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Abstract: We present a novel approach for whole-body teleoperation of mobile
manipulation robots, focusing on complex household tasks that require coordina-
tion of arms-manipulation and robot-body posture, while enabling multiple con-
tact points along the robot’s kinematic chain. Current state-of-the-art methods of-
ten overlook the synergy between different parts of the robot’s body, particularly in
humanoid robots, as they typically rely on end-effector actions alone. In contrast,
we propose a teleoperation framework that supports multi-embodiment and multi-
contact teleoperation, allowing for efficient whole-body control that enhances task
execution in real-world scenarios and brings robots closer to human-like behav-
iors. Our augmented action-space compliant teleoperation interface enables users
to control the robot and collect high-quality demonstrations for future imitation
learning. Preliminary experiments demonstrate promising results, with high suc-
cess rates in task completion, suggesting the potential of our approach for robust
and efficient teleoperation. Videos of our real-robot experiments can be found on
https://sites.google.com/view/aawbt/home.
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1 Introduction

Figure 1: Human closing a dish-
washer with their knee because their
hands are full of objects they just
grasped from the dishwasher.

Humanoid robots have long been envisioned as house-
hold assistants, yet the complexity of tasks within a hu-
man household and the unstructured nature of these envi-
ronments have limited their integration into our daily life.
While robot learning promises to provide the intelligence
necessary for humanoid robots to fully exploit their ca-
pabilities, one major challenge remains: enabling these
robots to coordinate whole-body actions in a way that mir-
rors human behavior. The human-like kinematics of hu-
manoid robots enable them to solve tasks similar to humans,
which is specifically interesting for cases in which humans
use their whole body to solve a task, e.g., when closing a
drawer or the dishwasher with a knee because both hands
are occupied (Figure 1). Recent efforts in robot teleoper-
ation [1, 2, 3, 4, 5, 6, 7, 8], show that in many cases the
hardware is not the missing component, but rather the in-
telligence for coordinating multiple embodiments based on
perceptual feedback.

This paper introduces a novel teleoperation framework that
augments the robot’s action space to enable whole-body manipulation with multiple contact points
along the robot’s kinematic chain. Our approach allows for simultaneous interaction with the envi-
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Figure 2: Teleoperation Framework Overview

ronment using parts of the robot’s body beyond the end-effector, as exemplified by the scenario in
Figure 1. This opens up new possibilities for more efficient and human-like task execution.

We are particularly interested in tasks where we allow manipulation to happen beyond the end-
effector space. We characterize these tasks by exploiting an additional contact point with the en-
vironment along the kinematic chain, beyond the one possible by the robot’s end-effector, which
allows the execution of several sub-tasks at the same time, similar to the example of Figure 1. No-
tably, the idea of using multiple contact points has been identified previously in a taxonomy of
whole-body motions of humans [9], yet the execution of the synergies of different embodiments
beyond separated control [10] is limited. Augmenting the action space of humanoid or mobile ma-
nipulation robots with the ability to simultaneously interact with different parts of their body with
the environment, can broaden the robot’s capabilities and increase their efficiency in solving tasks
that are intuitive to humans.

In this work, we extend the action space of mobile manipulation robots to whole-body motions and,
in particular, we explore the interplay of base, end-effector, and elbow motion in human-teleoperated
control through a handheld remote controller. We focus on long-horizon mobile manipulation tasks
that require multiple contacts, inspired by the efficiency of humans in completing tasks as the one of
Figure 1. To solve the aforementioned group of tasks, we propose a novel augmented action-space
teleoperation framework for mobile manipulation robots that considers the control and synergy of
expressive coordinate frames, such as the end-effector and the arm’s elbow. Our approach allows
the teleoperator to convey task-critical motion for the end-effector and any other previously defined
task-relevant frame (for this work the elbow and base). Tracking the twist from the teleoperation
handheld controller, we can extract either the desired motion for the end-effector or for elbow and
base, depending on a chosen teleoperation mode by the teleoperator. From this desired velocity and
chosen teleoperation mode, our compliant Whole-Body Controller computes the desired joint-space
motion under consideration of additional task objectives and constraints. Crucially, our controller
employs impedance control that is always active, unless high-precision end-effector operation is
chosen, translating into a higher stiffness control of the robot. We evaluate the suitability and quality
of our proposed teleoperation framework and whole-body controller in real-robot experiments in
three different scenarios, in which the teleoperator has to control multiple embodiments and establish
contacts with different parts of the robot’s arm to successfully complete the tasks.

To summarize our contributions are twofold: (i) We identify and characterize a group of tasks that
benefit from whole-body manipulation, where interacting with the environment through multiple
contact points allows for simultaneous execution of several sub-tasks. (ii) We propose an augmented
action-space teleoperation framework, supported by a compliant whole-body controller that balances
multiple (sub)tasks, facilitating novel and more efficient task solutions in real-world scenarios.

2 Related work

Robotic teleoperation systems. Assessing how the human operator controls the robot’s many
DoFs, we identify three categories in decreasing order of direct influence that the operator’s actions
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have on the robot’s joint motion. In the first category, the operator directly controls the joint angles
through kinesthetic teaching, coming in physical contact with the system [11] or teleoperates via
a leader-follower system [4, 12, 13], that requires the human to be fully engaged, and, in case of
mobile manipulation, the teleoperator has to follow the mobile robot; this might not be optimal
for constrained spaces, or for teleoperating/collecting data in domains beyond households where
humans cannot or should not be present. Crucially, such comparably easy-to-set-up systems requires
robot-specific experts [14]. Secondly, we group a set of works [15, 6, 16, 17, 18, 19] that capture
human motion via (implicit) keypoints in visual or depth input or from motion-tracking suits. These
methods enable the extraction of high-dimensional motion data like kicking or back jumping but
require extensive calibration of human body frames. Lastly, we point out virtual or augmented
reality-based setups [1, 20, 5, 21, 7, 8, 22], allowing for decoupled motion signals for different
frames like arm end-effector(s), base, torso or head by tracking a headset and hand controllers. While
removing the need for fine-grained calibration, it limits the number of frames being teleoperated at
the same time. At the same time, it introduces the need of some kind of whole-body controller to
combine these motion signals into robot joint space.

Learning from teleoperated demonstrations. The current state-of-the-art of learning-based ap-
proaches that rely on teleoperated data are not yet representative of tasks that humans are efficient
in doing in their households, perform anywhere close to humans for most household tasks [23].
The majority of tasks involve simple pick-and-place sequences. Most policies are formulated ei-
ther in end-effector or joint space; however, both options come with some limitations: end-effector
space does not contain any information about the kinematic chain on which the end-effector sits and,
therefore, it cannot easily integrate knowledge about the manipulability and dynamics of the robotic
mechanism. In joint space, however, we carry all that information. Nonetheless, teleoperating either
for data collection or shared autonomy approaches [24] all robot joints in a robot-optimal manner,
exploiting the robot kinematics, and avoiding unfavorable positions of low manipulability and sin-
gularities requires extensive expert knowledge and training of the teleoperators. An approach that
is close to ours and combines a mapping from human capabilities to robotic execution is humanoid
shadowing [25] that learns a mapping from human poses to robot joints; yet, the resulting policies
can only handle locomotion and manipulation separately, thus, not fully exploiting the capabilites
of robots. We also argue that the absence of embodied teleoperation might not enable the robot to
solve a wide range of tasks, e.g., it might only refer to motion style re-targeting and learning without
object interactions [19]. Crucially, none of the aforementioned methods consider teleoperation and
control for multi-contact whole-body manipulation tasks.

3 Method

We consider a group of long-horizon mobile manipulation tasks that require several subtasks to
be completed, some of which can be solved only by using the end-effector, while some require
interaction with other parts of the body, while satisfying constraints about the end-effector. In this
work, we focus on interacting with the elbow, for example, for closing a door when the hand is
full. However, our control approach can be extended to arbitrary contact points along the kinematic
chain on the robot, as long as sufficient DoFs are available. We call this type of control augmented
action-space whole-body control.

We present a teleoperation framework to enable a teleoperator to solve such augmented action-space
whole-body manipulation tasks using a handheld controller. The teleoperated twist ẋteleop from the
Teleoperation interface (section 3.1) is given as input to our Whole-Body Controller (section 3.2),
which computes the desired joint space motion qdes, q̇des. Depending on the task, we choose to use
a current-based joint impedance controller with stiffness adjusted prior to task execution, trading off
the impedance’s compliance with the high stiffness’s accuracy. An overview of the framework can
be seen in figure 2.
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3.1 Teleoperation Setup

To receive motion signals from the teleoperator, we use a hand controller, from which we track
the twist ẋteleop = [vteleop,ωteleop]

T ∈ R6, with linear velocity vteleop ∈ R3 and angular velocity
ωteleop ∈ R3, and the gripper state g ∈ [0, 1] indicating percentage of gripper opening, with 0 being
fully closed and 1 fully open. Additionally, to differentiate between end-effector (EE) whole-body
teleoperation (EE mode, m = 0) and elbow-based whole-body manipulation (WBM mode, m = 1),
we track a mode m ∈ {0, 1}, resulting in an action space a ∈ R8.

The teleoperation twist signal ẋteleop is understood as a first-person velocity from the robot’s view-
point. The mode m differentiates between the kinematic frames which ẋteleop influence, i.e., a change
in the goal definition of desired twists and respective task-priorities with our WBC:

ẋee,wbc =

{
ẋteleop, if m = 0

0 if m = 1
ẋelbow,wbc =

{
0, if m = 0

ẋteleop, if m = 1

3.2 Whole-Body Controller

Our Whole-Body Controller, i.e., the mapping of desired task-space motion ẋee,wbcorẋelbow,wbc to
joint space motion qdes, q̇des under additional objectives/constrains is implemented as a Task Space
Inverse Kinematics Formulation via Quadratic Programming [26]:

min
q̈

∑
i

wiJi, s.t. aj = 0 (1)

with weighted cost functions wiJi and constraints aj for i, j ∈ N We introduce an hierarchy of tasks
by adding the task objectives either as a cost function with tunable weights or as a hard constraint
function. Compared to redundancy resolution via null-space projection, the benefit of this approach
is the fast computation time, allowing for frequencies up to 2.5 kHz.

As a result of prior experiments [27], we concluded the following design principles for designing
the task objectives: (i) For the teleoperator to develop intuition about the robot’s response to their
motion signal, it is important that the teleoperated kinematic frame deviates as little as possible from
the motion signal, e.g., (self-)collision avoidance. This means that the teleoperator is responsible for
avoiding unwanted collisions in time for the teleoperated frame. (ii) For kinematic frames that are
not directly teleoperated but whose position is computed via redundancy resolution according to the
task hierarchy of the WBC, and can collide with the environment itself, it is important to integrate
collision avoidance instead. This is absolutely necessary to allow the controller to compensate for
the prevented motion with other degrees of freedom and to not get stuck in a deadlock. (iii) The
degrees of freedom in which the whole-body manipulation kinematic frame is teleoperated have to
be identified carefully so as to not over-constrain degrees of freedom.

Constraints and cost functions applied in EE mode. To prioritize directly teleoperating the end-
effector motion, we set the following task objectives in decreasing order of priority. (a) Joint Limits
in position, velocity, and acceleration are enforced as a hard constraint. (b) According to principle
(ii), we do not move the base when not directly teleoperating it. For simplicity, we do not integrate
base collision avoidance and, therefore, use a hard constraint to prevent base motion in this case.
(c) The total teleoperated twist ẋee,wbc is enforced as the cost function with the highest weight.
According to principle (i), we refrain from constraining it by self-collision avoidance and trust the
user to prevent unwanted collisions. (d) For redundancy resolution, we do null-space damping and
favor a beneficial joint configuration. We deem it unnecessary to do self-collision avoidance in
our current setup, as the kinematic design of our TIAGo robot prevents self-collision with the arm.
However, this can be added for other types of robots when needed.

Constraints and cost functions applied in WBM mode. In this mode, we directly teleoperate the
base motion and, with less priority, elbow motion. At the same time, we carry out an end-effector
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task with the same priority as the base motion. In decreasing order of priority, we list the task-
objectives set: (a) Joint Limits in position, velocity, and acceleration are still enforced as a hard
constraint. (b) Direct teleoperation of the base according to principle (i) in SE(2)-corresponding
velocity space is prioritized equally with the non-teleoperated end-effector task. Here, it is important
to carefully think about the actively computed DoFs according to principle (iii). (c) To influence the
elbow pose, we apply the same SE(2)-corresponding velocity. With these task objectives in place,
we refrain from adding any joint null-space damping.

4 Experiments

Figure 3: Button functionality
of teleoperator’s hand controller.
The red dot marks the origin of
the frame whose twist is tracked.

We conduct experiments in the real world with a dual-armed
PAL Robotics TIAGo++ mobile manipulation robot with an om-
nidirectional base. The robot has 20 DoF in total (2 for the head,
1 for the torso, 3 for the holonomic base, and 7 for each arm).
In this work, we only use 10 DoF from the left arm (7) and the
base (3). For teleoperation, we use the HTC Vive Virtual Real-
ity setup depicted in figure 3. We implement the Whole-Body
Controller specified in section 3.2 with the Task Space Inverse
Dynamics Framework [26] based on the Pinocchio library [28]
and run it at 1 kHz, feeding the previously computed joint state
q̇des, qdes back as to not get stuck due to the trailing impedance
controller. At 15 Hz, we forward the computed q̇des, qdes to the
joint impedance controller.

We evaluate our framework on three tasks taken from the house-
hold environment, for two of which we conduct a small user
study with three participants, and an additional third task on
which we demonstrate feasibility of our proposed approach.
These experiments are to be understood as proof-of-concept.

Motivated by the task of carrying liquid in a cup, we choose the end-effector task during WBM
mode to be no linear or angular twist in the x and y directions while still staying at the same pose
relative to the robot’s base.

4.1 Evaluation Setup

Demonstration: Lightswitch Activation This demonstration highlights the effectiveness of our
approach in a practical scenario. The robot is tasked with activating a light switch on the wall using
its elbow, while simultaneously and stably moving its end-effector, which is holding an object. This
setup showcases the robot’s ability to perform complex, multi-contact tasks that require precise
coordination between different parts of its body. Video of this demonstration is available on https:

//sites.google.com/view/aawbt/home.

User Study Setup This evaluation aims to test both the usability of our teleoperation approach and
the effectiveness of the whole-body controller (WBC). Three participants were asked to complete
each task three times after an adequate introduction period. The following metrics were recorded:
a. Success rate Completion of the task without fatal collision with the environment or the robot’s
embodiment, showcasing the feasibility of our approach.
b. Teleoperated distance The total distance covered by the teleoperator to complete the task,
highlighting the usability and efficiency of the system.
c. Time until completion The total time required to finish the task, including reorientations and
pauses for decision-making, providing insights into the overall usability of the approach.
d. Task objective error during WBC mode The deviation from the desired task-specific motion
(twist) due to the balancing of multiple objectives, showcasing the effectiveness and design of the
WBC in maintaining task performance.
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Task 1: Drawer Retrieval In this task, the robot must open a standard kitchen drawer located below
the counter, retrieve a banana from inside, and then close the drawer using its elbow on the same
arm that holds the banana. This task demonstrates the robot’s ability to perform multiple subtasks
with a single limb, utilizing whole-body coordination. A depiction of the optimal task completion
as a result of successful teleoperation and control can be seen in Figure 4.

Figure 4: Desired execution of the Drawer Retrieval task

Task 2: Cupboard Retrieval In this task, the robot must close a cupboard door that extends from
the floor to torso height, while keeping its end-effector stable. The task assumes that the robot
has grasped a cup (potentially filled with liquid) from inside the cupboard. To complete the task, the
robot must close the cupboard door using the elbow of the same arm that is holding the cup, ensuring
stability and avoiding any spillage. This task demonstrates the robot’s ability to perform delicate
manipulation while simultaneously executing whole-body motions. A depiction of the optimal task
completion as a result of successful teleoperation and control can be seen in Figure 5.

Figure 5: Desired execution of the Cupboard Retrieval task

4.2 Results

We report the successful execution of all evaluation tasks over all trials and participants. Videos
from our experiments are available on our website.

For the teleoperated tasks, we report an average execution time of 3.76 minutes and a teleoperated
distance of 2.05 meters for the drawer retrieval task. For the cupboard retrieval task, the average
execution time was 5.25 minutes, with a teleoperated distance of 2.73 meters. Due to the limited
number of participants, we refrain from reporting a standard deviation, although we observed high
variability in these metrics. This variability, alongside the small sample size, highlights the low
representativeness of the study. While these results demonstrate the feasibility of our approach, they
also reveal areas for improvement in terms of intuitiveness, as no human would take this long to
complete such tasks.

In Figure 6, we present the deviation in task objective velocity for the end-effector, elbow, and base
during the whole-body manipulation mode. Aside from brief spikes in the end-effector plot—caused
by re-orientation pauses, during which the system temporarily switches to end-effector mode—
the task was successfully executed. We observed minimal deviation from the desired teleoperated
velocity for both the base and elbow. However, in the final 10 seconds, the base motion exhibited
significant deviation from the desired signal, suggesting a trade-off with the end-effector task within
the whole-body controller.
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Figure 6: Deviation from desired task objective velocity for end-effector, elbow, and base, computed
by the whole-body controller, only during WBM teleoperation mode from one trajectory.

Overall, these results provide proof of concept for our approach and the design of our whole-body
controller. The insights gained from this study will guide future improvements, particularly in en-
hancing the intuitiveness and efficiency of our teleoperation system.

5 Conclusion

In this work, we tackled the challenge of creating human-like yet robot-favorable motions for mo-
bile, multi-DOF manipulators, addressing complex household tasks that require whole-body coordi-
nation. Unlike most state-of-the-art methods, which often focus solely on teleoperating end-effector
actions, we propose leveraging the entire robotic embodiment to enhance the interaction between
the robot and its environment. Our teleoperation framework, supported by a compliant whole-body
controller, provides a flexible platform for enabling these interactions, offering the potential for both
learning from demonstrations and efficient task execution. We tested our approach on two house-
hold tasks while showcasing a complex light switch one, demonstrating the ability of our approach
to handle multiple subtasks simultaneously, thus validating the framework’s suitability for complex,
long-horizon tasks. The ability to simultaneously control different parts of the robot’s kinematic
chain allowed for more fluid and natural task execution, resembling the way humans solve similar
problems. Our preliminary results indicate that our method provides a significant step forward in en-
abling mobile manipulators to perform tasks combining efficiency and adaptability, bringing robots
closer to achieving human-like behaviors in real-world environments.

Limitations and Future Work

One of the key limitations of our current approach is the lack of representativeness of the user study.
Operators had limited time to familiarize themselves with the system. While a learning curve was
observed, it impacted their ability to fully exploit the teleoperation framework within the study
period. A more extensive user study with a more extended familiarization period is necessary to
better understand the system’s full potential and account for user interaction experience.

For future work, we plan to address several areas of improvement: (i) Base motion in end-effector
mode: We wish to enable base motion during end-effector mode, which would allow the robot to
reach areas farther away with improved manipulability. Currently, the teleoperator may experi-
ence situations where the end-effector doesn’t move because it cannot reach the desired orientation.
This can lead to confusion, as the teleoperator may not understand why the robot is not respond-
ing. Incorporating base collision avoidance will be essential to ensure safe and effective movement.
(ii) Increasing degrees of freedom for elbow control: Another goal is to enable more degrees
of freedom for the elbow, including teleoperating in x, y, and z dimensions and integrating torso
movement. This will become feasible after implementing base collision avoidance, allowing more
precise whole-body motion control during teleoperation. (iii) Learning-based impedance adapta-
tion: We aim to explore automatic impedance adaptation to reduce strain on the robot’s arm during
interactions with articulated objects, such as doors and drawers. By learning to adapt impedance
dynamically, the robot can improve both the precision and safety of its interactions while improving
user experience during teleoperation.
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