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ABSTRACT

Pretrained large language models (LLMs) are strong in-context learners that are
able to perform few-shot learning without changing model parameters. However,
as we show, fine-tuning an LLM on any specific task generally destroys its in-
context ability. We discover an important cause of this loss, format specialization,
where the model overfits to the format of the fine-tuned task and is unable to output
anything beyond this format. We further show that format specialization happens
at the beginning of fine-tuning. To solve this problem, we propose Prompt Tun-
ing with MOdel Tuning (ProMoT), a simple yet effective two-stage fine-tuning
framework that preserves in-context abilities of the pretrained model. ProMoT
first trains a soft prompt for the fine-tuning target task, and then fine-tunes the
model itself with this soft prompt attached. ProMoT offloads task-specific for-
mats into the soft prompt that can be removed when doing other in-context tasks.
We fine-tune mT5 XXL with ProMoT on natural language inference (NLI) and
English-French translation and evaluate the in-context abilities of the resulting
models on 8 different NLP tasks. ProMoT achieves similar performance on the
fine-tuned tasks compared with vanilla fine-tuning, but with much less reduction
of in-context learning performances across the board. More importantly, ProMoT
shows remarkable generalization ability on tasks that have different formats, e.g.
fine-tuning on a NLI binary classification task improves the model’s in-context
ability to do summarization (+0.53 Rouge-2 score compared to the pretrained
model), making ProMoT a promising method to build general purpose capabilities
such as grounding and reasoning into LLMs with small but high quality datasets.
When extended to sequential or multi-task training, ProMoT can achieve even
better out-of-domain generalization performance.

1 INTRODUCTION

Natural language processing (NLP) has recently been revolutionized by scaling up transformer based
large language models (LLMs) together with large scale pretraining (Vaswani et al., 2017; Devlin
et al., 2019; Raffel et al., 2020a; Brown et al., 2020; Rae et al., 2021; Chowdhery et al., 2022; Smith
et al., 2022). In addition to improved downstream performances, these pretrained LLMs can perform
a broad array of unforeseen tasks when provided with a few examples in-context. This in-context
few-shot capability allows users to flexibly re-purpose LLMs for specific tasks with a minimum
amount of supervised data, making it extremely convenient for fast prototyping and experimentation,
especially in the low data regime.

However, even the largest and most advanced LLMs leave a lot to be desired. Grounding and elim-
inating hallucinations (Maynez et al., 2020), reasoning and logical clarity (Creswell & Shanahan,
2022), mathematics (Brown et al., 2020; Chowdhery et al., 2022; Noorbakhsh et al., 2021) are just
a few examples where LLMs still lag behind the best human performances, or in some cases, the
fine-tuned performances of the same model. While in many cases, scaling improve these qualities, it
is possible that more than a few orders of magnitude in additional scale would be necessary to bridge
these gaps, making a pure scaling solution impractical in the near term. In addition, it is possible
that some of these properties may not improve indefinitely with larger scales. For example, Longpre
et al. (2021) show that larger models have weaker context-based grounding properties as they tend
to ignore the context more during reading comprehension question answering (QA).
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How do we improve large language models beyond pretraining? The most common practice is to
fine-tune it on a dataset specialized towards a downstream task - on most tasks, in-context learning
does not achieve performances equivalent to supervised fine-tuning. As a result, the pretraining-
finetuning paradigm lives on even in the era of LLMs. However, fine-tuning causes specialization.
As we show in this paper, a fine-tuned model usually forgets its ability to perform unseen tasks
with few-shot in-context prompts. In fact, the in-context performance could drop to none within one
thousand steps of fine-tuning.

Ground-Truth Output Mercedes’ Lewis Hamilton took the outright
championship lead for the first time this season

with a dominant victory in the Italian Grand Prix.

Pretrained mT5 Hamilton won the British Grand Prix.
Traditionally fine-tuned mT5 on RTE True

ProMoT fine-tuned mT5 on RTE Lewis Hamilton won the Italian Grand Prix.

Table 1: Output comparison of pretrained and traditionally fine-tuned mT5 models vs. ProMoT fine-
tuned on the RTE binary classification NLI dataset, performing an in-context 1-shot summarization
task.

Loss of in-context abilities during fine-tuning is problematic when we try to improve general quali-
ties of LLMs such as grounding, reasoning, mathematics, utilizing external resources etc. For exam-
ple, grounding is desirable in a large number of tasks, including natural language inference (NLI),
summarization, QA, conversation, data-to-text (Ji et al., 2022) and unforeseen tasks that could be
performed in-context. There is no shortage of quality data on a few specific instantiations of these
general capabilities, e.g. high quality NLI datasets that in principle could teach the model the general
concept of grounding, if there was no forgetting or specialization. On the other hand, it is impossible
to cover all tasks that use grounding in any fine-tuning set. Forgetting makes it difficult to utilize
these high quality datasets to build general capabilities into the model.

In this work, we discover that the loss of in-context abilities is, to a large extent, caused by format
specialization: overfitting to the specific task format during fine-tuning. For example, if we fine-
tune the model on NLI binary classification, then it learns that the output can only be ”True” or
”False”, making it lose its original ability to flexibly generate different output styles according to
the in-context prompts of other tasks. In addition, we show that the format is usually learned first
during fine-tuning, before the model fully learns the semantic content of the task.

We propose a simple solution to format specialization: PROmpt Tuning with MOdel Tuning (Pro-
MoT). ProMoT off-loads format learning to a small amount of task-specific parameters that are
external to the model. With ProMoT, we prefix a soft tunable prompt (Lester et al., 2021) to the
input sequence during a 2-stage fine-tuning process: we first freeze the model and tune the prompt,
then freeze the prompt and tune the model. Since format information is learned first, it mostly enters
the soft prompt and is no longer required to be learned by the model. At inference time, we use the
model with the tuned prompt if the inference task has the same format as the fine-tuning target task,
otherwise we remove the tuned prompt and use the model directly.

Our experiments show that this simple method can significantly alleviate the forgetting on in-context
abilities during fine-tuning, and also results in surprising positive transfer across tasks with totally
different formats. Fine-tuning the model only on an NLI binary classification dataset, we are able
to improve the general grounding properties of a mT5 XXL model, thus improving its in-context
performance on summarization. See Table 1 for a concrete example.

To summarize, our contributions are 4-fold:

• We show empirically that the in-context capabilities are lost during fine-tuning, and that
format specialization is one important cause for this loss. We also discover that format
specialization happens at the very beginning of the fine-tuning.

• We propose a novel 2-stage fine-tuning framework: PROmpt Tuning with MOdel Tuning
(ProMoT), where we utilize soft tunable prompts to absorb the task format during fine-
tuning, thus alleviating in-context capabilities loss.
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• We evaluate ProMoT on 10 different NLP tasks including classification, summarization,
translation and question answering tasks, and compare it with prompt tuning and classical
fine-tuning.

• Experimental results show the effectiveness of ProMoT: 1) ProMoT in general improves
supervised performance beyond the limit of prompt tuning only. In certain tasks it matches
or slightly outperforms the supervised performance of vanilla fine-tuning; 2) ProMoT sig-
nificantly alleviates the forgetting of in-context capabilities on all tasks; 3) When finetuned
on a single task, ProMoT results in positive task transfer across very dissimilar tasks when
they share some semantic aspects; 4) When used in a sequential or parallel multi-task set-
ting, ProMoT result in better models for most unseen in-context learning tasks. These
properties makes ProMoT a promising method to build general purpose capabilities into
LLMs with small fine-tuning datasets;

2 RELATED WORK

Large language models are shown to have the abilities to do in-context learning, where they learn a
new task during the inference stage by conditioning on a few training examples (Raffel et al., 2020b;
Xue et al., 2020; Radford et al., 2018; Chowdhery et al., 2022). Chan et al. (2022); Gao et al. (2020)
studies the effect of pretraining data distribution on in-context learning abilities on image recognition
tasks, where the tension between in-context learning tasks and fine-tuning tasks is discussed. They
propose changing the data distribution to ease such tension, which could be difficult for generative
NLP tasks. ProMoT is an orthogonal method that does not require changes in data distribution.

Related is the notion of catastrophic forgetting, usually analyzed with a sequence of image classi-
fication tasks. Ramasesh et al. (2022) found that as model size increases, the model becomes less
prone to catastrophic forgetting. However these works are mostly restricted to tasks of similar for-
mat, e.g. classification with the same number of classes. In this work we are interested in vastly
different tasks, e.g. classification vs long form generation where the format itself is critical.

Instead of updating the model parameters, prompt-tuning (Lester et al., 2021; Zhang et al., 2021)
appends continuous trainable embeddings (soft prompt) before the inputs and optimizes the prompt.
Prompt-tuning underperforms fine-tuning in many cases, as shown in (Lester et al., 2021; Liu et al.,
2021) and in our results. Prompt-tuning does not change the parameters of the pretrained model,
thus cannot improve the pretrained model itself using the fine-tuning datasets. Similar as prompt-
tuning, some other works propose to adapt large language models to a new task by only tuning a
small set of additional parameters (Hu et al., 2021; He et al., 2021).

Another line of work uses fine-tuning to teach the model in-context few-shot or zero-shot abilities,
providing a meta learning approach to in-context learning. Wei et al. (2021) fine-tunes the pretrained
model on large-scale multitask datasets with diverse natural language prompts, improving the zero-
and few-shot performance on unseen tasks. Min et al. (2021) incorporates the in-context learning
objective into fine-tuning on multitask datasets with few-shot prompts. Such methods require fine-
tuning on a large collection of different tasks to generalize, with each task being one datapoint of
meta-learning. In contrast, ProMoT is not limited to this regime and shows positive task transfer with
a single fine-tuning task. In addition, such approaches often require human engineered instructions
or prompts for each task, a volatile process involving lots of trial and error. ProMoT does not
require extensive prompt engineering as it optimizes the soft prompts with data. Finally, ProMoT is
largely orthogonal to meta-learning style methods. They can be combined by applying ProMoT to a
massively multitask setting where further improved generalization is expected. One could also apply
ProMoT directly to the meta task of learning to solve in-context tasks. This, however, is beyond the
scope of our current paper and will be left for future exploration.

3 WHY ARE IN-CONTEXT ABILITIES LOST DURING FINE-TUNING?

In this section, we show empirically that 1) in-context abilities are lost during fine-tuning; 2) for-
mat specialization is an important cause for such loss; 3) format specialization happens at the very
beginning of supervised fine-tuning.
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3.1 LOSS OF IN-CONTEXT CAPABILITIES DURING FINE-TUNING

Pretrained LLMs achieve good performance with in-context learning. However, in many appli-
cations one may want to fine-tune LLMs. In this section, we show that the in-context learning
performance usually drop significantly after vanilla fine-tuning.

To demonstrate this effect, we fine-tune a pretrained mT5 XXL model(13B parameters) (Xue et al.,
2020) on the Recognizing Textual Entailment (RTE) dataset (Wang et al., 2019), which is a binary
classification dataset predicting whether two given sentences are entailed. We fine-tune the model
with default hyper-parameters for mT5 and task format used in PaLM (Chowdhery et al., 2022)
where the output labels are True and False.
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Figure 1: Learning curve of a model fine-
tuned on RTE dataset for 500 steps. Left axis:
Accuracy on RTE dataset. Right axis: Exact
match rate on two 1-shot QA tasks.
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Figure 2: Change in statistics of True/False in
outputs when evaluated on 1-shot in-context
TriviaQA dataset. Left axis: Accuracy on
RTE. Right axis: Ratio of True/False.

To probe the model’s in-context capabilities during fine-tuning, we evaluate with two openbook QA
tasks, trivia-qa (Joshi et al., 2017) and web questions (Berant et al., 2013) with 1-shot in-context
prompts in a closed book setting. Figure 1 shows that when the accuracy on RTE dataset increases
with fine-tuning, the in-context abilities drop drastically. We show that this phenomenon is generic
and not a result of specific fine-tuning or evaluation tasks with more results in Section 5.2.

3.2 FORMAT SPECIALIZATION AS A CAUSE OF FORGETTING

LLMs such as mT5 XXL have the capacity to handle a large number of tasks. So why are the in-
context few-shot abilities easily lost after a few hundred steps of fine-tuning? A natural hypothesis
is that due to the homogeneity of output formats in fine-tuning datasets, the model quickly learns
to follow this output format no matter what the input sequence is. This leads to loss of in-context
learning abilities on other tasks that do not share the format of the fine-tuned task. To be more
specific, by ”format” we refer to the characteristics of the fine-tuning labels as a subset of all possible
output sequences. For example, the format of RTE is a set of two labels, ”True” or ”False”, among all
possible sequences of tokens of various lengths. More generally, format might include factors such
as the language used, typical output lengths and styles, special tokens or punctuation, upper/lower
case styles etc. that are common among most data points of a fine-tuning task. Since, by definition,
most data points share the same format, the model receives a strong gradient signal that the output
should follow this format independent of the input signal, thus its in-context performance on tasks
with any other format will drop drastically, even if they share important semantic similarities with
the fine-tuned task.

To verify this hypothesis, we fine-tune the mT5 XXL model on RTE task (classification) and then
evaluate on TriviaQA task (question answering task) with 1-shot prompt. In evaluation, we count
the percentage of outputs which are ’True’ or ’False’ in the test set. Figure 2 shows that as the fine-
tuning proceeds, the model outputs more ’True’ or ’False’ even with a 1-shot prompted input from
TriviaQA. In particular, after 300 fine-tuning steps, 90% of the output becomes ’True’ or ’False’.
The same phenomenon happens on other in-context tasks. For 1-shot WMT16 En-De translation,
after 500 steps, more than 99% of the output becomes ’True’ or ’False’. This indicates that format
specialization is an important reason for loss of in-context capabilities during fine-tuning.
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3.3 FORMAT LEARNING HAPPENS FIRST DURING STANDARD FINE-TUNING

Figure 3: Cosine similarity between the full gra-
dient g and the format gradient gformat on differ-
ent parts of the last decoder layer. We collect and
show the cosine value for gradients on MLP ker-
nel, Query, Key and Value on the attention mod-
ule. The g and gformat are much better aligned at
the start of training, compared to at 400 steps.
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Next, we show experimental evidence that for-
mat learning happens first during standard fine-
tuning. This is not surprising as the overwhelm-
ing majority of fine-tuning data points has very
similar formats, causing a gradient signal that
dominates over other, more nuanced elements
such as the semantic content of the task.

More concretely, for the RTE dataset, the
format refers to the fact that output ∈
{True,False}, while the semantic content refers
to the correlation between the input sequence
and the output label. We isolate format
learning from semantic learning by creating a
randomized RTE dataset where the output la-
bels are randomly shuffled, thus are no longer
correlated with the input sequences. The gra-
dients of format learning, gformat, are then
given by the gradients on the randomized RTE
dataset. By comparing with the gradient g on
the original RTE we can probe as to when for-
mat learning happens during fine-tuning. As we
can see from Figure 3, at the very beginning
of fine-tuning (step 0), The full RTE gradient
g is highly aligned with the format only gradi-
ent gformat, signified by cos(〈g0, gformat,0〉) ≈ 1.
Since randomized RTE and original RTE share
the format information only and contain totally different semantic content, this alignment implies
that the model is mostly learning the format. After 400 fine-tuning steps, this alignment disappears
where the cosine similarity drops to around 0.2.1 Comparison between more steps can be found in
Appendix Figure 8.

4 PROPOSED METHOD: PROMPT TUNING WITH MODEL TUNING
(PROMOT)

The observations from Section 3 inspire us to decompose format learning from fine-tuning, which
can alleviate severe forgetting of in-context abilities during fine-tuning. The key idea is to offload
format learning in a separate set of parameters external to the model during the earliest training
stage, and then train the model which will now focus more on the semantic skills. We propose a
two-stage fine-tune strategy called ProMoT, illustrated in Figure 4. At the first stage, ProMoT uses
prompt-tuning to capture the format in a trainable soft prompt while the model itself is frozen. At
the second stage, ProMoT freezes the learned soft prompt and fine-tunes the model itself to focus
on semantic skills that might be more transferable.

Stage 1: Prompt-Tuning. Instead of updating the weight parameters, Prompt-tuning (Lester et al.,
2021) prepends a continuous trainable prompt (soft prompt) before the embedded inputs and then
updates this soft prompt during training. The soft prompt for a given fine-tuned task Pe ∈ Rp×e is
a small set of free parameters taking the form of a few trainable embeddings, where p is the prompt
length and e is the embedding size. Given an input sequence from the task (x1, ..., xn), prompt-
tuning first embeds the input sequence with the embedding layer in the pretrained model, and then
concatenates the soft prompt before the embedded input. The soft prompt is then optimized to reduce
the loss while the pretrained model is frozen. As indicated in Section 3.3, fine-tuning first learns the
format. We expect that by prompt tuning first, the soft prompt will learn the format. Although we
cannot guarantee that the soft prompts only learns the format, the small capacity can prevent the

1We compute the format gradient at 400 steps, gformat,400, by first fine-tuning the model on RTE for 400
steps, then computing the gradient on the randomized RTE dataset with the same batch of input sequences.
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Figure 4: Overview of our two-stage fine-tuning strategy. We run prompt-tuning at Stage 1 and
model fine-tuning with trained prompt at Stage 2.

soft prompt from learning all semantic skills in most realistic NLP tasks, as demonstrated by the
performance gap between prompt tuning and standard fine-tuning.

Stage 2: Fine-tuning with trained prompt. After prompt-tuning, we expect the trained prompt
to already store the format information. We then freeze the soft prompt and fine-tune the pretrained
model. Importantly, as shown in Figure 4, the soft prompt is still prepended before the input during
this stage, forcing the model to learn things not captured already by the soft prompt.

Evaluation. After the two-stage fine-tuning, we obtain a fine-tuned model checkpoint and a
trained soft prompt for this specific fine-tuning target task. We expect the soft prompt stores most of
the format information, and we only use this prompt during inference when the inference task has
the same format as the fine-tuned target task. Otherwise, we remove the learned prompt and simply
feed the original input into the fine-tuned model.

ProMoT is a general framework that can be combined with different prompt-tuning and fine-tuning
techniques. For example, we can use few-shot fine-tuning at the second stage where the inputs are
appended with few-shot prompts, which can further improve the few-shot performance as proposed
by Min et al. (2021).

5 EXPERIMENTS

5.1 SETTINGS

Datasets. We use RTE (Wang et al., 2019) and WMT14 En-Fr as our two fine-tuning target tasks.
RTE is a binary classification task and WMT14 En-Fr is a translation task. They are selected as
examples of classification and generative tasks.

To evaluate in-context abilities, we use four types of tasks including natural language inference from
superGLUE (Wang et al., 2019), translation from WMT, QA including triviaQA (Joshi et al., 2017)
and web questions (Berant et al., 2013) that are evaluated in a closed book setting, and summa-
rization with XSum (Narayan et al., 2018) and WikiLingua (Ladhak et al., 2020). For each task,
we use 1-shot and 4-shots in-context prompts where the prompt template is the same with PaLM
(Chowdhery et al., 2022). Input templates and output post-processing can be found in the Appendix.

For classification tasks, we report the accuracies. For QA tasks, we report the exact match ratio. For
translation tasks, we report the BLEU score (Papineni et al., 2002). And for summarization tasks,
we report the Rouge-2 score (Lin, 2004) . We report the results on development set for classification
tasks (RTE, CB and WiC) and results on test set for all other tasks.

Models. We use the mT5 (Xue et al., 2020) checkpoint for T5x XXL model (Raffel et al., 2020b)
in all of our experiments, which contains 13B parameters. mT5 is pretrained on a large-scale multi-
lingual dataset, which makes it a good choice for the translation tasks used in our experiments.
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Comparing methods. In our experiments, we have several different training configurations and
baselines, including

• Traditional fine-tuning: Fine-tune the pretrained model without trainable prompt.

• Prompt-tuning: Tune the trainable prompt with pretrained model frozen. The in-context
learning performance of prompt-tuning is the same as the pretrained model.

• ProMoT: Our proposed two-stage fine-tuning strategy.

• Fine-tuning/Prompt-tuning/ProMoT with 1-shot: For each input/output pair during training
and evaluation, we sample and prepend a 1-shot example from the training split.

Hyper-parameters. For all mT5 models, we fine-tune with learning rate 0.001, drop rate 0.1 and
label smoothing 0.1. For all prompt-tuning experiments, we use learning rate 0.2. For all tasks
except summarization tasks, we choose the model input sequence length larger than the input length
in datasets. For summarization, we cut each input to 1024 tokens. We use Adafactor optimizer
and batch size 64 without data-packing across all experiments. In inference, we use beam search to
decode the outputs with width 4. More experimental settings are provided in the appendix.

5.2 SINGLE TASK FINE-TUNING

Table 2: In-context performance of model finetuned on RTE and evaluated on 8 few-shot tasks. The
accuracy on fine-tuned task (RTE) is in the first row. Prompt-tuning doesn’t modify pretrained model
parameters and has the same in-context performance as pretrained model. We mark the lowest and
highest performance for each task with red and bold numbers, respectively.

Datasets Pretrained Prompt-tuning Standard Fine-tuning ProMoT (Ours) ProMoT + 1-shot (Ours)

RTE - 91.34 92.06 92.78 93.86
1-shot 4-shots 1-shot 4-shots 1-shot 4-shots 1-shot 4-shots 1-shot 4-shots

CB 46.43 51.790 46.43 51.790 73.214 82.143 66.070 67.860 83.929 82.143
WiC 49.687 49.687 49.687 49.687 50.000 50.157 51.411 53.605 51.254 50.627

triviaQA 17.582 19.022 17.582 19.022 0.150 0.115 17.643 18.660 17.820 19.623
web questions 9.695 13.041 9.695 13.041 0.049 0.049 11.073 13.189 10.138 12.106
WMT16 ende 3.974 8.830 3.974 8.830 0.000 0.000 2.018 3.694 2.256 4.894
WMT16 enro 1.818 3.918 1.818 3.918 0.000 0.000 0.704 0.959 0.870 1.868

XSum 6.410 2.353 6.410 2.353 0.000 0.000 7.020 7.006 6.941 3.935
WikiLingua 4.585 1.329 4.585 1.329 0.000 0.000 4.841 4.903 4.874 3.434

Table 3: In-context performance of model finetuned on WMT14 En-Fr and evaluated on 8 few-
shot tasks. BLEU on the fine-tuned task is in the first row. Prompt-tuning doesn’t modify pretrained
model parameters and has the same in-context performance as pretrained model. We mark the lowest
and highest performance for each task with red and bold numbers, respectively.

Datasets Pretrained Prompt-tuning Standard Fine-tuning ProMoT (Ours) ProMoT + 1-shot (Ours)

WMT14 En-Fr - 39.28 41.796 41.3 41.19

1-shot 4-shots 1-shot 4-shots 1-shot 4-shots 1-shot 4-shots 1-shot 4-shots

CB 46.430 51.790 46.430 51.790 16.071 32.143 41.071 57.143 41.071 53.571
WiC 49.687 49.687 49.687 49.687 50.627 49.060 50.157 50.313 49.843 50.627

triviaQA 17.582 19.022 17.582 19.022 3.200 3.147 13.630 15.204 16.927 18.191
web questions 9.695 13.041 9.695 13.041 0.886 6.152 9.400 7.923 10.138 12.008
WMT16 ende 3.974 8.830 3.974 8.830 0.808 0.175 15.517 15.548 16.139 15.626
WMT16 enro 1.818 3.918 1.818 3.918 1.526 0.424 18.544 17.799 17.568 16.808

XSum 6.410 2.353 6.410 2.353 0.045 1.857 1.493 0.650 3.407 4.362
WikiLingua 4.585 1.329 4.585 1.329 0.030 0.429 1.142 0.524 4.215 4.727

We fine-tune the pretrained model with ProMoT on two target tasks and evaluate on several few-shot
evaluation tasks. At ProMoT stage 1, we run prompt-tuning for 5000 steps and save a checkpoint
every 1000 steps, then select the prompt checkpoint with the best performance on target task. At
ProMoT stage 2, we freeze the trained prompt and fine-tune the model for 1000 steps, checkpointing
every 100 steps. We then pick the model checkpoint with highest performance on the finetuned task
as our final checkpoint. For comparison, we run prompt-tuning and traditional fine-tuning for 5000
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and 1000 training steps respectively and report the performance of the best checkpoint. We explore
finetuning with more steps in Appendix A.2.

We list the results for RTE in Table 9 and WMT14 En-Fr translation in Table 3. We see that after
traditional fine-tuning on RTE, the performance on binary classification tasks (CB and WiC) with
the same format may increase. However, the performance on other tasks drops to nearly zero. This
further validates that fine-tuned models suffer from format specialization as discussed in Section 3.
With ProMoT, the model achieves similar accuracy on RTE while forgetting much less on all few-
shot evaluation tasks compared to standard fine-tuned models. More importantly, ProMoT models
trained with only RTE outperform the pretrained model on summarization tasks like XSum and
WikiLingua. Since ProMoT is a general framework, we can combine it with natural language few-
shot prompts during fine-tuning stage, which is shown in Min et al. (2021) to improve in-context
learning abilities. More concretely, training input of ProMoT + 1-shot is the concatenation of the
soft prompt, the natural language 1-shot prompt, and then the original input sequence. Table 9 shows
that ProMoT + 1-shot further boosts the performance over the original ProMoT on some tasks.

When we apply ProMoT finetuning on English to French translation, we find similar trend (Table
3): Compared to standard fine-tuning, we observe significantly less forgetting on in-context learning
tasks across the board. Compared to the pretrained model, we observe positive transfer on translation
tasks for other language pairs as well as natural language inference binary classifications.

5.3 SEQUENTIAL TRAINING AND MULTITASK TRAINING

As we can see from Section 5.2, ProMoT alleviates forgetting of in-context abilities across the
board and has positive transfer on some tasks. It is however not surprising that ProMoT on different
tasks have different influences on in-context evaluation tasks. For example, ProMoT on RTE causes
some forgetting on translation while improving classification and summarization. On the contrary,
ProMoT on En-Fr has some forgetting on summarization while boosting other translation tasks. This
inspires us to apply ProMoT on multiple datasets for a generally better model.

In this section, we explore injecting knowledge into a single model with ProMoT by training on
multiple tasks with sequential training and multitask training. For sequential training, we first run
ProMoT on the 1-shot RTE dataset, and then on 1-shot En-Fr translation dataset. For multitask
training, we mix the data from different tasks in one batch and train a soft prompt for each task.
All the training configurations are the same in Section 5.2. We illustrate the results in Figure 5 and
Table 7.

In Figure 5, we first report the accuracy on two fine-tuning target datasets RTE and WMT14 En-Fr.
For sequential two-stage training, we evaluate the RTE accuracy using the trained prompt for RTE
together with the final model checkpoint after sequential training. After the second ProMoT on En-
Fr translation, the accuracy on RTE does not drop much, revealing the potential of our method in
the continual-learning space. More importantly, after sequential ProMoT, we obtain a model with
significantly improved in-context performances compared to the pretrained model on both unseen
classification tasks (CB, WiC) and translation tasks (XSum, WikiLingua). The exact numbers in
Figure 5 and more results on 4-shots evaluation can be found in Table 6 in the Appendix. Results
for multi-task training and related analysis can be found in Appendix A.2.

5.4 ABLATION STUDY

In this section, we conduct several ablation study in Table 4 to show the effectiveness of our method.
First, we jointly fine-tune both the soft prompt and the model at the same time. This results in severe
forgetting of in-context learning abilities similar to that of standard fine-tuning. We thus show
that the benefit of less forgetting and positive transfer comes from the two-stage nature of ProMoT
instead of merely having the soft prompt. During joint training, soft prompt and the main model are
trained together for 1000 steps and then we evaluate the in-context 1-shot performance on evaluation
tasks. In addition, we also fine-tune the models while attaching a random soft prompt that is fixed
during training. As we expected, a random prompt contains no format information and does not help
the model offload format learning, resulting in severe forgetting. Another natural baseline is to fine-
tune the model with natural language prompts instead of soft prompts in place - after all, the natural
language prompts contain few-shot examples that also capture the task format to some extend. We
compared this approach in a 1-shot scenario and did not observe significantly reduced forgetting
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Figure 5: Results of sequential ProMoT fine-tuning compared with pretrained model and ProMoT
fine-tuning on single tasks. Exact numbers and more results can be found in the Appendix. We scale
up the Rouge-2 score for summarization tasks, the exact match rate for QA tasks and BLEU score
for translation tasks by 5x to show all the tasks on the same figure.

Table 4: Here we show the ablation study results. Joint fine-tuning means fine-tuning the soft
prompt and the main model together. Fine-tuning with 1-shot runs traditional fine-tuning on with a
1-shot natural language prompt attached to every input sequence. Fine-tuning with random prompt
fine-tunes the main model with a soft prompt randomly initialized with uniform distribution and
kept fixed during finetuning. We compare these abalations with ProMoT + 1-shot where ProMoT is
applied on input sequences with an attached 1-shot natural language prompt.

Datasets Joint Fine-tuning Fine-tuning ProMoT
Fine-tuning with 1-shot with random prompt + 1-shot (Ours)

RTE 90.97 90.97 92.06 93.86

CB 83.929 78.571 83.929 83.929
WiC 50.47 51.411 51.724 51.254

triviaQA 0.751 0.027 0.831 17.82
web questions 0.64 0.000 0.295 10.138
WMT16 ende 0.000 0.000 0.000 2.256
WMT16 enro 0.000 0.000 0.000 0.87

XSum 0.000 0.000 0.000 6.941
WikiLingua 0.000 0.000 0.000 4.874

compared to standard fine-tuning. Most of in-context tasks still drop to zero performances. This
demonstrates that soft prompts in ProMoT works better than natural language prompts in capturing
format information and alleviating the forgetting of in-context learning abilities during fine-tuning.

6 CONCLUSIONS

In this paper, we found one important cause of the lose of in-context abilities during LLM fine-
tuning: format specialization. Our analysis shows that format specialization happens at the very
beginning of fine-tuning. This motivates us to develop ProMoT, a simple yet effective two-stage
fine-tuning framework that utilizes soft trainable prompts to absorb the task format before fine-
tuning the model. Our experimental results on a diverse set of NLP tasks show the effectiveness
of ProMoT for preserving in-context capabilities during fine-tuning. ProMoT also shows surprising
positive transfer across very different tasks, making it a promising method that could build general
purpose capabilities into LLMs with small finetunig datasets. We also explored sequential training
and multi-task training on two training tasks which can achieve even better generalization.

9
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A APPENDIX

A.1 EXPERIMENT DETAILS

Input template used in experiments In Table 5, we list the natural language input template used
in our experiments for each task

Task Template

RTE [premise] question: [hypothesis] Is it true or false? answer: {True, False}
CB [premise] question: [hypothesis] Is it true or false or neither? answer: {True, False, Neither}

WiC [sentence1] [sentence2] question: The word [word] is used in the same way in the two sentences.
Is it true or False? answer: {True, False}

QA Q: [question] A:
Translation Translate [source language] to [target language]: [sentence 1]

Summarization Article: [article] One sentence summary:

Table 5: Input template for each task

Output post-processing For each task, we first extract the text after <extra id 0> and before
<extra id 1>, then trim the text by locating and remove the text after the second prefix token (Q:,
Translate, Article:). For classification tasks including RTE, CB and WiC, we check whether the first
output token is True or False.

A.2 ADDITIONAL EXPERIMENT RESULTS

More results of sequential ProMoT training In Table 6 we show the exact numbers in Figure 5
and additional evaluation results on 4-shots datasets.

Table 6: Results for sequentially training first on RTE and then on En-Fr with ProMoT + 1-shot.
Datasets Pretrained Model ProMoT ProMoT ProMoT on 1-shot

1-shot RTE 1-shot En-Fr En-Fr after RTE

WMT14 En-Fr 1.982 0.92 41.19 41.33
RTE 47.653 93.86 53.43 90.975

1-shot 4-shots 1-shot 4-shots 1-shot 4-shots 1-shot 4-shots

CB 46.43 51.79 83.929 82.143 41.071 53.571 82.143 80.357
WiC 49.687 49.687 51.254 50.627 49.843 50.627 51.097 57.367

triviaQA 17.582 19.022 17.82 19.623 16.927 18.191 14.081 16.98
web questions 9.695 13.041 10.138 12.106 10.138 12.008 9.4 11.713
WMT16 ende 3.974 8.83 2.256 4.894 16.139 15.626 18.132 17.9
WMT16 enro 1.818 3.918 0.87 1.868 17.568 16.808 20.642 21.512

XSum 6.410 2.353 6.941 3.935 3.407 4.362 3.185 3.959
WikiLingua 4.585 1.329 4.874 3.434 4.215 4.727 3.422 3.143

Training more steps: trade-off between fine-tuning target task and in-context learning abilities
In Section 5.2, we report the results of the best checkpoints within 1000 steps of fine-tuning. With
a longer training period, we can see a more clear trade-off between the performance on fine-tuning
target task and the performance on in-context learning abilities. Here we show the long-term trade-
off between fine-tuning target task and in-context evaluation tasks by scattering the performance of
different checkpoints within 20000 steps fine-tuning. In figure 6, and 7, we plot the trade-off on
classification and translation tasks, respectively.

As we can see from the figures, datapoints for ProMoT is higher than traditional fine-tuning on
the figures, which implies that with the same performance on fine-tuning target task, forgetting is
alleviated with ProMoT fine-tuning.
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Figure 6: Trade-off between BLEU score of
En-Fr (horizontal axis) and average accuracy
on classification tasks (vertical axis) when
fine-tuning the model on En-Fr translation.
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Figure 7: Trade-off between BLEU score of
En-Fr (horizontal axis) and average BLEU
score on other language pairs (vertical axis)
when fine-tuning the model on En-Fr transla-
tion.

Multi-task training Another commonly-adopted method to train a model on multiple tasks is par-
allel multi-task training, especially when we known the training tasks beforehand. During multi-task
training, data points from different tasks are sampled according to corresponding ratios to construct
the training batches. Multi-task training has been shown to improve the generalization ability of
large language models during finetuning, often with natural language prompts attached to distin-
guish the tasks (Sanh et al., 2021; Wei et al., 2021; Min et al., 2021). In this section, we apply
ProMoT on RTE and WMT14 En-Fr in a multi-task finetuning setting. We show that ProMoT gen-
eralize substantially better on a subset of in-context tasks than traditional multi-task finetuning. At
the first stage, we train a different soft prompt for each task. At the second stage, we prepend the
corresponding trained and frozen prompt on each training example and tune the pretrained model
on a mixture of data from different tasks. We use the same training and evaluation tasks and keep
most of hyper-parameters the same except doubling training steps in the first stage. We show the
results in Table 7, both on fine-tuned tasks and 1-shot out-of-domain evaluation tasks. With multi-

Table 7: Comparison of multi-task training on RTE and WMT14 En-Fr translation. We compare
the evaluation results of pretrained mT5 model, traditional multi-task fine-tuning (FT), Sequential
(Seq) ProMoT training and multitask (Multi) ProMoT training. 1-shot means we add a 1-shot natural
language prompt before each training input (in addition to the soft prompts if we are using ProMoT).
We report performance on two fine-tuning target tasks (RTE and WMT14 En-Fr) and eight 1-shot
out-of-domain evaluation tasks.

Pretrained multi-task FT Seq ProMoT Multi ProMoT 1-shot multi-task 1-shot Seq 1-shot Multi
FT ProMoT ProMoT

RTE 90.250 92.419 91.340 91.700 90.975 93.140
WMT14 En-Fr 41.338 40.880 40.726 40.869 41.33 40.553

CB 46.429 80.357 82.143 83.929 87.500 82.143 85.714
WiC 49.687 51.097 51.724 51.411 53.292 50.627 52.038

TriviaQA 17.582 15.761 12.906 16.989 16.53 14.081 17.184
Web questions 9.695 9.695 8.661 10.039 9.400 9.400 10.384
WMT16 En-De 3.974 0.882 17.028 18.833 2.503 18.132 17.572
WMT16 En-Ro 1.818 1.524 19.657 18.410 5.625 20.642 18.574

XSum 6.41 0.436 2.933 4.496 1.816 3.185 4.321
WikiLingua 4.585 0.717 2.256 2.892 4.325 3.422 3.564

task ProMoT, forgetting on QA and summarization are alleviated compared to sequential ProMoT.
Besides, although traditional multi-task fine-tuning can improve model generalization and thus alle-
viate the forgetting problem on some tasks, ProMoT multi-task training has much better transferred
performance on translation tasks on unseen language pairs.

Additional experiments on T5 and FLAN-T5 To show the performance of our method on
English-based pretrained model, we did two additional experiments on FLAN-T5 and T5 XXL with
fine-tuning target task RTE.
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Table 8: In-context performance of FLAN-T5 XXL finetuned on RTE and evaluated on 8 few-shot
tasks. The accuracy on fine-tuned task (RTE) is in the first row. Prompt-tuning doesn’t modify
pretrained model parameters and has the same in-context performance as pretrained model.

Datasets Pretrained Prompt-tuning Standard Fine-tuning ProMoT (Ours)

RTE - 93.86 94.22 94.22

CB 83.929 83.929 85.714 83.929
WiC 61.755 61.755 67.085 62.069

triviaQA 33.926 33.926 36.241 33.926
web questions 34.744 34.744 33.612 34.695
WMT16 ende 11.591 11.591 9.987 11.719
WMT16 enro 16.806 16.806 14.816 16.725

XSum 21.825 21.825 21.732 21.788
WikiLingua 22.858 22.858 22.778 22.848

Table 9: In-context performance of T5 XXL finetuned on RTE and evaluated on 8 few-shot tasks.
The accuracy on fine-tuned task (RTE) is in the first row. Prompt-tuning doesn’t modify pretrained
model parameters and has the same in-context performance as pretrained model.

Datasets Pretrained Prompt-tuning Standard Fine-tuning ProMoT (Ours)

RTE - 91.7 93.5 93.14

CB 55.357 55.357 62.500 73.214
WiC 49.843 49.843 50.000 50.784

triviaQA 34.147 34.147 0.018 33.855
web questions 16.043 16.043 0.000 15.945
WMT16 ende 0.134 0.134 0.000 0.018
WMT16 enro 0.055 0.055 0.000 0.008

XSum 1.261 1.261 0.000 1.791
WikiLingua 1.118 1.118 0 2.251
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Figure 8: Cosine similarity between the full gradient g and the format gradient gformat on different
parts of the last decoder layer. We collect and show the cosine value for gradients on MLP kernel,
Query, Key and Value on the attention module.

Plotting more steps for Figure 3 To further strengthen our conclusion in Figure 3, here we plot
the gradient alignment from step 0 to step 400. As we can see from the figure, gradient alignment
drops significantly after 300 steps which is matched with Figure 2 where the true and false ratio
increases before 300 steps and then remains stable.
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