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Abstract

Integrating textual reports and visual information is crucial for multimodal medical AI.
However, existing approaches face two major challenges: (1) Handling omitted information
in reports, as textual encoders struggle to differentiate between unmentioned and truly
absent attributes, leading to inconsistencies in feature learning, and (2) Inter-modality in-
formation imbalance, where direct token-wise attention between text and images causes
instability due to the disparity in information richness between modalities. To address
these issues, we propose AlignedFusion, a novel multimodal fusion framework with two
key components: (1) Attribute-wise Report Token Generation with Masked Token Recon-
struction, which structures medical reports into explicit attribute categories and recon-
structs missing attributes to reduce feature variance, and (2) Intermediate Token-Based
Fusion, which stabilizes multimodal learning by inserting an intermediate token as a bridge
between textual and visual representations, ensuring a balanced and effective fusion. We
evaluate AlignedFusion on four medical analysis tasks using two public and two private
datasets, demonstrating its adaptability and robustness. Experimental results show that
our approach improves alignment between textual and visual features, mitigates training
instability, and enhances predictive performance, advancing the field of multimodal medical
AI. Code will be available upon acceptance.

Keywords: Missing data, Transformer, Pathology, CT lesion detection, Skin tumor

1. Introduction

Clinical reports (Downing, 2001) contain rich diagnostic information that extends beyond
what is visible in medical images (deSouza et al., 2019; Bayer, 2018; O’connor et al., 2017;
Hait, 2011; La Thangue and Kerr, 2011). Numerous medical diagnostic algorithms have
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demonstrated the critical role of these textual reports in machine learning applications,
showing their effectiveness in improving predictive accuracy and clinical decision-making
(Mohsen et al., 2022; Tschandl, 2020; Tang, 2022; Braman et al., 2021; Zuo et al., 2022; Cui
et al., 2022; Guan et al., 2021; Chauhan et al., 2020; Silva and Rohr, 2020; Qiang et al., 2021).
As a result, integrating textual report and visual information has become a crucial research
direction in multimodal learning for medical AI. Recently, the most popular strategy is to
first use a textual encoder (e.g., BERT (Devlin et al., 2019), ClinicalBERT (Huang et al.,
2019), or BioBERT (Lee et al., 2020)) and a visual encoder (e.g., transformer-based (Doso-
vitskiy et al., 2020) or convolutional methods) to encode the report and medical image,
respectively, and then integrate the features for the final task. As shown in Fig.1, while
achieving success, these methods still face two major challenges: 1) Inability to Handle
Omitted Information in Reports. Reports vary in detail, some attributes are explicitly
recorded, while others may be omitted, making it unclear whether an attribute is truly ab-
sent or simply deemed unnecessary to mention. Textual encoders cannot effectively handle
missing attributes because they do not know which attributes are omitted, leading to incon-
sistencies during training, where certain attributes appear in some reports but are absent in
others. This increases feature variance in report representations, making it more challenging
to align textual and visual features. Additionally, some missing attributes could be easily
inferred from other available attributes, yet current models fail to leverage this contextual
knowledge. 2) Training Instability Due to Inter-Modality Information Imbalance.
Medical reports primarily describe the presence or absence of specific attributes, containing
significantly less information than images. However, current methods train textual and vi-
sual features together using direct token-wise attention, despite the substantial difference in
the amount of information each modality provides. This imbalance can make joint training
unstable, causing the model to either overfit to the more information-rich visual features or
fail to effectively utilize the comparatively limited textual information.

To address these issues, we propose AlignedFusion to handle missing information in
reports and inter-Modality information imbalance. It consists of two key components: 1)
Attribute-wise Report Token Generator and Masked Token Reconstruction. We
use Attribute-wise Report Token Generator to structure the medical report into explicit at-
tribute categories, classifying each attribute as positive, negative, or unmentioned. The
selected attributes can either be manually predefined or extracted from the report cohort
of the entire dataset. To handle the unmentioned attributes, we introduce a Masked Token
Reconstruction model, treating them as unknown masks and training the model to recon-
struct them based on available data. This prevents the model from incorrectly assuming
unmentioned attributes are negative while enabling a data-driven inference of missing in-
formation. 2) Intermediate Token-Based Fusion. To mitigate the instability caused
by direct token-wise attention between text and images, we introduce an Intermediate
Token-based fusion mechanism as a narrow bridge between modalities. Instead of directly
applying attention across all tokens, we insert an intermediate token between each modality
pair, training it to encode only the shared information between them. This prevents high-
density image features from overwhelming sparse textual attributes, ensuring that only the
most critical cross-modal information is preserved.

To better demonstrate the efficacy of our AlignedFusion, we conduct extensive ex-
periments on four representative medical analysis tasks spanning both public and private
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Figure 1: UPPER: Current methods do not know which attributes are omitted, leading
to inconsistencies during training, where certain attributes appear in some reports but
are absent in others. In contrast, our method can prevent the model from incorrectly
assuming unmentioned attributes. LOWER: Current methods train less textual and rich
visual features together using direct token-wise attention, despite the substantial difference
in the amount of information each modality provides. In contrast, our method introduces
an intermediate token to mitigate this imbalance.

datasets. Specifically, we evaluate our method on two widely used public and two in-house
clinical datasets, covering diverse imaging modalities(CT, pathology, and dermoscopic im-
ages), disease types, and reporting styles. Across all tasks, we systematically simulate
different levels of report incompleteness. The results consistently show that AlignedFusion
achieves superior performance and exhibits clear robustness under varying missing-attribute
ratios, highlighting its practical applicability to real-world clinical scenarios where textual
reports are often sparse, incomplete, or heterogeneous.

2. Method

As shown in Fig.2, we hereby take the two-modality-input (one image modality and one
report modality) as a working example to illustrate how we tackle missing attributes, but it
supports more modality inputs. We will first introduce four successive parts of our methods
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Figure 2: The network architecture.(a) Attribute Selector: Automatically extracts a unified
set of clinically relevant attributes from the report cohort using GPT-based prompting.
(b1) Visual Token Generator: Encodes the input image into patch-level visual tokens with
a pretrained Vision Transformer. (b2) Attribute-wise Report Token Generator: Represents
each attribute as a dedicated report token and assigns a special UN token to attributes not
mentioned in the report. (c) Token Integration: Integrates visual and report tokens via
an intermediate-token based fusion with masked token reconstruction to mitigate missing
attributes. (d) Downstream Task: Uses the fused token representation for task-specific
prediction, such as image-level classification.

in 2.1 to 2.4 and then describe how to downstream out model in 2.5. Finally, we present
the training and testing procedures in 2.6.

2.1. Attribute Selector FAS

For a dataset X containing n image-report pairs (i.e., two modalities):

X = [I,R], I = [I1, ..., In], R = [R1, ..., Rn] (1)

we first extract all mentioned attributes names NA from the reports using ChatGPT-3.5:

NA = FAS(R) = Chat(R,Prompt), NA = [Na1 , ..., Nai ] (2)

where i is the total number of selected attributes, and Prompt is a query in the format:
*“Please list all mentioned attributes which are important for %TASK.”* Here, %TASK
refers to the specific downstream task. We removed the superscript of images and reports
in the following for simplification.
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2.2. Token Generators G

This part includes two sub parts: Visual Token Generator Gvis and Attribute-wise Report
Token GeneratorGrep. The visual tokens and Report tokens are generated by Visual Token
Generator and Attribute-wise Report Token Generator respectively.

Visual Token Generator Gvis. We adopt a pretrained ViT(Liu et al., 2021) FV iT as
the backbone to extract the image visual tokens tv = [t1v, ..., t

i
v] from images I:

[t1v, ..., t
i
v] = FV iT (P ), P = [P 1, ..., P i] = FP (I), (3)

where the P represents the image patches generated from the partial operations FP , and i
is the number of patches.

Attribute-wise Report Token Generator Grep. We first utilize GPT-3.5 Chat(·)to
extract the values of different attributes NA from the report R. If an attribute is explicitly
mentioned in R, we record its actual value; otherwise, we define it as UN (Unknown):

Chat(R,Nai) =

{
ai, if Nai is mentioned in R

UN, if Nai is not mentioned in R
(4)

where ai represents the extracted value of attribute Nai from the report. With this equation
we can get a filled attributes table for report R: TabA = {Nai : Chat(R,Nai)}.

After obtaining the filled attributes table TabnA, we construct prompts for each attribute
PtNai

, and pass them separately through ClinicalBERT (Huang et al., 2019) GcBERT to ob-
tain attribute-level tokens. If the attribute value is **Unknown (UN)**, we directly replace
it with a predefined **UN mask token** tUN without processing it through ClinicalBERT:

tir =

{
GcBERT (PtNai

), if ai ̸= UN

tUN , if ai = UN
(5)

where tin represents the attribute-level token embedding, extracted from the [CLS] token
of ClinicalBERT. As shown in Fig.2 (b2), our prompt PtNai

design is straightforward,
and our experiments indicate that the choice of prompt design has a negligible impact on
performance. Finally, we aggregate all attribute-level tokens to form the Attribute-wise
Report Token: tr = {t1r , ..., tir}.

2.3. Token Integration

As shown in Fig.2 (c), after obtaining the Visual and Attribute-wise Report Tokens, we
integrate them for the downstream task. As discussed in the Introduction, we first intro-
duce an Intermediate Token to mitigate the instability caused by direct token-wise attention
between text and images. Then, we apply Masked Token Reconstruction to handle unmen-
tioned tokens.

2.4. Intermediate Token tint Modeling

To serve as a bridge, the same Intermediate Token tint is added to both modality token
sets:

t′v = [tv; t(v,int)], t′r = [t(r,int); tr], tint = t(v,int) = t(r,int) (6)
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For each token set, all tokens interact through the self-attention operation FSA:

t′
SA
v = FSA(t

′
v), t′

SA
r = FSA(t

′
r). (7)

Since the Intermediate Token is modeled twice, once in each modality, we integrate its
two representations using an averaging operation Avg:

tSA
int = Avg(tSA

(v,int), t
SA
(r,int)), tSA

int → tSA
(v,int), tSA

int → tSA
(r,int). (8)

Now, the Intermediate Token captures information from both modalities. In other words,
even when using the report token set t′SAr , it can still access visual information through the
Intermediate Token.

Masked Token Reconstruction model Frec. Within the report token set, the
Masked Token Reconstruction model Frec first randomly masks out tokens with the UN
mask at a certain probability p, mimicking unmentioned attributes. It then learns to re-
construct the masked tokens based on the remaining tokens within the report token set:

tir =

{
tir, if a ≥ p

tUN , if a < p
a = Rand(0, 1). (9)

We empirically set p=0.3 in our experiments. Then the reconstruct loss is calculated based
on the masked tokens only:

t̂ir = Frec(t
′SA
r − tir) = Frec, lrec = CE(t̂ir, t

i
r). (10)

2.5. Downstream model Fd

Taking disease classification as an example, the token sets t′SAr and t′SAv are concatenated
to generate a global representation tcls. This global representation tcls is then used by the
downstream model Fd to predict the final classification result Ŷ , optimized with the loss
function ld:

Ŷ = Fd(tcls), ld = LCE(Y, Ŷ ). (11)

2.6. Overall training and testing

During training, the total loss is the sum of the downstream task loss and the masked
token reconstruction loss: lall = ld + lrec.

For unmentioned attributes during training, we directly use the reconstruction network
to reconstruct their tokens for subsequent training.

During testing, as shown in Fig.2 (c), the Masked Token Reconstruction is replaced
by Missed Token Reconstruction. No masking is applied; instead, the model reconstructs
only the genuinely unmentioned attributes.
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3. Experiments

Figure 3: The line graph of classification accuracy (%) under the Attribute M-Tr+C-Te and
C-Tr+M-Te scenarios on the Derm7t(Kawahara et al., 2019) and KidneyCLS datasets.

3.1. Dataset and setting

Our experiments are conducted on four datasets, including two public and two private
datasets. The public dataset Derm7pt (Kawahara et al., 2019) contains 413 training cases,
203 validation cases, and 395 testing cases. Each case comprises a dermoscopic image
and a clinical image, with five selected attributes: Mel, Nevus (Nev), Seborrheic Keratosis
(SK), BCC, and Miscellaneous (Misc). The public dataset Deeplesion (Yan et al, 2018) is
designed for CT lesion detection and contains 32,120 axial CT slices. Four attributes are
extracted from the report: patient age, lesion location, gender, and lesion size. We compare
our method with the previous leading method, FusionM4Net(Tang, 2022). The private
dataset, KidneyCLS, was collected from an in-house hospital between 2012 and 2020 and
was annotated by three doctors with at least five years of clinical experience. The dataset
contains 648 Kidney CT images, with each case including a CT image and 13 attributes
extracted from the report. The private dataset, Skin Tumor Dataset designed for patch-
level Skin Tumor classification, consists of 120 skin tumor pathology slides (114k annotated
patches), with 14 attributes extracted from the report.

3.2. Performance in different attribute missing scenarios

First, to evaluate performance under different attribute missing scenarios, we conduct ex-
periments in Attribute“M-Tr+C-Te” (Missing Training and Complete Testing), “C-Tr+M-
Te”(Complete Training and Missing Testing), and “M-Tr+M-Te” (Missing Training and
Missing Testing) scenarios and report results in Fig. 3 and Table 1.

Attribute M-Tr+C-Te results. We learn separate models with different attribute missing
rates in the training set and evaluate them using attribut-complete test data. As in Table
1(a) and Fig. 3(a), our method has the best biomarker-complete test performances for all
conditions. For example, with a 20% attribute missing rate in training, our model achieves
an accuracy of 80.76%, exceeding the competing method FusionM4net by a margin of 8.11%.

Attribute C-Tr+M-Te results. As in Fig. 3(b) and Table 1(b), our method learned with
an attribute-complete training set exhibits accuracy resilience in the face of progressively
incomplete test datasets; After a slight decline, performance interestingly shows a tendency
to recover. This phenomenon can be attributed to the strategic of our method to data
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Table 1: Classification accuracy (%) under the AttributeM-Tr+C-Te, C-Tr+M-Te, and M-
Tr+M-Te scenarios on the Derm7t (Kawahara et al., 2019) and KidneyCLS datasets.

(a) M-Tr+C-Te — Derm7t dataset
Methods 0% 10% 20% 30% 40% 50%

Ours 81.52 81.27 80.76 80.76 81.01 81.52
FusionM4net(Tang, 2022) 76.70 73.92 72.65 75.94 75.18 73.92
FusionM4net(Tang, 2022)(Miss Val.) 76.70 73.92 72.65 71.37 69.11 68.60
Element-wise Sum 77.22 76.71 73.67 73.67 74.18 73.67
Self-Attention 77.97 78.99 78.23 78.48 78.73 78.48
RemixFormer(Xu et al., 2022) 81.30 - - - - -
MSMA(Shu et al., 2024) 78.99 - - - - -

Ours (Img Only) 76.55 - - - - -
FusionM4net(Tang, 2022) (Img Only) 75.40 - - - - -

(b) C-Tr+M-Te — Derm7t dataset
Methods 0% 10% 20% 30% 40% 50%

Ours 81.52 81.27 80.76 80.76 81.01 81.52
FusionM4net(Tang, 2022) 76.70 76.45 75.94 77.46 75.69 74.93
FusionM4net(Tang, 2022)(Miss Val.) 76.70 76.20 75.90 72.40 70.12 69.11
Element-wise Sum 77.22 75.44 75.19 74.94 75.19 74.94
Self-Attention 78.23 78.14 78.03 78.11 78.18 78.23
RemixFormer(Xu et al., 2022) 81.30 - - - - -
MSMA(Shu et al., 2024) 78.99 - - - - -

Ours (Img Only) 76.55 - - - - -
FusionM4net(Tang, 2022) (Img Only) 75.40 - - - - -

(c) M-Tr+M-Te — Derm7t dataset
Methods 0% 10% 20% 30% 40% 50%

Ours 81.52 81.52 81.27 81.01 81.52 81.77
Element-wise sum - - - - - -
Self-Attention 78.48 78.48 78.48 78.73 78.73 78.73

(d) M-Tr+M-Te — KidneyCLS dataset
Methods 0% 10% 20% 30% 40% 50%

Ours 82.73 81.03 82.56 81.54 82.56 80.51
Element-wise sum 77.44 72.82 73.33 73.32 75.90 71.28
Self-Attention 82.05 81.54 81.54 82.03 81.54 81.53

incompleteness, wherein it engages in the reconstruction of attributes’ soft labels, infused
with enhanced information.

Attribute M-Tr+M-Te results. In this study, we conduct an experiment where the train-
ing set is subjected to a 50% missing rate of attributes, and the model’s performance is
subsequently evaluated on test sets experiencing various degrees of attribute loss on both
datasets. The results are in Table 1(c,d) and Fig. 3(c). The outcomes of this experiment
reveal that our methodology is capable of undergoing both training and testing phases
effectively, even when a significant portion of the dataset is missing.

3.3. Effectiveness of Attribute-wise Report Token Generator

As shown in Table 2, our method achieves the best performance on the Skin tumor dataset
for all missing-attribute ratios. When no attribute is missing in the training reports (0%),
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Table 2: Classification accuracy (%) under the Attribute M-Tr+C-Te scenario on the Skin
tumor dataset dataset.

(a) M-Tr+C-Te — Skin tumor dataset
Methods 0% 10% 20% 30% 40% 50%

Element-wise Sum 70.22 69.71 68.67 67.67 66.18 65.67
Self-Attention 71.70 69.92 68.65 67.94 67.18 66.92
FusionM4net(Tang, 2022) 77.97 78.99 78.23 78.48 78.73 78.48
Ours +ClnicalBERT(Huang et al., 2019) 74.27 71.26 69.14 68.57 68.07 65.57
Ours +BioBERT(Lee et al., 2020) 76.24 73.14 71.56 70.65 69.99 66.35
RemixFormer(Xu et al., 2022) 79.30 - - - - -
MSMA(Shu et al., 2024) 77.69 - - - - -
Ours 81.52 81.27 80.76 80.76 81.01 81.52

Table 3: Attribute C-Tr+C-Te scenario: Sensitivity (%) of AlignedFusion at various FPPI
on the official testing dataset of DeepLesion (Yan et al, 2018) under 25%, 50 % and 100 %
training data.

Method data slice @0.5 @1 @2 Avg.[0.5,1,2]

A3D(Yang et
al, 2021)

25% 7 55.67 65.39 73.35 64.80

A3D+Ours 25% 7 57.04 (+1.37) 66.55 (+1.16) 73.97 (+0.62) 65.85 (+1.05)

A3D(Yang et
al, 2021)

50% 7 72.52 80.27 86.14 79.64

A3D+Ours 50% 7 73.48 (+0.96) 80.87 (+0.60) 86.43 (+0.29) 80.26 (+0.62)

A3D(Yang et
al, 2021)

100% 7 79.24 85.04 89.15 84.48

A3D+Ours 100% 7 80.21 (+0.97) 86.04 (+1.00) 89.66 (+0.51) 85.30 (+0.82)

simple fusion baselines such as Element-wise Sum and Self-Attention obtain 70.22% and
71.70% accuracy, respectively, while stronger multimodal baselines FusionM4net, MSMA,
and RemixFormer reach 77.97%, 77.69%, and 79.30%. In comparison, our method attains
81.52% accuracy in the same setting.

As the missing-attribute ratio increases from 0% to 50%, the performance of Element-
wise Sum and Self-Attention gradually decreases to 65.67% and 66.92%. Similarly, replacing
our generator with ClinicalBERT or BioBERT leads to a clear degradation: the accuracies
drop from 74.27% and 76.24% at 0% missing to 65.57% and 66.35% at 50% missing, in-
dicating that they cannot effectively handle incomplete reports. In contrast, our method
remains stable around 80–81% across all missing-attribute settings (from 81.52% at 0% to
81.52% at 50%), demonstrating that the proposed Attribute-wise Report Token Generator
can effectively cope with incomplete reports and provides robust representations even when
a large proportion of attributes are missing.
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Table 4: Ablation study for (a) IT and (b) mask probabilities p in masked reconstruction
model.

(a) IT 0% 10% 20% 30% 40% 50%

Ours w/o IT 77.97 78.99 78.23 78.48 78.73 78.48
Ours 81.52 81.27 80.76 80.76 81.01 81.52

(b)p p = 0 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

Ours 81.01 81.04 80.25 81.52 80.07 0.7975

3.4. Effectiveness of Intermediate Token-Based Fusion

As shown in Table 3, when using our Intermediate Token-Based Fusion, it consistently
improves sensitivity on DeepLesion across all data regimes and FPPI operating points.
With only 25% of the training data, the average sensitivity over {0.5, 1, 2} FPPI increases
from 64.80% to 65.85% (+1.05), and similar gains are observed at each FPPI level. When
using 50% of the data, our module boosts the average sensitivity from 79.64% to 80.26%
(+0.62), and with 100% of the data, the average sensitivity further improves from 84.48% to
85.30% (+0.82). These consistent margins confirm that the proposed fusion strategy is an
effective plug-and-play component that enhances lesion detection performance irrespective
of the available training data size.

3.4.1. Ablation study

An ablation study is conducted to evaluate the importance of the two key components in
our framework: (i) the Intermediate Token (IT) and (ii) the masked reconstruction model.
As shown in Table 4(a), removing IT from SMF consistently leads to performance drops
in the M-Tr+C-Te experiment across all missing-attribute settings. For example, at 0%
and 50% missing rates, the accuracy decreases from 81.52% to 77.97% and from 81.52%
to 78.48%, respectively. Similar gaps of around 2–3 percentage points are observed for the
other missing probabilities, indicating that the intermediate token provides a more stable
and balanced cross-modal interaction.

Table 4(b) further investigates the effect of the mask probability p in the masked recon-
struction model. The performance is relatively stable for small to moderate masking rates,
but a clear peak is achieved at p = 0.3, where the accuracy reaches 81.52%. When p is
either too small (p = 0) or too large (p = 0.5), the accuracy slightly decreases.

4. Conclusion

We propose AlignedFusion, a novel framework that enhances multimodal fusion by intro-
ducing (1) Attribute-wise Report Token Generation with Masked Token Reconstruction to
structure report attributes and infer missing information, and (2) Intermediate Token-Based
Fusion to stabilize cross-modal attention and balance textual and visual contributions. We
evaluate AlignedFusion on four medical analysis tasks across two public and two private
datasets, demonstrating its adaptability and robustness. Our method improves alignment
between textual and visual features while mitigating training instability, advancing multi-
modal learning for medical AI.
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