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ABSTRACT

Large Language Models (LLMs) for code generation exhibit remarkable capabil-
ities but face deployment challenges due to their high computational and mem-
ory demands. Traditional pruning methods, often based on static heuristics like
magnitude-based weight pruning, fail to effectively balance sparsity and perfor-
mance, particularly for structured tasks such as code generation. To address this,
we propose GenePrune, a novel genetic algorithm-based pruning framework that
optimizes pruning masks for pre-trained Code LLMs without requiring costly re-
training. GenePrune iteratively refines pruning configurations through evolution-
ary operations such as crossover and mutation, guided by a fitness function that
balances model sparsity and task-specific performance. Experiments on open-
source models like CodeT5 demonstrate that GenePrune achieves superior prun-
ing efficiency, significantly reducing model size while maintaining high BLEU
scores for code generation tasks. Our results highlight GenePrune as a promising
approach for efficient LLM compression, with potential applications in optimizing
inference speed and deployment in resource-constrained environments.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized code generation, with models like Codex
(Chen et al., 2021) and CodeT5 (Wang et al., 2021) demonstrating strong capabilities in generating,
completing, and refactoring code. However, these models are highly resource-intensive, requiring
substantial memory and computational power (Bommasani et al., 2022), making deployment in real-
world, latency-sensitive environments challenging. While model pruning offers a potential solution,
existing approaches often degrade performance, particularly in maintaining syntactic and semantic
accuracy in code generation tasks (Zafrir et al., 2021).

Recent post-training pruning techniques in LLMs, such as weight-magnitude pruning (Sun et al.,
2024), structured pruning (Ma et al., 2023), and gradient-based pruning (Das et al., 2024), have
demonstrated varying levels of success. SparseGPT (Frantar & Alistarh, 2023) achieves up to 50%
sparsity while retaining generation quality, while Wanda (Sun et al., 2024) improves pruning effi-
ciency using weight-aware neuron dynamics. However, these methods are limited to general tasks
and rely on heuristic-driven rules that assume certain weight properties universally correlate with
unimportance (Gale et al., 2019). This assumption often results in suboptimal pruning decisions,
particularly for code generation, where preserving structural integrity and program logic is crucial.

To address these limitations, we propose a novel genetic algorithm-based pruning technique,
GenePrune, which introduces a data-driven and adaptive approach to model pruning for code gener-
ation LLMs. GenePrune deviates from traditional rule-based methods by employing a genetic algo-
rithm (GA) to explore a wide search space of potential pruning configurations, allowing the model to
dynamically adapt its pruning strategy across different layers and submodules. Using evolutionary
operations, such as crossover and mutation, GenePrune iteratively generates and evaluates candidate
pruning masks based on feedback from task-specific performance metrics. This enables the system
to optimize for sparsity while maintaining high performance, effectively discovering pruning pat-
terns that are better suited to code generation tasks. The adaptive nature of GenePrune allows it to
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Figure 1: Flowchart of the algorithm proposed for pruning LLM using genetic algorithm.

tailor its pruning strategy to the unique requirements of each model layer, thereby preserving critical
task-specific parameters and enhancing generalization across models and tasks.

Our work offers the following contributions:

• We explore use of pruning, specifically for Code LLMs, focusing on code generation. To
the best of our knowledge, this is the first work to study model compression in this context.

• We introduce GenePrune, the first framework to utilize genetic algorithms for optimizing
pruning masks in LLMs, enabling data-driven, adaptive pruning strategies that are specifi-
cally tailored for code generation.

• We demonstrate GenePrune’s ability to maintain high performance while significantly re-
ducing computational overhead across multiple Code LLMs.

2 METHODOLOGY

2.1 GENETIC ALGORITHM FOR LAYER-WISE PRUNING

We propose a genetic algorithm-based pruning framework that iteratively refines pruning masks for
each layer, optimizing sparsity while preserving model performance. By evolving populations of
pruning solutions, the algorithm adaptively selects optimal pruning configurations without requiring
expensive retraining.

Population: A population of binary pruning masks is initialized, where each element represents
the presence (1) or absence (0) of a connection in the layer. Masks are structured according to the
layer’s dimensions and initialized based on a predefined sparsity ratio, which dictates the probability
of weight removal while ensuring a balance between compression and accuracy.

Selection: Each iteration selects two parent masks uniformly at random for crossover. The popula-
tion is progressively refined by retaining only the top k solutions based on fitness scores, ensuring
convergence toward optimal pruning patterns over multiple generations.

Crossover: Single-point crossover is applied to parent masks, swapping segments beyond a ran-
domly chosen crossover point. This operation generates offspring that inherit structural properties
from both parents while introducing variations, promoting an effective exploration of the pruning
space. The crossover rate controls how frequently new solutions are generated, maintaining a bal-
ance between exploration and stability.

Mutation: To prevent premature convergence and local optima, mutation is applied with a small
probability, flipping certain elements to zero to enforce sparsity. This stochastic alteration enhances
diversity, allowing the algorithm to explore alternative pruning configurations and refine weight
selection dynamically.

Fitness Function: Pruning masks are evaluated using a weighted fitness function:

f = λs+ (1− λ)p (1)
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where s represents the sparsity induced by the mask, p denotes model performance on a valida-
tion set, and λ, a hyperparameter, ‘governs the trade-off between compression and accuracy. A
well-tuned λ ensures a balance between reducing computational cost and maintaining task-specific
performance.

The genetic algorithm iteratively refines pruning masks by selecting, recombining, and mutating
candidates, progressively optimizing the trade-off between sparsity and performance. A detailed
flowchart of the pruning process is provided in the Figure 1.

2.2 MULTI-LAYER PRUNING

To extend pruning across multiple layers, the genetic algorithm operates independently on each
layer, adapting sparsity to structural and functional differences. This sequential approach prevents
abrupt performance degradation while maintaining stability across layers. The cumulative effect
progressively reduces model complexity while preserving accuracy.

Fine-Tuning for Post-Pruning Recovery. After pruning, model performance may degrade due to
the loss of critical connections. To mitigate this, we apply fine-tuning to recalibrate active weights
while maintaining the pruned architecture. The optimal pruning masks are applied during retraining,
ensuring that pruned connections remain inactive. The model is fine-tuned using a small learning
rate, enabling gradual weight adjustments without destabilization. This adaptation allows the model
to compensate for lost connections, restoring performance while retaining a significantly lighter
architecture.

3 EXPERIMENTS

Datasets. We use two datasets: one for fine-tuning Code LLMs during pruning and another for eval-
uation. For fine-tuning, we use the Re-sampled Python3.7 API Knowledge dataset (Xu et al., 2020),
which integrates API documentation and StackOverflow code snippets to enhance code generation
models by capturing diverse Python API usage patterns. For evaluation, we use the MBPP dataset
(Austin et al., 2021), a benchmark consisting of 974 Python programming problems, designed to
assess functional correctness and code generation accuracy.

Models. We fine-tune and prune CodeT5 (Wang et al., 2021), an open-source model pre-trained
on CodeSearchNet (Husain et al., 2020). It is further fine-tuned on conala-mined, Re-sampled
Python3.7 API Knowledge, and MBPP datasets.

Metrics. We evaluate pruned models using BLEU. BLEU measures syntactic accuracy by comput-
ing n-gram overlap (1-gram to 4-gram) and their average in generated code.

Hyperparameter Value
λ 0.02

Population Size 10
Number of Generations 5

Initial Sparsity 5%
Mutation Rate 5%
Crossover Rate 100%

Sparsity Threshold 20% - 50%

Table 1: Hyperparameters for the Genetic Algorithm

Procedure. We prune CodeT5 using a genetic algorithm, exploring different sparsity-accuracy
trade-offs. Specifically, we experiment with λ ∈ {0.02, 0.03, 0.05} to balance accuracy and spar-
sity, while varying population sizes (5 and 10) to analyze convergence speed versus exploration. We
test 2 and 3 generations to assess the impact of evolutionary depth and apply pruning to 9 selected
layers, comparing their effects on sparsity and performance. Additionally, we explore the impact of
fine-tuning the pruned models using two different datasets, one in-domain and one out-of-domain,
to analyze its effect on performance recovery. We observe that fine-tuning with an out-of-domain
dataset helps retain performance better, suggesting that the model benefits from additional exposure
to diverse patterns beyond the original training distribution. Based on experimental results provided

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Sparsity Level GenePrune Magnitude-based Pruning
W/O Fine-tuning W/ Fine-tuning W/O Fine-tuning W/ Fine-tuning

20% 0.1520 0.1512 0.1348 0.1348
30% 0.1420 0.1575 0.1249 0.1366
40% 0.1158 0.1340 0.1258 0.1308
50% 0.1399 0.1523 0.1255 0.1309

Table 2: Comparison of GenePrune and Magnitude-based Pruning on MBPP dataset using Avg
BLEU score at different Sparsity Levels for 9 layers

Sparsity Level GenePrune Random Mask
W/O Fine-tuning W/O Fine-tuning W/ Fine-tuning

20% 0.1520 0.1275 0.1296
30% 0.1420 0.1218 0.1275
40% 0.1158 0.0957 0.0987
50% 0.1499 0.0964 0.1119

Table 3: Ablation study showing the effectiveness of GenePrune over randomly generated masks for
9 layers at different sparsity levels using BLEU score as the performance metric. The BLEU score
of the original model is 0.1389.

in the appendix A.1), we determine optimal hyperparameters (Table 1) and evaluate GenePrune
against the baseline at different sparsity levels. Due to resource constraints, we restrict pruning to a
single block of 9 layers, including dense, attention, and normalization layers.

Baselines. We compare GenePrune against Magnitude-based pruning (Han et al., 2016), which
removes weights based on magnitude. Currently, we have implemented and compared Magnitude-
based pruning, with plans to evaluate on other pruning methods of general LLMs.

4 RESULTS

Table 2 presents the results of our controlled pruning experiments, comparing GenePrune with the
baseline Magnitude-based Pruning on nine pruned layers. GenePrune consistently outperforms
the baseline across all sparsity levels in terms of Avg BLEU Score, particularly when fine-tuning
is applied. Even without fine-tuning, it maintains competitive performance, surpassing the baseline
in most cases. These results highlight GenePrune’s adaptive pruning strategy, which effectively
redistributes remaining weights to preserve task-specific performance. Fine-tuning further enhances
performance, emphasizing the importance of weight redistribution in mitigating the impact of pruned
parameters.

Table 3 provides an ablation study comparing GenePrune to randomly generated pruning masks
over nine layers. GenePrune demonstrates superior performance at all sparsity levels, reinforcing
that effective weight selection is nontrivial and that its genetic algorithm successfully preserves
crucial model parameters. These results confirm GenePrune’s effectiveness in maintaining model
performance while significantly reducing computational complexity, making it a strong candidate
for efficient, deployable pruning in code LLMs.

5 CONCLUSION AND FUTURE WORK

We introduced GenePrune, a novel genetic algorithm-based pruning framework for optimizing spar-
sity in code generation LLMs while preserving accuracy. Our method dynamically searches for
optimal pruning masks through evolutionary operations, outperforming magnitude-based pruning
in controlled experiments across multiple sparsity levels, as evidenced by BLEU score improve-
ments. Ablation studies confirmed the effectiveness of our approach over random masks, while
fine-tuning further enhanced performance recovery. In future work, we aim to extend GenePrune to
larger code models, integrate reinforcement learning to refine the fitness function dynamically, and
explore pruning techniques that optimize inference speed and energy efficiency for real-time code
generation applications.
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A APPENDIX

A.1 HYPERPARAMETER TUNING

Table 4 presents a study on GenePrune’s configuration, varying key hyperparameters such as
sparsity-accuracy coefficient (λ), population size, pruned layers, and datasets. Higher λ values in-
crease sparsity but at a cost to BLEU scores, with λ = 0.05 reducing BLEU to 0.049 while sparsity
rises to 0.28. Selective layer pruning mitigates accuracy degradation, as aggressive pruning across all
layers results in substantial performance loss. A larger population size stabilizes BLEU scores while
maintaining sparsity, suggesting that broader search exploration benefits pruning effectiveness.

Using the Python-API dataset during pruning leads to higher stability, achieving a BLEU score of
0.124 at λ = 0.03, outperforming MBPP. The larger dataset prevents overfitting, allowing better
generalization. These findings indicate that moderate λ values (0.02–0.03), a larger population size,
and selective layer pruning yield the best balance between sparsity and performance. Excessive
sparsity levels degrade accuracy, underscoring the importance of structured pruning strategies in
maintaining code generation quality.

Generation λ (Sparsity-Accuracy) Population Size Layers Pruned BLEU Score Sparsity
MBPP used while Pruning

2 0.02 5 80 0.1155 0.174
2 0.03 5 80 0.0883 0.20
2 0.02 10 80 0.115 0.19
2 0.05 10 80 0.0490 0.28
2 0.02 5 All 0.0135 0.29
3 0.02 5 80 0.1017 0.207
3 0.02 5 All 0.0883 0.28

PythonAPI used while Pruning
2 0.03 10 80 0.124 0.208
3 0.02 10 80 0.1117 0.207

Table 4: Ablation study of different settings of the GenePrune method. We present the Average
BLEU score on the MBPP Dataset and the Sparsity % achieved.
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