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Abstract

We present SimpleStories, a large synthetic story dataset in simple language, con-
sisting of 2 million samples each in English and Japanese. Through parameterizing
prompts at multiple levels of abstraction, we achieve control over story charac-
teristics at scale, inducing syntactic and semantic diversity. Ablations on a newly
trained model suite show improved sample efficiency and model interpretabil-
ity compared to the TinyStories dataset. We open-source all constituent parts
of model creation, hoping to enable novel ways to study the end-to-end training
process. As a byproduct, we move the frontier regarding the fewest-parameter
language model that outputs grammatical natural language. The dataset and code
can be accessed at https://huggingface.co/datasets/SimpleStories/SimpleStories
and https://github.com/simple-stories/simple_stories_generate!

1 Introduction

“Once upon a time, clever people made language models. They were very useful, but worked like a
magic box, and were hard to understand. But then came a happy surprise — a big book of simple
stories that helped the people make simple language models.” Such a tale might be told about the
TinyStories dataset of [Eldan and Li| [2023]]. It has greatly aided the progress towards a mechanistic
understanding of LLMs by creating small model organisms trained on synthetic children’s stories.
Its stated research objective is to distill the concepts of grammar and reasoning into a text corpus
by abstracting away factual knowledge — an idea that remains highly relevant as part of a broader
discussion in the context of data-constrained training [Villalobos et al., 2022].

However, we found that the TinyStories dataset has two critical issues. First, it is formulaic; to
illustrate, 59% of stories contain the string ‘Once upon a time* verbatim. Second, it is unlabeled,
which hinders the application of supervised methods to it, i.e. finetuning on a subset of the data. It is
additionally only available in English, not entirely open-source, and contains many encoding artifacts,
duplications, as well as graphic descriptions of violence unsuitable for the children’s story setting.

Here, we address these issues through the creation of a new dataset and model suite, in a comparatively
cost-effective manner. Our main contributions are: (1) SimpleStories, a new fully open-source

*Corresponding author.
TWork done at Apollo Research.


https://huggingface.co/datasets/SimpleStories/SimpleStories
https://github.com/simple-stories/simple_stories_generate

synthetic dataset consisting of simple yet diverse language suitable for pretraining and interpretability
research, (2) detailed analysis of the diversity of SimpleStories, and (3) a suite of high-quality
language models trained on SimpleStories, using a custom tokenizer.

Our datasets and trained models are openly available at https://huggingface.co/
SimpleStories, with dataset generation code at https://github.com/simple-stories/
simple_stories_generate| and an interactive dataset visualization using text embeddings at
https://fi-le.net/simplestoriesl This enables other researchers to either use our dataset
or generate more samples of their own. Our training sets contain around 2 million samples per
language, and the designated test sets each contain around 20 thousand samples. The training code
is available at https://github.com/simple-stories/simple_stories_train. Unlike the
original TinyStories work, we open-source our story generation and model training code to enable
the community to create variations of the datasets and model architectures.

2 Methods

Like TinyStories, we generate our dataset using commercial LLMs with template prompts that
elicit simple language (full prompt in Appendix [A)). We use GPT-40-mini-2024-07-18, which offers
improved capabilities and alignment compared to the GPT-3.5 and GPT-4 models used in TinyStories.
We are faced with the challenge of lexical diversity in LLM-based text generation—where specific
phrases and expressions remain overrepresented even at high sampling temperatures—and therefore
constrain each story to begin with one particular part of speech (adjective, adverb, noun, or preposition)
and initial letter, with letter frequencies drawn from a reference corpus. Content diversity and labeling
can be solved together through the following procedure. Instead of prompting for a selection of
common words that should be used in the completion, we specify a topic, an overarching theme
or feel, a writing style and a narrative feature; for the complete list, see Appendix [A] To allow the
study of phenomena relevant to alignment, we take care to represent potentially useful concepts such
as "Cooperation", "Betrayal" or "Long-Term Thinking". On a subset of samples, we additionally
prompt for a specific grammar feature or ask the LLM to assume an archetypal author persona.
These categories are applicable across many languages, but their content may not be, and thus, one
should balance an international perspective with language-specific tropes and traditions. We generate
multiple stories simultaneously with the same parameters, which can reduce costs by saving on
input tokens and lead to variations over an underlying idea, i.e. different instantiations of the same
story structure. Together with the introduction of entropy through initial parts of speech and letter
constraints, this disambiguates generations from the first token onwards, even across millions of
stories. We can therefore use Nucleus Sampling [Holtzman et al., 2019] with p = 0.9 at temperature
1, increasing adherence to the given constraints.

Focusing specifically on training interpretable language models, we anticipate demand for word-level
tokenization prompt the model to use only a limited vocabulary. One challenge is that the generating
model will typically use proper names, some of which are imaginary. We prompt against this by
instructing to compose proper names from common words and to use names from a given list. Finally,
looking for issues with unsuitable content, we found that better alignment of production language
models has fortunately led to the absence of violent stories, for example. To help with filtering and
fine-grained usage, we precompute relevant metrics such as word count and Flesch-Kincaid reading
grade [Kincaid, [1975]).

3 Results

To evaluate our dataset, we compare its syntactic, lexical and semantic diversity in English with
TinyStories. In doing so, the methods used in the original TinyStories work are a natural choice.

3.1 Lexical Diversity

We compute the most common n-grams in a random 10% subsample of both datasets, and greedily
filter a descending frequency-sorted list for n-grams which do not overlap with a previous n-gram
on more than n — 2 words. Through this, we can not only find the most common phrases, but also
analyze the distribution of their frequencies, i.e. the percentage that an n-gram occurs in one sample.
They approximately follow a Zipf distribution, echoing empirical findings in large natural corpora
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Figure 1: Left: an evaluation of lexical diversity through 4-gram frequencies by frequency rank,
on a subsample of 10% of either dataset. Right: an evaluation of semantic diversity and simplicity
through model-as-a-judge. The 30 confidence intervals assume quantiles of a normal distribution
with sample mean and variance. The uncorrected p-values each represent a Wilcoxon Rank-Sum Test
with N = 200 and the null hypotheses that the score of either of the distributions have equal mean to
the TinyStories mean.

2009]. As seen in Fig. [T} SimpleStories has a much more varied distribution of 4-grams.
However, it has longer samples with an average and standard deviation of 224.6 £ 103.8 words as
opposed to TinyStories’ 175.4 4= 80.2 words. The highly common outliers in TinyStories stem from
near-identical first sentences of different samples, which we avoided with the prompting procedure
described in Section 2] Table [I]shows the most frequent 4-grams. Calculating the Flesch-Kincaid
reading grade over the whole dataset, we find a mean grade and standard deviation of 3.08 £ 1.24
for SimpleStories as opposed to TinyStories’ 2.55 4 1.49. In total, our English dataset contains 452
million words, or 602 million GPT-2 tokens. For the Japanese dataset, we provide the most common
5-grams in Table[6} and confirm that no anomalous high-frequency phrases are present.

We also measure the compression ratio and Self-BLEU homogenization score, two diversity metrics
with low mutual correlation [Shaib et all, 2025]], on a random subsample of size 1000 for each
dataset via the diversity package (https://github.com/cshaib/diversity). Computing
the compression ratio allows us to measure diversity in terms of document compression relative
to original size —higher compression ratios imply more redundancy. Self-homogenization scores
capture aggregate similarity by computing the mean similarity over every pair of stories in the dataset.
As seen in Fig. 3] SimpleStories is less repetitive than TinyStories, achieving significantly lower
scores on both metrics.

Furthermore, we compute the n-gram diversity score (NGD) for n-gram sequences of length 1 through
10. 2025] represents n-gram diversity as the ratio of unique n-gram counts to all n-gram
counts in a document, allowing us to capture repeated sequences in addition to single-token diversity.
We observe from Fig. [3] that stories from SimpleStories result in higher NGD scores than those from
TinyStories, particularly for larger values of n. SimpleStories contains stories with varied sequences
and fewer repetitions, while the text from TinyStories reuses the same phrases repeatedly.

3.2 Semantic Diversity

We find inspiration in [Eldan and Li [2023]] by using a variant of their GPT-Eval (what has since
been termed model-as-a-judge) to compare the semantic diversity of our dataset. We think of our
text synthesis problem as constraint optimization — while keeping stories simple, produce as much
variation in content and style as possible. We therefore instruct GPT-40-mini to evaluate simplicity,
content diversity and style diversity given 4 randomly drawn stories from the same dataset, on a
scale from O to 100. Before this, we ask for a justification of the grading that does not enter our



https://github.com/cshaib/diversity

Label Recovery Accuracy Comparison (Error Bars are 30)

=)

B SimpleStories
Il SimpleStories-JA

o
@

>
§ B Random Chance
306
Q
<
c 04
@
[
o i_ h— t
0.0
Topic Theme Style Feature
Pen=1.24-107% Pen=18.05-10713 Pen=4.78-107° Pen=3.30-10">
Pja=9.88-1073" Pja=3.54-10"13 pja=2.93-1072 pia=1.91-10"*
Comparative Attribute Discernment Accuracy (Error Bars are 30)
1.0
.. 08
o
e
306
Q
<
c 04
(]
Q
= 0.2

o
o

Topic Theme Style Feature
Pen =3.94-10774 Pen=7.71-1072% Pen=1.35-10713 Pen=1.10-10"1°
pja=1.97-10"% Pja=5.89-1071° Pa=1.98-10"1 pja=8.12-1073

Figure 2: Top: Evaluation of label quality by accuracy of a judge model, GPT-40-mini, annotating the
story text versus the labels stemming from the generation process. The uncorrected p-values are from
one-sided one-sample z-tests with /N = 200 and the null hypothesis that the accuracy is no different
from random guessing. Bottom: A judge model, o4-mini, distinguishing two pairs of stories, where
one pair has two of the same label in the given category, versus a pair with two different labels. Again
a z-test and N = 200 are used. This eliminates bias for specific labels inherent in the judge model.

evaluation to induce the accuracy gains that typically result from chain-of-thought 2022].
For exact prompts, see Appendix [B] We perform a Wilcoxon Rank-Sum Test on the resulting scores
with the null hypothesis that either the English or Japanese datasets are identical in the three metrics
to the TinyStories dataset, with a total of N = 200 measurement units (therefore 800 stories). As
seen in Fig. [T} the model-judged diversity for our datasets is much greater, with an insignificant
model-judged difference in simplicity.

3.3 Syntactic Diversity

We evaluate syntactic diversity of our English dataset through the distribution of part of speech
(POS) tag sequences using the diversity package. [2024] defines templates as the most
common POS sequences of length n in the corpus. We evaluate both template rate (the fraction of
stories that contain at least one template) and template-per-token (the total number of templates in
the entire corpus, normalized by word count). With n = 6 and considering the most frequent one
hundred POS sequences, SimpleStories has a template rate of 88.9, as opposed to TinyStories’ 100,
and a template-per-token of 0.016, versus 0.026 for TinyStories. In other words, SimpleStories has
greater syntactic diversity, with many stories containing less common POS sequences. A list of the
most common POS sequences and their frequencies across both TinyStories and SimpleStories is
shown in Table

3.4 Labeling

Our method produces labels for each sampled story, but it is unclear a priori whether these convey
meaningful information. Consequently, we test this by prompting a judge model (again GPT-40-mini
with chain-of-thought) to recover the labels present for every data point, given the list of all possible
values in the dataset as answers to choose from. Using N = 200 samples per language and label
category, we reject the null that this process is no better than random guessing for each label, at
a = 0.001. For the English dataset, the accuracy for recovering the topic, 0.49, is particularly good,
whereas the more abstract labels "theme", "style" and "narrative feature" are at 0.225,0.145,0.155,
as seen in Fig. 2]
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Figure 3: Top: N-gram diversity scores from TinyStories and SimpleStories Datasets, n-gram counts
from 1 to 10. Higher n-gram diversity indicates less repetitive, more unique texts. Left: an evaluation
of lexical diversity through compression ratio, on a size 1000 subsample of either dataset. Right:
an evaluation of lexical diversity through Self-BLEU homogenization. The 3¢ confidence intervals
assume quantiles of a normal distribution with sample mean and variance. The uncorrected p-values
represent the one-way ANOVA and the null hypotheses that the scores of both distributions have
equal mean.

Another experiment answers the same question of label quality, but eliminates a potential bias (or
prior probability) of the judge model for a given label. We ask the judge (04-mini) to discriminate
between two pairs of stories, where one pair has two stories of the same label in a given category,
while the other pair has two different labels. Using NV = 200, we can detect much better than chance
performance on all but the labels "style" and "feature" for the Japanese dataset. The highest accuracies
were observed in the English dataset for labels "topic" and "theme", at 0.90 and 0.78, and in the
Japanese dataset for the same labels at 0.84 and 0.77.

3.5 Training and Evaluation

We train multiple models with different parameter sizes and compare their performance against
TinyStories. As detailed in Table 2} our SimpleStories models range from 1.25M to 35M parameters
(including embedding parameters). We use AdamW [Kingma), 2014], [Loshchilov and Hutter, 2017]
with a learning rate of 10~, a batch size of 128, gradient clipping, and a cosine learning rate decay
with 100 steps of linear warmup. All models can be trained on a single A100 GPU in 12 hours.

While TinyStories uses the GPT-2 tokenizer with a vocabulary size of 50,257 tokens, we implement a
custom WordPiece tokenizer [Schuster and Nakajimal [2012]] with a significantly reduced vocabulary
size of 4,096 tokens. Our tokenizer incorporates morphological analysis of the SimpleStories corpus
to identify common English affixes (prefixes like "un", "re" and suffixes like "ed", "ing", "ly") which

are then included as part of its initial alphabet.

Model generations are evaluated using a variant of the GPT-Eval framework, which scores outputs
on four metrics: originality, coherence, grammar, and quality (1-100 scale). Figure ] shows that our



Table 1: Top 20 most frequent 4-grams in TinyStories and SimpleStories Datasets, filtered to exclude
overlaps of more than two words. Tokens are separated by a dot.

TinyStories SimpleStories
Frequency Phrase Frequency Phrase

59.38% once upon a time 7.49% took a deep breath

28.24% there was a little 4.95% the sun began to

16.52%  alittle girl named 4.32% from that day on

11.55%  atime there was 3.711% felt a spark of
9.73% from that day on 3.46% felt a rush of
5.79% alittle boy named 3.40% as the sun set
4.77%  to play in the 3.06% felt the weight of
4.45%  was so happy and 2.98%  with a deep breath
4.32%  do you want to 297% a girl named mia
4.30%  went to the park 2.77% thought for a moment
4.28%  she loved to play 2.71% aboy named leo
4.01% to play with her 2.56% the end of the
3.90% the little girl was 242%  was not just a
3.75% did not want to 2.37% the day of the
3.73% it was time to 2.31% felt a sense of
3.57% but it was too 2.30% laughter filled the air
3.53% there was a big 2.25% it was time to
3.51% was so happy that 2.20% aboy named samuel
3.49% there was a boy 2.15% at the edge of
3.42% they like to play 2.09% the magic of the

Table 2: Architecture configurations of newly trained models. For the exact implementation, see the
training repository code. Note that throughout this work, if not specified otherwise, the parameter
counts in our model names include embedding parameters, whereas those in TinyStories model names
do not include embedding parameters. We aim to achieve better performance at the same parameter
count, even when including embedding parameters only for our models. Note that this discrepancy
has led to misunderstandings in the past; see [Pearce and Song| 2024] for an in-depth discussion of
one such case. We recommend future research in the search for the "smallest model that outputs
grammatical English" to count all model parameters to avoid confusion.

Model Name n_layers d_model n_heads d_vocab n_params

SimpleStories-35M 12 512 8 4096 35 million
SimpleStories-30M 10 512 8 4096 30 million
SimpleStories-11M 384 6 4096 11 million
SimpleStories-SM 256 4 4096 5 million
4
2

SimpleStories-1.25M 128 4096  1.25 million
TinyStories-33M 768 1 50257 68 million

~ b,

models consistently outperform TinyStories-33M in all metrics despite having considerably fewer
parameters, with notable improvements in coherence and quality.

To isolate the impact of our tokenization strategy, architectural choices, and dataset quality, we
performed a comprehensive ablation study. We evaluated TinyStories-33M with multiple configura-
tions: GPT-2 tokenizer (arch-gpt2, tok-gpt2), Llama architecture with GPT-2 tokenizer (arch-llama,
tok-gpt2), a custom 4096-token tokenizer optimized specifically for TinyStories (arch-llama, tok-
custom-tinystories), and our custom 4096-token SimpleStories tokenizer with Llama architecture
(arch-llama, tok-custom-simplestories). We also tested SimpleStories-35M with both GPT-2 and
our custom SimpleStories tokenizer. As shown in Figure 5, using custom tokenizers consistently
boosts performance compared to the GPT-2 tokenizer for both datasets. The TinyStories-optimized
tokenizer provides meaningful improvements, and the Llama architecture further enhances perfor-
mance, particularly in originality and coherence. However, even after optimizing TinyStories with
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Figure 4: Performance comparison of language models across four evaluation metrics: originality,
coherence, grammar, and quality. The visualization shows scores (0-100 scale) for six different
models: TinyStories-33M and five SimpleStories variants with parameter counts ranging from 1.25M
to 35M. Each model was evaluated on N = 200 generated stories using a model-as-a-judge with
GPT-40-mini. Error bars represent 3o confidence intervals.

its own custom tokenizer and improved architecture, all TinyStories variants remain substantially
below SimpleStories-35M with its custom tokenizer across all metrics. This demonstrates that while
tokenization strategy and architecture meaningfully contribute to model effectiveness, the diversity
and linguistic richness of the dataset are the primary drivers of the performance improvements we
observe.

Interestingly, the original TinyStories-33M model exhibits unexpectedly strong grammar performance,
nearly matching our best model despite lower scores on other metrics. This suggests that the original
TinyStories training approach may have specifically emphasized grammatical correctness. This
asymmetry in performance across metrics underscores how evaluation metrics can reveal architectural
biases and trade-offs that are not immediately evident from overall performance measures.

3.6 Probing

We measure the degree to which our models learn the labels through probes [Alain and Bengiol, [2018].
This reflects their high-level understanding of the context, rather than simple token generation. We
learn probes on a story level through a learned token-pooling operation followed by a linear head
(see Appendix [C] for details). As shown in Figure[6] the probes outperform the judge model by a
significant margin for all but the smallest model on an evaluation set. Probe accuracy is notably
lower (by approximately 30%) near the initial layers of the larger models (30M and 35M parameters).
This suggests the targeted labels are less explicitly represented in the output tokens, indicating that
the model learned to detect these features internally. We stress-test this claim through ablations and
fuzzing in Figure[§]

3.7 Interpretability

The goal of this synthetic dataset is to allow the creation of more interpretable model organisms. To
study this, we compare differences in prominent patterns learned for two single-layer models trained
on TinyStories and SimpleStories. These models use bilinear MLPs, which are easier to interpret in
an input-independent fashion [Pearce et al.l 2024} [Elhage et al., 2021]]. Specifically, each output token
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Figure 5: Ablation study comparing tokenizer, architecture, and dataset effects on four evaluation
metrics. We evaluated: Dataset TinyStories vs SimpleStories; Architecture - GPT-2 (arch-gpt2) vs
Llama (arch-llama); Tokenizer - GPT-2 (tok-gpt2) vs custom 4096-token tokenizers (tok-custom-
tinystories and tok-custom-simplestories, trained on their respective datasets). Models evaluated on N
=200 generated stories using GPT-40-mini as judge, with error bars showing 3o confidence intervals.
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Figure 6: The relative probe accuracies for four story labels across model sizes and layers. The
maximal absolute score is shown at the top. Probe accuracy is consistently best for the largest model

(30M) at layer 6. The smallest model (1.25M) is often only able to achieve 50% relative accuracy.

of these simple models is computed through a matrix of token pairs, encoding (skip-)trigrams of the
form [input, input — output] such as ['three’, ’little’ — "pigs’]. The current tokens and attention layer
determine these interactions. If we set aside attention, the current token can only interact with itself
toward an output, yielding a bigram matrix. Importantly, this bigram matrix contains information
about the MLP rather than simply the embedding and unembedding [Pearce et al.| [2024]]. While
this simplification doesn’t include cross-token mechanisms, this weight-based technique provides a
straightforward picture of what is important to these simple models.

This bigram matrix [input — output] contains about 10M entries, indicating the importance of any
input token toward any output token. The entries’ magnitudes are normally distributed with a long tail
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Figure 7: Cumulative categorization of the 10k highest outliers in bigram tables for a TinyStories
(left) and SimpleStories (right) model. The word bigram distribution differs strongly, plausibly due to
their overrepresentation in TinyStories (Table E[) .

of outliers, likely indicating noteworthy patterns in the model. We study these outliers and organize
them into three categories: compound, word and other. Compound bigrams result from the tokenizer
splitting words into pieces such as [’decor’, ’ations’]. Unsurprisingly, the compound bigrams are
highly prevalent in the outliers for both models (Figure[7)). This is where the similarities end; the
TinyStories model learns more word-based bigrams (i.e. two adjacent words), likely due to some
frequently occurring n-grams (shown in Table[I)). Manual analysis corroborates this: the bigram [bos,
“once’] is the strongest outlier, and [*once’, "upon’] appears at rank 70 along with many others in the
top 1,000. This indicates that dataset diversity has a tangible impact on model weights. Lastly, we
also find traces of rogue (non-ASCII) characters in TinyStories models, making up roughly 6-10% of
outliers. These are aberrations of the datasetE] and are strongly reflected in the weights. In contrast,
the SimpleStories word bigrams are more uniformly distributed across outliers (Figure[7).

The models studied in this section have 8M parameters (more than half of which are the embeddings),
using dyode; = 512 and npeqqs = 8. They are trained for a single epoch and qualitatively produce
somewhat coherent stories.

4 Related Work

Apart from the seminal work of Eldan and Li [Eldan and Li, 2023|] which we have discussed at length
here, there have been other advances in the tiny model domain. Our efforts to provide a fully open-
source LLM training process have been inspired by the pioneering OLMo [Groeneveld et al., 2024,
OLMo et al.| 2024]] model family. Recent efforts to enter into competition with much larger models
on benchmarks such as HellaSwag [Zellers et al.,[2019] and BLIMP [Warstadt et al., 2020] have been
undertaken in [Hillier et al.| [2024]], boasting models of size 10M-100M and containing architectural
innovations. Similarly, the BabyLM challenge [Warstadt et al.,[2025]] invited submissions of trained
model architectures optimizing the training sample efficiency on a given natural language corpus,
and received many submissions with 10M-100M parameters.

5 Limitations

Because of our focus on the training data and tokenization, we do not examine how model architectures
affect the output quality. Additionally, while we demonstrate the benefits of custom tokenization
across different datasets and compare various tokenization and architectural strategies, we did not
explore other tokenization approaches such as BPE tokenizers [Sennrich et al.| 2015] |Gagel |1994]
to provide a more comprehensive comparison with our semantically informed tokenizer. We also
did not examine how different model architectures beyond the Llama variant might interact with our
dataset and tokenization improvements.

*Some TinyStories contain strings of non-ASCII characters, possibly due to some encoding error.



Having trained and evaluated models with as few as 1.25M parameters, a natural extension would
be to find the lower limit for a model that still outputs grammatical language, given our improved
sample efficiency. We have not done so here.

While our explorations with bilinear MLPs and linear probes aim to demonstrate how our dataset
can aid interpretability research, there is currently no good substitute for the subjective judgment
of ease of use by researchers. As we saw in our analysis, the diversity of text datasets is easier to
operationalize. However, diversity has many facets, and automated metrics are imperfect, so we
also recommend manually comparing random samples from our datasets with alternatives to get a
grounded picture.

Finally, some parts of our evaluation exclusively treats our English dataset, due to the lack of a fair
comparison to, say, the reading grade. For other languages, it might be necessary to consider different
aspects for a comprehensive assessment.

6 Outlook

Based on the above, we recommend our English SimpleStories dataset over TinyStories for training
and analyzing small language models. SimpleStories presents a more challenging language modeling
problem that includes more diverse grammatical and syntactic patterns, while staying firmly in the
realm of simple language and fiction. As the costs of sampling from openly available models continue
to decrease, we anticipate that it will become more common to create similar synthetic datasets to ours
for language modeling research. We invite the community to do so by providing a dataset creation
repository, at https://github.com/simple-stories/simple_stories_generate. A comparative analysis of
such datasets may follow the methods presented in this work.
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A Story Generation

Below is the story generation prompt for SimpleStories, with values of changing parameters in {curly
brackets}. A grammar feature is used in 50% of stories, an author persona is specified in 33% of
samples. Paragraph counts are uniformly distributed between 1 and 9, the number of stories in one
completion is inversely proportional to this.

Write {12} short stories ({2} paragraphs each) using very basic words. Do not number each
story or write a headline. Make the stories diverse by fully exploring the theme, but each story
should be self-contained. Separate the stories by putting {“The End.”} in between. Make the
stories as qualitatively distinct to each other as possible. In particular, never start two stories the
same way! Each story should be about {Responsibility}, include {secret societies}, be {lyric} in
its writing style and ideally feature {inner monologue}. The most important thing is to write
an engaging easy story, but where it makes sense, demonstrate the use of {progressive aspect}.
Write from the perspective of {someone curious}. If you need to use proper names, make them
from space-separated common words. Either don’t give characters a name, or select from {list of
names }. Complex story structure is great, but please remember to only use very simple words!
If you can, start the story with {a noun} that begins with the letter {p}.

The parameters stem from the following set of options.

Theme: Friendship, Courage, Contradiction, Coming of age, Kindness, Amnesia, Adventure,
Imagination, Family, Perseverance, Curiosity, Honesty, Romance, Teamwork, Responsibil-
ity, Strategy, Magic, Discovery, Betrayal, Deception, Generosity, Creativity, Self-Acceptance,
Helping Others, Hardship, Agency, Power, Revenge, Independence, Problem-Solving, Resource-
fulness, Long-Term Thinking, Optimism, Humor, Love, The Five Senses, Tradition, Innovation,
Hope, Dreams, Belonging, Travel, Overcoming, Trust, Morality, Happiness, Consciousness, Fail-
ure, Conflict, Cooperation, Growth, Loss, Celebration, Transformation, Scheming, Challenge,
Planning, Wonder, Surprises, Conscience, Intelligence, Logic, Resilience.

Topic: talking animals, fantasy worlds, time travel, a deadline or time limit, space exploration,
mystical creatures, underwater adventures, dinosaurs, pirates, superheroes, fairy tales, outer
space, hidden treasures, magical lands, enchanted forests, secret societies, robots and technology,
sports, school life, holidays, cultural traditions, magical objects, lost civilizations, subterranean
worlds, bygone eras, invisibility, giant creatures, miniature worlds, alien encounters, haunted
places, shape-shifting, island adventures, unusual vehicles, undercover missions, dream worlds,
virtual worlds, riddles, sibling rivalry, treasure hunts, snowy adventures, seasonal changes,
mysterious maps, royal kingdoms, living objects, gardens, lost cities, the arts, the sky

Style: whimsical, playful, epic, fairy tale-like, modern, classic, lyric, mythological, lighthearted,
adventurous, heartwarming, humorous, mystical, action-packed, fable-like, surreal, philosophi-
cal, melancholic, noir, romantic, tragic, minimalist, suspenseful

Narrative Feature: dialogue, in medias res, a moral lesson, absence indicating a presence, a story
told through letters, a twist ending, an unreliable narrator, foreshadowing, irony, inner monologue,
symbolism, a MacGuffin, a non-linear timeline, a reverse timeline, circular narrative structure,
a flashback, a nested structure, a story within a story, a Red Herring, multiple perspectives,
Checkhov’s gun, the fourth wall, a cliffhanger, an anti-hero, juxtaposition, climactic structure
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Grammar Feature: present tense, past tense, future tense, progressive aspect, perfect aspect,
passive voice, conditional mood, imperative mood, indicative mood, relative clauses, preposi-
tional phrases, indirect speech, exclamatory sentences, comparative forms, superlative forms,
subordinate clauses, ellipsis, anaphora, cataphora, wh-questions, yes-no questions, gerunds,
participle phrases, inverted sentences, non-finite clauses, determiners, quantifiers, adjective order,
parallel structure, discourse markers, appositive phrases

Author Persona: an explorer archetype, a rebellious author, a powerful leader, a wise, old person
who wants to teach the young, an innocent author, a moralistic teacher, a hopeless romantic, a
hurt, ill-intentioned person, an academic, a jester archetype, a poet, a philosopher, a mother, a
father, someone curious, someone evil, someone who wants to prove a point, a child, a pedant,
the everyman, the oppressed, a cruel person, someone who loves order and structure

B Model-as-a-Judge Evaluation

The following prompt was used to evaluate the story datasets, given sets of four stories each.

Please evaluate this set of stories and provide structured feedback.

Stories to evaluate: {stories_string} Analyze these stories and provide scores (0-100) and brief
explanations for: 1. Simplicity: How easy are the stories to understand? 2. Diversity of style:
How varied is the writing style across stories? 3. Diversity of content: How varied are the themes
and plot lines?

Provide your assessment in this exact format, for all stories taken together: {{"explanation":

non

"short explanation here", "simplicity": 0, "diversity_style": 0, "diversity_content": 0}}

The following prompt was used to evaluate the completions by all mentioned tiny models.

Evaluate the following story based on four criteria by assigning each a score from 0 to 100: 1.
**QOriginality**: Rate the creativity and uniqueness of the story. 2. **Coherence**: Rate the
logical flow and consistency of the story. 3. **Grammar**: Rate the grammatical correctness of
the story. Ignore spacing and capitalization. 4. **Quality**: Rate the overall quality of the story.
You should also provide a short explanation for your judgment.

**Story to evaluate:** {story}

Please provide your assessment in the following format, ensuring each score is an integer
between 0 and 100: {{"EXPLANATION": "The dialogue is coherent, but the phrasing is slightly
off.","ORIGINALITY": 0, "COHERENCE": 0, "GRAMMAR": 0, "QUALITY": 0} }

C Probe setup

Our probes classify the intermediate activations for all tokens (a;) in a story. Instead of learning a
massive matrix RP*T — RZ, we first pool all activations per story, followed by a linear head.

Average pooling:  w; = 1/|T|
Weighted pooling: w; = a;p/|T|
Softmax pooling:  w; = exp(atp)/ Zg;l exp(a;p)

Here, w; represents the weight of each token before being summed and p € R” represents a learned
vector. We found that average pooling performed subpar, probably unable to filter out uninformative
token representations. On the other hand, we found softmax pooling to be overly specific, often
fixating on only a single token. The ordinary weighted pool performed best by far.
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Figure 8: Sanity checks for probe accuracy using the learned 35M model (default), the same model
with ablated attention (attn) and a fully re-initialized model (full). The ablated attention probes retain
50%-80% of relative accuracy, while the fully re-initialized models only achieve about 40%. This
indicates the trained model does learn representations that are useful for the target labels.

Across experiments, we trained the probes over 2'® stories (roughly 250k stories). Activations were
sampled from the residual stream at the layer output. All probes use the Muon optimizer
[2024] with a learning rate of 0.05. Different setups generally attain equal accuracies but require
longer training times.

To test whether the trained probes yield false positives (finding spurious correlations), we perform
the same analysis on (partially) re-initialised models [Adebayo et al [2020]. This sanity check
determines the effect of learned model parameters on the probe accuracy versus random spurious
correlations from the inputs. This reveals that, while probes on randomized models still achieve
better-than-chance accuracy, the probes on the fully trained network remain far superior (see Figure
[). Lastly, we verify how robustly these representations are encoded through fuzzing — adding noise
to the activations during probe training. Across experiments, moderate noise only impacted accuracy
by a few per cent, indicating the learned probes are unlikely to be spurious.

D Bigram tables

Some of the most common bigrams are shown in Table[3]for TinyStories and Table ] for SimpleStories.

E Syntactic Templates

Syntactic templates [Shaib et al.} [2024], i.e., the most frequent part-of-speech (POS) n-grams, are
shown in Table [3] for both SimpleStories and TinyStories (n=6), along with the fraction of stories
containing at least one such template.

We note the POS sequences appearing in SimpleStories are move evenly distributed (mostly between
10.7% and 19.2%).
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Table 3: Cherry-picked (but representative) samples from the top 100 (out of 10M) entries from
the TinyStories bigram matrix. About 10% are actual word bigrams (like ’ran to’), about 80% are
compound bigrams (indicated by ##), and 10% are rogue tokens (such as ceand €).

Rank Input Output

0 [BOS] once
1 prov ##ided
6 ran to

14 yaw ##ned

27 @ #itg

29 creat ##ions

44  couldn °

54 complet #i#ing

71 € “

94 decided to

Table 4: Cherry-picked (but representative) samples from the top 100 (out of 10M) entries from the
SimpleStories bigram matrix. All except one ("want to’) are compound bigrams instead of word

bigrams.
Rank Input Output
0 anx #itiety
1 ripp #i#led
4 cur #itled
10 ripp #iles
12 complet #ifely
20 sl ##ding
33 spir ##al
34  emot ##ions
58 pumpk  ##ins
84 want to
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Table 5: Syntactic templates [Shaib et al.| [2024] across SimpleStories and TinyStories (n=6) and their
frequency in each dataset. Examples are sourced from TinyStories in those cases where they exist in
TinyStories (otherwise, they are sourced from SimpleStories).

POS Sequence SimpleStories TinyStories Example

DT JJ NN VBN NNP . 0.0 100.0 a little girl named Lily.

, EX VBD DT JJ NN 0.0 34.0 , there was a big cat

VBD DT JJ NN VBN NNP 0.0 29.9 was a little boy named Mark
EX VBD DT JJ NN VBN 0.0 29.5 there was a silly cat named
VBD IN DT NN CC VBD 0.0 14.1 ran to the bathroom and saw
RB IN DT NN EX VBD 0.0 13.0 Once upon a time there lived
VBD TO VB IN DT NN 0.0 12.8 wanted to play with the puppy
IN DT NN EX VBD DT 0.0 12.0 In the attic there was a

PRP VBD IN DT NN CC 0.0 10.2 He ran to the door and

IN DT NN IN PRP$ NN 0.0 8.9 to the bathroom with his mom
VBD RB JJ IN PRP VBD 0.0 8.9 was so excited that she ran

DT NN EX VBD DT JJ 0.0 8.1 a time there lived a big

PRP VBD TO VB IN DT 0.0 8.0 he decided to hide in the

PRP VBD DT NN CC VBD 0.0 7.8 She grabbed a napkin and wiped
DT JINNIN DT NN 16.6 15.1 a small bird on the grass

PRP VBD DT JJ NN IN 14.3 13.0 she saw a big armchair near
VBD DT NN IN DT NN 18.2 12.8 chased the ball down the hill
IN DT NN IN DT NN 19.2 11.6 in a bush near the puddle

VBD DT JINN IN DT 12.3 11.6 saw a delicate leaf on the

PRP VBD TO VB DT NN 13.8 11.3 He wanted to see the wolf

, PRP VBD DT JJ NN 28.4 11.2 , she felt a strange tingling
PRP VBD DT NN IN DT 15.7 9.0 she put the boat in the

, DT NN VBN NNP VBD 13.9 0.0 , a dinosaur named Lily spotted
DT NN VBD IN DT NN 18.4 0.0 The beast thought for a moment
DT NN VBD DT NN IN 12.6 0.0 the moonlight bathed the car in
, PRP VBD IN DT NN 14.9 0.0 , he wept for the world

VBD DT NN IN PRP$ NN 12.7 0.0 felt the wind on her face

PRP VBD DT NN IN NN 13.0 0.0 they filled the kingdom with love
PRP VBD IN DT JJ NN 15.9 0.0 he was in a magical land

, DT NN VBD IN DT 10.8 0.0 , a man stared at an

DT NN IN DT JJ NN 15.9 0.0 a story about a clever rabbit

, PRP VBD DT NN IN 18.4 0.0 , she dipped the twig into

DT NN VBD DT JJ NN 11.3 0.0 the boy felt a deep emptiness
NN VBD IN DT JJ NN 10.7 0.0 sky turned to a deep blue
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Table 6: As in Table (1} top 20 most frequent 5-grams in our Japanese dataset, where tokens were
computed by the MeCab tokenizer [McCannl 2020]], for our Japanese tokenizer, filtered for overlaps
of more than two tokens.

SimpleStories-JP

Frequency Phrase English Translation

1469% Z&-ilc-L-FL -7~ decided to

8.15% - FL -7=-f-1% [past tense] he [topic]
799% - XL -72-H5-H [past tense] one day
701% A - T- - XL -2 played

641% L -T-\wWw-FL - /= did

639% {EA-T-\v-FEL - /= lived

624% \-FL =X [past tense] she [topic]
592% T-w-EL - -12-H5 [past tense] one/a
574% W -Z - -wmZL-FL -7 spent time

542% - AEA - T\ FL [subject] lived

539% FL-7=-%-5 -1 [past tense] they [topic]
522% LW - - % - @20 - L had a good time

515 Z&-h-TEF-FL - accomplished

501% Hs-\- FL - [subject] was. He
475% FL -7=-%9 -3 -1 [past tense] Sousuke [topic]
454% FL -/=-2Z2-12-1F [past tense] there [topic]
441% 1X-KE- & —f-1C [topic] together with friends
368 X -k -2V -FEL -2 said

362% T\ FEL -1 [past tense]. He

359% T-iifA - T EL [location] played
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NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: "Control over story characteristics at scale" is shown through label recovery
accuracy, "diversity" is shown through n-grams, model-as-a-judge, Self-BLUE, etc., "im-
proved sample efficiency" is shown through model-as-a-judge on smaller models, "improved
interpretability” is shown through bilienar MLP experiment and linear probes. "Move
frontier regarding the fewest-parameter language model that outputs grammatical natural
language" references superior model-as-a-judge performance in comparison to training on
the TinyStories dataset.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See Section[5] We do not discuss privacy and fairness.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not give theoretical results.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In addition to open-sources dataset creation and training code, we describe
evaluation experiments in detail.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We open-source the entire dataset creation and training process, contrary to
other works. We invite the reviewers to directly compare samples from TinyStories to ours.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section[3.3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance
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10.

11.

12.

13.

14.

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We take care to report error bars where appropriate. Note that we elected to
report confidence instead of number of standard deviations, and state this explicitly to avoid
confusion.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Section[3.3]

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed the Code of Ethics and believe our work to conform to it.
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We pursue this line of work in the hope to aid interpretability research, which
we believe will help in the development of safe Al systems.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our models are very small and exclusively trained on stories with, as far as we
can ascertain, harmless stories. Because previous work contained descriptions of violence,
we filtered our dataset and found no occurrences of unsuitable content.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Our code credits original authors of previous work it builds on.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide documentation for models and code, and invite researchers to
contact us should any problems arise.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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16.

Justification: The paper does not involve crowd-sourcing nor research with human subjects.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowd-sourcing nor research with human subjects.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our use of LLMs falls within the standard use cases as outlined in the
conference policy.
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