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ABSTRACT

The recently proposed optimization algorithm for deep neural networks Sharpness
Aware Minimization (SAM) suggests perturbing parameters before gradient cal-
culation by a gradient ascent step to guide the optimization into parameter space
regions of flat loss. While significant generalization improvements and thus reduc-
tion of overfitting could be demonstrated, the computational costs are doubled due
to the additionally needed gradient calculation, making SAM unfeasible in case of
limited computationally capacities. Motivated by Nesterov Accelerated Gradient
(NAG) we propose Momentum-SAM (MSAM), which perturbs parameters in the
direction of the accumulated momentum vector to achieve low sharpness without
significant computational overhead or memory demands over SGD or Adam. We
evaluate MSAM in detail and reveal insights on separable mechanisms of NAG,
SAM and MSAM regarding training optimization and generalization. Code is
available at https://XXXXXXXX.

1 INTRODUCTION

While artificial neural networks (ANNs) are typically trained by Empirical Risk Minimization (ERM),
i.e., the minimization of a predefined loss function on a finite set of training data, the actual purpose
is to generalize over this dataset and fit the model to the underlying data distribution. Due to
heavy overparameterization of state-of-the-art ANN models (Nakkiran et al., 2021), the risk of
assimilating the training data increases. As a consequence, a fundamental challenge in designing
network architectures and training procedures is to ensure the objective of ERM to be an adequate
proxy for learning the underlying data distribution.
One strategy to tackle this problem is to exploit the properties of the loss landscape of the parameter
space on the training data. A strong link between the sharpness in this loss landscape and the
models generalization capability has been proposed by Hochreiter & Schmidhuber (1994) and
further analyzed in the work of Keskar et al. (2017). Following these works, Foret et al. (2021)
proposed an algorithm to explicitly reduce the sharpness of loss minima and thereby improve the
generalization performance, named Sharpness Aware Minimization (SAM). Built on top of gradient
based optimizers such as SGD or Adam (Kingma & Ba, 2015), SAM searches for a loss maximum
in a limited parameter vicinity for each optimization step and calculates the loss gradient at this
ascended parameter position. To construct a computationally feasible training algorithm, SAM
approximates the loss landscape linearly so that the maximization is reduced to a single gradient
ascent step. Moreover, this step is performed on a single batch rather than the full training set.
Unfortunately, the ascent step requires an additional forward and backward pass and therefore
doubles the computational time, limiting the applications of SAM severely. Even though the linear
approximation of the loss landscape poses a vast simplification and Foret et al. (2021) showed
that searching for the maximum with multiple iterations of projected gradient ascent steps indeed
yields higher maxima, these maxima, however, do not improve the generalization, suggesting that
finding the actual maximum in the local vicinity is not pivotal. Instead, it appears to be sufficient
to alter the parameters to find an elevated point and perform the gradient calculation from there.
Following this reasoning, the ascent step can be understood as a temporary parameter perturbation,
revealing strong resemblance of the SAM algorithm to extragradient methods (Korpelevich, 1976)
and Nesterov Accelerated Gradient (Nesterov, 1983; Sutskever et al., 2013) which both calculate
gradients at perturbed positions and were also discussed previously in the context of sharpness and
generalization (Lin et al., 2020a; Wen et al., 2018).
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Commonly, measures to address generalization issues are applied between the data distribution
and the full training dataset (Keskar et al., 2017; Li et al., 2018). Since the generalization error is
caused by the limited sample size, further reducing the regarded sample size to single batches might
impose additional deteriorating effects. Thus motivated, we reconsider the effect of momentum in
batch-based gradient optimization algorithms as follows. The momentum vector not only represents
a trace over iterations in the loss landscape and therefore accumulates the gradients at past parameter
positions, but also builds an exponential moving average over gradients of successive batches. Hence,
the resultant momentum vector can also be seen as an approximation of the gradient of the loss on a
larger subset - in the limiting case on the full training dataset.
Building on these observations and the theoretical framework of SAM, which assumes using the
entire dataset for sharpness estimations, we present Momentum-SAM (MSAM). MSAM aims to
minimize the global sharpness without imposing additional forward and backward pass computations
by using the momentum direction as an approximated, yet less stochastic, direction for sharpness
computations. In summary, our contribution is as follows:

• We propose Momentum-SAM (MSAM), an algorithm to minimize training loss sharpness
without computational overhead over base optimizers such as SGD or Adam.

• The simplicity of our algorithm and the reduced computational costs enable the usage
of sharpness-aware minimization for a variety of different applications without severely
compromising the generalization capabilities and performance improvements of SAM.

• We discuss similarities and differences between MSAM and Nesterov Accelerated Gradient
(NAG) and reveal novel perspectives on SAM, MSAM, as well as on NAG.

• We validate MSAM on multiple image classification benchmarks and compare MSAM
against related sharpness-aware approaches.

1.1 RELATED WORK

Correlations between loss sharpness, generalization, and overfitting were studied extensively (Hochre-
iter & Schmidhuber, 1994; Keskar et al., 2017; Lin et al., 2020b; Yao et al., 2018; Li et al., 2018;
Liu et al., 2020; Damian et al., 2021), all linking flatter minima to better generalization, while Dinh
et al. (2017) showed that sharp minima can generalize too. While the above-mentioned works focus
on analysing loss sharpness, algorithms to explicitly target sharpness reduction were suggested by
Zheng et al. (2021); Wu et al. (2020); Chaudhari et al. (2017) with SAM (Foret et al., 2021) being
most prevalent.
SAM relies on computing gradients at parameters distinct from the current iterations position. This
resembles extragradient methods (Korpelevich, 1976) like Optimistic Mirror Descent (OMD) (Judit-
sky et al., 2011) or Nesterov Accelerated Gradient (NAG) (Nesterov, 1983; Sutskever et al., 2013)
which were also applied to Deep Learning, either based on perturbations by last iterations gradients
(Daskalakis et al., 2018; Lin et al., 2020a) or random perturbations (Wen et al., 2018).
Adaptive-SAM (ASAM) (Kwon et al., 2021) accommodates SAM by scaling the perturbations
relative to the weights norms to take scale invariance between layers into account, resulting in a
significant performance improvement over SAM. Furthermore, Kim et al. (2022) refine ASAM by
considering Fisher information geometry of the parameter space. Also seeking to improve SAM,
GSAM (Zhuang et al., 2022) posit that minimizing the perturbed loss might not guarantee a flatter loss
and suggest using a combination of the SAM gradient and the SGD gradients component orthogonal
to the SAM gradient for the weight updates.
Unlike the aforementioned methods, several algorithms were proposed to reduce SAMs runtime,
mostly sharing the idea of reducing the number of additional forward/backward passes, in contrast to
our approach which relies on finding more efficient parameter perturbations. For example, Jiang et al.
(2023) are evaluating in each iteration if a perturbation calculation is to be performed. LookSAM
Liu et al. (2022) updates perturbations only each k-th iterations and applies perturbation components
orthogonal to SGD gradients in iterations in between. Mi et al. (2022) are following an approach
based on sparse matrix operations and ESAM (Du et al., 2022b) combines parameter sparsification
with the idea to reduce the number of input samples for second forward/backward passes. Similarly,
Bahri et al. (2021) and Ni et al. (2022) calculate perturbations on micro-batches. Not explicitly
targeted at efficiency optimization, Mueller & Hein (2022) show that only perturbing Batch Norm
layers even further improves SAM. SAF and its memory efficient version MESA were proposed by
Du et al. (2022a), focusing on storing past iterations weights to minimize sharpness on the digits
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output instead of the loss function. Perturbations in momentum direction after the momentum buffer
update resulting in better performance but no speedup where proposed by Li & Giannakis (2023).
Furthermore, several concepts were proposed to explain the success of SAM and related approaches
(Andriushchenko & Flammarion, 2022; Möllenhoff & Khan, 2023).

2 METHOD

2.1 NOTATION

Given a finite training dataset S ⊂ X × Y where X is the set of possible inputs and Y the set of
possible targets drawn from a joint distribution D, we study a model fw : X → Y parameterized
by w ∈ W , an element-wise loss function l : W × X × Y → R, the distribution loss LD(w) =
E(x,y)∼D(l(w, x, y)) and the empirical (training) loss LS(w) = 1/|S|∑(x,y)∈S l(w, x, y). If
calculated on a single batch B ⊂ S we denote the loss as LB. We denote the L2-norm by || · ||.

2.2 SHARPNESS AWARE MINIMIZATION (SAM)

For many datasets modern neural network architectures and empirical risk minimization algorithms
like SGD or Adam (Kingma & Ba, 2015) effectively minimize the approximation and optimization
error (i.e. finding low LS(w)), while reducing the generalization error (LD(w)− LS(w)) remains a
major challenge. Following ideas of Hochreiter & Schmidhuber (1994), Keskar et al. (2017) observed
a link between sharpness of the minimized empirical loss LS(wopt) with respect to the parameters and
the generalization error. Intuitively, this follows from the observation that perturbations in inputs (cf.
adversarial training (Goodfellow et al., 2015)) and perturbations in parameters have a similar effect
on network outputs (due to both being factors in matrix-vector products) and that the generalization
error is caused by the limitation to a smaller input subset which resembles an input perturbation.
Without giving an explicit implementation, Keskar et al. (2017) sketches the idea of avoiding sharp
minima by replacing the empirical loss minimization with a minimization of the highest loss value
within a ball in parameter space of fixed size ρ:

min
w

max
||ϵ||≤ρ

LS(w + ϵ) (1)

Foret et al. (2021) propose a computationally feasible algorithm to approximate this training objective
via so-called Sharpness Aware Minimization (SAM). SAM heavily reduces the computational costs of
the inner maximization routine of Eq. 1 by approximating the loss landscape in first order, neglecting
second order derivatives resulting from the min-max objective, and performing the maximization
on single batches (or per GPU in case of m-sharpness). These simplifications result in adding one
gradient ascent step with fixed step length before the gradient calculation, i.e., reformulating the loss
as

LSAM
B (w) := LB(w + ϵSAM) where ϵSAM := ρ

∇LB(w)

||∇LB(w)|| . (2)

The parameters are temporarily perturbed by ϵSAM in the direction of the locally highest slope with
the perturbation removed again after gradient calculation. Thus, the parameters are not altered
permanently. While performance improvements could be achieved (Foret et al., 2021; Chen et al.,
2022) the computation of ϵSAM demands an additional backward pass and the computation of
LB(w + ϵSAM) an additional forward pass, resulting in roughly doubling the runtime of SAM
compared to base optimizer like SGD or Adam.
Minimizing Eq. 2 can also be interpreted as jointly minimizing the unperturbed loss function LB(w)
and the sharpness of the loss landscape defined by

SB(w) := LB(w + ϵ)− LB(w). (3)

2.3 MOMENTUM AND NESTEROV ACCELERATED GRADIENT

Commonly, SGD is used with momentum, i.e., instead of updating parameters by gradients di-
rectly (wt+1 = wt − η∇LBt

(wt) with learning rate η), an exponential moving average of past
gradients is used for the updates. Given the momentum factor µ and the momentum vector
vt+1 = µvt +∇LBt(wt) the update rule becomes wt+1 = wt − ηvt+1.
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The momentum vector has two averaging effects. First, it averages the gradient at different positions
in the parameter space wt and second, it averages the gradient over multiple batches Bt which can be
interpreted as an increase of the effective batch size.
The update step consists of the momentum vector of the past iteration and the present iterations gradi-
ent. While this gradient is calculated prior to the momentum vector update in standard momentum
training, NAG instead calculates the gradient after the momentum vector step is performed. The
update rule for the momentum vector thus becomes vt+1 = µvt +∇LBt(wt − ηµvt). Analogously
to Eq. 2, NAG can be formulated in terms of a perturbed loss function as

LNAG
B (w) := LB(w + ϵNAG) where ϵNAG := −ηµvt. (4)

Since the perturbation vector ϵNAG neither depends on the networks output nor its gradient at step t
no additional forward or backward pass is needed.

Algorithm 1: SGD with Momentum-SAM (MSAM; efficient implementation)
Input: training data S , momentum µ, learning rate η, perturbation strength ρ
Initialize: weights w̃0 ←random, momentum vector v0 ← 0
for t← 0 to T do

sample batch Bt ⊂ S
LBt

(w̃t) = 1/|Bt|
∑

(x,y)∈Bt
l(w̃t, x, y) // perturbed forward pass

gMSAM = ∇LBt
(w̃t) // perturbed backward pass

wt = w̃t + ρ vt

||vt|| // remove last perturbation

vt+1 = µvt + gMSAM // update momentum vector
wt+1 = wt − ηvt+1 // SGD step
w̃t+1 = wt+1−ρ vt+1

||vt+1|| // perturb for next iteration

end
wT = w̃T + ρ vT

||vT || // remove final perturbation
return wT

Figure 1: Schematic illustrations of optimization algorithms based on SGD. NAG calculates gradients
after updating parameters with the momentum vector. SAM and MSAM calculate gradients at
perturbed positions but remove perturbations again before the parameter update step. See Alg. 1 for
detailed description of the efficient implementation of MSAM.

2.4 MOMENTUM-SAM

Foret et al. (2021) show that performing multiple iterations of projected gradient ascent in the inner
maximization does result in parameters with higher loss inside the ρ-ball (cf. Eq. 1). However, and
counterintuitively, this improved inner maximization does not yield a better generalization of the
model. We conclude that finding the exact (per batch) local maximum is not pivotal to SAM. Inspired
by NAG and given that the theoretical framework of sharpness minimization is based on calculating
the sharpness on the full training dataset, we propose using the momentum vector as the perturbation
direction and call the resulting algorithm Momentum-SAM (MSAM) (further perturbations are
discussed in Appx. A.7). Following the above notation, this yields the loss objective

LMSAM
B (w) := LB(w + ϵMSAM) where ϵMSAM := −ρ vt

||vt||
. (5)
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Contrary to SAM, we perturb in the negative direction. Since we use the momentum vector before it is
updated, a step in the negative direction of the momentum has already been performed in the iteration
before, thus, the loss is expected to increase again for sufficiently large step sizes. The stepsize by
ϵMSAM is typically at least one order of magnitude higher than learning rate steps, so we overshoot
local minima in momentum direction and reach an increased perturbed loss offering a suitable
direction for sharpness estimation. We empirically show that the momentum descent step actually
results in an ascent on the per-batch loss in Sec. 4.1 and Sec. A.11. For an efficient implementation,
we shift the starting point of each iteration to be the perturbed parameters w̃t = wt − ρvt/||vt||
(in analogy to common implementations of NAG) and remove the final perturbation after the last
iteration (see Alg. 1). All mentioned optimization strategies are depicted in detail in Fig. 1. Since
SGD with momentum as well as Adam store a running mean of gradients, MSAM does not take up
additional memory and comes with negligible computational overhead.
Furthermore, we confirm that a similar theoretical generalization bound as reported by Foret et al.
(2021) also holds for directions of high curvature as the momentum direction (see Appx. A.1).

3 EXPERIMENTAL RESULTS

3.1 SPEED AND ACCURACY FOR RESNETS ON CIFAR100

Table 1: Comparison against multiple (sharpness-aware) optimizers. Baseline optimizers are SGD
for CIFAR100 and AdamW for ImageNet. Please see Appx. A.5 for experimental details. MSAM
outperforms optimizers of equal speed (AdamW/SGD and NAG) and alternative approaches for faster
sharpness reduction.

Optimizer CIFAR100 ImageNet SpeedWRN-28-10 WRN-16-4 ResNet-50 ViT-S/32
SAM 84.16±0.12 79.25±0.10 83.36±0.17 69.1 0.52

Baseline 81.51±0.09 76.90±0.15 81.46±0.13 67.0 1.00
NAG 82.00±0.11 77.09±0.18 82.12±0.12 − 0.99

LookSAM 83.31±0.12 79.00±0.08 82.24±0.11 68.0 0.84
ESAM 82.71±0.38 77.79±0.11 80.49±0.40 66.1 0.62
MESA 82.75±0.08 78.32±0.08 81.94±0.26 69.0 0.77

MSAM (ours) 83.21±0.07 79.11±0.09 82.65±0.12 69.1 0.99

In Tab. 1, we show test accuracies for MSAM and related optimizers for WideResNet-28-10,
WideResNet-16-4 (Zagoruyko & Komodakis, 2016) and ResNet50 (He et al., 2016) on CIFAR100
(Krizhevsky & Hinton, 2009) and ImageNet-1k (Deng et al., 2009) next to the training speed. We first
tuned the learning rate and weight decay for SGD/AdamW and then optimized ρ for each model (see
Appx. A.4 for more details). Additionally, we conducted experiments with related approaches which
seek to make SAM more efficient, namely ESAM (Du et al., 2022b), LookSAM (Liu et al., 2022)
and MESA (Du et al., 2022a). While Du et al. (2022a) also proposed a second optimizer (SAF), we
decided to compare against the memory-efficient version MESA (as recommended by the authors for
e.g. ImageNet). Note that LookSAM required tuning of an additional hyperparameter. See Appx.
A.5 for implementation details on the related optimizers. Optimizers of the same speed as MSAM
(i.e. SGD/AdamW and NAG) are significantly outperformed. While SAM reaches slightly higher
accuracies than MSAM, twice as much runtime is needed. Accuracies of MSAM and LookSAM
do not differ significantly for WideResNets, however, MSAM performs better on ResNet-50, is
faster, and does not demand additional hyperparameter tuning. For ESAM we observed only a minor
speedup compared to SAM and the accuracies of MSAM could not be reached. MESA yields similar
results to MSAM for ViT on ImageNet but performs worse on all models on CIFAR100 and is slower
compared to MSAM.

3.2 RESNET AND VIT ON IMAGENET RESULTS

Moreover, we test MSAM for ResNets (He et al., 2016) and further ViT variants (Dosovitskiy
et al., 2021) on ImageNet-1k (Deng et al., 2009) and report results in Tab. 2. Due to limited
computational resources, we only run single iterations, but provide an estimate of the uncertainty
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by running 5 iterations of baseline optimizers for the smallest models per category and calculate
the standard deviations. During the learning rate warm-up phase commonly used for ViTs we set
ρMSAM = 0. SAM also benefits from this effect, but less pronounced, so we kept SAM active during
warm-up phase to stay consistent with related work (see Appx. A.3 for detailed discussion). While
performance improvements are small for ResNets for MSAM and SAM, both optimizers achieve
clear improvements for ViTs. Even though slightly below SAMs performance for most models,
MSAM yields comparable results while being almost twice as fast.
In addition, we conducted experiments for ViT-S/32 on ImageNet when giving MSAM the same
computational budget as SAM (i.e. training for 180 epochs) yielding a test accuracy of 70.1% and
thus clearly outperforming SAMs 69.1% (also see Appx. A.9).

Table 2: Test accuracies on ImageNet for baseline optimizers (SGD or AdamW), SAM and MSAM.
Estimated uncertainties: ResNet: ±0.08, ViT (90 epochs): ±0.17, ViT (300 epochs): ±0.24. Im-
provements over baseline are given in green. MSAM yields results comparable to SAM for most
models while being ≈ 2 times faster in all our experiments.

Model Epochs Baseline SAM MSAM
ResNet-50 100 SGD 76.3 76.6+0.3 76.5+0.2

ResNet-101 100 SGD 77.9 78.7+0.8 78.2+0.3

ViT-S/32 300 AdamW 67.2 71.4+4.2 70.5+3.3

90 AdamW 67.0 69.1+2.1 69.1+2.1

ViT-S/16 300 AdamW 73.0 78.2+5.2 75.8+2.8

90 AdamW 72.6 75.8+3.2 74.9+2.3

ViT-B/32 90 AdamW 66.9 70.4+3.5 70.2+3.3

ViT-B/16 90 AdamW 73.0 77.7+4.7 75.7+2.7

3.3 COMBINATION WITH OTHER SAM VARIANTS

As shown by Kwon et al. (2021), weighting the perturbation components by the parameters signif-
icantly improves SAM. Similarly, Mueller & Hein (2022) showed that applying the perturbations
only to the Batch Norm layers (Ioffe & Szegedy, 2015) yields further enhancements. Both of these
techniques can also be applied to MSAM, yielding test results similar to SAM (see Tab. 3).

Table 3: Test accuracy for different variants of MSAM/SAM on CIFAR100. Adaptive refers to
ASAM (Kwon et al., 2021) and BN-only to applying the perturbance only to Batch Norm layers (cf.
Mueller & Hein (2022)). MSAM performs well with both variants.

Optimizer WRN-28-10 WRN-16-4 ResNet-50
SGD 81.51±0.09 76.90±0.15 81.46±0.13

vanilla SAM 84.16±0.12 79.25±0.10 83.36±0.17

MSAM 83.21±0.07 79.11±0.09 82.65±0.12

adaptive SAM 84.74±0.13 79.96±0.13 83.30±0.06

MSAM 84.15±0.13 79.89±0.09 83.48±0.08

BN-only SAM 84.57±0.07 79.73±0.24 84.51±0.17

MSAM 83.62±0.09 79.73±0.14 83.49±0.19

4 PROPERTIES OF MSAM

4.1 OPTIMIZATION AND GENERALIZATION ANALYSIS

Instead of ascending along the positive gradient as in SAM, we propose perturbing along the negative
momentum vector (positive ρMSAM in our notation) as it is also done by extragradient methods like
Lin et al. (2020a). We did not observe any increase in test performance when perturbing in the
positive momentum direction (negative ρMSAM). In fact, negative ρ values cause a rapid decrease
in test accuracy, whereas positive ρ values cause a gain in test accuracy of more than 2% for a
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WideResNet-16-4 trained on CIFAR100 as depicted in Fig. 2A, while NAG only provides minor
improvements.
Fig. 2B shows the same data on logarithmic scale next to the test accuracy. The ordinate limits
are chosen such that baseline (SGD) accuracies as well as maximal gains by MSAM align. NAG
improves the training accuracy greatly, especially compared to the gains in test accuracy. This
underlines that NAG is designed to foster the optimization procedure (ERM) but does not improve the
generalization capabilities of the model. Similarly, for MSAM the maximal test accuracy is reached
for high values of ρ where the train accuracy dropped far below the baseline, emphasising the effect
of MSAM on the generalization instead of optimization.
Furthermore, small negative values of ρ induce a steep decrease in training accuracy while the test
accuracy is not significantly affected, but drops for higher negative ρ. This might offer an explanation
why MSAM does not improve the test accuracy with negative ρ values. A perturbation in the positive
momentum vector direction resembles a step back to past iterations which might result in the gradient
not encoding appropriate present or future information about the optimization direction and thus
seems to be ill-suited to reduce the training loss effectively, counteracting the benefits of the increased
generalization (larger test-train gap). SAM might not suffer from this effect, since the local (per
batch) gradient does not encode much of the general optimization direction (which is dominated by
the momentum vector), hence, the perturbed parameters disagree with parameters from previous
iterations.
Counterintuitively, the cosine similarity between the momentum vector vt−1 and the gradient gt =
∇LBt(wt) is negative for most iterations (though nears zero at the end of training; see Fig. 2C). Thus,
the negative momentum direction actually has a positive slope, so that perturbing in this direction
resembles an ascent on the per-batch loss, further supporting the analogy of MSAM and SAM,
and offering an explanation for the benefit of the negative sign (see Appx. A.11 for an empirical
validation). Since an update step in the momentum direction was already performed, further moving
in this direction overshoots the local minima and thus causes the positive slope. This is also in line
with our theoretical considerations in Appx. A.1. Independently of sharpness minimization, this
observation might offer interesting insights to SGD in general and we intend to follow this up in
future work.
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Figure 2: WideRestNet-16-4 on CIFAR100 A: Test accuracy for positive and negative ρ compared
against SGD and NAG. B: Train and test accuracy on logarithmic scale. C: Cosine similarity between
momentum vector vt−1 and gradient gt = ∇LBt

(wt). Momentum vector direction has mostly
negative slope during training and approaches zero at the end.

4.2 SIMILARITY BETWEEN SAM AND MSAM

To support our hypotheses that MSAM yields a valid alternative to SAM, we investigate the similarity
between the resulting gradients. After searching for the optimal value, we keep ρSAM = 0.3 fixed,
train a model with SAM, and calculate the gradients

gSGD = ∇LBt(wt) (6)
gSAM = ∇LBt

(wt + ρSAM∇LBt
(wt)/||∇LBt

(wt)||) (7)
gMSAM(ρMSAM) = ∇LBt

(wt − ρMSAMvt/||vt||) (8)

while we keep ρMSAM as a free parameter. To eliminate gradient directions which do not contribute
in distinguishing between SAM and SGD gradients, we first project gMSAM into the plane spanned
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by gSAM and gSGD and then calculate the angle θ to gSAM (see Fig. 3A). By repeating this every 50
iterations for various values ρMSAM and calculating the value of zero-crossing ρ0, we determine when
the maximal resemblance to SAM is reached (see Fig. 3B). As shown in Fig. 3C, ρ0 reaches values
close to the optimal regime of ρopt

MSAM ≈ 3 (cf. Fig. 2A) for most epochs. While this correlation does
not yield strict evidence it offers additional empirical support for the similarity between SAM and
MSAM gradients.
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B: Varying ρMSAM until maximal similarity is reached (i.e. θ = 0) and determine ρ0. C: ρMSAM at
maximal similarity ρ0 is close to generalization optimality (ρopt
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4.3 LOSS SHARPNESS ANALYSIS
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Figure 4: Sharpness (Eq. 3) after full training (200 epochs) for WideResNet-16-4 on CIFAR100
along different directions ϵ scaled by ρ. A: Gradient direction (as used as perturbation in SAM). B:
Momentum direction (as in MSAM). C: Random filter-normalized direction as in Li et al. (2018).
Vertical line at ρopt marks values of optimal test performance (cf. Fig. A.3A). MSAM and SAM
are reducing their respective optimization objective best while MSAM reaches the lowest sharpness
along random directions.

As mentioned above (and discussed by Foret et al. (2021)), the SAM implementation performs the
loss maximization step on a single data batch instead of the full training set (LB vs. LS ). To analyze
the efficacy of SAMs sharpness minimization, we therefore compare the sharpness (cf. Eq. 3) in the
direction of local (per batch) gradients for models after full training with SGD, SAM and MSAM
as a function of the perturbation scale ρ in Fig. 4A. The minima in local gradient directions are
shifted from ρ = 0, since parameters found after training are usually not minima but saddle points
(Dauphin et al., 2014). Compared to the other optimizers, SAM successfully minimizes the sharpness,
especially at optimal ρopt (as used during training).
The sharpness in momentum direction (Fig. 4B) represents the MSAM objective (Eq. 5). Here
we do not include the negative sign in the definition of ϵ (as in Eq. 5), hence ρopt is negative. As
expected, MSAM reduces this sharpness best. In contrast to the definition before, the sharpness is
symmetric now for positive and negative signs. While MSAM only minimizes the sharpness in the
negative direction explicitly, the positive direction is reduced jointly, further supporting the validity
of perturbations in the negative momentum direction.
In Fig. 4C, we choose filter-normalized random vectors as perturbations as in Li et al. (2018). Since
the loss landscape is rotational symmetric around the origin for multiple directions (as used in the
original paper), we confine out analysis to one perturbation dimension. MSAM reaches the lowest
sharpness, while both MSAM and SAM, significantly flatten the loss. This might be caused by
MSAM approximating the maximization of LS better due to the momentum vector vt being an

8
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aggregation of gradients of multiple batches.
Interestingly, this relates to the findings of Foret et al. (2021) regarding m-sharpness, where the
authors performed the maximization on even smaller data samples (fractions of batches per GPU in
distributed training), yielding even better generalization. In this sense MSAM, reduces m even further
over ordinary SAM (m = 1). In the same line of argument and despite being more efficient, MSAM
oftentimes does not improve generalization compared to SAM. However, contradicting the general
idea behind correlations of generalization and sharpness, MSAM yields flatter minima (if defined as
in Fig. 4C), hence, indicating that explanations for the improved generalization of SAM/MSAM go
beyond the reduction in sharpness.
We additionally analyze the loss curvature for SGD, SAM and MSAM in Appx. A.2.

4.4 NORMALIZATION

To gain a better understanding of the relation between MSAM and NAG, we conducted an ablation
study by gradually altering the MSAM algorithm until it matches NAG. Firstly, we drop the normal-
ization of the perturbation ϵ (numerator in Eq. 5), then we reintroduce the learning rate η to scale
ϵ, and finally set ρ = 1 to arrive at NAG. Train and test accuracies as functions of ρ are shown in
Fig. 5 for all variants. Dropping the normalization only causes a shift of ρ indicating that changes of
the momentum norm during training are negligible. However, scaling by η drastically impacts the
performance. Since the model is trained with a cosine learning rate scheduler (Loshchilov & Hutter,
2017), ρ decays jointly with η. The train accuracy is increased significantly not only for ρ = 1 (NAG),
but even further for higher ρ, while the test performance drops at the same time when compared
to MSAM. Thus, optimization is improved again while generalization is not, revealing separable
mechanisms for test performance improvements of MSAM and NAG. High disturbances compared
to the step size at the end of training appear to be crucial for increased generalization. Extensively
investigating the effect of SAM/MSAM during different stages of training might offer potential to
make SAM even more effective and/or efficient (i.e. by scheduling ρ to only apply disturbances for
selected episodes).
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Figure 5: Test (A) and train (B) accuracy for WideResNet-16-4 on CIFAR100 for different normal-
ization schemes of MSAM in dependence on ρ. MSAM without normalization works equally well. If
the perturbation ϵ is scaled by learning rate η train performance (optimization) is increased while test
performance (generalization) benefits only marginally.

5 CONCLUSION

In this work we introduced Momentum-SAM (MSAM), an optimizer achieving comparable results to
the SAM optimizer while requiring no significant computational or memory overhead over optimizers
such as Adam or SGD, hence, halving the computational load compared to SAM. On the one hand,
this reduces the major hindrance for a widespread application of SAM-like algorithms when training
resources are limited. On the other hand, we showed that perturbations independent of local gradients
(in particular the momentum direction) can yield significant performance enhancements. Given the
affinity of MSAM and NAG, we demonstrated new perspectives on SAM/MSAM as well as on NAG
and underlined the importance as well as the need for future research of scaling and scheduling of
perturbations to further improve sharpness-aware optimizers.
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APPENDIX

A.1 THEORETICAL ANALYSIS OF MSAM

We build our analysis in analogy to Foret et al. (2021). While Foret et al. (2021) proofed the existence
of an upper generalization bound if the parameters with the highest loss in a fixed ρ-ball are found, we
show that a similar bound can also be derived by simply assuming perturbations in directions of high
curvature. In practice this first assumption is fulfilled by the momentum vector vt, since gradients
are directions of high curvature. Secondly, if a properly tuned learning rate is used, the slope in
momentum direction after the parameter update is either close to zero or even negative caused by
overshooting marginally.
We state these two assumptions in Setting 1. While we empirically validate the first assumption in
Appx. A.2, we already showed and discussed evidence for the second assumption in the main text (cf.
Fig. 2C).

Proposition 1 Let ϵ,v ∈ W with i.i.d. components ϵi ∼ N (0, σ) for some σ > 0, then for any
ρ > 0

E[1{∥ϵ∥2≤ρ}ϵ
THess(LS(w))ϵ] ≤ ρ2κ, (9)

where κ := 1
|W| tr[Hess(LS(w))].

Proof W.L.O.G. we assume Hess(LS(w)) to be diagonal. The claim then follows from the linearity
of the expectation and symmetry. □

Setting 1 Let w,v ∈ W with ∥v∥2 = 1 such that:

• vTHess(LS(w))v > κ,

• ∇LS(w) · v ≤ 0.

Lemma 2 Assume Setting 1 and let ϵ ∈ W with ϵi ∼ N (0, σ), then it holds for any ρ > 0 that

E[1{∥ϵ∥2≤ρ}LS(w + ϵ)] ≤ LS(w − ρv) +O(ρ3).

Proof Applying a Taylor expansion around w yields:

E[1{∥ϵ∥2≤ρ}LS(w + ϵ)] ≤ LS(w − ρv)

⇐⇒ E[1{∥ϵ∥2≤ρ}∇LS(w) · ϵ]︸ ︷︷ ︸
=0

+E[1{∥ϵ∥2≤ρ}ϵ
THess(LS(w))ϵ]︸ ︷︷ ︸
≤ρ2κ

≤

−ρ∇LS(w) · v︸ ︷︷ ︸
≥0

+ρ2vTHess(LS(w))v +O(ρ3)

⇐= κ ≤ vTHess(LS(w))v +O(ρ3)

subtracting the O(ρ3)-term from the initial inequality then yields the claim. □

Theorem 3 Assume Setting 1 then for any distribution D, with probability 1− δ over the choice of
the training Set S ∼ D,

LD(w) ≤ LS(w−ρv)+

√√√√dim(W) log
(
1 +

∥w∥2
2

ρ2

(
1 +

√
log(|S|)
dim(W)

)2)
+ 4 log |S|

δ +O(1)
|S| − 1

+O(ρ3)

Proof Using the bound from Lemma 2 we adapt the proof of Theorem 2 in Foret et al. (2021) (i.e.
Eq. 13 and following) to show the claim. □
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A.2 CURVATURE

We calculated the loss curvature in momentum direction, gradient direction and in random direction in
Fig. A.1 if training with SGD, SAM and MSAM for WRN-16-4 on CIFAR100. For this we calculate
ϵTHess(LS(w))ϵ for direction vectors ϵ (normalized to ||ϵ||2 = 1) every 50 optimizer steps.
The curvatures in momentum directions are larger than the curvature random direction (which
tends towards the mean curvature as amount of parameters increase) for all optimizers and epochs,
validating Setting 1 in Appx. A.1 and thus the suitability of momentum directions for sharpness
estimation (especially compared to random perturbations; cf. Appx. A.7).
Additionally, the curvature in these directions offers a measure for the loss sharpness. Since a local
minimum of high curvature is approached, all three curvatures increase at the end of the training for
SGD. Similarly to Fig. 4, SAM and MSAM are reducing the curvature best in their corresponding
perturbation direction and MSAM yields lower curvatures than SAM in random directions.
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Figure A.1: Curvature of random directions (RND), momentum (MOM) and gradient (GRAD) for
different optimizers.

A.3 EFFECTS OF MSAM/SAM DURING VIT’S WARM-UP PHASE

We further investigate the effect of SAM/MSAM during warm-up phase in Tab. A.1. As described
above, we do not apply MSAM during the warmup phase by default (i.e. setting ρ = 0) since if
doing so, we observe a drop in test accuracy from 69.1% to 66.1% which is below the AdamW
baseline. We assume fluctuations of the momentum vector, that determines the perturbation direction
for MSAM, to cause instabilities during the warmup phase. A similar effect can be seen for SAM,
however, it is less pronounced, so that applying perturbations during the warm-up phase does not
thwart SAM hugely. Since we focused on proposing a computationally more efficient variant and not
on improving the generalization of SAM in this work, we thus decided to stay consistent with related
work and conduct our extensive experiments in Tab. 2 while applying SAM also during the warm-up
phase. Nevertheless, we would generally propose to apply SAM only after the warmup phase for
ViT models to further improve SAM. We think further investigating effects of ρ-scheduling for SAM
and MSAM is of high interest. E.g., Zhuang et al. (2022) investigated to reduce ρ during training
(contrary to what our findings suggest) by binding it to the learning rate scheduling for SAM and they
did not notice benefits. Despite the discussion in Sec. 4.4, we could not observe analogous effects for
ResNets (though we did not study these extensively).

Table A.1: Impact of application of SAM/MSAM during warm-up phase. ViT S/32 on ImageNet. By
default MSAM is applied after warmup phase only while SAM is always applied.

AdamW SAM SAM (after warmup only) MSAM MSAM (during warmup)
67.1 69.2 69.8 69.1 66.1

A.4 TRAINING AND IMPLEMENTATION DETAILS

If not stated differently, we calculate uncertainties of mean accuracies by 68% CI estimation assuming
Student’s t-distribution.
We tuned weight decay and learning rates for our baseline models (SGD/AdamW) and did not alter
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these parameters for the other used optimizing strategies. We used basic augmentations (horizontal
flipping, cutout and cropping) for CIFAR100 trainings and normalized inputs to mean 0 and standard
deviation 1. For ImageNet trainings we used Inception-like preprocessing (Szegedy et al., 2015) with
224x224 resolution, normalized inputs to mean 0 and std 1 and clipped gradients L2-norms to 1.0.
We used ViT variants proposed by Beyer et al. (2022). A full implementation comprising all models
and configuration files is available at https://XXXXXXXX.

Table A.2: Training Hyperparameters

CIFAR100 ImageNet
WideResNets ResNet50 ResNets ViTs

Base Optimizer SGD SGD SGD AdamW
Epochs 200 200 100 90/300

Learning Rate 0.5 0.1 1 1e-3
LR-Scheduler cos cos cos cos + linear warm-up (8 epochs)

Label Smoothing 0.1 0.1 0.1 -
Batch Size 256 256 1024 1024

Weight Decay 5e-4 1e-3 1e-4 0.1

A.5 DETAILS ON OPTIMIZER COMPARISON

We report experimental details on the results presented in Tab. 1 in this section.
To calculate the speed, we conducted a full optimization on a single GPU for each model and dataset
combination, normalized the runtime by SGDs runtime and report the average over all runs per
combination.
We trained ViT-S/32 on ImageNet for 90 epochs for all models. Further hyperparameters not specific
to SAM variants are reported above in Appx. A.4. Due to limited computational capacities and inline
with related work, we did not perform runs for multiple random seeds for ImageNet trainings. Thus,
we did not report standard deviations for these runs.
We adapted official implementations of ESAM (Du et al., 2022b) and MESA (Du et al., 2022a) while
no official implementation was available for LookSAM (Liu et al., 2022).
For LookSAM, we fixed the trade-off parameter k = 5 and conducted a thorough search on the
additional hyper parameter α, since the value suggested for ViTs by the original authors (α = 0.7)
was not suitable for our experiments (also see Fig. A.4). We decided to set α = 0.1, while runs for
α > 0.3 did not yield further performance increases. Full hyperparameter search results are reported
in Fig. A.2.
ESAM comprises two hyperparameter (γ and β) that steer the performance/runtime tradeoff which
we set to match those of the original paper (i.e. γ = β = 0.5).
For MESA we tuned the regularization factor λ instead of the perturbation strength ρ.
Please also note the full ρ scan results presented in the next section (Fig. A.3 and Fig. A.4)
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A.6 FULL HYPER PARAMETER SEARCH RESULTS

We report our full ρ-hyperparameter search results in Fig. A.3, Fig. A.4 and Fig. A.5. In
consistency with related work, we report results for best ρ only, in the main text. We sam-
pled ρ with approximately even spacing on logarithmic scale with 6 datapoints per decade, i.e,
ρ ∈ {..., 0.1, 0.15, 0.22, 0.34, 0.5, 0.67, 1, 1.5, ...}, for experiments on CIFAR100 and with 4 data-
points per decade, i.e, ρ ∈ {..., 0.1, 0.17, 0.3, 0.55, 1, 1.7, ...}, on ImageNet for experiments in Sec.
3. We used a slightly denser sampling for the visualizations in Sec. 4, but did not use those results for
comparisons against baselines or other methods.
While optimal values for ρ vary slightly between models and datasets, we do not observe higher
susceptibility to changes in ρ of MSAM compared to SAM.
Over all models and datasets we find higher optimal ρ values for MSAM compared to SAM. Per-
turbation vectors are normalized (L2-norm), so we conjecture components for parameters of less
importance to be more pronounced for momentum vectors compared to gradients on single batches.
For ViT models, we find optimal ρ values to be higher compared to ResNets. If chosen even higher,
heavy instabilities occur during training, up to models not converging, limiting performances espe-
cially for MSAM. Similar to the observations during warm-up phase discussed above, this effect is
more pronounced for MSAM. Notably, MSAM looses most performance against SAM on the biggest
ViT models and if trained for 300 epochs, when highest ρ values are optimal for SAM. This suggests,
that even better performances might be achievable for MSAM if the instability problems are tackled.
Strategies to do so might include e.g. clipping ϵ or scheduling of ρ, which we intend to pursue in
future work.
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epochs on ImageNet. For MESA: λ-search results plotted on same axis.
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Figure A.5: Full results for ρ-search for all models tested on ImageNet (see Tab. 2). A: Vision
Transformer (epochs in parentheses). B: ResNets.

A.7 RANDOM AND LAST GRADIENT PERTURBATIONS

Instead of the momentum vector vt in MSAM, we also tried to use other perturbations ϵ which are
independent of the current gradient and thus do not bring significant computational overhead, namely
the last iterations gradients gt−1 (cf. Daskalakis et al. (2018); Lin et al. (2020a)) with positive and
negative sign as well as Gaussian random vectors (cf. Wen et al. (2018)). For each variation, we
tested absolute perturbations (Fig. A.6A)

ϵABS = ρ
δ

||δ|| (10)

and relative perturbations (Fig. A.6B)

ϵREL = ρ
δ|w|
||δw|| , (11)

with weights w (multiplied element-wise) and, e.g., δ = −vt for MSAM.
MSAM provides the only perturbation reaching SAM-like performance without inducing relevant
computational overhead.
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Figure A.6: Random perturbations and last gradient perturbations compared to SAM and MSAM.
A: Absolute perturbations, B: Relative perturbations, i.e., scaled by |wi| before normalization. All
perturbations normalized by L2-norm and scaled by ρ. WideResNet 16-4 trained on CIFAR100.
MSAM always better than other current gradient-independent perturbations.

A.8 HYPERPAREMETER STABILITY

To show the stability of MSAM and its hyper parameter ρ, we varied the learning rate η and the
momentum factor µ when optimizing a WRN-16-4 on CIFAR100 for fixed ρ = 2.2 and depict results
in Fig. A.7. MSAM yields stable performance increases compared to SGD and NAG over wide
ranges of hyperparameters. We made similar observations when comparing SGD and MSAM for
different number of epochs (cf. Fig. A.8).
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Figure A.7: WRN-16-4 on CIFAR100 fixed ρ = 2.2. A: Learning rate η ablation (log-scale). B:
Momentum factor µ ablation.

A.9 COMPARISON WITH SAME COMPUTATIONAL BUDGETS

We compare MSAM and SAM (and SGD and NAG) when given the same computational budget for
WRN-16-4 on CIFAR100 for a wider range of epochs (up to 1200) in Fig. A.8. I.e., running SAM
for half the number of epochs compared to other optimizers, resulting in the same number of network
passes for all optimizers. MSAM performs similar to NAG (and SGD) for short training times,
however, if trained until convergence of SGD/NAG or even longer (overfitting occurs; SGD/NAG
results decrease again) MSAM reaches higher test accuracies and overfitting is prevented. Due
to the additional forward/backward passes SAM performs worse compared to MSAM for limited
computational budgets. For long training times MSAM and SAM do not differ significantly.
We further support these observations by training a ViT-S/32 with MSAM with doubled number of
epochs (180) on ImageNet where we reach 70.1% test accuracy and thus clearly outperform SAMs
69.1% (cf. Tab. 2).
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Figure A.8: Comparing different optimizers when given the same computational budget. WRN-16-4
on CIFAR100.

A.10 MACHINE TRANSLATION

Machine translation results (English to Romanian) on the WMT 2016 (Bojar et al., 2016)dataset by
finetuning a T5-tiny model (efficient version by Tay et al. (2022)) from a publicly available checkpoint
pretrained on the C4 dataset (Raffel et al., 2019). We scanned ρ ∈ {0.01, 0.03, 0.1, 0.3, 1} and found
MSAM and SAM both to perform best at ρ = 0.1. The resulting BLEU scores are shown in Tab. A.3.
MSAM slightly outperforms SAM (as well as AdamW) while requiring two times less computations.

Table A.3: BLEU scores for T5-tiny trained on English to Romanian translation on the WMT 2016
dataset.

AdamW SAM MSAM
23.35 23.57 23.64
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A.11 LOSS ASCENT IN MOMENTUM DIRECTION

To validate that the perturbation of the loss results in an loss increase, we show the perturbed and
unperturbed loss during training for different learning rates in Fig. A.9.
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Figure A.9: Loss before (LBt
(wt)) and after (LBt

(wt − ρvt/||vt||)) perturbation in momentum
direction as done by MSAM (ρ = 3) for WRN 16-4 on CIFAR100 for different learning rates.
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