approach is not restricted to
any specific MPC setting. Hence, some of the sub-protocols
are treated as black-boxes that can be instantiated using any
efficient protocols in the underlying MPC setting. Since we
consider dishonest majority setting to work with, we utilize
the (semi-honest variant of) primitives from [45], [41], [42],
[17] in a black-box manner.

A. MPC Protocols

In this section, we go over the details of the underlying MPC
protocols used in our scheme. We consider three MPC servers,
S = {S1,S2,S3}, to which the clients delegate the aggregation
computation, as shown in Fig. 1. All the operations are carried
out in either an ℓ-bit ring, Z2ℓ , or a binary ring, Z2 . Before we
go into the protocols, we provide additional details regarding
the masked evaluation scheme [87], [17], [125] discussed
in §III, starting with the sharing semantics.

Sharing Semantics: We use two different sharing schemes:
1) [·]-sharing. A value v ∈ Z2ℓ is said to be [·]-shared
among MPC servers in S, if each server Si, for i ∈ [3],
holds vi ∈ Z2ℓ such that v1 + v2 + v3 = v.
2) ⟨·⟩-sharing. In this sharing, every v ∈ Z2ℓ is associated
with two values: a random mask λv ∈ Z2ℓ and a masked
value mv ∈ Z2ℓ , such that v = mv + λv. Here, the share of
an MPC server is defined as a tuple of the form (mv, [λv]).

Handling Decimal Values: The MPC protocol we use is
designed over a ring architecture, while the underlying FL
algorithms handle decimal numbers. To address this compat-
ibility issue, we employ the well-known Fixed-Point Arith-
metic (FPA) technique [33], [98], [97], which encodes a deci-
mal number in ℓ-bits using the 2’s complement representation.
The sign bit is represented by the most significant bit, while
the f least significant bits are kept for the fractional component.
We use ℓ = 32 bit values with f = 16 in this work.

We will now go over the MPC protocols used in our scheme.
We assume that the protocols’ inputs are in ⟨·⟩-shared form,
and that the output is generated in ⟨·⟩-shared form among
the MPC servers.
Inner Product Computation: For simplicity, consider the
multiplication of two values x, y ∈ Z2ℓ as per the ⟨·⟩-sharing
semantics. We have

z = xy = (mx + λy)(mx + λy)

= mxmy +mxλy +myλx + λxλy.

Since the λ values are independent of the underlying secret,
the servers can compute [·]-shares of the term λxλy during
preprocessing using the ΠPre

IP () protocol [41], [17]. This en-
ables the servers to locally compute [·]-shares of z during the
online phase.

In addition to the above observation, since we operate
over FPA representation, truncation [33], [98] must be per-
formed in order to keep the result z in FPA format after a mul-
tiplication. For this, we use the truncation pair method [97],
wherein a tuple of the form (r, r/2f) is generated in ⟨·⟩-shared
form among the servers during preprocessing using the ΠTr()
protocol [42]. Then, with very high probability, we have

z/2f = (z − r)/2f + r/2f .

Hence, during the online phase, servers publicly open the
value (z − r) and apply the above transformation to obtain
the ⟨·⟩-shares of truncated z, completing the protocol.

For the case of the inner-product computation (Fig. 13),
the task can be divided into d multiplications and the result
obtained accordingly. Furthermore, because the desired result
is the sum of the individual multiplication results, servers
can sum them and communicate in a single shot, saving
communication cost [105].

Preprocessing:
1. Execute ΠPre

IP ([λ⃗X], [λ⃗Y]) to obtain [γz] with γz = λ⃗X ⊙ λ⃗Y .
2. Execute ΠTr() to generate ([r], ⟨r/2f⟩).
Online:
1. Sj , for j ∈ [τ], locally computes as follows (∆ = 1 if j = 1, else 0):
• [(z − r)]j = ∆ · (m

X⃗
⊙ m

Y⃗
) + m

X⃗
⊙ [λ

Y⃗
]j + m

Y⃗
⊙ [λ

X⃗
]j +

[γz]j − [r]j .
2. Sj , for j ∈ [τ], sends [(z − r)]j to S1, who computes (z − r) and
sends to all the servers.
3. Locally compute ⟨z⟩ = ⟨(z − r)/2f⟩+ ⟨r/2f⟩.

Protocol ΠIP(⟨X⃗d×1⟩, ⟨Y⃗d×1⟩, f)

Fig. 13: Inner product protocol.

Bit-to-Arithmetic Protocol: Given the Boolean sharing
of b ∈ Z2 , protocol ΠBitA computes the arithmetic sharing
of the bit b over Z2ℓ . As shown in Eq. 15, the arithmetic
equivalent b̃ for a bit b = mb ⊕ λb can be obtained as

b̃ = mb ⊕ λb = Mb + (1− 2mb) · Λb. (15)

Here, Mb and Λb denote the arithmetic equivalents of mb

and λb respectively. In our protocol shown in Fig. 14, MPC
servers invoke ΠPre

BitA protocol [42], [105] on the Boolean [·]-
shares of λb in the preprocessing phase to obtain its respective

18

arithmetic shares. This enables the servers to locally compute
an additive sharing of b̃ during the online phase, as shown
above. The rest of the steps proceed similar to the inner-
product protocol and we omit the details.

Preprocessing:
1. Execute ΠPre

BitA([λb]
B) to obtain [λb].

2. Locally generate ([r], ⟨r⟩) for a random r ∈ Z2ℓ .
Online:
1. Sj , for j ∈ [τ], locally computes as follows (∆ = 1 if j = 1, else 0):
• [(z − r)]j = ∆ ·mb + (1− 2mb) · [λb]j − [r]j .

2. Sj , for j ∈ [τ], sends [(z − r)]j to S1, who computes (z − r) and
sends to all the servers.
3. Locally compute ⟨z⟩ = ⟨(z − r)⟩+ ⟨r⟩.

Protocol ΠBitA(⟨b⟩B)

Fig. 14: Bit-to-arithmetic conversion protocol.

To instantiate ΠPre
BitA, we use SPDZ-style computations [71],

[113], where oblivious transfer (OT) instances [9], [27], [40]
are used among every pair of servers. Let Πij

OT denote an
instance of 1-out-of-2 OT with Si being the sender and Sj
being the receiver. Here, Si inputs the sender messages (x0, x1)
while Sj inputs the receiver choice bit c ∈ Z2 and obtains xc
as the output, for x0, x1 ∈ Z2ℓ .

OT Instance - I: [b]1[b]2
1. S1 samples random r12 ∈ Z2ℓ .
2. S1 and S2 executes Π12

OT((r12, r12 + [b]1), [b]B2).
3. S1 sets y112 = −r12 and S2 sets the OT output as y212.

OT Instances - II & III: [b]1[b]3, [b]2[b]3
These are similar to the computation of [b]1[b]2 discussed above.

OT Instances - IV & IV: [b]1[b]2[b]3

1. Computation can be broken down to ([b]1[b]2) · [b]3 = (y112 + y212) ·
[b]3.
2. Execute Π13

OT for y112 · [b]B3 . Let z113 and z213 denote the respective
shares of S1 and S3.
3. Execute Π23

OT for y212 · [b]B3 . Let z123 and z223 denote the respective
shares of S2 and S3.

Computation of final shares
S1: [b]1 = b1 − 2y112 − 2y113 + 4z113.
S2: [b]2 = b2 − 2y212 − 2y123 + 4z123.
S3: [b]3 = b3 − 2y213 − 2y223 + 4z213 + 4z223.

Protocol ΠPre
BitA([b]

B)

Fig. 15: Bit-to-arithmetic preprocessing.

To generate the arithmetic sharing of λb from its Boolean
shares in [·]-shared form, a simple method would be to apply
a 3-XOR using a daBit-style approach [113], but would result
in 12 executions of 1-out-of-2 OTs. However, as pointed out
in Prio+ [2], the cost could be further optimized due to the
semi-honest security model being considered in this work
rather than the malicious in [113]. Since Prio+ operates over
two MPC servers, we extend their optimized daBit-generation
protocol (cf. [2, daBitGenp]) to our setting with three servers.

Given two bits bi, bj ∈ Z2 , the arithmetic share corre-
sponding to their product can be generated using one instance
of Πij

OT with (x0 = r, x1 = r+bi) as the OT-sender messages
and bj as the OT-receiver choice bit. With this observation and
using Eq. 8, servers can compute [·]-shares corresponding to

the bit λb using five OT invocations. The formal details appear
in Fig. 15.

Preprocessing:
1. Execute ΠPre

BitA([λM⃗
]B) to obtain [λ

M⃗
].

2. Locally generate ([r], ⟨r⟩) for a random r ∈ Z2ℓ .
Online:
1. Sj , for j ∈ [τ], locally computes as follows (∆ = 1 if j = 1, else 0):
• [(z − r)]j = ∆ · Agg-R(m

M⃗
) + (1− 2m

X⃗
)⊙ [λ

Y⃗
]j − [r]j .

2. Sj , for j ∈ [τ], sends [(z − r)]j to S1, who computes (z − r) and
sends to all the servers.
3. Locally compute ⟨z⟩ = ⟨(z − r)⟩+ ⟨r⟩.

Protocol Πsum
BitA(⟨M⃗d×1⟩B)

Fig. 16: Bit-to-arithmetic sum protocol.

For the case of approximate bit conversion discussed
in §III-B, the number of OT instances can be further reduced
to three following Eq. 10. Concretely, the conversion involves
computation of just [b]1[b]2[b]3 and hence the OT instances II
& III described in Fig. 15 are no longer needed.

When computing the sum of bits directly, the online com-
munication can be optimized following inner-product protocol
and the resulting protocol Πsum

BitA is given in Fig. 16.

Bit Injection Protocol: Given a bit b = mb ⊕ λb and s =
Ms + Λs, the bit injection operation involves computing the
value b · s that can be obtained as

b · s = (Mb + (1− 2mb) · Λb) · (Ms + Λs)

= MbMs +MbΛs + (1− 2mb) · (ΛbMs + ΛbΛs). (16)

Given a boolean vector M⃗d×1 and an arithmetic vec-
tor N⃗d×1 in the secret-shared form, protocol ΠBI computes the
inner product of the two vectors, defined as z = M⃗⊙ N⃗. This
protocol is similar to the inner product protocol ΠIP (Fig. 13),
with the main difference being that M⃗ is a boolean vector.

During the preprocessing, servers first generate the arith-
metic shares of λ

M⃗
from its boolean shares, similar to the bit-

to-arithmetic protocol ΠBitA in Fig. 14. In this case, ΠPre
BI is

same as the ΠPre
IP primitive discussed in Fig. 13. The remaining

steps are similar to the ΠIP in Fig. 13 and we omit the details.

Preprocessing:
1. Execute ΠPre

BitA([λM⃗
]B) to obtain [λ

M⃗
].

2. Execute ΠPre
BI ([λM⃗

], [λ
N⃗
])a to obtain [γ

Q⃗
] with γ

Q⃗
= λ

M⃗
◦ λ

N⃗
.

3. Execute ΠTr() to generate ([r], ⟨r/2f⟩).
Online:
1. Sj , for j ∈ [τ], locally computes as follows (∆ = 1 if j = 1, else 0):
• T 1

j = ∆ · (m
M⃗

⊙m
N⃗
) + m

M⃗
⊙ [λ

N⃗
]j .

• T 2
j = ((1− 2m

M⃗
) ◦m

N⃗
)⊙ [λ

M⃗
]j + (1− 2m

M⃗
)⊙ [γ

Q⃗
]j .

• [(z − r)]j = T 1
j + T 2

j − [r]j .
2. Sj , for j ∈ [τ], sends [(z − r)]j to S1, who computes (z − r) and
sends to all the servers.
3. Locally compute ⟨z⟩ = ⟨(z − r)/2f⟩+ ⟨r/2f⟩.

aΠPre
BI is same as ΠPre

IP (Fig. 13) in the setting considered in this work.

Protocol ΠBI(⟨M⃗d×1⟩B, ⟨N⃗d×1⟩, f)

Fig. 17: Bit injection (sum) protocol.

19

B. Binomial Sum

Lemma B.1 (Expected Values). Given n, p ∈ Z, we have

1)
n∑

p=0
p ·
(
n
p

)
= n · 2n−1.

2)
⌊n/2⌋∑
p=0

2p ·
(
n
2p

)
=

⌊n/2⌋∑
p=0

(2p+ 1) ·
(

n
2p+1

)
= n · 2n−2.

Proof. Consider the binomial formula for (1 + y)n, given by
n∑

p=0

(
n

p

)
yp = (1 + y)n (17)

Differentiating Eq. (17) with respect to y will give
n∑

p=0

(
n

p

)
p · yp−1 = n · (1 + y)n−1 (18)

Substituting y = 1 in Eq. (18) gives the first result (1).
Similarly, setting y = −1 in Eq. (18) gives

n∑
p=0

(−1)p−1p ·
(
n

p

)
= 0 (19)

Combining Eq. (19) with the first result (1) will give the
second result (2).

C. Overhead of HSQ and KSQ Quantization

For being able to use an efficient GPU-friendly implementa-
tion of the randomized Hadamard transform, which we use for
both rotating the gradients in HSQ and for calculating Kashin’s
coefficients in KSQ, we require that the gradients’ size to be
a power of 2. A simple solution to meet this requirement is
padding. For example, for the LeNet architecture with ≈ 60k
parameters, we can pad the gradient to 216 = 65536 entries
with a small resulting overhead of ≈ 6.2% (i.e., using ≈
1.06 bits per coordinate instead of 1). However, a more
sophisticated approach is to divide the gradient into decreasing
power-of-two-sized chunks and inflate only the last (smallest)
chunk.11 For example, for the LeNet architecture, we can de-
compose it into chunks of size 32768, 16384, 8192, 4096, 512,
that sum up to 61952 (with an additional overhead of two
floats per chunk) with a resulting overhead of only ≈ 1.44%.
Also, for Kashin’s representation, we use λ = 1.15 for each
chunk (an extra 15% of space) as used in previous works (e.g.,
[129]). To summarize, we state these resulting overheads
in Tab. VI.

Architecture n SQ HSQ KSQ

LeNet 61706 61706 62272 73024
ResNet9 4903242 4903242 4915456 5767424
ResNet18 11220132 11220132 11272192 12583040

TABLE VI: Exact number of bits used for different network archi-
tectures and quantization schemes compared to the baseline number
of coordinates n.

11The size of the last chunk is kept above some threshold, e.g., 29 to keep
the overhead of the scales small.

APPENDIX C
SCIONFL: ADDITIONAL DETAILS

This section provides addition details of our FL frame-
work ScionFL presented in §III. We begin with providing
additional details regarding the approximate bit conversion
discussed in §III-B.

A. Multi-bit Quantization Schemes

This section describes how our scheme ScionFL can be
extended to support multi-bit linear quantization schemes, in
which each coordinate is classified into more than two levels,
resulting in each coordinate being represented by more than a
single bit.

For instance, consider the quantization in TernGrad [134],
where each coordinate is compressed to one of the three
levels {−1, 0, 1}. Here, each coordinate can be represented
using two bits, say b1 and b2 and the quantized level can be
computed as 2b1 − b2.

To use our scheme, each client Ci share the bits separately
using the underlying boolean secret sharing scheme, i.e., ⟨b1⟩Bi
and ⟨b2⟩Bi . MPC servers use our instantiations of FSecAgg

functionality discussed in §III-A to aggregate each of the bits
and obtain the result in arithmetic sharing format, i.e, ⟨b1⟩ and
⟨b2⟩. The final result can be locally computed by the MPC
servers as 2⟨b1⟩ + ⟨b2⟩, since the underlying MPC protocol
used in ScionFL is linear.

B. Approximate Bit Conversion

Lemma III.1 (Expected Values). Given a bit b = ⊕q
i=1bi

and b = terms + termm + termp with

terms =
∑

{be}∈Q|1|

b̃e, termm =

q−1∑
k=2

(−2)k−1
∑

{be1 ,...,bek}∈Q|k|

b̃e1 b̃e2 . . . b̃ek ,

termp = (−2)q−1
∏
be∈Q

b̃e,

we have E[terms | b] = q/2, E[termm | b] = (q-1) mod 2 −
q/2, and E[termp | b] = b− (q-1) mod 2.

Proof. For the analysis, we use the truth table of b, denoted
by Tb, which has 2q rows. Half of the rows in Tb correspond
to b = 0, while the other half correspond to b = 1. The
truth table for three shares (q = 3) is given in Tab. VII as a
reference.

b b1 b2 b3 terms termm termp b̃
0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 1
1 0 1 0 1 0 0 1
0 0 1 1 2 -2 0 0
1 1 0 0 1 0 0 1
0 1 0 1 2 -2 0 0
0 1 1 0 2 -2 0 0
1 1 1 1 3 -6 4 1

TABLE VII: Truth table for b = b1⊕b2⊕b3. The rows corresponding
to b = 0 are highlighted . b̃ denotes the arithmetic equivalent of b.

20

Sum Term (terms): For each row of the form (b1, . . . , bq)
in Tb, terms equals b̃1+ . . .+ b̃q, which can be interpreted as
the number of b̃i’s selected out of the q possible. Furthermore,
there are a total of

(
q
k

)
rows with sums equal to k, with k being

odd corresponding to the row for b = 1 and k being even
corresponding to the row for b = 0. As a result, given b =
0, the expectation of the sum term can be calculated as the
product of 1/2q−1 (corresponding to rows in Tb with b = 0)
and the sum of terms of the form k ·

(
q
k

)
with k being even.

Using Lem. B.1 in §B, we get

E[terms | (b = 0)] =
1

2q−1
·
⌊q/2⌋∑
k=0

2k

(
q

2k

)
=

1

2q−1
· q · 2q−2 = q/2.

Similarly, we obtain E[terms | (b = 1)] = q/2. To
summarize, we have E[terms | b] = q/2.

Product Term (termp): The product of all the q shares will be 1
only if all the shares are 1, otherwise it will be 0. Moreover, all
shares of b being 1 correspond to b = 1 if q is odd, and b = 0
otherwise. Now, when q is odd then termp = (−2)q−1 with
probability 1

2q−1 (when all the shares of b are 1, given that
at least one share is 1 as we are in the case b = 1), and 0
otherwise. In this case, we can write

E[termp | (b = 0 ∧ q is odd)] =
1

2q−1
· 0 = 0

E[termp | (b = 1 ∧ q is odd)] =
1

2q−1
· (−2)q−1 = 1

Similarly, the case for even q can be written as

E[termp | (b = 0 ∧ q is even)] =
1

2q−1
· (−2)q−1 = −1

E[termp | (b = 1 ∧ q is even)] =
1

2q−1
· 0 = 0

The above observation can be summarized as E[termp | b] =
b− (q-1) mod 2.

Middle Term (termm): Given E[b] = b, E[terms | b]
and E[termp | b], the expectation of termm can be calculated
as

E[termm | b] = E[b]−E[terms | b]−E[termp | b]
= b− q/2− (b− (q-1) mod 2) = (q-1) mod 2− q/2.

This concludes the proof of Lem. III.1.

Efficiency Analysis: We measure the efficiency gains
achieved by our approximation method, discussed in §III-B, by
counting the number of cross terms12 that must be computed
securely using MPC. Cross terms are terms that compute the
product of two or more shares. While the exact amount of
computation and communication varies depending on the MPC
protocol and setting (e.g., honest vs. dishonest majority or
semi-honest vs. malicious security), we believe cross terms
can provide a protocol-independent and realistic assessment
of scalability.13

12Terms for which interaction among MPC servers is necessary.
13We acknowledge that the analysis cannot provide an exact comparison,

owing to the presence of the product term in the approximation. e.g.,
depending on the underlying MPC setup, the product term (termp) may
require more communication than the middle terms (termm), and therefore
the effect of approximation may be minimized.

Computation #cross-terms

Exact (b̃) Approximate (b̂)

Bit-to-Arithmetic 2q − q− 1 1
Bit Injection 2q + q2 − 2q− 1 q2 − q+ 1

TABLE VIII: Efficiency analysis via approximate bit conversion with
respect to the #cross-terms involved.

Tab. VIII provides details regarding the number of cross
terms involved in obtaining the arithmetic equivalent of b =
⊕q

i=1bi. The gains increase significantly with a higher number
of shares q due to the exponential growth in the number of
cross terms for the exact computation. Tab. VIII also provides
details for a bit injection operation in which the product of
a Boolean bit b and a scale value s is securely computed.
Given s =

∑q
i=1 si, the value b · s can be computed by first

computing either b̃ or b̂ (depending on whether an exact or
approximate value is required) and then multiplying by s.

C. ScionFL-Aura: Additional Details

In this subsection, we provide additional details of
our ScionFL-Aura.

Sub-protocols: Here, we provide the details of the sub-
protocols used in ScionFL-Aura (cf. Alg. 1 in §IV-A).

Algorithm 2 Quantized Aggregation

1: procedure AGGREGATE({σ⃗Yi , s
min
Yi

, smax
Yi
}i∈α)

2: Z⃗ ← 0⃗
3: for k ← 1 to α do
4: Z⃗ ← Z⃗ +

(
smin
Yk
⊕ σ⃗Yk ◦ (s

max
Yk
− smin

Yk
)
)

5: end for
6: Z⃗ ← Z⃗/α
7: return Z⃗
8: end procedure

Alg. 2 computes the aggregation of α quantized vectors. As
shown in Eq. 4, the dequantized value of a vector Y⃗ , given its
quantized form (σ⃗Y , s

min
Y , smax

Y), can be computed as

Y⃗ = smin
Y ⊕ σ⃗Y ◦ (smax

Y − smin
Y).

The above operation essentially places smin
Y in those positions

of the vector Y⃗ with the corresponding bit in σ⃗Y being zero,
and the rest with smax

Y .

Algorithm 3 L2-Norm Computation (Quantized)

1: procedure L2-NORMQ(σ⃗Y , s
min
Y , smax

Y)
2: β ← LEN(σ⃗Y) // Dimension of σ⃗Y

3: NO ← SUM(σ⃗Y) // Number of ones in σ⃗Y

4: NZ ← β −NO // Number of zeros in σ⃗Y

5: return
√
NZ · (smin

Y)2 +NO · (smax
Y)2

6: end procedure

Alg. 3 computes the L2-norm of a quantized vector. As
discussed in §II-D, a quantized vector Y⃗σ consists of a binary
vector σ⃗Y and the respective min. and max. scales smin

Y /smax
Y .

In this case, we observe that the squared L2-norm can be
obtained by first counting the number of zeroes and ones in

21

0 500 1000 1500

0.25

0.50

0.75
V

al
id

at
io

n
A

cc
u

ra
cy

No compression

0 500 1000 1500

0.25

0.50

0.75

HSQ

0 500 1000 1500

0.25
0.50
0.75

KSQ

0 500 1000 1500

0.5

1.0

T
ra

in
A

cc
u

ra
cy

0 500 1000 1500

0.5

1.0

0 500 1000 1500

0.5

1.0

0 500 1000 1500
0

2

N
u

m
of

at
ta

ck
er

s

0 500 1000 1500
0

2

0 500 1000 1500
0

2

Baseline

Attack only

Attack + defense

Num of attackers with defense

Num of attackers w/o defense

Fig. 18: Effect of Min-Max attack [118] on training VGG11 with CIFAR10 for 1500 aggregation rounds with and without our defense ScionFL-
Aura assuming 20% of N = 50 clients are corrupted. Note that the number of attackers included in the global update varies even without
defense due to random client selection.

the vector, denoted by NZ and and NO respectively, followed
by multiplying them with the square of the respective scales
and adding the results, i.e. NZ · (smin

Y)2 +NO · (smax
Y)2. Fur-

thermore, computing the number of ones NO corresponds to
the bit-aggregation of the vector Y⃗ , for which our aggregation
methods discussed in §III-A can be utilized.

Algorithm 4 Cosine Distance Calculation

1: procedure COSINE((σ⃗Y , s
min
Y , smax

Y), S⃗)
2: LY

2 ← L2-NORMQ(σ⃗Y , s
min
Y , smax

Y)
3: LS

2 ← ∥S⃗∥ // Computes L2-norm
4: α← SUM(S⃗) // Sum of elements of S⃗
5: β ← INNER-PRODUCT(σ⃗Y , S⃗)
6: γ = smin

Y · α+ β · (smax
Y − smin

Y)
7: return γ/(LY

2 · LS
2)

8: end procedure

Alg. 4 is used to compute the cosine distance between a
quantized vector Y⃗σ and a reference vector S⃗. The cosine
distance is given by Y⃗σ⊙S⃗

∥Y⃗σ∥·∥S⃗∥
, where ∥·∥ corresponds to the

L2-norm of the input vector. Using Eq. 4, we can write

Y⃗σ ⊙ S⃗ = (smin
Y ⊕ σ⃗Y ◦ (smax

Y − smin
Y))⊙ S⃗

= smin
Y ⊙ S⃗ + (σ⃗Y ⊙ S⃗) · (smax

Y − smin
Y).

Thus, the inner product computation of Y⃗σ ⊙ S⃗ reduces to
computing σ⃗Y ⊙ S⃗, followed by two multiplications.

Evaluation on VGG11: In addition to our results in §IV-B,
we evaluate the Min-Max attack on VGG11 trained with CI-
FAR10. The experimental setup is identical to §IV-B. The
results are shown in Fig. 18.

Similarly as for ResNet9 (cf. Fig. 12), the Min-Max at-
tack substantially reduces the validation accuracy when train-
ing VGG11: We observe drops of up to 36.8%. However, on
average, VGG11 is less impacted by the attack. Concretely,
only 15% of the iterations observe a validation accuracy
reduction of about 10% or more when using no compression.
One third of the training rounds are impacted by about 10%
or more when using Kashin’s representation (KSQ) while with
the Hadamard transform (HSQ) only very few training rounds
showed a significant accuracy reduction. Thus, HSQ seems to
be more robust against untargeted poisoning.

With ScionFL-Aura, the accuracy reduction is still smaller
for all variants. With HSQ, on average 0.28 malicious updates
are included in global updated instead of 2.24 without defense.
With respect to the validation accuracy, the difference between
having no attack and employing ScionFL-Aura when under
attack is less than 4% in almost all training iterations. When
using KSQ, a global update includes just 0.44 malicious
updates on average, and the attack impact is at least halved in
two third of the training iterations.

22

	Introduction
	Our Contributions
	Related Work

	Problem Statement
	Aggregation for Federated Learning
	Stochastic Quantization
	MPC for Secure Aggregation
	Secure Quantized Aggregation

	Our Framework: ScionFL
	MPC-based Aggregation
	Approximate Bit Conversion in MPC
	Secure Bit Aggregation with Global Scales
	Accuracy Evaluation
	Detailed Communication Costs
	Performance Evaluation

	Defending Untargeted Poisoning Attacks
	Our Defense: ScionFL-Aura
	Effectiveness Evaluation

	References
	Appendix A: Related Work & Background Information
	Stochastic Quantization
	Additional Compression Techniques
	Secure Multi-party Computation
	Approximate Secure Computation
	Secure Aggregation
	Poisoning Attacks & Defenses
	Global Model Privacy

	Appendix B: Preliminaries
	MPC Protocols
	Binomial Sum
	Overhead of HSQ and KSQ Quantization

	Appendix C: ScionFL: Additional Details
	Multi-bit Quantization Schemes
	Approximate Bit Conversion
	ScionFL-Aura: Additional Details

