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Abstract

Path planning is a fundamental scientific prob-001
lem in robotics and autonomous navigation,002
requiring the derivation of efficient routes003
from starting to destination points while avoid-004
ing obstacles. Traditional algorithms like005
A* and its variants are capable of ensuring006
path validity but suffer from significant com-007
putational and memory inefficiencies as the008
state space grows. Conversely, large language009
models (LLMs) excel in broader environmen-010
tal analysis through contextual understanding,011
providing global insights into environments.012
However, they fall short in detailed spatial and013
temporal reasoning, often leading to invalid014
or inefficient routes. In this work, we pro-015
pose LLM-A*, an new LLM based route plan-016
ning method that synergistically combines the017
precise pathfinding capabilities of A* with the018
global reasoning capability of LLMs. This hy-019
brid approach aims to enhance pathfinding ef-020
ficiency in terms of time and space complex-021
ity while maintaining the integrity of path va-022
lidity, especially in large-scale scenarios. By023
integrating the strengths of both methodolo-024
gies, LLM-A* addresses the computational025
and memory limitations of conventional algo-026
rithms without compromising on the validity027
required for effective pathfinding.028

1 Introduction029

Path planning is the computational process of de-030

termining a path from an initial point to a desti-031

nation point that adheres to specific criteria, such032

as avoiding obstacles, minimizing travel distance033

or time, and satisfying other constraints (LaValle,034

2006; Hart et al., 1968b; Karaman and Frazzoli,035

2011). This problem is crucial across several036

fields, such as robotics, autonomous vehicle navi-037

gation, industrial automation, and virtual environ-038

ment navigation due to its direct impact on the ef-039

ficiency, safety, and feasibility of operational sys-040

tems (Thrun et al., 2005; Karaman and Frazzoli,041
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Figure 1: An comparison between LLM-A* and A* in
computation and memory efficiency during pathfinding
process. LLM-A* leverages target states generated by
LLMs as waypoints to guide the searching process, sig-
nificantly reducing the number of visited states, which
leads to fewer operations and storage usage than A*.

2011; Fiorini and Shiller, 1998; Fox et al., 1997). 042

Existing path planning algorithms are capable 043

of effectively completing planning tasks and en- 044

suring the validity of their paths. However, as 045

the environment and map scale up, algorithms 046

like A* and its variants (Hart et al., 1968b; Korf 047
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et al., 2001; Harabor and Grastien, 2011; Jansen048

and Buro, 2007) encounter an exponential increase049

in computational and memory demands. This oc-050

curs because the pathfinding process can become051

sub-optimal (see Figure 1), where the algorithm052

might spend unnecessary effort exploring less rel-053

evant areas, leading to exponential increases in054

time complexity as the map size enlarges.055

Meanwhile, Large Language Models (LLMs)056

have achieved notable milestones in various plan-057

ning tasks (Naveed et al., 2023; Yin et al., 2023;058

Chen et al., 2023a; Shinn et al., 2024; Yang et al.,059

2023). These models demonstrate capabilities in060

processing and reasoning over long-context in-061

put to provide valuable global insights that re-062

flect their understanding of the environment, such063

as identifying the relative positions of barriers,064

agents, and goals. However, they struggle with065

complex, long-term planning and complex spatial066

reasoning tasks such as grid-based path planning.067

LLMs often generate paths that are either invalid068

or ungrounded, resulting in incomplete or collid-069

ing paths, indicating a gap in their capability to070

handle detailed spatial intricacies (Aghzal et al.,071

2023).072

In this work, we propose LLM-A*, a new073

LLM based route planning method that syner-074

gizes the traditional A* algorithm with the global075

insights from Large Language Models. As il-076

lustrated in Fig. 1, this hybrid approach lever-077

ages LLM-generated waypoints to guide the path078

searching process, significantly reducing compu-079

tational and memory costs. In addition, by inte-080

grating the standard L2 distance-based heuristic of081

A* with new heuristic values derived from these082

waypoints, LLM-A* addresses the granularity is-083

sues in LLM-generated solutions, ensuring the va-084

lidity of the output paths.085

We conducted extensive experiments across086

various environment to compare the performance087

of A* and LLM-A* (integrating LLAMA3 with088

few-shot prompting). As illustrated in Figure 3,089

A* exhibits exponential growth in both compu-090

tational operations and storage requirements with091

linearly increasing environment scale. In contrast,092

LLM-A* shows a nearly linear growth pattern, in-093

dicating superior scalability. This suggests that094

LLM-A* is significantly more efficient in terms095

of both computation and memory, making it bet-096

ter suited for larger environments. Furthermore,097

our primary experimental results, summarized in098

Table 1, reveal that LLM-A* not only excels in 099

scalability but also outperforms A* in baseline 100

computational and memory efficiency. LLM-A* 101

achieves significantly lower operation and storage 102

ratios compared to A*, requiring less than about 103

half the operations and storage needed by A* on 104

average for the pathfinding process, thereby offer- 105

ing a robust and efficient solution for large-scale 106

path planning. 107

2 Related Work 108

Traditional Algorithms in Path Planning. 109

Pathfinding has been pivotal in artificial intelli- 110

gence, robotics, and computer graphics, with nu- 111

merous algorithms developed to address various 112

challenges. Among the foundational methods, the 113

A* algorithm, introduced by Hart, Nilsson, and 114

Raphael in 1968, stands out for its use of a heuris- 115

tic to estimate the cost from the current to the 116

goal node, balancing greedy best-first search with 117

uniform-cost search for efficient pathfinding (Hart 118

et al., 1968a). Similarly, Pearl’s Best First Search 119

(BFS), proposed in 1984, prioritizes nodes based 120

on heuristic values but can lead to longer paths due 121

to its focus on the most promising nodes (Pearl, 122

1984). 123

Extensions of A* have aimed to enhance its ef- 124

ficiency and adaptability. Korf’s Iterative Deepen- 125

ing A* (IDA*), from 1985, combines depth-first 126

search with A*’s heuristic to create a memory- 127

efficient approach (Korf, 1985). Korf also intro- 128

duced Learning Real-time A* (LRTA*) in 1990, 129

incorporating real-time learning to dynamically 130

update heuristic values, improving performance in 131

changing environments (Korf, 1990). Russell’s 132

Simplified Memory Bounded A* (SMA*), from 133

1992, addresses memory constraints by selectively 134

forgetting less promising paths, making it suitable 135

for resource-limited applications (Russell, 1992). 136

Further enhancements include Stentz’s Dy- 137

namic A* (D*) from 1994, which recalculates 138

paths as the environment changes, proving effec- 139

tive for navigation in unknown or evolving ter- 140

rains (Stentz, 1994). Koenig et al.’s Lifelong Plan- 141

ning A* (LPA*), introduced in 2004, incremen- 142

tally updates paths in dynamic and large-scale en- 143

vironments (Koenig et al., 2004). Harabor and 144

Grastien’s Jump Point Search (JPS), proposed in 145

2011, optimizes A* for only grid-based maps by 146

identifying key ”jump points”, reducing the num- 147

ber of expanded nodes (Harabor and Grastien, 148
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2011). Nash et al.’s Theta*, from 2007, allows149

line-of-sight checks between nodes, resulting in150

more direct paths (Nash et al., 2007).151

Hierarchical approaches, such as Holte et al.’s152

Hierarchical A* (HA*) from 1996, decompose153

large pathfinding problems into smaller subprob-154

lems through a hierarchy of abstractions, re-155

ducing computational complexity (Holte et al.,156

1996). Botea et al.’s Hierarchical Path-finding A*157

(HPA*), introduced in 2004, improves transitions158

between abstraction levels for efficient large-map159

pathfinding (Botea et al., 2004).160

Specialized methods also contribute signifi-161

cantly. Demyen and Buro’s Triangulation-Based162

Pathfinding (TRA*), proposed in 2006, navi-163

gates polygonal environments using triangulation,164

suited for non-grid-based settings (Demyen and165

Buro, 2006). Koch’s Grid-specific Hierarchical166

Path-finding (GHPA*), introduced in 2011, op-167

timizes grid maps pathfinding by integrating hi-168

erarchical and grid-specific optimizations (Koch,169

2011).170

Large Language Models in Path Planning.171

Large Language Models (LLMs) have recently172

achieved remarkable success in natural language173

processing tasks and other domains (Naveed et al.,174

2023). Studies such as (Shridhar et al., 2020b;175

Song et al., 2023; Shah et al., 2023) explore LLMs176

in high-level planning, highlighting challenges in177

long-term planning and spatial reasoning (Aghzal178

et al., 2023). Our research shifts focus to continu-179

ous environments, offering a more realistic setting180

compared to grid-based maps. Continuous spaces181

align better with real-world conditions, providing182

a more natural interface for human interaction and183

allowing higher precision in spatial reasoning.184

LLMs show varying proficiency in spatial rea-185

soning (Ilharco et al., 2020; Patel and Pavlick,186

2021; Bubeck et al., 2023; Abdou et al., 2021),187

yet face limitations in spatial reasoning and plan-188

ning (Agrawal, 2023; Xie et al., 2023; Wu et al.,189

2023). We introduce a benchmark for path plan-190

ning in continuous environments, integrating spa-191

tial and temporal reasoning. Prior benchmarks192

(Côté et al., 2019; Shridhar et al., 2020a; Ruis193

et al., 2020; Wu et al., 2021) often neglect tempo-194

ral planning aspects. Our study further evaluates195

LLMs in robot motion and path planning contexts,196

addressing limitations in end-to-end planning (Liu197

et al., 2023; Chen et al., 2023b; Xie et al., 2023;198

Silver et al., 2022).199

Understanding the interplay between high-level 200

and low-level planning is crucial (Latif, 2024; 201

Ding et al., 2024; Zhou et al., 2024). High-level 202

planning involves strategic goals, while low-level 203

focuses on detailed task execution. Our research 204

explores LLMs’ adaptability in correcting low- 205

level planning errors, ensuring resilience in dy- 206

namic conditions. 207

3 Methodology 208

3.1 A* Algorithm 209

The A* algorithm is a widely used pathfinding 210

and graph traversal algorithm. It seeks to find the 211

shortest path from a start node s0 to a goal node 212

sg by combining the strengths of Dijkstra’s Algo- 213

rithm and Greedy Best-First Search. 214

A* employs a heuristic function h(s) to esti- 215

mate the cost from a node s to the goal, and a 216

cost function g(s) to track the exact cost from the 217

start to s. The total cost function f(s), defined as 218

f(s) = g(s)+h(s), guides the search towards the 219

goal. The algorithm operates as follows: 220

1. Initialization: Place the start node s0 in the 221

OPEN list with f(s0) = g(s0) + h(s0), and 222

initialize the CLOSED list as empty. 223

2. Search: Continuously select the node s from 224

the OPEN list with the lowest f -cost, expand 225

its neighbors, and update their costs. If a 226

neighbor sn offers a cheaper path than pre- 227

viously recorded, update its cost and parent 228

node. Repeat until the goal node sg is reached 229

or the OPEN list is empty. 230

3. Path Reconstruction: Once sg is reached, 231

reconstruct the path by tracing back from sg 232

to s0 via parent nodes. 233

The heuristic h(s) should be admissible, mean- 234

ing it does not overestimate the true cost to reach 235

the goal. This ensures the path optimality of A*. 236

3.2 LLM-A* Algorithm 237

LLM-A* integrates the global insights provided 238

by Large Language Models (LLMs) with the 239

A* algorithm’s optimal local search mechanism, 240

where achieves a balance between the efficiency of 241

the pathfinding process and optimality. The pseu- 242

docode for LLM-A* is shown in Figure 2, and it 243

closely resembles the original A* algorithm. 244

LLM-A* accepts the same inputs as A*, with 245

the addition of an obstacle state variable, denoted 246
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Algorithm 1 LLM-A* Algorithm for Path Planning

1: Input: START state s0, GOAL state sg, OBSTACLE state obs, heuristic function h, cost function g,
Large Language Model llm

2: Output: Path P from s0 to sg
3: Initialize the OPEN list O = {s0}, CLOSE list C = {}, TARGET list T = llm(s0, sg, obs),

TARGET state t = T.start, g(s0) = 0, f(s0) = h(s0), P = {}
4: while O ̸= ∅ do
5: sa ← state in O with the lowest f -cost
6: if sa = sg then
7: return reconstruct path(sa)
8: Remove sa from O
9: Add sa to C

10: for all neighbors sn of sa do
11: if sn ∈ C then
12: continue
13: if sn = t and sg ̸= t then
14: t = T.next
15: update f -cost of s in O

16: Tentative cost gtent = g(sa) + cost(sa, sn)
17: if sn /∈ O or gtent < g(sn) then
18: Update path to sn to go through sa
19: g(sn) = gtent
20: f(sn) = g(sn) + h(sn) + cost(t, sn)
21: if sn /∈ O then
22: Add sn to O

23: return failure

Figure 2: LLM-A* Algorithm Pseudocode

as obs. This obstacle state is utilized to compute247

a TARGET list T , which comprises a sequence of248

path nodes from the start state s0 to the goal state249

sg. This list is generated through a prompt to a250

large language model, reflecting the model’s un-251

derstanding and global perspective of the current252

environment. The returned T must meet two criti-253

cal constraints in the following:254

1. Containment of Start and Goal Points: T255

must include the start point and goal point256

that match the inputs s0 and sg. If the re-257

turned T does not satisfy this requirement, s0258

and sg must be inserted by algorithm.259

2. Obstacle Avoidance: Every target node t in260

T must not be located within any obstacle261

obs. If any node t is found within an obstacle,262

it is removed from T by algorithm.263

The pathfinding process of LLM-A* is similar to264

that of A*. It uses a heuristic function h, a cost265

function g, an OPEN list O, and a CLOSED list 266

C. The algorithm searches through each state in 267

O until the goal state sg is reached. Each ex- 268

plored state sa is saved into C to avoid redun- 269

dant searches. The distinction that encapsulates 270

the main differences between LLM-A* and A* 271

happens during the expansion of the neighbor state 272

sn (see in Figure 2:13-15). For each sn, we check 273

if it matches the current target t from T . If the 274

current t is reached, t is updated to the next tar- 275

get in T . Subsequently, the f -cost of every state 276

in the current O is re-computed, where the f -cost 277

in LLM-A* is computed as the sum of the state’s 278

cost, the heuristic value, and the cost from the 279

state to current t (see in Figure 2:20), defined as 280

f(s) = g(s) + h(s) + cost(t, s). This step in- 281

troduces an additional computational amount to 282

the pathfinding process, and the time complexity 283

scales linearly with both the length of T and the 284

increasing size of O. However, it is important that 285

this re-computation process ensures that the f -cost 286
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of visited states in O remains accurate and updated287

with the new target t.288

General Applicability. LLM-A* retains the289

versatility of the original A*, making it suitable for290

a wide range of pathfinding tasks across various291

environments, where specialized A* variants such292

as JPS and GHPA* (Harabor and Grastien, 2011;293

Koch, 2011), which are tailored to grid maps and294

specific scenarios, and the mechanism of LLM-295

A* is able to handle diverse and large-scale en-296

vironments effectively. This generality positions297

LLM-A* as a robust alternative to A*.298

3.3 Prompt Techniques299

Few shot Learning. In the methodology we300

termed ”Few Shot Learning” or ”Vanilla Prompt-301

ing,” our initial approach involves directly pre-302

senting the Large Language Model (LLM) with303

ground-truth sequences of actions as prompts.304

This method is informed by previous studies305

which have demonstrated that the performance of306

such models can vary significantly based on the307

volume of task-specific examples provided (Cao308

et al., 2019; Razeghi et al., 2022). To investi-309

gate this further, we employed a few-shot learn-310

ing technique, wherein we provides five demon-311

strations (See Table 2 in Appendix) presented to312

the LLM. This approach aimed to determine the313

optimal number of examples that would enhance314

the model’s accuracy and learning efficiency.315

Chain of Thought. The Chain-of-Thought316

(CoT) methodology, as proposed by (Wei et al.,317

2022), introduces a technique that encourages a318

Large Language Model (LLM) to engage in a319

sequential, step-by-step reasoning process. This320

approach has demonstrated substantial efficacy in321

tasks necessitating multiple layers of reasoning322

and decision-making. In light of its proven effec-323

tiveness, we have adapted the CoT strategy (See324

Table 3 in Appendix) to the specific requirements325

of path planning.326

Recursive Path Evaluation. The Recursive327

Path Evaluation (RePE) methodology (See Table 4328

in Appendix) is designed to guide Large Language329

Models (LLMs) in generating paths incrementally,330

with a particular emphasis on evaluating each step331

in the process. This approach gains its effective-332

ness from deconstructing the path planning prob-333

lem into three distinct sub-problems: environment334

analysis, path generation, and path evaluation. By335

following these sub-problems in a recursive man- 336

ner, the model systematically navigates towards 337

the goal, ensuring compliance with predefined 338

constraints at each stage. This concept bears a re- 339

semblance to the ReAct approach, Step Back QA, 340

and Self Reflection (Yao et al., 2022; Zheng et al., 341

2023; Renze and Guven, 2024) in its process- 342

ing step by step foundational principles. Mean- 343

while, RePE receives no feedback or observation 344

from environment, and it distinctively focuses on 345

a step-by-step progression and only intrinsic rea- 346

soning, where the path is constructed one point at 347

a time with environment analysis and path evalua- 348

tion. This methodical approach not only facilitates 349

more precise navigation by the LLM but also al- 350

lows for continuous assessment and adjustment at 351

each juncture, thereby may enhancing the overall 352

accuracy of the path planning process. 353

4 Experiments 354

4.1 Dataset 355

Our dataset consists of 100 manually selected 356

50 × 30 maps from a randomly generated collec- 357

tion, each with 10 different start and goal posi- 358

tions. Therefore, there are 1000 samples in total 359

(see Figure 1 for sample visualization). Our data 360

conform to the standard of search-based algorithm 361

environments in a continuous space. Each map in- 362

cludes the following parameters: 363

• x range: The minimum and maximum x- 364

coordinates of the environment boundary 365

range as [x min, x max]. 366

• y range: The minimum and maximum y- 367

coordinates of the environment boundary 368

range as [y min, y max]. 369

• horizontal barriers: List of horizontal bar- 370

riers, each represented as [y, x start, x end]. 371

• vertical barriers: List of vertical barriers, 372

each represented as [x, y start, y end]. 373

• start goal: List of 10 unique start and goal 374

positions for each map. 375

These parameters define the structure and con- 376

straints of each map, ensuring consistency and rel- 377

evance to the standard experimental environment 378

conditions for search-based algorithms. Mean- 379

while, the map environment is able to scale prop- 380

erly for scalability experiment. 381
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Methodology Base Model Prompt Approach Operation Ratio ↓ (%) Storage Ratio ↓ (%) Relative Path Length ↓ (%) Valid Path Ratio ↑ (%)

A* - - 100 100 100 100

LLM

GPT-3.5
Few-Shot - - 119.38 12.80
CoT - - 151.73 15.20
RePE - - 183.87 7.80

LLAMA3
Few-Shot - - 111.05 12.60
CoT - - 114.89 12.00
RePE - - 138.32 16.40

LLM-A* (Ours)

GPT-3.5
Few-Shot 57.39 74.96 102.44 100
CoT 69.50 83.65 102.54 100
RePE 85.47 96.53 102.41 100

LLAMA3
Few-Shot 44.59 64.02 102.47 100
CoT 47.60 66.27 102.46 100
RePE 64.08 80.19 102.54 100

Table 1: Quantitative analysis of three pathfinding methodologies: the classical A* algorithm, an LLM-only ap-
proach, and our proposed LLM-A* approach. The methodologies are evaluated on the map size (50 × 30) of
original samples. The LLM-only approaches explore the path without explicitly searching the space grid by grid,
so we do not report the operation and storage ratio. The table includes the results from GPT-3.5 and LLAMA3
models with three prompting approaches: Few-Shot, Chain of Thought (CoT), and Recursive Path Evaluation
(RePE) for both LLM-only and LLM-A* approaches (see Section 4.4 for details).

4.2 Experimental Setup382

Large Language Model. We employ GPT-3.5-383

TURBO and LLAMA3-8B-16bit for their bal-384

ance of robustness and cost-effectiveness in val-385

idating the LLM-A* algorithm. Prompts in-386

clude simple instructions, standard 5-shot exam-387

ples, chain of thought with 3-shot, and recursive388

path evaluation with 3-shot for in-context learning389

(see Section 3.3).390

Experiment Environment. Our system allows391

search-based pathfinding in a continuous environ-392

ment with modules for environment management,393

agent control, and visualization (see Section 4.1).394

• Environment Management: Configures the395

environment and provides feedback.396

• Agent Control: Customizes the agent’s op-397

erations using the algorithm and model.398

• Visualization: Offers real-time and final vi-399

sual outputs for analysis.400

Experiment Subject. Our experiments focus on401

two critical aspects: efficiency and scalability. For402

efficiency, we assess the number of operations403

and the storage required for the pathfinding pro-404

cess, defined as time and space complexity, re-405

spectively. Additionally, we evaluate the gener-406

ated path length to assess path efficiency. These407

metrics are used to compute a composite efficiency408

score, as presented in Table 1. Larger environ-409

ments and maps are employed to better illustrate410

algorithm efficiency, as they offer a more compre-411

hensive reflection of the algorithm’s performance412

under increased complexity. Specifically, we con- 413

ducted efficiency experiments on a 50×30 map of 414

the original sample size. This size was selected as 415

it provides a substantial basis for evaluating effi- 416

ciency while keeping the computational demands 417

within a manageable range. Beyond this scale, the 418

experiment run times become excessively long. 419

For scalability, we tested both A* and LLM-A* 420

algorithms across 10 different scales, from 1 to 10, 421

to examine how they adapt to progressively larger 422

environments, as depicted in Figure 3. 423

4.3 Evaluation Metrics 424

We assess LLM-A* against A* using metrics for 425

operation efficiency, storage efficiency, and path 426

quality. Performance is summarized by the geo- 427

metric mean of performance ratios between LLM- 428

A* and A* for operation, storage, path length, of- 429

fering a balanced view less affected by outliers. 430

Operation and Storage Ratios. We compute 431

the geometric mean of the ratios of operations and 432

storage used by LLM-A* relative to A* ( LLM-A*
A* ). 433

A lower score indicates better efficiency, e.g., a 434

50% score means LLM-A* uses 50% of the re- 435

sources compared to A*. 436

Relative Path Length. Path quality is evaluated 437

by comparing the path lengths from LLM-A*, A* 438

and LLM-only approach to the optimal path. The 439

geometric mean of these ratios indicates how close 440

LLM-A* paths are to optimal. 441

Valid Path Ratio. This metric measures the pro- 442

portion of successful pathfinding attempts, often 443

indicating that the generated path is collision-free 444
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and completable. A higher ratio indicates better445

reliability, showing the algorithm’s effectiveness446

in generating valid paths consistently.447

Growth Factor. We assess how performance448

scales from a 50 × 30 environment to larger sizes449

by calculating the arithmetic mean of the growth450

factors for operations and storage. This normal-451

izes efficiency and scalability across different en-452

vironment sizes.453

4.4 Quantitative Analysis454

Table 1 presents a comparative analysis of three455

pathfinding methodologies: the classical A* algo-456

rithm, an LLM-only approach, and our proposed457

LLM-A* approach. The A* algorithm serves as458

the baseline, with an index value of 100 indicat-459

ing performance equivalent to A*, as outlined in460

Section 4.3. The methodologies are evaluated on461

maps 50× 30 of original map sizes.462

The results demonstrate that LLM-A* signifi-463

cantly enhances both operation and storage effi-464

ciencies compared to A*. Specifically, when uti-465

lizing the LLM-A* model, GPT-3.5 achieves a466

57.39% score in operations and a 74.96% score467

in storage, with a modest 2.44% increase in rel-468

ative path length. Superior, with the LLAMA3469

model, LLM-A* reduces operations by 44.59%470

and storage by 64.02%, accompanied by a slight471

2.47% increase in relative path length. These re-472

sults highlight that LLM-A* not only reduces re-473

source consumption but also maintains path va-474

lidity, consistently achieving a valid path ratio of475

100% across all scenarios. The observed increase476

in path length remains relatively low compared to477

the optimal path.478

Meanwhile, the LLM-only approach underper-479

forms compared to LLM-A* and A* algorithms in480

terms of both path efficiency and validity. When481

used in isolation, LLMs may struggle with com-482

prehensive path planning due to their lack of483

heuristic guidance, which is provided by LLM-484

A*, or the deterministic guarantees inherent in A*.485

The integration of LLM insights in LLM-A* sig-486

nificantly enhances its operational and storage ef-487

ficiencies, surpassing the performance of A*.488

Ablation Analysis. Notably, the Recursive Path489

Evaluation (RePE) prompting method achieves the490

smallest increases in relative path length in LLM-491

A*, with increments of 2.41% for the GPT-3.5492

models, respectively. This suggests that RePE’s493

step-by-step progression and intrinsic reasoning494
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Figure 3: The comparative analysis examines the
computational and memory efficiency between A*
and LLM-A* (incorporating LLAMA3 with few-shot
prompting) across scaled environments ranging from
1 to 10 times enlargement, based on the means of 10
trials of random sampling. A* exhibits exponential
growth in both (a) OPERATION and (b) STORAGE
with linear increasing, environment scale, in contrast,
LLM-A* achieves a near linear scalability.

capabilities improve the models’ ability to gen- 495

erate more optimal waypoints, resulting in more 496

efficient paths. However, RePE underperforms 497

compared to Chain of Thought (CoT) and few- 498

shot prompting when used in the LLM-only ap- 499

proach. This indicates limitations in LLMs’ ability 500

to execute end-to-end path planning and spatial- 501

temporal reasoning, which not only affects their 502

proficiency in sequentially reasoning out detailed 503

path sequences but also leads to issues such as hal- 504

lucinations and misunderstandings. These limita- 505

tions can cause the model to generate incorrect or 506

implausible paths, undermining the effectiveness 507

of LLMs in isolated path planning tasks. 508

Scalability Analysis. Figure 3 provides a com- 509

parative analysis of the computational and mem- 510

ory efficiency of the A* and LLM-A* algorithms 511
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#       : 37

1 2

43

LLM-A* SEARCH: A* SEARCH:      
TARGET (LLM WAYPOINTS):  START: GOAL:

PATH:

Without LLM Insights (A*) With LLM Insights (LLM-A*)

OPERATIONS: # STORAGES:  #     
TARGET (LLM WAYPOINTS):  START: GOAL:

PATH:

#          : 49 #       : 10 #          : 27

LLM-A* Efficient Search

Figure 4: Visualization of pathfinding process with
LLM-A* algorithms (under chebyshev heuristic set-
ting in 11× 11 grid environment) utilizing each LLM-
generated waypoint, as well as comparison with A* in
number of explored states. The blue and green rectan-
gles denote the start and goal states, respectively. Grey
rectangles indicate the states explored by the LLM-A*
algorithms, while pink rectangles represent states ex-
plored by A*. Red line illustrate the generated paths.
Stars indicate LLM-generated waypoints. (See Section
4.5 for more)

across environments of different scales. The anal-512

ysis is presented through two metrics: the growth513

factor of operations and the growth factor of stor-514

age, with respect to different environment scales.515

The results from Fig. 3 indicate that LLM-516

A* significantly outperforms A* in both com-517

putational and memory efficiency across various518

environment scales. While A* grows exponen-519

tially in operations and storage, LLM-A* achieves520

near-linear scalability relative to the environment521

size. This performance advantage arises from the522

learning-based enhanced heuristic values incorpo-523

rated into LLM-A*, which allow it to avoid un-524

necessary node exploration and facilitate a more525

direct search towards the goal. This adaptation526

proves especially effective in larger and more527

complex environments. The efficiency gains of528

LLM-A* are particularly noteworthy in environ-529

ments scaled up to 10 times, where the inefficien-530

cies of A* become increasingly pronounced.531

4.5 Qualitative Analysis 532

From the visualization in Figure 1, LLM-A* iden- 533

tifies the optimal path with only 140 operations, 534

less than one-fifth the 859 operations required by 535

A*, as well as the storage reduction. Both algo- 536

rithms utilize a priority queue that stores the f - 537

cost of each reached state, with the state having the 538

lowest f -cost selected for exploration. The funda- 539

mental distinction between the two algorithms lies 540

in their calculation of the f -cost or heuristic val- 541

ues. 542

As illustrated in Figure 4, LLM-A* lever- 543

ages heuristic values derived from LLM-generated 544

waypoints in addition to standard heuristic from 545

A*, resulting in a dynamic heuristic that changes 546

as the algorithm progresses. This dynamic adjust- 547

ment is achieved through switching to the next 548

target state during search when the current tar- 549

get state is reached. Each time the target state 550

changes, the heuristic values for all previously 551

reached states are recalculated. This allows LLM- 552

A* to steer the search direction towards areas 553

deemed more favorable by the large model at var- 554

ious stages of the search. 555

In contrast, A* employs a static heuristic for 556

each state, which remains unchanged throughout 557

the search. This static approach can lead to exten- 558

sive exploration of non-optimal paths, including 559

dead-end areas in the environment. 560

5 Conclusion 561

In this work, we propose a novel path planning al- 562

gorithm, LLM-A*, which outperforms traditional 563

algorithms like A* in terms of both computational 564

and memory efficiency, as well as LLM-only ap- 565

proach in path robustness and optimality. LLM- 566

A* integrates heuristic values derived from LLM- 567

generated waypoints (serves as global insight), 568

with the deterministic guarantees in the A* algo- 569

rithm. This hybrid approach addresses the short- 570

comings of both LLM-only approach and the A* 571

algorithm by combining their respective strengths. 572

Furthermore, the methodology of LLM-A* re- 573

tains the general applicability of A*, making it 574

suitable for pathfinding tasks in a wide range of 575

environments. Thus, LLM-A* serves as an effec- 576

tive alternative to A* algorithm for path planning, 577

especially in large-scale scenarios. 578
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Limitations579

Although around 90% of the paths generated by580

LLM-A* are optimal, our algorithm does not581

guarantee optimal path. While these cases are582

relatively few, they indicate that the algorithm583

may sometimes yield paths that are not the short-584

est or most efficient. Future improvements could585

focus on enhancing the optimality of the gen-586

erated paths to ensure more consistent perfor-587

mance. Our experiments mainly utilized GPT-588

3.5-TURBO and LLAMA3-8B-16bit with basic589

prompt techniques. Although these models and590

prompts were adequate to validate the robustness591

of the LLM-A* algorithm, we did not explore a592

wider array of models or advanced prompt engi-593

neering strategies. Further testing with additional594

models and varied prompting methods could pro-595

vide more comprehensive insights into the algo-596

rithm’s performance across different scenarios.597
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Sébastien Bubeck, Varun Chandrasekaran, Ronen El-614
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,615
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-616
berg, et al. 2023. Sparks of artificial general intelli-617
gence: Early experiments with gpt-4. arXiv preprint618
arXiv:2303.12712.619

Tianshi Cao, Marc Law, and Sanja Fidler. 2019. A the-620
oretical analysis of the number of shots in few-shot621
learning. arXiv preprint arXiv:1909.11722.622

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Col-623
lier, Karthik Narasimhan, and Shunyu Yao. 2023a.624
Fireact: Toward language agent fine-tuning. arXiv625
preprint arXiv:2310.05915.626

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas627
Roy, and Chuchu Fan. 2023b. Autotamp: Au-628
toregressive task and motion planning with llms629

as translators and checkers. arXiv preprint 630
arXiv:2306.06531. 631
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A Admissible Heuristic and Optimality825

In path planning algorithms such as A*, a heuris-826

tic function h(n) is deemed admissible if it never827

overestimates the cost to reach the goal from any828

given node n. This ensures that the estimated cost829

from n to the goal does not exceed the actual low-830

est possible cost, thereby providing a lower bound831

on the true cost. An admissible heuristic guaran-832

tees that the A* algorithm will find an optimal so-833

lution, as it always explores the least costly path834

first.835

The standard A* heuristic is often the Euclidean836

distance or straight-line distance between the cur-837

rent node and the goal, which is both admissible838

and consistent. This heuristic function accurately839

reflects the minimum possible cost in scenarios840

where there are no obstacles or other constraints841

that might alter the cost path.842

However, the LLM-A* algorithm integrates an843

additional heuristic component, influenced by in-844

sights from large language models (LLMs), into845

the traditional A* heuristic function. Specifi-846

cally, LLM-A* incorporates a modified heuris-847

tic hLLMA∗(n) which includes an additional cost848

term that estimates the difficulty of transitioning849

from the current state to the target state, based on850

the learned patterns from the LLM. This adjust-851

ment effectively amplifies the traditional heuristic852

by adding a factor derived from the LLM’s assess-853

ment of the state-space complexity and the likely854

transitions required.855

Let hA∗(n) represent the conventional heuris-856

tic, and cLLM (n) represent the cost component de-857

rived from the LLM insights. The modified heuris-858

tic can be expressed as:859

hLLMA∗(n) = hA∗(n) + cLLM (n)860

The term cLLM (n) may include factors such861

as predicted transition costs, obstacle avoidance862

strategies, or other environmental complexities in-863

ferred by the LLM, through selected target states864

in target list. Consequently, the heuristic function865

hLLMA∗(n) provides a more nuanced estimate of866

the cost to reach the goal, potentially guiding the867

search more effectively by leveraging the LLM’s868

understanding of the domain.869

While this enhanced heuristic expedites the870

search process by prioritizing paths that the LLM871

identifies as promising, it introduces a deviation872

from admissibility. By incorporating the addi-873

tional cost cLLM (n), the heuristic may overes-874

timate the true cost to the goal, particularly if 875

the LLM-derived costs are overly conservative or 876

based on non-optimal path predictions. This over- 877

estimation violates the admissibility condition be- 878

cause the total estimated cost g(n) + hLLMA∗(n) 879

could exceed the actual optimal path cost, where 880

g(n) is the cost from the start to the current node. 881

The implications of this non-admissibility are 882

significant: while the LLM-A* heuristic can po- 883

tentially lead to faster convergence towards the 884

goal by focusing the search in promising regions 885

of the state space, it compromises the guarantee 886

of finding the optimal path. The trade-off between 887

search efficiency and optimality must be carefully 888

considered in the application of LLM-A*. In sce- 889

narios where the heuristic insights from the LLM 890

offer substantial benefits in reducing search time 891

and computational resources, the potential loss of 892

optimality may be justified. However, for appli- 893

cations where finding the absolute optimal path is 894

crucial, relying solely on an admissible heuristic 895

might be preferable. 896

B Prompts in LLMs 897

This appendix outlines the prompting techniques 898

used in our LLM-A* algorithm to generate paths 899

between start and goal points while navigating 900

around obstacles. We employed different prompt- 901

ing strategies to evaluate their effectiveness in 902

guiding the model. Below are the details of each 903

technique along with the templates used. 904

B.1 Standard 5-Shot Demonstration 905

In the standard 5-shot demonstration in Table 2, 906

the model is provided with five examples (or 907

demonstrations) to guide the generation of the 908

path. Each example includes start and goal points, 909

along with horizontal and vertical barriers. The 910

model is prompted to generate a path by following 911

the pattern observed in the examples. 912

B.2 Chain of Thought (CoT) Prompting 913

The chain of thought prompting technique in Ta- 914

ble 3 provides a sequence of reasoning steps that 915

the model follows to arrive at the final path. This 916

technique includes a detailed thought process and 917

evaluation for each step, helping the model to un- 918

derstand the rationale behind the path generation. 919

B.3 Recursive Path Evaluation (RePE) 920

In the recursive path evaluation technique shown 921

Table 4, the model iteratively evaluates the path 922
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Identify a path between the start and goal points to navigate around obstacles and find the shortest path to the goal.
Horizontal barriers are represented as [y, x start, x end], and vertical barriers are represented as [x, y start, y end].
Conclude your response with the generated path in the format ”Generated Path: [[x1, y1], [x2, y2], ...]”.

Start Point: [5, 5]
Goal Point: [20, 20]
Horizontal Barriers: [[10, 0, 25], [15, 30, 50]]
Vertical Barriers: [[25, 10, 22]]
Generated Path: [[5, 5], [26, 9], [25, 23], [20, 20]]

[5 in-context demonstrations abbreviated]

Start Point: {start}
Goal Point: {goal}
Horizontal Barriers: {horizontal barriers}
Vertical Barriers: {vertical barriers}
Generated Path: Model Generated Answer Goes Here

Table 2: The template of the prompt we used for LLM-A* using standard 5-shot demonstration.

Identify a path between the start and goal points to navigate around obstacles and find the shortest path to the goal.
Horizontal barriers are represented as [y, x start, x end], and vertical barriers are represented as [x, y start, y end].
Conclude your response with the generated path in the format ”Generated Path: [[x1, y1], [x2, y2], ...]”.

Start Point: [5, 5]
Goal Point: [20, 20]
Horizontal Barriers: [[10, 0, 25], [15, 30, 50]]
Vertical Barriers: [[25, 10, 22]]
Thought: Identify a path from [5, 5] to [20, 20] while avoiding the horizontal barrier at y=10 spanning x=0 to x=25
by moving upwards and right, then bypass the vertical barrier at x=25 spanning y=10 to y=22, and finally move
directly to [20, 20].
Generated Path: [[5, 5], [26, 9], [25, 23], [20, 20]]

[3 in-context demonstrations abbreviated]

Start Point: {start}
Goal Point: {goal}
Horizontal Barriers: {horizontal barriers}
Vertical Barriers: {vertical barriers}
Generated Path: Model Generated Answer Goes Here

Table 3: The template of the prompt we used for LLM-A* using standard 3-shot demonstration with chain of
thought generation process.

at each step and makes decisions based on pre-923

vious iterations. This process involves selecting924

points, evaluating their effectiveness, and adjust-925

ing the path as necessary to avoid obstacles and926

reach the goal.927

C Details of Dataset Construction928

The dataset for A* path planning is generated us-929

ing a custom Python script, leveraging several key930

packages for randomization, geometric manipu-931

lation, visualization, and data management. The932

process involves the following steps:933

1. Initialization: The script initializes with934

specified map dimensions (x and y bound- 935

aries) and parameters (number of barriers and 936

obstacles) for the number of unique environ- 937

ments and start-goal pairs. 938

2. Environment Creation: For each map con- 939

figuration, do the following: 940

• Random obstacles, horizontal barriers, 941

and vertical barriers are generated 942

within defined x and y ranges using the 943

shapely.geometry.LineString 944

for line segments. 945

• Start and goal points are randomly 946
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Identify a path between the start and goal points to navigate around obstacles and find the shortest path to the goal.
Horizontal barriers are represented as [y, x start, x end], and vertical barriers are represented as [x, y start, y end].
Conclude your response with the generated path in the format ”Generated Path: [[x1, y1], [x2, y2], ...]”.

Start Point: [5, 5]
Goal Point: [20, 20]
Horizontal Barriers: [[10, 0, 25], [15, 30, 50]]
Vertical Barriers: [[25, 10, 22]]
- First Iteration on [5, 5]
Thought: The horizontal barrier at y=10 spanning x=0 to x=25 blocks the direct path to the goal. To navigate
around it, we should move to the upper-right corner of the barrier.
Selected Point: [26, 9]
Evaluation: The selected point [26, 9] effectively bypasses the horizontal barrier, positioning us at its corner and
maintaining progress toward the goal without encountering additional obstacles.
- Second Iteration on [26, 9]
Thought: Now that we have bypassed the horizontal barrier, the path to the goal seems clear.
Selected Point: [20, 20]
Evaluation: The path is obstructed by the vertical barrier, leading to a collision. A more effective route involves
moving around this vertical barrier.
Thought: To bypass the vertical barrier at x=25, we should move along its length and then turn around it to continue
toward the goal.
Selected Point: [25, 23]
Evaluation: The selected point [25, 23] successfully avoids the vertical barrier and brings us closer to the goal
without encountering further obstacles.
- Third Iteration on [25, 23]
Thought: From this position, there are no barriers directly obstructing the path to the goal.
Selected Point: [20, 20]
Evaluation: The path to the goal is clear from here, allowing a direct move to the goal.
Generated Path: [[5, 5], [26, 9], [25, 23], [20, 20]]

[3 in-context demonstrations abbreviated]

Start Point: {start}
Goal Point: {goal}
Horizontal Barriers: {horizontal barriers}
Vertical Barriers: {vertical barriers}
Generated Path: Model Generated Answer Goes Here

Table 4: The template of the prompt we used for LLM-A* using standard 3-shot demonstration with recursive path
evaluation generation process.

placed on the map, ensuring they do not947

intersect with any obstacles. Valid pairs948

form non-intersecting line segments.949

3. Data Storage: The generated environments,950

including the obstacles and start-goal pairs,951

are stored in JSON format.952

4. Query Generation: Natural language953

queries are appended to each start-goal pair.954

These queries describe the task of finding955

a path that avoids the obstacles, which is956

supported as text input for LLMs.957

5. Visualization: The environments are visu-958

alized using matplotlib, displaying the959

grid, obstacles, and paths. The plots are sup- 960

ported to be saved as image files for reference 961

and stream in a show.. 962

The Python packages utilized include: 963

• random: For generating random coordi- 964

nates. 965

• shapely: For geometric operations, specif- 966

ically creating and validating the positions of 967

obstacles and points. 968

• matplotlib: For plotting and saving vi- 969

sual representations of the environments. 970

• inquirer: For command-line prompts to 971
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make user decisions during dataset genera-972

tion.973

• json and os: For managing the reading and974

writing of dataset files.975

• search env: A custom package for en-976

vironment setup and plotting specific to the977

search based path planning task.978

This process ensures a comprehensive dataset979

with varied environments and queries, suitable for980

training and testing A* path planning algorithms.981

D Evaluation Metric982

In this study, we evaluate the performance of our983

algorithm using the geometric mean of ratios. This984

metric provides a robust measure for comparing985

the efficiency and effectiveness of different path986

planning algorithms. Below, we outline the ratio-987

nale for choosing this metric, the calculation pro-988

cedure, and its advantages.989

D.1 Rationale990

The geometric mean of ratios is used in this study991

to assess the relative performance of different path992

planning algorithms or approaches. It provides a993

balanced evaluation by aggregating multiple per-994

formance ratios, ensuring that no single extreme995

value disproportionately affects the overall metric.996

This is particularly useful in scenarios where the997

distribution of ratios can be skewed, and a simple998

arithmetic mean might be misleading.999

D.2 Calculation Procedure1000

Let Ri represent the ratio of performance mea-1001

sures (such as path length, computation time, or1002

any other relevant metric) between the proposed1003

algorithm and a baseline or reference algorithm1004

for the i-th test case. The geometric mean G of1005

N ratios is calculated as follows:1006

G =

(
N∏
i=1

Ri

) 1
N

(1)1007

The geometric mean G provides a multiplica-1008

tive average, effectively normalizing the ratios and1009

providing a single representative value that reflects1010

the overall performance across all test cases.1011

D.3 Advantages 1012

Using the geometric mean of ratios offers several 1013

benefits in the context of evaluating path planning 1014

algorithms: 1015

1. Sensitivity to Relative Changes: The geo- 1016

metric mean is sensitive to the relative differ- 1017

ences between performance measures, mak- 1018

ing it suitable for comparing ratios. 1019

2. Mitigation of Outliers: Unlike the arith- 1020

metic mean, the geometric mean minimizes 1021

the impact of extreme values or outliers, pro- 1022

viding a more stable and representative met- 1023

ric. 1024

3. Interpretability: The geometric mean al- 1025

lows for easy interpretation of performance 1026

improvements or deteriorations. A geometric 1027

mean greater than 1 indicates that, on aver- 1028

age, the proposed algorithm performs better 1029

than the baseline, while a value less than 1 1030

suggests poorer performance. 1031

4. Scalability: The geometric mean naturally 1032

scales with multiplicative factors, making it 1033

appropriate for comparing algorithms across 1034

different scales or units of measurement. 1035
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