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ABSTRACT

Real-world noise poses a significant challenge in signal processing, especially for
denoising tasks. Although end-to-end denoising approaches have achieved excep-
tional performance, they are constrained to scenarios with abundant noisy-clean
image pairs, which can be technically challenging and resource-intensive to col-
lect. To address this issue, several generative methods have been developed to
synthesize realistic noisy images from limited real-world datasets. While prior
studies require camera metadata during training or testing to handle various real-
world noise, the absence of metadata or variations in the information across dif-
ferent capturing devices is common in real-world scenarios, such as medical or
microscope imaging, which limits their applicability. Thus, we aim to eliminate
the need for explicit camera-related labels in both stages, enhancing applicability
in real-world scenarios. To achieve this, we propose a novel framework called the
Metadata-Free Noise Model (MFN), which extracts prompt features that encode
input noise characteristics and generates diverse noisy images that adhere to the
distribution of the input noise. Extensive experimental results demonstrate the
superior performance of our model in real-world noise generation and denoising
across various benchmark datasets.

1 INTRODUCTION

Real-world denoising is particularly challenging in low-level vision tasks due to the inherent com-
plexity and diversity of noise. Unlike additive white Gaussian noise (AWGN), which is introduced in
controlled environments, real-world noise originates from various sources, including camera sensor
limitations, environmental conditions, and camera settings. Thus, denoising in real-world scenarios
is more complex than in AWGN, where noise characteristics can be statistically modeled.

One clear method to address real-world denoising is to acquire a large dataset of noisy-clean image
pairs and train denoising networks in a supervised manner (Zamir et al., 2020b; Chen et al., 2021;
Zamir et al., 2022; Chen et al., 2022). However, this method presents a significant challenge: col-
lecting a large-scale dataset is resource-intensive and technically complex (Abdelhamed et al., 2018;
2020; Xu et al., 2018; Nam et al., 2016; Plotz & Roth, 2017). To address this limitation, various
methodologies for modeling real-world noise and generating datasets have been proposed (Abdel-
hamed et al., 2019; Kousha et al., 2022; Zamir et al., 2020a; Kim et al., 2024).

In this work, we aim to eliminate the reliance on metadata from noisy images when learning or
generating them. Specifically, metadata, such as camera manufacturer and ISO settings, plays a
crucial role as it offers a compact representation of how the ISP transforms the original RAW-RGB
data, while distorting the corresponding noise. Several previous studies (Abdelhamed et al., 2019;
Kousha et al., 2022; Fu et al., 2023) utilize metadata to guide the modeling of specific noise types;
however, collecting or utilizing metadata in real-world scenarios can be challenging. In practical
applications, such as medical imaging, the physical meaning of the information in the metadata is
completely different or may even be unavailable. In these situations, conventional methods that
depend on standardized metadata face significant limitations. To address this issue, we propose a
novel framework, Metadata-Free Noise model (MFN). This model extracts and exploits the under-
lying noise information in an unsupervised manner, without relying on metadata, while maintaining
the quality of the generated samples.
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Table 1: Difference between existing
and proposed noise models.

Methods Metadata-Free?

Train Test

(a) ✗ ✗
(b) ✗ ✓

Ours ✓ ✓

Unlike the preceding approaches that rely on metadata dur-
ing at least one phase of training or testing, illustrated as
methods (a) (Abdelhamed et al., 2019; Kousha et al., 2022;
Fu et al., 2023) and (b) (Kim et al., 2024) in Tab. 1, our
method leverages prompt features that can replace the meta-
data to guide noise sampling. Specifically, we propose a
Prompt Autoencoder (PAE) that encodes the noise of the
input image and also produces input-specific prompt fea-
tures including the characteristics of the input noise, such
as ISO levels and noise correlation patterns. We then use a consistency model (CM) (Song et al.,
2023; Luo et al., 2023), a type of generative model, to learn the latent space of the PAE and synthe-
size a new latent code conditioned on the produced prompt features which encapsulate information
about the noise characteristics. Specifically, building on recent DiT (Peebles & Xie, 2023) architec-
tures based on CM, we propose a Prompt DiT (P-DiT) that fully leverages the prompt features from
the PAE during the generation process. Finally, we use the Decoder of our PAE to generate a noisy
image by inputting the synthesized latent code from P-DiT along with the clean image. Through ex-
tensive experiments, we demonstrate that our MFN achieves outstanding real-world noise modeling
quality without requiring any metadata during the training or testing phases. For downstream tasks,
we trained a denoiser on the generated noisy dataset, achieving state-of-the-art (SOTA) denoising
performance across various real-world benchmark datasets.

2 RELATED WORK

sRGB Noise Generation. The limited availability of real-world noise datasets results in overfitting
issues for denoising networks, particularly in practical applications (Abdelhamed et al., 2019; Za-
mir et al., 2020a; Jang et al., 2021; Wu et al., 2023). To tackle this problem, various methods for
generating sRGB noise have been proposed. PNGAN (Cai et al., 2021) treats each noisy pixel as
a random variable, disentangling the noise generation problem into components in the image and
noise domains. Flow-sRGB (Kousha et al., 2022) leverages normalizing flows to model noise distri-
butions based on factors like smartphone type and gain settings. NeCA (Fu et al., 2023) introduces
a neighboring correlation-aware noise model for synthesizing realistic noise, explicitly accounting
for both signal dependency and neighboring noise correlations. However, these methods depend
on explicit noisy image labels (i.e., metadata) for noise generation, limiting their applicability in
situations where such information is unavailable. To address this, NAFlow (Kim et al., 2024) in-
troduces a noise-aware sampling algorithm to synthesize sRGB noise without requiring metadata
during inference. However, it still requires metadata during the training phase. In contrast to these
previous approaches, our approach offers a metadata-free noise generation method for both training
and testing phases by leveraging prompts that capture input-noise-specific information.

Prompt Learning. Prompt-based methods are commonly employed in natural language processing
(NLP) (Brown et al., 2020; Shin et al., 2020; Schick & Schütze, 2021) and vision tasks (Zhou et al.,
2022a; Yao et al., 2024) to offer meaningful context for fine-tuning models on specific tasks. How-
ever, rather than relying on explicit manual guidance sets as prompts, recent methods (Zhou et al.,
2022b; Potlapalli et al., 2023) have utilized learnable prompts to achieve more efficient parameter
adaptation. While most prompting-based vision approaches focus on high-level tasks, recent low-
level vision models (Li et al., 2023; Potlapalli et al., 2023; Wang et al., 2024) have been proposed
to adaptively restore degraded images by leveraging their interactions with prompts. In particular,
PromptIR (Potlapalli et al., 2023) and PromptRestorer (Wang et al., 2024) employ prompt learn-
ing to encode and implicitly classify degradation-specific information, enhancing the restoration
model’s performance. In this work, we develop a prompt learning method for realistic noisy image
generation by introducing a Prompt Autoencoder (PAE) that extracts prompt features capturing the
characteristics of the input noise.

3 PROPOSED METHOD

3.1 PRELIMINARIES

Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al.,
2020) involve a forward process that corrupts data with independent and identically distributed Gaus-
sian noise, followed by a learning phase to reverse this corruption. In the forward process, Gaussian
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Figure 1: Overview of the proposed method. (a) Two-stage training phase. (b) Inference phase.

random noise is added to the given input x0. Using reparameterization, this process at timestep t
can be represented as:

xt = αtx0 + σtϵϵϵ, ϵϵϵ ∼ N (0, I), t ∈ {0, 1, . . . , T} (1)

where xt is the noise-added data sample at timestep t, I denotes the identity matrix, σt is a noise
schedule that controls the level of noise (e.g., standard deviation of Gaussian noise), and αt is a
time-dependent function that define the specific type of diffusion process, such as the variance-
preserving (Sohl-Dickstein et al., 2015; Ho et al., 2020) and variance-exploding (VE) (Song &
Ermon, 2019; Song et al., 2021) diffusion processes (Kingma et al., 2021). In this work, we employ
the VE diffusion process, where αt=1. The objective of diffusion models is to reverse the forward
process by denoising the corrupted sample xt back to the original data x0.

In the context of score-based generative models (Song & Ermon, 2019; 2020; Song et al., 2021),
the score model sθ(xt, σt) estimates the score function, a vector field that points toward regions of
higher data density, by employing score matching (Hyvärinen & Dayan, 2005; Song et al., 2021).
The reverse process is performed by iteratively applying the learned score function to gradually de-
noise the noisy input. This can be represented using probability flow ordinary differential equations
(PF ODEs), as described in (Karras et al., 2022) as:

dxt = −σt∇xt
log p(xt;σt)dt, (2)

where the score function is ∇xt log p(xt;σt). In practice, solving this reverse-time ODE involves
numerous update steps, which makes diffusion models computationally intensive.

Consistency Models. Unlike traditional diffusion models that generate data through multiple itera-
tive steps, recent consistency models (CMs) streamline the process by achieving results in a single
step (Song et al., 2023; Song & Dhariwal, 2024). Specifically, the CM learns a mapping function
fθ(xt, σt) such that, for any xt, the output remains consistent with the original data x0. This process
can be approximated as follows:

fθ(xt, σt) = xt +

∫ σ0

σt

dxu

du
du ≈ x0. (3)

The consistency training (CT) loss ensures that the model’s outputs remain stable across different
noise levels, as follows:

LCT = E [λ(σt) d (fθ(xt+1, σt+1)− sg(fθ−(xt, σt)))] , (4)

where λ(·) is a weighting function, d(·) is a distance function like pseudo Huber loss (Song &
Dhariwal, 2024), and sg(·) denotes the stop-gradient operator. Here, fθ and fθ− refer to the student
and teacher networks, respectively. The stop-gradient operator is used to keep the teacher network

3
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Figure 2: Sketch of the Prompt Autoencoder (PAE). (a) Architecture overview. (b) Details of Global
and Local Prompt Block.

fixed during each optimization step of the student network. In our approach, since the pretrained
teacher model is not available, we set θ− = θ (Song et al., 2023; Song & Dhariwal, 2024; Kong
et al., 2024). We adopt most of the training hyperparameters for the CM from EDM (Karras et al.,
2022) and iCT (Song & Dhariwal, 2024), and further details are in Sec. A.1.

3.2 OVERALL FLOW

We introduce a novel framework called Metadata-Free Noise (MFN), which can generate realistic
noisy images without relying on explicit labels or metadata (e.g., smartphone manufacturer, ISO
setting). Our MFN is inspired by latent diffusion models (Rombach et al., 2022a; Luo et al., 2023),
and its generation process operates within a compact latent space, further achieving speed improve-
ments through CM. This approach significantly reduces computational and memory costs compared
to methods that function in high-dimensional image space. We illustrate the overall flow of the MFN
in Fig. 1, which comprises two main components: the Prompt Autoencoder (PAE) and the Prompt
DiT (P-DiT), trained sequentially in a two-stage manner.

Two-Stage Training Phase. First, we train U-Net (Ronneberger et al., 2015) like PAE, which
consists of Prompt Encoder E and Decoder D, to learn a compact latent space. The Prompt Encoder
E maps the input noise nReal, representing the residual between the paired noisy image IIINoisy and
clean image IIIClean, into a compact latent code z, while also producing prompt features that capture
the characteristics of the input noise. Given the clean image IIIClean, the Decoder D reconstructs the
noisy image from the encoded latent code.

Then, our P-DiT is trained to learn the distribution of the PAE’s latent codes using a CM-based
approach by optimizing LCT in Eq. 4. Given the fully trained Prompt Encoder E , our P-DiT learns
to synthesize latent codes that embed input-specific noise characteristics by leveraging an encoded
latent code z0 and prompt features from Prompt Encoder E , along with the clean image.

Inference Phase. During the generation phase, the Prompt Encoder E produces prompt features that
capture the noise characteristics given an input noise. Conditioning on these prompts and a clean
image, the P-DiT generates a latent code ẑ0, which is then decoded by the Decoder D to produce
the final noisy image ÎIINoisy given the clean image IIIClean.

3.3 PROMPT AUTOENCODER

3.3.1 PROMPT ENCODER

As depicted in Fig. 2, the Prompt Encoder E consists of multiple convolutional layers, such as
residual blocks (He et al., 2016), incorporating two key components to extract attributes of the input
noise: the Global Prompt Block (GPB) and the Local Prompt Block (LPB), both inspired by the
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ISP pipeline. GPB and LPB generate prompt features that are concatenated with the input features
to embed informative latent codes. Specifically, learnable prompt components in both blocks are
trained to capture the dataset distribution through loss optimization. The resulting prompt features
are dynamically adjusted based on real-world noise characteristics, such as ISO levels and noise
correlation. Hence, these prompt features can act as implicit representations, capturing the input
noise characteristics and thereby eliminating the reliance on explicit labels and metadata.

Global Prompt Block. A camera ISP can adjust brightness using ISO, simulating physical expo-
sure. However, increasing the signal gain through high ISO settings also amplifies sensor noise.
Thus, ISO is a crucial factor in modeling noise attributes. To capture global noise statistics, such as
noise amplification in the prompt features, we propose the Global Prompt Block (GPB). This block
is designed to analyze how different ISO levels impact noise characteristics, allowing our model to
better represent the inherent noise patterns associated with varying ISO settings.

In the GPB, we first define a set of learnable global prompt components Pℓ
Global ∈ R

H

2ℓ
×W

2ℓ
×Cℓ

Global

to capture the global statistics at scale ℓ. To generate the global prompt features Fℓ
Global ∈

R
H

2ℓ
×W

2ℓ
×Cℓ

Global , we compute input-specific coefficients wℓ
Global from the input feature Fℓ

In ∈
R

H

2ℓ
×W

2ℓ
×Cℓ

In by computing the channel-wise mean and standard deviation of the input feature to
capture the global statistics of the input noise as:

wℓ
Global = Softmax

(
Conv1×1

q
µ(Fℓ

In),Σ(F
ℓ
In)

y)
, (5)

where µ(·) and Σ(·) represent functions that compute the channel-wise mean and standard deviation,
respectively. These two moments are concatenated and passed through a 1× 1 convolutional layer,
followed by a softmax operation. Then, these coefficients are used to dynamically modify the global
prompt components Pℓ

Global, followed by a 3×3 convolutional layer for refinement, to yield the final
global prompt features Fℓ

Global as:

Fℓ
Global = Conv3×3

(
wℓ

Global ⊙Pℓ
Global

)
, (6)

where ⊙ denotes the element-wise multiplication. This process ensures that the global prompt fea-
tures reflect the global noise characteristics based on noise distribution statistics in the input image.

Local Prompt Block. In the GPB, we extract global information (e.g., ISO); however, real-world
sRGB noise cannot be fully characterized by global information alone. This issue arises from sev-
eral transformations in the ISP pipeline, such as non-linear and locally different spatial operations,
which cause patterned, non-IID, and signal-dependent noise during the RAW-to-sRGB conversion.
Therefore, we additionally propose the Local Prompt Block (LPB) to capture capture camera model-
specific and signal-dependent noise characteristics from the input noise.

In the LPB, we first extract ρ×ρ patch from the input noise nReal ∈ RH×W×3 at every pixel location
and calculate the local correlation map for each patch with respect to its center pixel. Specifically,
following the approach in LGBPN (Wang et al., 2023), we compute the Pearson correlation coef-
ficients of neighboring pixels relative to the center pixel for each patch. This operation is applied
to all patches, resulting in correlation coefficient maps Fρ ∈ RH×W×ρ2

, where each pixel contains
its local correlation information along the channel axis. We then separately compute row-wise and
column-wise averages from Fρ to capture local distortions introduced by the ISP pipeline within
each patch. These two averages are then concatenated and upscaled using correlation map block
(CoMB) which consists of lightweight operations, including a 1×1 convolutional layer, a bilin-
ear upsampler, and a 3×3 convolutional layer, as illustrated in Fig. 2 (b). Similar to the GPB,
we apply a softmax operation to the upscaled features to generate the local prompt coefficients
wLocal ∈ RH×W×CLocal as:

wLocal = Softmax

(
CoMB

(q
Avgrow(F

ρ
),Avgcol(F

ρ
)
y))

, (7)

where Avgrow and Avgcol indicate row-wise and column-wise averaging operations, respec-
tively. Next, the local prompt coefficients are multiplied element-wise by the prompt compo-
nents PLocal ∈ RH×W×CLocal for dynamic feature aggregation, yielding the local prompt features
FLocal ∈ RH×W×CLocal as follows:

5
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Figure 3: Overview of Prompt DiT (P-DiT). (a) Overall P-DiT structure. (b) P-DiT block.

FLocal = Conv3×3

(
wLocal ⊙PLocal

)
. (8)

We emphasize that by leveraging local noise characteristics (e.g., noise local correlation), the prompt
components learn to focus on unique camera-specific and signal-dependent features.

3.3.2 DECODER

As illustrated in the lower part of Fig. 2 (a), the Decoder D consists of numerous convolutional
layers, integrating residual blocks and upsampling operations to transform latent codes back into
noisy images. The upsampling operation increases the spatial resolution of input features at scale
ℓ using nearest-neighbor upsampling, as followed by (Rombach et al., 2022b). To further capture
the signal-dependent characteristics of real-world noise, clean images are downsampled using pixel
downsampling (Shi et al., 2016), preserving fine-grained textures and conditioning at each scale
level.

3.4 PROMPT DIT

In Fig. 3, we introduce P-DiT, which fully leverages the prompts extracted from the Prompt Encoder
E to synthesize latent codes that align with the embedded information of the input noise character-
istics. Our P-DiT is based on DiT (Peebles & Xie, 2023), a transformer-based CM architecture
specifically designed for training diffusion models.

In Fig. 3 (a), the P-DiT consists of a series of B P-DiT blocks through which the noise added input
latent zt+1 is processed. Moreover, for conditioning features, we use the timestep t+1, clean images
IIIClean, and prompt features FLocal and Fℓ

Global. The timestep enables the model to adjust its denois-
ing predictions based on the noise levels of the diffusion process at each timestep. More precisely,
the timestep is embedded by a timestep embedder, composed of sinusoidal embeddings and an MLP
block (Vaswani, 2017). We also use clean images to help the model learn the signal-dependent
properties of real-world noise and prompt features. This enables the generation of latent codes that
capture input noise characteristics without relying on metadata, with these features embedded by a
conditional embedder. Specifically, we first downsample these inputs to match the spatial size of the
latent codes and then extract shallow features separately using 3× 3 convolutional layers, which are
concatenated along the channel axis as follows:

FCond =
r
Conv3×3

(
PD(IIIClean)

)
,Conv3×3

(
PD(FLocal)

)
,Conv3×3

(
PD(Fℓ

Global)
)z

, (9)

where PD(·) indicates a pixel downsampling operator. Note that we use Fℓ
Global for all scale levels,

and each feature is processed separately. The concatenated feature FCond is then processed with
global average pooling and added to the time embeddings.
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In Fig. 3 (b), we present the P-DiT block. We employ adaptive layer normalization (AdaLN) as the
conditioning mechanism to modulate the statistics of input features. AdaLN consists of two compo-
nents: layer normalization (Perez et al., 2018) and adaptive modulation. AdaLN first normalizes the
input features to have a mean of zero and a standard deviation of one. Then, the normalized features
are modulated using scale and shift parameters derived from the conditioning input.

Moreover, to fully leverage the available information from the conditions and capture locally varying
spatial correlations and signal-dependent noise characteristics in the prompt features, we further
enhance these features through a prompt attention mechanism, referred to as Prompt Attention.

Prompt Attention. As illustrated in Fig. 3 (b), we use the conditions to generate the key, query,
and value within the attention layer, similar to MMDiT (Esser et al., 2024), enabling the model to
effectively capture the spatial information of the prompt features. Specifically, we first modulate
the combined conditional features FCond through AdaLN to extract time-dependent information.
Then, we generate the key, query, and value features using a single linear layer and combine them
with the corresponding features from the input tokens through element-wise addition. Using these
conditioned features, we apply cosine attention (Luo et al., 2018; Karras et al., 2024) with point-wise
normalization (Karras et al., 2018) to stabilize the training process (Karras et al., 2024).

4 EXPERIMENTS

Please refer to the appendix for detailed information and additional experimental results. The source
code will also be made publicly available upon acceptance.

4.1 EXPERIMENTAL SETUP

Implementation Details. The PAE is trained with the Adam optimizer (Kingma & Ba, 2014) and
minimize the L1 loss between the noisy image IIINoisy and the reconstructed noisy image ÎIINoisy,
along with the L2 regularization applied to the latent code z for dense representation (Rombach
et al., 2022b). We start with an initial learning rate 1e-4, which is then reduced to 1e-6 using a
cosine annealing algorithm (Loshchilov & Hutter, 2017) over 400k iterations. We use randomly
cropped patches of size 256×256 and a mini-batch size of 64 for training.

The P-DiT model is optimized with the RAdam optimizer (Liu et al., 2020) using a fixed learning
rate of 2e-4 over 250k iterations, applying the pseudo-Huber loss for Eq. 4, similar to iCT (Song &
Dhariwal, 2024). We also use randomly cropped patches of size 256×256 to embed latent codes of
size 32×32, with a mini-batch size of 512 during training. For the ablations, the mini-batch size is
reduced to 128 to save training time. More details are in Sec. A.1.

For denoising, we adopt the DnCNN architecture (Zhang et al., 2017)), optimized with the Adam
optimizer (Kingma & Ba, 2014) over 100k iterations. The training follows the setup outlined in (Fu
et al., 2023; Kim et al., 2024), with a learning rate of 1e-3 and a mini-batch size of 8.

Dataset. To train the PAE, P-DiT, and DnCNN, we employ the SIDD (Abdelhamed et al., 2018)
dataset, which includes 34 different camera configurations. We adopt the SIDD Medium split, com-
prising 320 noisy-clean image pairs captured with five unique smartphone cameras: Google Pixel
(GP), iPhone 7 (IP), Samsung Galaxy S6 Edge (S6), Motorola Nexus 6 (N6), and LG G4 (G4). To
evaluate the generated noise quality, we use the SIDD validation set, SIDD+ (Abdelhamed et al.,
2020), PolyU (Xu et al., 2018), and Nam (Nam et al., 2016) dataset, and the DND (Plotz & Roth,
2017) dataset is additionally employed to assess denoising performance. Note that the SIDD+,
PolyU, Nam, and DND datasets were captured using different types of camera sensors.

Metrics. To examine the quality of the generated noise, we use two metrics: Kullback-Leibler
Divergence (KLD) and Average Kullback-Leibler Divergence (AKLD) (Yue et al., 2020). Addition-
ally, we employ PSNR and SSIM metrics to assess the performance of denoising.

4.2 QUANTITATIVE AND QUALITATIVE RESULTS ON NOISE GENERATION

Device-Specific Noise Quality Assessment. In Tab. 2, we evaluate the noise quality of each
smartphone device type to assess device-specific noise generation performance in terms of KLD
and AKLD. Our method is compared with four other models: C2N (Jang et al., 2021), Flow-
sRGB (Kousha et al., 2022), NeCA-W (Fu et al., 2023), and NAFlow (Kim et al., 2024). To align

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Quantitative results for synthetic noise on a subset of the SIDD validation set, in which the
ISO values overlap with the training set. The results are computed with KLD↓ and AKLD↓. The
best and second-best results are shown in bold and underline.

Camera Metrics C2N Flow-sRGB NeCA-W NAFlow MFN

G4 KLD 0.1660 0.0507 0.0242 0.0254 0.0174
AKLD 0.2007 0.1504 0.1524 0.1367 0.1283

GP KLD 0.1315 0.0781 0.0432 0.0352 0.0143
AKLD 0.1968 0.1797 0.1273 0.1180 0.1074

IP KLD 0.0581 0.5128 0.0410 0.0339 0.0291
AKLD 0.2929 1.7490 0.1145 0.1522 0.1128

N6 KLD 0.3524 0.2026 0.0206 0.0309 0.0167
AKLD 0.2919 0.2469 0.1304 0.1108 0.1106

S6 KLD 0.4517 0.3735 0.0302 0.0272 0.0193
AKLD 0.4190 0.2641 0.1933 0.1355 0.1223

Average KLD 0.2129 0.2435 0.0342 0.0305 0.0194
AKLD 0.2802 0.5180 0.1436 0.1306 0.1163

Table 3: Quantitative results of synthetic noise on the PolyU, Nam, SIDD validation set and SIDD+.
All methods are trained with SIDD training set. The results are computed with KLD↓ and AKLD↓.
The best results are shown in bold.

Methods PolyU Nam SIDD SIDD+ Average

KLD↓ AKLD↓ KLD↓ AKLD↓ KLD↓ AKLD↓ KLD↓ AKLD↓ KLD↓ AKLD↓
NAFlow 0.2304 1.7801 0.2055 1.9320 0.0291 0.1293 0.0494 0.2917 0.1286 1.0333
Ours 0.0822 0.5814 0.0966 0.4668 0.0189 0.1160 0.0283 0.1630 0.0565 0.3318

N
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o

is
y

OursNeCA-W NAFlowC2N Real

KLD=0.1387

OursNeCA-W NAFlowC2N Real

0028-0022.png 0.1387 0.0341 0.0271 0.0164 

0015-0031.png 0.0550 0.0580 0.0627 0.0165 

KLD=0.0341 KLD=0.0271 KLD=0.0164 KLD=0.0550 KLD=0.0580 KLD=0.0627 KLD=0.0165 

Figure 4: Visualization of synthetic noisy images on the SIDD validation set. From left to right:
NeCA-W, NAFlow, Ours (MFN), and real noisy images.

with the experimental settings of Flow-sRGB, NeCA-W and NAFlow, we ensure that both the train-
ing and validation sets contain the same ISO levels.

Compared to other methods, our MFN achieves the best performance across all device types, demon-
strating significant improvements over NAFlow (the state of the art at the time of submission) in
both average KLD and AKLD scores. Unlike the other methods, our MFN does not require meta-
data during training or testing, highlighting its versatility in real-world scenarios. We also present
visual comparisons of the noisy images generated by each method in Fig. 4. The MFN generates
more natural and realistic noise that closely resembles real-world noise distributions in magnitude
and correlation patterns, demonstrating its superior performance in generating realistic noise.

Metadata-Free Noise Quality Assessment. In Tab. 3, we validate the robustness of our method by
evaluating the noise quality on external real-world datasets that were not used during the training
phase. We compare our MFN with NAFlow, as both models generate input-specific noise without
requiring explicit metadata at the inference phase. However, unlike our approach, NAFlow requires
metadata for training. In addition to the entire SIDD validation set, we compare results on three
external datasets: PolyU, NAM, and SIDD+. These datasets were captured using various device
types, camera sensors, and ISPs (e.g., smartphones and DSLRs).

The overall results demonstrate that the MFN consistently outperforms NAFlow across all four
datasets, achieving substantial gains in average KLD and AKLD scores. This emphasizes the MFN’s
robustness across various camera settings and external datasets.

4.3 APPLICATION: REAL-WORLD DENOISING

Denoising Results on SIDD. To evaluate the efficacy of noise modeling methods, we train the
DnCNN (Zhang et al., 2017) using synthetic noisy-clean paired datasets. In Tab. 4, we compare
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Table 4: Quantitative results of denoising performance on SIDD-Benchmark in terms of PSNR↑ and
SSIM↑. All methods are trained with synthetic noisy-clean pairs. Note that Real are trained with
real noisy-clean pairs. The best and second-best results are highlighted in bold and underline.

Metrics C2N NoiseFlow Flow-sRGB NeCA-W NAFlow MFN Real

PSNR↑ 33.76 33.81 34.74 36.82 37.22 37.55 37.63
SSIM↑ 0.901 0.894 0.912 0.932 0.935 0.937 0.936

Table 5: Quantitative results of denoising performance on PolyU, Nam, DND, and SIDD+ in terms
of PSNR↑ and SSIM↑. All methods are trained with synthetic noisy-clean pairs of SIDD training
set. The best and second-best results are highlighted in bold and underline.

Methods PolyU Nam DND SIDD+ Average

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
Real 36.34 0.9204 35.35 0.8828 38.85 0.9434 35.68 0.8860 36.56 0.9082
NAFlow 36.85 0.9499 37.45 0.9524 30.95 0.8010 36.67 0.9249 35.48 0.9071
Ours 37.93 0.9609 38.08 0.9630 38.75 0.9468 36.23 0.9072 37.75 0.9445

OursNeCA-W NAFlowNoisy Clean OursNeCA-W NAFlowNoisy Clean

PSNR=27.18 PSNR=24.44 PSNR=28.12 PSNR=30.54 PSNR=24.32 PSNR=33.92

0023-0000.png   25.23 27.18 24.44 28.12 
0009-0009.png   26.98 30.54 24.32 33.92 

Figure 5: Visual comparison on denoising results with PSNR↑ on SIDD validation set from DnCNN
trained on each method. For more qualitative results, please refer to the appendix.

the denoising performance of our MFN with (Jang et al., 2021), Flow-sRGB (Kousha et al., 2022),
NeCA-W (Fu et al., 2023), NAFlow (Kim et al., 2024), and Real. Notably, Real represents results
from real (not synthetic) noisy-clean paired data, serving as an oracle for synthetic noise generation.

Our MFN outperforms other generative methods, surpassing NAFlow by over 0.33 dB in PSNR
and 0.002 in SSIM. Moreover, the denoising results produced by MFN closely match those of Real,
achieving a PSNR gap of only 0.08 dB and even exceeding SSIM by 0.001.

Generalization on Various Real-World Datasets. To further evaluate the generalization capabili-
ties, we assess denoising performance on four additional benchmark datasets: PolyU, NAM, DND,
and SIDD+, which feature a variety of noise patterns and image characteristics. The results in Tab. 5
summarize the comparison of our method with two approaches: NAFlow and Real, trained using
synthetic and ground-truth noisy-clean pairs from the SIDD training set, respectively.

Our method achieved superior performance across most datasets, demonstrating the best averaged
results with 37.75 dB in PSNR and 0.9445 in SSIM, outperforming both NAFlow and Real. While
NAFlow shows the best denoising performance on the SIDD+ dataset, which was captured with
smartphone cameras like SIDD (i.e., training data), it has the lowest average score, indicating over-
fitting to the training data (SIDD) and poor generalization ability. These findings suggest that our
method is highly effective for general denoising tasks, striking a better balance between noise re-
moval and structural preservation across diverse real-world datasets.

4.4 METADATA CLASSIFICATION

Table 6: Quantitative results of metadata classification on
SIDD validation with different combinations of prompts in
terms of accuracy↑. We test the validity of the prompts in
two aspects: camera sensor type and ISO level. The best and
second-best results are highlighted in bold and underline.

Classifier Camera Sensor (%) Camera Sensor + ISO Level

Top-1 (%) Top-3 (%)

Baseline (No Prompt) 75.80 66.27 93.91
GPB 82.37 68.35 94.71

GPB + LPB 94.47 75.48 98.64

We evaluate the extent to which the
prompts extracted from the Prompt
Encoder E capture the characteristics
of the input noise.

First, we trained ResNet-based clas-
sifiers using either the input noise
nReal or the prompt features as input,
measuring their ability to accurately
categorize camera sensor types (i.e.,
camera manufacturer). We selected
five major camera sensors from the
SIDD dataset, resulting in five distinct labels, denoted as Camera Sensor in the second column
of Tab. 6. The classification results show that using features of GPB as input improves camera sen-
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Table 7: Effect of GPB and
LPB on noise generation. The
best results are shown in bold.

Combination Generation

GPB LPB KLD↓ AKLD↓
✗ ✗ 0.6182 0.4387
✓ ✗ 0.0287 0.1112
✓ ✓ 0.0261 0.1108

Table 8: Effect of GPB and LPB
on noisy image reconstruction. The
best results are shown in bold.

Combination Reconstruction

GPB LPB PSNR↑ SSIM↑
✗ ✗ 37.58 0.9800
✓ ✗ 46.30 0.9982
✓ ✓ 46.54 0.9983

Table 9: KLD score
depending on different
number of blocks B in
Fig. 3.

# Blocks KLD↓
B = 4 0.0350
B = 6 0.0345
B = 8 0.0261

sor prediction accuracy compared to the baseline model, which uses real noise as input (without
GPB and LPB). Furthermore, combining GPB with LPB further enhances classification accuracy.
These results demonstrate that the prompts contain information about the camera sensor.

Next, we created a total of 16 labels by simultaneously considering these five sensors and additional
ISO levels, and conducted classification experiments. We compared their classification performance
on the SIDD validation set, measuring Top-1 and Top-3 accuracy (last two columns in Tab. 6).
The results show that using both GPB and LPB achieves the best classification performance for
identifying the camera sensor and ISO configuration, highlighting the effectiveness of the proposed
prompt blocks in capturing input noise-dependent characteristics.

Further details regarding the classifier architecture and labels can be found in Sec. A.3.

4.5 ABLATION STUDY

Effect of GPB and LPB on Noise Generation. Our PAE encodes input noise into a compact latent
code and generates prompt features that capture input-specific noise characteristics. To evaluate the
impact of the prompts extracted by the GPB and LPB, we conducted experiments, as shown in Tab. 7.
The P-DiT model is differently trained with various PAE variants to investigate the effect of each
prompt. Combining diverse information from the prompt blocks such as ISO settings and noise
correlation enhances the quality of synthesized noise by providing vital input-specific distribution
details.

Effect of GPB and LPB on Noisy Image Reconstruction. As described in Tab. 8, we also assessed
the influence of both prompt blocks on noisy image reconstruction. Incorporating GPB and LPB
enhances the fidelity of the reconstructed images, as the prompt features encompass meaningful
information about noise characteristics at different scales (see Fig. 2). Therefore, it is essential to
utilize both prompt features to enhance the quality of the reconstructed images. Notably, we pass
the latent directly from the Prompt Encoder E to the Decoder D, without using the P-DiT for this
experiment.

Effect of Number of P-DiT Blocks. As shown in Tab. 9, we measured the KLD scores across
different numbers of blocks B in the P-DiT to evaluate their impact on noise generation, with B
representing the hierarchical levels used in our P-DiT. The results indicate that increasing the number
of blocks improves the quality of noise generation. Even with half the number of blocks, P-DiT
yet achieves a moderate KLD score, with only a slight difference from the final version (B=8),
suggesting an opportunity to optimize the trade-off between model complexity and performance.

5 CONCLUSION

In this work, we propose a novel MFN framework to remove the reliance on metadata when gener-
ating real-world noise. Our MFN comprises two key components: Prompt Autoencoder (PAE) and
Prompt DiT (P-DiT). The PAE encodes input noise, generating a compact latent code and extracting
meaningful prompt features at various scales to replace input noise-specific metadata. The P-DiT
then synthesizes latent codes using prompts and clean images as conditions. Finally, the generated
latent codes are fed into the PAE Decoder alongside clean images to produce realistic noisy images.
A key advantage of our method is that it does not require explicit metadata during either the training
or testing phases unlike conventional methods, highlighting its strength in real-world applications.
Moreover, experimental results on real-world benchmarks demonstrate that our framework excels in
both real-world noise generation and downstream denoising tasks.
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A APPENDIX

A.1 TRAINING DETAILS OF P-DIT

A.1.1 CM PARAMETERIZATION

The CM-based model fθ aims to approximate the consistency function f(·, ·), which satisfies
f(xt, σt) = x0. Therefore, it must adhere to the boundary condition f(x0, σ0) = x0. To en-
sure this, we follow the parameterization used in EDM (Karras et al., 2022) and CM (Song et al.,
2023), defining the model as follows:

fθ(xt, σt) = cskip(σt)xt + cout(σt)Fθ(cin(σt)xt, σt), (10)

where Fθ is a free-form neural network, such as P-DiT, and cin, cout, and cskip control the scaling of
input, output magnitudes, and the skip connection, respectively. These can be expressed as:

cin(σt) =
1√

σ2
data + σ2

t

, cskip(σt) =
σ2

data

(σt − σ0)2 + σ2
data

, cout(σt) =
σdata(σt − σ0)√

σ2
data + σ2

t

, (11)

These formulations satisfy the boundary condition, as cskip(σ0) = 1 and cout(σ0) = 0.

A.1.2 CM HYPERPARAMTERS

In the subsection, we describe the hyperparameters used for training P-DiT. Most hyperparameters
for CM are adopted from iCT (Song & Dhariwal, 2024).

Discretization Curriculum. The discretization curriculum is designed to enhance CM training by
systematically increasing the number of discretization timesteps T in Eq. 1, improving the quality
of generated samples. The discretization curriculum C(k) is defined as follows:

C(k) = min(s02
k
K′ , s1) + 1, where K ′ =

⌊
K

log2
s1
s0

+ 1

⌋
, (12)

k ∈ {0, 1, . . . ,K}, and K represents the total number of training iterations. s0 and s1 are the
minimum and maximum number of discretization steps, respectively. While iCT (Song & Dhari-
wal, 2024) uses s0 = 10 and s1 = 1280, we empirically found that setting maximum number of
discretization steps s1 to 160 is sufficient to produce competitive performance.

Noise Schedule. The noise schedule plays a critical role in determining the sampling of noise levels
during the CM training, significantly influencing the quality of the generated samples. For defining
noise schedule, we first discretize the noise level as follows: σmin = σ0 < σ1 < · · · < σT = σmax
where σmin = 0.002, σmax = 80. As in (Karras et al., 2022; Song et al., 2023; Song & Dhariwal,
2024), we set σt as:

σt =

(
σ
1/τ
min +

t− 1

C(k)− 1

(
σ1/τ

max − σ
1/τ
min

))τ

, (13)

where t ∈ {1, 2, . . . , C(k)}, and τ = 7. τ controls the step length between noise levels σt and σt+1.
As τ increases, the step lengths at lower noise levels decrease, allowing the model to better capture
high-frequency details.

Additionally, we utilize a lognormal distribution for noise level sampling, which reduces the empha-
sis on higher noise levels and mitigates the accumulation of errors in CT loss at lower noise levels.
The noise sampling schedule is defined as:

σt, where t ∼ p(t), and p(t) ∝ erf
(
log(σt+1)− Pmean√

2Pstd

)
− erf

(
log(σt)− Pmean√

2Pstd

)
, (14)

where erf indicates error function, and Pmean, Pstd determine the shape of log distribution. We choose
Pmean = −1.1, Pstd = 2.0, following iCT (Song & Dhariwal, 2024).

Loss Function. In Eq. 1, we use the pseudo-Huber loss (Song & Dhariwal, 2024) as the distance
function d(·). The pseudo-Huber loss transitions between L1 and L2 metrics and is more robust to
outliers than the L2 metric. The pseudo-Huber loss is defined as:

d(x,y) =
√
∥x− y∥22 + c2 − c, (15)
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where c = 0.00054
√
d, and d indicates data dimensionality.

Loss Weighting. The weighting function λ(·) in Eq. 1 modulates the significance of CT losses
across varying noise levels during training. As followed by (Song & Dhariwal, 2024), we set the
weighting function λ(·) as follows:

λ(σt) =
1

σt+1 − σt
. (16)

By assigning lower weights to higher noise levels, the weighting function ensures that the model
focuses on learning from lower noise levels, where the data is more distinct and informative. This
strategy improves sample quality by reducing the influence of errors associated with higher noise
levels, thereby enhancing the overall performance of consistency models.

A.1.3 LATENT CODE NORMALIZATION

The EDM formulation assumes that the mean and standard deviation of the training data are zero
and σdata, respectively, as stated in Eq. 10. Following the approach in (Karras et al., 2024), we also
normalize the encoded latent codes using precomputed statistics from the training data. Specifically,
we first calculate the channel-wise mean and standard deviation of the latent codes from the training
dataset. Then, we subtract the input latent code by the precomputed mean to achieve a mean of zero,
and divide it by the precomputed standard deviation, followed by multiplying by σdata, to set the
standard deviation to σdata. When the latent codes are generated, we reverse this procedure before
transforming them back to the image space via the Decoder.

A.1.4 P-DIT HYPERPARAMTERS

Following the approach in (Song et al., 2023; Song & Dhariwal, 2024), we update P-DiT parameters
using an exponential moving average with a decay rate of 0.9999 to stabilize the training process.
P-DiT’s model hyperparameters are based on DiT-S (Peebles & Xie, 2023), except for the number
of blocks (B = 8), to improve efficiency. The input noised latent is tokenized with a patch size of
1, allowing for finer noise information to be embedded in the latent code. To mitigate overfitting,
we apply a dropout rate of 0.1 to the pointwise feed-forward layer and add minor noise and apply
downsampling operation with a factor of 2 to the conditional clean images (Song et al., 2023).

A.2 MODEL SIZE AND INFERENCE SPEED IN MFN

MFN consists of two models: PAE and P-DiT. PAE has 14.9M parameters, while P-DiT has 29.1M
parameters, resulting in a total parameter count comparable to NeCA-W (Fu et al., 2023), which has
40.5M parameters across models for different camera manufacturers in the SIDD dataset. or training
both PAE and P-DiT, we utilize four Nvidia A6000 GPUs. Following the approach in (Song et al.,
2023; Song & Dhariwal, 2024; Karras et al., 2022; 2024), we train P-DiT using mixed-precision,
which reduces both training time and memory consumption. During inference, MFN, which fully
utilizes modern GPU architectures, synthesizes 57 noisy images with size of 256× 256 per second,
whereas NAFlow (Kim et al., 2024) generates only 13 images per second using a single A6000
GPU.

A.3 DETAILS OF METADATA CLASSIFICATION

A.3.1 CAMERA SENSOR AND ISO LEVEL COMBINATION

We selected camera sensors and ISO levels that overlap between SIDD training and validation sets.
There are five camera sensors (i.e., GP, IP, S6, N6, and G4), each paired with different combinations
of ISO levels, yielding 16 different labels in total. Details regarding the labels assigned to each
combination are shown in Tab. 10

A.3.2 CLASSIFICATION MODEL ARCHITECTURE

We employed residual blocks (He et al., 2016) to construct a metadata classification model. Specif-
ically, we sequentially use four residual blocks, each featuring a 3 × 3 convolutional layer with a
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Table 10: List of camera sensors, ISO levels, and labels from the SIDD dataset used for metadata
classification.

Camera Sensor ISO Level Label

Camera Sensor Camera Sensor + ISO Level

GP 1600, 3200, 6400, 10000 0 0,1,2,3
IP 1000, 1600, 2000 1 4,5,6
S6 400, 800, 1600, 3200 2 7,8,9,10
N6 400, 800, 3200 3 11,12,13
G4 400, 800 4 14,15

stride of 2 at the front, to downsample the input prompt features, except for the last residual block.
We adopt the PD operation to adjust the shape of the prompt representations from all scales to the
smallest possible size that matches the spatial dimensions of the latent code z. We then concatenate
all features, aggregate them using a 1× 1 convolutional layer with a stride of 2, and feed them into
the classification model to produce the final output. The number of channels in the classification
model is fixed at 48, resulting in a total of 778k parameters.

A.3.3 TRAINING HYPERPARAMETERS

The classification model is trained from scratch using the Adam optimizer (Kingma & Ba, 2014)
and minimize the cross-entropy loss between the predicted and ground-truth label, along with the
L2 regularization applied to all learnable weights to address overfitting. We start with an initial
learning rate 1e-4, which is then reduced to 1e-6 using a cosine annealing algorithm (Loshchilov &
Hutter, 2017) over 10k iterations. For training, we use randomly cropped patches of size 256×256
and a mini-batch size of 64.

A.4 ABLATION STUDY ON CONDITIONAL FEATURES

P-DiT generates latent codes that embed noise information through conditional features. Specif-
ically, in Fig. 3(a), we first add the conditional feature Fcond on the timestep embedding, and in
Fig. 3(b), we condition the conditional feature through prompt attention.

In Tab. 11, we investigate the effect of conditional features on two different components: the
timestep embedding and attention. P-DiT without any conditional features fails to capture the target
noise information, resulting in the poorest performance in terms of KLD and AKLD. The model
that conditions the conditional features on both components demonstrates superior performance
compared to the model that only conditions them on the timestep embedding. This highlights that
utilizing spatial information through proposed prompt attention allows the model to fully exploit the
conditional features.

A.5 EVALUATION OF THE DIVERSITY OF GENERATED NOISE

The diversity of generated images is a crucial factor in measuring the quality of a synthesized dataset.
Therefore, in Tab. 12, we extend the experiment conducted in Tab. 3, which measured generated
noise similarity only along the spatial axis, to one that also considers similarity along the temporal
axis of continuously captured images.

To measure the KLD along the temporal axis, we use the SIDD-Full dataset, an extension of the
SIDD-Medium dataset, which contains 150 noisy-clean paired images per scene captured in contin-
uous shooting mode. We select five different scenes 1 captured by different camera sensors (e.g., GP,
IP, S6, N6, G4) and extract nine patches of size 256× 256, uniformly spaced across each patch. We
sample noise 150 times, comparing them pixel-by-pixel with the real noise, and average the KLD
scores across all pixels.

As shown in Tab. 12, MFN achieves the best performance compared to the other three models in
KLD scores. This indicates MFN’s superior ability to sythesize noise with greater diversity.

1The indices of the selected scenes are 36, 52, 70, 99, and 169. For a more detailed description of the
dataset, please refer official SIDD website.
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Table 11: Effect of conditioning features on different components in P-DiT. The best results are
shown in bold.

Conditioning Generation

Timestep Attention KLD↓ AKLD↓
✗ ✗ 0.5661 0.4132
✓ ✗ 0.0287 0.1291
✓ ✓ 0.0261 0.1108

Table 12: Quantitative results for the diversity of synthetic noise on the SIDD-Full dataset. All
methods are trained on the SIDD-Medium training set. The results are reported using KLD↓, with
the best results highlighted in bold.

Metric C2N NeCA-W NAFlow MFN
KLD↓ 0.1248 0.0351 0.0271 0.0241

Table 13: Quantitative results on supervised denoising performance. All methods are trained with
SIDD training set. Real refers to the original noisy-clean pairs, while MFN denotes the synthesized
noisy-clean pairs generated by MFN. The percentage (%) indicates the combining ratio between the
two datasets. The best and second-best results are denoted as bold and underline, respectively.

Real / MFN SIDD Validation SIDD+ PolyU Nam DND Average

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
100% / 0% 37.72 0.8905 35.68 0.8860 36.34 0.9204 35.35 0.8828 38.85 0.9434 36.79 0.9046
0% / 100% 37.64 0.8960 36.23 0.9072 37.93 0.9609 38.08 0.9630 38.75 0.9468 37.73 0.9348
50% / 50% 37.96 0.9047 36.57 0.9137 37.98 0.9610 38.09 0.9617 39.05 0.9472 37.93 0.9376

A.6 QUALITATIVE RESULTS OF NOISE GENERATION

In Fig. 6, we provide additional visualizations of generated noise, comparing our method (MFN)
with other approaches: C2N (Jang et al., 2021), NeCA-W (Fu et al., 2023), and NAFlow (Kim et al.,
2024).

A.7 QUALITATIVE RESULTS OF DENOISING PERFORMANCE

In Fig. 7, we provide additional visualizations of denoising results, where the denoising network
is trained on synthetic datasets. We compare our method (MFN) with other approaches, including
C2N, NeCA-W, and NAFlow.

A.8 PRACTICAL APPLICATIONS OF SYNTHESIZED DATASETS FOR SUPERVISED LEARNING

In Tab. 4, 5, we demonstrate that the denoising network trained with datasets generated by the pro-
posed MFN achieves superior performance compared to previous works and exhibits robust perfor-
mance on external real-world datasets. However, for enhanced practical usage of MFN with further
improvements in denoising performance, real and synthetic datasets generated by MFN can be com-
bined in specific ratios. This approach, using the DnCNN architecture, further enhances denoising
performance. As in Tab. 13, through a series of experiments, we found that adjusting the ratio of real
to synthesized data and constructing a mixed dataset (50% Real / 50% Synthesized) leads to superior
performance compared to training exclusively on the original dataset (100% Real / 0% Synthesized)
across all evaluated real-world datasets. Specifically, this configuration maintains robustness across
different camera sensor types (e.g., DSLR) on the PolyU and Nam datasets, while also outperform-
ing the ‘Real-only’ (100% Real / 0% Synthesized) configuration on the SIDD Validation, SIDD+,
and DND datasets. These results underscore that leveraging both the existing training dataset and
the synthesized dataset leads to improved denoising performance, highlighting the effectiveness of
our approach.
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Table 14: Quantitative results on self-supervised denoising performance. All methods are trained
with SIDD training set. Real refers to the original noisy images, while MFN denotes the synthesized
noisy images generated by MFN. The percentage (%) indicates the combining ratio between the two
datasets. The best and second-best results are denoted as bold and underline, respectively.

Real / MFN SIDD Validation SIDD+ PolyU Nam DND Average

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
100% / 0% 35.99 0.8630 35.23 0.8975 37.01 0.9517 37.19 0.9566 37.36 0.9266 36.56 0.9191
0% / 100% 35.71 0.8630 35.76 0.9164 37.31 0.9542 37.42 0.9570 37.35 0.9250 36.71 0.9231
50% / 50% 36.94 0.9019 35.56 0.9152 37.44 0.9570 37.76 0.9621 38.29 0.9412 37.20 0.9355

Table 15: Quantitative results on denoising generalization performance depending on the size of
synthesized dataset using MFN. The multiplication sign (×) indicates the scaling applied to the
original number of patches. The best and second-best results are denoted as bold and underline,
respectively.

# Samples PolyU Nam SIDD Validation SIDD+ Average

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
×1 37.40 0.9569 37.29 0.9578 36.55 0.8887 35.72 0.8997 36.74 0.9258
×2 37.61 0.9546 37.92 0.9580 36.95 0.8838 35.87 0.9078 37.09 0.9260
×4 37.72 0.9542 37.94 0.9578 37.27 0.8955 36.00 0.9022 37.23 0.9274

A.9 REAL-WORLD SELF-SUPERVISED DENOISING VIA NOISE GENERATION

We further evaluated the efficacy of the proposed MFN on self-supervised denoising methods. As
in Tab. 14, we trained LGBPN (Wang et al., 2023) using noisy images from three different combi-
nations of real SIDD data (100% Real / 0% Synthesized), fully synthesized data (0% Real / 100%
Synthesized), and mixed data (50% Real / 50% Synthesized). The results exhibit a similar trend to
those in Tab. 13, where incorporating synthetic data into the training process enhances performance
across various real-world datasets. Specifically, using a mixed dataset (50% Real / 50% Synthe-
sized) significantly boosts performance across all real-world datasets compared to the ‘Real-only’
(100% Real / 0% Synthesized) configuration, yielding the best averaged results. These findings
underscore that leveraging both the existing training dataset and the synthesized dataset leads to im-
proved denoising performance, demonstrating the effectiveness of our approach in both supervised
and self-supervised learning contexts.

A.10 FURTHER ANALYSIS OF THE GENERALIZATION PERFORMANCE

We also conducted experiments to analyze the robustness of our method on external datasets. Our
results show that expanding the dataset size through synthetic image generation helps mitigate over-
fitting to the training distribution, leading to improved performance on external datasets.

For the experimental setup, we selected 15,000 non-overlapping patches from the SIDD training
data to generate synthetic noisy images and train the DnCNN denoising network. This approach
ensures the creation of unique noisy samples without repetition, providing a controlled environment
for systematically analyzing the factors influencing performance on external datasets.

As illustrated in Tab. 15, we organized the training data into three distinct groups: ×1, ×2, and
×4. These factors represent the multiplicative scaling applied to the original number of patches for
generating synthetic noisy images using MFN for each clean image. Importantly, performance on the
in-distribution dataset (SIDD+) remains consistent across all groups. The denoising network shows
enhanced robustness across all real-world datasets as the number of samples increases, with the
×4 group achieving the best average results. These findings suggest that leveraging multiple noise
samples effectively reduces overfitting by increasing the diversity of the noise, thereby underscoring
the effectiveness of the MFN approach.

A.11 EVALUATION ON REAL-WORLD MEDICAL IMAGING DATASET

Several previous studies (Abdelhamed et al., 2019; Kousha et al., 2022; Fu et al., 2023) utilize
metadata to guide the modeling of specific noise types. However, in practical applications such
as medical imaging, the physical meaning of the metadata may differ entirely or may even be un-
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Table 16: Quantitative results of noise generation performance on LDCT images in terms of KLD↓
and AKLD↓. Note that the best results are highlighted in bold.

Methods KLD↓ AKLD↓
NAFlow 0.0555 0.2776
Ours 0.0517 0.1433

Table 17: Quantitative results of denoising performance on LDCT images in terms of PSNR↑ and
SSIM↑. The percentage (%) indicates the combining ratio between the two datasets. Note that the
best results are highlighted in bold.

Methods PSNR↑ SSIM↑
Real 44.57 0.9612
NAFlow 43.79 0.9559
Ours 44.20 0.9583
Real + Ours (50% / 50%) 44.70 0.9617

available. Consequently, conventional methods that rely on standardized metadata face significant
limitations.

To address this limitation and demonstrate the generalizability of our proposed MFN to other imag-
ing domains where metadata is unavailable or has different physical meanings, we trained MFN
using a medical imaging dataset. Specifically, we utilized a real-world low-dose (LD) CT image
dataset (McCollough et al., 2017), which includes 1mm and 3mm-thick abdominal slices with B30
and D45 kernels. This dataset comprises noisy quarter-dose images and their corresponding ground-
truth normal-dose (ND) images. For the training and test datasets, we select 15,154 paired images
from nine patients and 1,474 images from patient L506, respectively. Unlike sRGB images, where
noise characteristics are influenced by factors such as ISO settings and camera sensor types, noise in
CT images is affected by a range of factors, including X-ray dose, slice thickness, and reconstruction
algorithms.

To evaluate the noise modeling performance of MFN, we compare the results with those of the
recent state-of-the-art model, NAFlow (Kim et al., 2024). While NAFlow incorporates metadata,
such as slice thickness and reconstruction algorithms, during training, MFN is trained and tested
without any metadata or prior knowledge of CT imaging, demonstrating its strength in real-world
applications. As shown in Tab. 16, MFN significantly outperforms NAFlow in noise quality metrics,
including both KLD and AKLD.

In Tab. 17, we further report the denoising performance using the NAFNet (Chen et al., 2022)
architecture. When trained with MFN, NAFNet achieves superior results in terms of PSNR and
SSIM compared to NAFlow. Furthermore, when trained with a mixed dataset comprising 50%
original and 50% synthesized data, MFN outperforms the denoising network trained exclusively on
the Real dataset. These results align with the findings presented in Tab. 13 and Tab. 14, indicating
that the MFN effectively generalizes to medical imaging contexts, such as CT scans, even in the
absence of metadata. This underscores the potential of the proposed MFN for practical applications
across various imaging domains, further highlighting its promising capabilities.

A.12 MOTIVATION FOR ADOPTING TWO-STAGE TRAINING SCHEME

Our framework comprises PAE, an autoencoder designed for latent code embedding and noisy im-
age reconstruction, and P-DiT, a consistency model for latent code generation. During inference,
the generated latent code is input into the decoder to produce the final synthesized noisy image.
Consequently, both reconstruction performance and generative capabilities are essential for generat-
ing high-quality noisy images. However, as highlighted in (Rombach et al., 2022b), a joint training
pipeline requires a careful balance between reconstruction and generative performance. This neces-
sitates extensive experimentation to determine the optimal weight, a process that is both time- and
resource-intensive. To address this challenge, we propose a two-stage framework, MFN, in which
the reconstruction network is initially trained and then frozen while the consistency model is trained,
thereby ensuring training stability.
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Table 18: Quantitative results for the noise generation performance on SIDD validation set under
both paired and unpaired settings. The results are reported using KLD↓ and AKLD↓, with the best
and second-best results highlighted in bold and underline, respectively.

Model Given IIITest
Clean at test phase? KLD↓ AKLD↓

NeCA-W ✗ 0.0342 0.1436
NAFlow ✓ 0.0305 0.1306
MFN (Unpaired) ✗ 0.0226 0.1223
MFN (Paired) ✓ 0.0194 0.1163

A.13 EVALUATION OF UNPAIRED NOISE GENERATION

To generate the final noisy image ÎIINoisy, we use paired noisy image IIINoisy and clean image IIIClean

during both the training and inference phases to compute nReal = IIIClean − IIINoisy. This paired
strategy ensures optimal performance. However, to further extend the application of the proposed
MFN to scenarios where only clean images IIIClean are available, we evaluated MFN in an unpaired
setting. In this scenario, noise from the training dataset nMeta

Real , which is sampled based on the target
metadata settings (e.g., camera, ISO), is used to synthesize noisy images with an unpaired clean
image IIITest

Clean during the test phase.

As summarized in Tab. 18, the results on the SIDD validation set show that while the unpaired setting
exhibits a slight performance degradation compared to the paired setting, MFN still achieves compa-
rable or superior noise quality metrics, in terms of KLD and AKLD, when compared to other SOTA
methods, such as NeCA-W and NAFlow. This flexibility underscores the adaptability of MFN, as
our framework effectively synthesizes noisy images without the need for paired noisy-clean images.
This makes it particularly suitable for scenarios where paired datasets are unavailable. Additionally,
in the paired setting, MFN demonstrates its ability to handle noise effectively without the need for
explicitly defined metadata, such as ISO or camera type. These results further reinforce the practi-
cality of MFN across a wide range of use cases without requiring any modifications, regardless of
whether paired or unpaired data is available.
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OursNeCA-W NAFlow Real
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KLD=1.6191 KLD=0.0540 KLD=0.0295 KLD=0.0153
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Figure 6: Visualization of synthetic noisy images on the SIDD validation set. From left to right:
C2N, NeCA-W, NAFlow, Ours (MFN), and real noisy images.
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OursNeCA-W NAFlowNoisy CleanC2N

PSNR=23.20 PSNR=26.44 PSNR=29.18 PSNR=31.94

PSNR=26.42 PSNR=30.71 PSNR=30.82 PSNR=32.86

PSNR=23.89 PSNR=30.91 PSNR=29.74 PSNR=31.22

PSNR=26.18 PSNR=30.26 PSNR=30.51 PSNR=32.58
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Figure 7: Visual comparison on denoising results with PSNR↑ on SIDD validation set from DnCNN
trained on each method.

22


	Introduction
	Related Work
	Proposed Method
	Preliminaries
	Overall Flow
	Prompt Autoencoder
	Prompt Encoder
	Decoder

	Prompt DiT

	Experiments
	Experimental Setup
	Quantitative and Qualitative Results on Noise Generation
	Application: Real-World Denoising
	Metadata Classification
	Ablation Study

	Conclusion
	Appendix
	Training details of P-DiT
	CM Parameterization
	CM Hyperparamters
	Latent Code Normalization
	P-DiT Hyperparamters

	Model Size and Inference Speed in MFN
	Details of Metadata Classification
	Camera Sensor and ISO Level Combination
	Classification Model Architecture
	Training Hyperparameters

	Ablation study on Conditional Features
	Evaluation of the Diversity of Generated Noise
	Qualitative Results of Noise Generation
	Qualitative Results of Denoising Performance
	Practical Applications of Synthesized Datasets for Supervised Learning
	Real-world Self-supervised Denoising via Noise Generation
	Further Analysis of the Generalization Performance
	Evaluation on Real-World Medical Imaging Dataset
	Motivation for Adopting Two-Stage Training Scheme
	Evaluation of Unpaired Noise Generation


