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ABSTRACT 
Robot autonomy is an influential and ubiquitous factor in human-

robot interaction (HRI), but it is rarely discussed beyond a one-
dimensional measure of the degree to which a robot operates with-
out human intervention. As robots become more sophisticated, this 
simple view of autonomy could be expanded to capture the vari-
ety of autonomous behaviors robots can exhibit and to match the 
rich literature on human autonomy in philosophy, psychology, and 
other fields. In this paper, we conduct a systematic literature re-
view of robot autonomy in HRI and integrate this with the broader 
literature into a taxonomy of six distinct forms of autonomy: those 
based on robot and human involvement at runtime (operational 
autonomy, intentional autonomy, shared autonomy), human involve-
ment before runtime (non-deterministic autonomy), and expressions 
of autonomy at runtime (cognitive autonomy, physical autonomy). 
We discuss future considerations for autonomy in HRI that emerge 
from this study, including moral consequences, the idealization of 
“full” robot autonomy, and connections to agency and free will. 
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1 INTRODUCTION 
Robot autonomy strongly and unavoidably shapes user experiences 
in human-robot interaction (HRI). For example, users who fully 
control a robot’s movements via teleoperation (e.g., drones, telep-
resence robots) tend to view the robot as merely a tool rather than 
a “colleague” [157]. On the other hand, users who interact with 
robots that operate independently (e.g., robot vacuums, robots that 
give directions in airports) tend to view them as distinct agents 
with their own intentions and goals [191]. Users who interact with 
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robots that exhibit higher levels of cognitive autonomy (e.g., moral 
judgement [49], cheating [104], achieving individual goals [98]) 
readily anthropomorphize and thus respond to them in ways that 
they might respond to humans [52, 122]. 

Despite the importance of robot autonomy, there are currently 
two key challenges with the conceptualization and usage of the 
term “autonomy” in HRI. First, it is conceptually ambiguous. Many 
papers in HRI use autonomy only as a descriptor that applies to 
all robots in a general paradigm (e.g., “autonomous vehicle”) [96, 
105, 186], while other papers describe robot autonomy as a complex 
feature intertwined with notions of mind [188], agency [84], or 
free will [46]. These conceptual differences make certain empirical 
questions intractable because different conceptualizations yield 
different answers. For example, the finding that people are hesitant 
to enter an interaction with a robot may be explained by a reduction 
in user control if autonomy is conceptualized as a lack thereof [132] 
or explained by a threatening level of robot intelligence if autonomy 
is conceptualized as a sophisticated mental faculty [160]. 

Second, over the past two decades in HRI, when autonomy has 
been made conceptually precise, it has predominantly been a one-
dimensional scale of the level of human involvement in robot oper-
ation, as in seminal taxonomies from Beer et al. [15] and Huang et 
al. [85]. This narrow view of robot autonomy stands in contrast to 
the literature outside HRI with rich and complex conceptualizations 
of human autonomy in philosophy, law, medicine, social science, 
and even in human-computer interaction (HCI), such as autonomy 
as a basic human right [66] and autonomy as the essence of what 
it means to be a person [59]. In HRI, we seem to be conflating, 
rather than articulating, critically different cases of autonomy. Con-
sider that one study shows that increased robot autonomy leads 
to greater trust in the robot [154] while another describes how 
increased robot autonomy leads to less trust [10]. How can an in-
crease in autonomy lead to opposite outcomes? We propose that 
both conclusions can be true simultaneously because the two works 
are referring to different forms of autonomy altogether. While the 
former appears to be measuring autonomy as the level of human 
intervention, the latter seems to be measuring it in terms of the 
robot’s cognitive capabilities. If we can tease apart these cases, we 
will have a powerful conceptual tool to understand and predict user 
experience outcomes (e.g., user situational awareness [146]) and 
robot ethics [47]. 

Our approach addresses three research questions: 

RQ1: How have other fields (e.g., philosophy, psychology) conceptual-
ized and used the term “autonomy”? 

RQ2: How has the field of HRI conceptualized and used the term 
“autonomy”? 
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RQ3: How can we develop a taxonomy that integrates these litera-
tures to allow the HRI community to more precisely understand and 
communicate distinct forms of robot autonomy? 

To answer these research questions, we first review popular con-
ceptualizations of autonomy from outside the HRI literature and 
present a systematic literature review of the usage of “autonomy” 
in HRI. We then propose a comprehensive taxonomy based on these 
literatures with six distinct forms of autonomy summarized in Ta-
ble 1: those based on robot and human involvement at runtime 
(operational autonomy, intentional autonomy, shared autonomy), hu-
man involvement before runtime (non-deterministic autonomy), and 
expressions of autonomy at runtime (cognitive autonomy, physical 
autonomy). Finally, we discuss how our taxonomy could allow the 
HRI community to better manage, predict, and revise expectations 
for human interactions with autonomous robots. 

2 CONCEPTUALIZATIONS OF HUMAN 
AUTONOMY 

The predominant definition of autonomy in HRI has been the de-
gree to which a robot operates without continuous supervision or 
intervention from a human operator [7, 170]. High robot autonomy 
can thus be defined as low levels of human operator involvement 
(i.e., high levels of human operator disinvolvement), and low robot 
autonomy as high levels of human operator involvement [85]. This 
relatively narrow conceptualization in HRI is a sharp contrast with 
the varied and rich conceptualizations of human autonomy outside 
of robotics and HRI. Etymologically, “autonomy” is being subject 
to one’s own laws, derived from the Greek autos, “self,” and nomos, 
“law” or “governance.” Scholars have interpreted this in myriad ways. 
We answer RQ1 with a brief overview, developed through the first 
and second authors aggregating various definitions of autonomy 
by and across disciplines into conceptual foci. 

2.1 Self-Determination 
Self-determination can refer to one’s actions being caused by one-
self rather than external forces [106]. Friedrich Nietzsche viewed 
a person as autonomous if and only if they are causa sui, or “self-
causing” [61]. However, this arguably means no agent is truly au-
tonomous, in the sense that all events have past causes [61]. 

Most other accounts are substantially weaker, only requiring, for 
example, that one is able to have some control over whether to act 
on certain desires. In the “hierarchical” model of autonomy [50], 
the self is identified with an internal freedom to endorse or reject 
first-order desires, which are desires for anything other than a 
desire, such as “I want to not overeat,” but not higher-order desires, 
such as, “I want to not want to overeat” [50, 59]. To have “reflective 
self-evaluation” is to be aware of first-order desires and able to 
choose which to act upon based on higher-order desires [59, 71, 
177]. The closely related “substantive” model of autonomy states 
that an absolute endorsement of our actions is not essential to 
autonomy. Instead, autonomy entails the capacity to revise our 
decisions with moral reasoning [50, 184]. Endorsement of actions 
need not be entirely self-originating in order to constitute self-
determination, as the hierarchical model suggests, but one must be 
able to challenge the external forces that would otherwise determine 
one’s own actions. 

Self-determination is also central to psychological definitions 
of autonomy that stress the importance of a sense of self [44, 159]. 
Self-determination theory (SDT) is one of the most popular psy-
chological frameworks for human motivation that comprises three 
basic needs: autonomy, competence (i.e., the ability to implement 
autonomy oneself), and relatedness (i.e., the ability to implement 
autonomy with others). The central distinction in SDT is between 
“autonomous” and “controlled” motivation. Autonomy is character-
ized in SDT as “volition, or a self-endorsement of their actions” [45]. 
Autonomous motivation originates from an internal locus of causal-
ity, which entails self-endorsement and the ability to choose one’s 
decisions. The person’s behavior is thus propelled by the identifica-
tion of their actions with intrinsic values. Controlled motivation, by 
contrast, is dictated by external events and particularly by avoiding 
punishment from other people [149]. 

2.2 Independence 
Many conceptualizations of autonomy focus instead on the di-
rect independence of an individual’s behavior from external forces, 
rather than the internalized sense of self and identity, though inde-
pendence from external forces plays a role in that as well. These 
conceptualizations directly argue that the hallmark of a truly au-
tonomous agent is to have liberty of judgment and choice from 
external dependencies—not just physical, but cognitive as well [40]. 
Philosophers of antiquity took this view. For example, Aristotle 
argued the self-sufficient person was not dependent on any other 
being or external force to guide their own happiness [50]. 

Legal and political conceptualizations also tend to emphasize 
independence from external forces, such as oppressive govern-
ments [9, 41]. HCI researchers primarily conceive of human auton-
omy as the human’s degree of independence from the computer’s 
restrictions [16]. Medical definitions emphasize the lack of external 
“hindrances” to the patient’s cognition and physical activity [63]. 

2.3 Other Conceptualizations 
In political theory, autonomy is also used to describe the self-
governance of collective entities. Autonomy can be an attribute of 
political states, ethnic groups, territories, and institutions if they 
are able to operate without the control of a higher level of govern-
ment, and is typically protected by international law [56]. Political 
autonomy can also entail the autonomy of individuals within the 
collective body, particularly the freedom for individuals to self-
govern as long as it does not infringe on the autonomy of others. 
Philosopher Jean-Jacques Rousseau famously conceptualized the 
“general will,” the interests of a collective that are derived from 
the individuals therein [17]. Thompson [165] argued that this is a 
form of autonomy. Through liberating oneself from individualistic, 
possibly hedonistic, motives and desires (i.e., the “private will”) 
and assimilating into the general will, one preserves her individual 
autonomy [165]. It is only through the social and cultural envi-
ronments to which one chooses to respond that an individual is 
able to critically evaluate her own values, beliefs, and desires. Un-
der this view, individual autonomy cannot be conceived through 
self-evaluation alone [34]. 

Autonomy is frequently associated with “freedom of the will” 
or free will—which is distinct from Rousseau’s idea of the general 
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Figure 1: The total count of items from HRI, RO-MAN, IJSR, 
and THRI with “auton*” in the title, keywords, or abstract. 

will. Free will is generally regarded as a degree of power or control 
over one’s actions [125]. The nature of the relationship between 
free will and autonomy is rigorously debated. In some theories, 
free will is stronger than autonomy: an agent can be autonomous 
without having free will but cannot have free will without being 
autonomous [28]. In other theories, autonomy is the capacity to 
reflect upon and execute free will, providing the “self” that enables 
self-evaluation and self-governance. Kant is known for this view, 
arguing broadly that an autonomous will is a free one [90]. In 
Kantian ethics, autonomy is “made possible” by exerting free will 
to follow the universal moral law, or the “categorical imperative”, 
and not being subject to any external moral laws or one’s own 
first-order desires or inclinations [69, 91]. To be autonomous is 
to have a certain moral independence and freedom to fulfill one’s 
duty [40, 91]. 

2.4 Takeaways from the Conceptualizations of 
Human Autonomy 

We divide the usage of autonomy into two conceptual foci: self-
determination and independence. Self-determination is a sense of 
direct internal control over one’s actions, choices, and identity. 
Independence is the freedom from external control over one’s cog-
nitive and physical actions. Additionally, political autonomy is a 
way that a body of individuals can be collectively autonomous. 
The relationship between free will and autonomy raises discussion 
on what kinds and degrees of cognitive and moral capacities qual-
ify one as autonomous. As we will later show, our taxonomy can 
leverage this literature on human autonomy to both broaden the 
conceptualization of robot autonomy in HRI and to make it more 
precise. 

3 SYSTEMATIC LITERATURE REVIEW 
To answer RQ2, we examined how robot autonomy is used within 
the HRI community. We conducted a systematic literature review 
of research articles published in four high-impact HRI venues: the 
ACM/IEEE International Conference on Human-Robot Interaction 
(HRI), the IEEE International Symposium on Robot and Human 
Interactive Communication (RO-MAN), the International Journal 
of Social Robotics (IJSR), and ACM Transactions on Human-Robot 

Only a Label (e.g., “Autonomous Robot”) 
(238) 

Definition Stated or Implied 
(235) 

Only in Related Work 
(16) 

Human 
(11) 

Operational 
(178) 

Shared 
(49) 

Cognitive 
(34) 

Intentional 
(3) 

Non-Deterministic 
(18) 

Physical 
(4) 

(a) Usage of the term “autonomy” in the corpus 

(b) Forms of autonomy defined in the corpus 

Figure 2: Usage and forms of “autonomy” in the reviewed 
corpus. 

Interaction (THRI). We reviewed all items with “auton*” (e.g., auton-
omy, autonomous) in the title, abstract, or keywords through July 
31st, 2023. Because our focus is full research articles, we excluded 
the 262 HRI publications in other formats (e.g., extended abstracts, 
videos, late-breaking reports), resulting in 500 included papers. 

A subset of 40 papers (10 from each venue) was annotated by 
four researchers to reach consensus on procedure and categoriza-
tion. Once consensus was reached, the other 460 papers were each 
annotated by one researcher except when a categorization was am-

biguous and needed input from others. For each paper that either 
defined autonomy (e.g., “the robot acted autonomously (without 
intervention from a human operator or Wizard of Oz, WoZ)”) or 
implied a definition (e.g., “the robot must not require any human 
operators and must operate fully autonomously”), it was catego-
rized into one or more forms of autonomy in HRI (e.g., operational, 
cognitive), which we developed over the course of the review pro-
cess and describe in detail in Section 4. Each other paper was placed 
in one of three categories based on whether the term “auton*” was 
only used as a label for a robot (e.g., “autonomous social robot”), 
a summary of related work, or a reference to human rather than 
robot autonomy. Additionally, if any of the 500 papers included 
a human-subjects experiment, we annotated how autonomy was 
explicitly used as an independent variable or dependent variable. 
Finally, we took note of any papers that had a notable discussion 
of “agency” or derivative terms. The complete literature review 
annotations are available as a supplemental document. 

As shown in Figure 1, there was a notable increase in the number 
of papers mentioning autonomy from 32 in 2008 to 75 in 2022. The 
year 2023 (30 papers) was not included in the graph because there 
was not a full year of data available. As shown in Figure 2(a), we 
found 235 explicit or implied definitions of autonomy (98 explicit, 
137 implied). Another 238 papers only had robot autonomy as a 
label (e.g., “autonomous robot,” “autonomous vehicle”); 16 only had 
robot autonomy as a summary of related work; and 11 referred 
only to human autonomy (whether defined, used as a label, or only 
referenced in a summary of related work). As displayed in Figure 
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2(b), of the different forms of robot autonomy, we categorized 178 
as operational, 49 as shared, 34 as cognitive, 18 as non-deterministic, 
four as physical, and three as intentional. Of the 238 papers that only 
had autonomy as a label, which were most common in RO-MAN 
(60% of papers), we did not place them in one of these categories 
because they did not explicitly state or imply a definition, but we 
assumed that the papers’ authors had the operational definition, 
if any, in mind. For example, when authors only used the label 
“autonomous vehicles,” they seemed to have the definition in mind 
of a vehicle that travels without a human operator [20, 30, 92]. 

4 TAXONOMY OF ROBOT AUTONOMY 
To answer RQ3, we propose a taxonomy that characterizes distinct 
forms of robot autonomy (see Table 1) by integrating the rich, inter-
disciplinary discussions of human autonomy with the results of our 
systematic literature review. We conceptualize three domains of ro-
bot autonomy. Human and robot involvement at runtime includes 
operational, shared, and intentional autonomy; human involvement 
before runtime includes non-deterministic autonomy; and expres-
sions of robot autonomy at runtime include cognitive and physical 
autonomy. 

4.1 Human and Robot Involvement at Runtime 
The first domain of robot autonomy in the taxonomy is the de-
gree of human and robot involvement at runtime, which includes 
three forms of autonomy: operational, intentional, and shared au-
tonomy (see Figure 3). This domain is general-sum, incorporating 
both human and robot involvement as independent factors. This 
perspective stands in contrast to the zero-sum perspective in many 
HRI models, which assumes, for example, that 90% human involve-
ment implies 10% robot involvement [85, 123]. Some recent work in 
HCI has found a general-sum approach more useful for character-
izing human-AI interactions, defining AI roles based on the levels 
of both “human involvement” and “AI autonomy” [93]. 

This conceptualization is displayed in Figure 3. We depict opera-
tional autonomy as the degree of human operator disinvolvement 
at runtime (the horizontal axis) and intentional autonomy as the 
degree of robot goal-oriented involvement at runtime (the verti-
cal axis). This allows us to categorize common robots in terms of 
their location in the space. Teleoperated robots have low robot 
involvement (i.e., low intentional autonomy) and low human opera-
tor disinvolvement (i.e., high human involvement; low operational 
autonomy) [132]; they are essentially vehicles for their human op-
erators and would be idle without one. On the other hand, a drone 
swarm typically has high robot involvement and low human opera-
tor disinvolvement [95]. The ability to differentiate cases such as 
teleoperated robots and drone swarms—each of which has low hu-
man disinvolvement, but different levels of robot involvement—is 
the key benefit of our general-sum taxonomy. 

Shared autonomy is represented by the grey square, requiring at 
least some intentional involvement by both the robot and human. 
If either the robot or human has no control over operation (low 
intentional or high operational autonomy, respectively), there is 
no shared autonomy. Shared control paradigms, such as “symbiotic 
autonomy”, where humans and robots “fill in” the other’s mutual 
weaknesses [176], and negotiation, where both the human and 
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Figure 3: Robot autonomy at runtime is based on its degrees 
of human operator disinvolvement (operational autonomy) 
and robot goal-oriented involvement (intentional autonomy). 
Intentional involvement from both human and robot at run-
time represents shared autonomy, depicted as the grey rect-
angular area. 

robot “negotiate” their level of autonomy given the other’s [89], are 
examples of shared autonomy. 

4.1.1 Operational autonomy. We define operational autonomy as 
the degree of human operator disinvolvement at the robot’s run-
time. We refer to “disinvolvement” instead of “involvement” for 
consistency with the other forms, in which “high” denotes high 
autonomy and “low” denotes low autonomy. Full operational auton-
omy occurs when there is full human operator disinvolvement (i.e. 
no human operator involvement), so the robot is able to function 
and execute its tasks entirely on its own. For example, a Roomba 
robot vacuum can clean an assigned area without any human inter-
vention. On the other hand, in the Wizard of Oz (WoZ) paradigm 
or with telepresence robots, there is little to no operational auton-
omy because all robot actions are conducted by a human operator. 
Olatunji et al. [131] say that autonomy is “typically considered as 
a continuous or discrete spectrum, with direct human control and 
full autonomy at either end, and any number of intermediate lev-
els in between.” Our conceptualization of operational autonomy is 
inspired by the aforementioned conceptual focus of autonomy as 
“independence” from external factors. Relative to the robot, human 
intervention is external, even if it is in response to the robot’s needs 
within its local environment (e.g., a broken wheel). Even when op-
erationally autonomous, robots are usually inexorably tied to the 
context of their environment [24] and human operators [82]. 

Operational autonomy is the dominant conceptualization of 
autonomy in the HRI literature. Figure 2 shows that 178 out of 
235, or 75.7%, of papers that define autonomy do so as opera-
tional. Explicit definitions focus on the omission or inclusion of 
human involvement, using phrases such as “amount of/without 
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Term Definition Example Associated Terms 

Human and Robot Involvement at Runtime 

• “no human intervention” [42]
• “do its tasks without a human’s input” [53]
• “sense its environment, plan based on that environment, and
act upon that environment with the intent of reaching some task-
specific goal (either given to or created by the robot) without
external control” [15]

control, input, 
the degree of 

human operator 
disinvolvement at 

runtime 

intervention, 
involvement, remote, 

tele-operation, 
tele-presence, 
Wizard-of-Oz 

Operational 
Autonomy 

the degree of robot 
goal-oriented 
involvement at 

runtime 

deliberate, directional, 
goal, random, 
wandering 

Intentional 
Autonomy 

• “several types of in-the-wild studies of mobile robots can be run
without autonomous navigation, using wandering instead” [120]

the degree to 
which the human 
operator and robot 

are both 
intentionally 

involved at runtime 

• “joint control of a robot by a human user and an autonomous

control system” [26]
• "reduce the amount of control people need to exert by 1)
predicting people’s goals and 2) taking assistive actions toward
those goals" [7]

adjustable, degrees, 
levels, 

semi-autonomous, 
shared control, 

symbiotic 

Shared 
Autonomy 

Human Involvement Before Runtime 

the degree to which 
a robot’s behavior 
is not specified 
prior to runtime 

• “autonomous or pre-programmed” [84]
• “neither remote controlled by a human, nor scripted previously,
but is instead generated by an algorithm that reacts to external
sensor stimuli” [151]

adaptive, determine, 
pre-programmed, 
predict, scripted, 

stimuli 

Non-deterministic 
Autonomy 

Expressions of Autonomy at Runtime 

the degree to which
the robot takes 
cognitive action 

 • “to make ethical choices” [49]
• “to reason, or understand the sensory information it is receiving,
and plan the most appropriate action based on this input” [189]

Cognitive 
Autonomy 

choice, decision, goal,
moral, reason, think 

 

• “e.g., [...] is the robot confined to a pen or does it wander and get
stuck under television cabinets” [150]
• “energetic autonomy, i.e., the capability to cover long distances
without the need to be recharged” [115]

the degree to which
the robot takes 
physical action 

 Physical 
Autonomy 

confined, dance, drive, 
move, stuck 

Table 1: We propose a comprehensive taxonomy of six distinct forms of robot autonomy based on our systematic literature 
review and integration with the literatures on human autonomy in other fields (e.g., philosophy, psychology). 

human/participant/operator intervention” [7, 39, 53, 58, 70, 170], 
“without help/assistance from a human/operator” [22, 166], “con-
trolled/not controlled by a human” [60, 83, 117, 133], and “sensing 
its human partner” [136]. Operational autonomy is often implied 
by contrast to WoZ [23, 81, 88], teleoperation [119, 147, 173, 190], 
or “operator,” “manual,” or “remote” involvement or control [8, 32, 
54, 67, 86, 121, 141, 180]. Operational autonomy is also frequently 
implied by referencing previous work that entails operational au-
tonomy, such as the Levels of Robot Autonomy (LoRA) scale [15] 
or the ALFUS taxonomy [85], which state that if the human opera-
tor is at 100% involvement, the robot must be at 0%. Autonomous 
vehicles papers often reference the scale made by the Society of 
Automotive Engineers [80, 130, 164], which defines six levels of 
driving automation (i.e., level of driver disinvolvement) from no 
driving automation (Level 0) to full driving automation (Level 5). 

Similar scales exist in medical robotics [187] and unmanned systems 
research [85]. 

Operational autonomy is also the form of autonomy most fre-
quently manipulated in HRI studies [48, 109, 163]. Manipulations 
tend to present discrete levels of robot autonomy as defined in 
the LoRA scale [15], either varying on whether humans are in-
volved at runtime at all [170] or on a continuum of low, partial, or 
high input [4, 18, 48, 65, 109, 121, 123, 131, 163, 188]. A common 
set-up compares an autonomous robot with one that is WoZ or 
teleoperated [33, 81, 119, 121, 168]. Some papers describe a “semi-

autonomous” approach, wherein a robot can recover from errors 
made in its autonomous state through operator intervention [94, 
156]. Brooks et al. [27] varied the length of time in which the hu-
man operator “ignores” or “neglects” the robot with longer times 
constituting higher autonomy. Studies have found various effects of 
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operational autonomy, such as Torre et al.’s [167] finding that par-
ticipants are less likely to swerve out of the way to avoid collision 
with autonomous robots than teleoperated robots. Outcomes of in-
terest include performance [32, 131] and perceptions of operational 
autonomy and robot reliability [48]. For instance, Rosenthal-von 
der Pütten et al. [143] found that more human-like robot appear-
ance and the inclusion of a narrative about the robot, rather than 
just an instruction manual, led to evaluations of the robot as more 
autonomous and intelligent. Reuben et al. [147] tested participants’ 
judgements of whether a robot was autonomous or teleoperated 
based on their mental model of the robot over a six-week in-the-
wild study and found that participants’ judgements were impacted 
by their understanding of possible behaviors of autonomous robots. 

4.1.2 Intentional autonomy. We define intentional autonomy as 
the degree of robot goal-oriented involvement, or simply robot 
involvement, at runtime. Intentional autonomy is analogous to 
operational autonomy, but it is determined within the robot and 
without direct reference to external factors. Our conceptualization 
of intentional autonomy is thus associated with self-determination, 
because intentional autonomy is about the robot’s internal, rather 
than externally imposed, goals. Because the robot is necessarily 
involved with its own behavior in the sense that it is the one ex-
hibiting the behavior, we specify “goal-oriented involvement” as 
the robot being both oriented towards a particular goal and having 
knowledge of this goal. We see the robot knowing its goal, as op-
posed to accidentally achieving it, as having the necessary internal 
representation to stay targeted at the goal. For example, Nanavati 
et al. [120] describe a “wandering” robot that arbitrarily explores its 
local environment with no directionality. In this case, while there 
is full operational autonomy (i.e., full human operator disinvolve-
ment), if the robot ascribes no purpose or internal representation to 
its “wandering”, there is no intentional autonomy. In the absence of 
any involvement, behavior is left to random chance or environmen-

tal factors (e.g., wind, bystanders). Robots with high intentional 
autonomy exhibit non-random behavior at runtime [103]. For exam-

ple, an effective game-playing robot that evaluates the game state 
and selects actions to optimize its chance of winning [2] would 
have high intentional autonomy. 

In this taxonomy, intentional autonomy does not require specific 
mental faculties, such as self-awareness or agency, as “intention” is 
sometimes conceptualized outside of HRI [182], only that the robot 
knows its goal in the previously defined sense. One could argue 
that no robots achieve this because they are by definition created 
by humans and take action according to human inputs. However, 
it is clear in the human case that, when humans are willfully or 
forcibly constrained based on another person’s intentions (e.g., a 
child grounded by their parents), they maintain some autonomy. To 
speak in terms of our conceptual foci, their independence may be 
limited, but their self-determining faculties (e.g., cognitive abilities, 
goal-setting) can still manifest. With intentional autonomy, the idea 
is that even though robots may not escape the influence of a human 
at any point in its operation, robots can still express purposeful 
behavior to achieve some goal. We can observe this when, for 
example, a robot self-determines the best “level of autonomy” to 
use [146]. 

4.2 Human Involvement Before Runtime 

4.1.3 Shared autonomy. We define shared autonomy as the degree 
to which the human operator and robot are both intentionally in-
volved at runtime. Shared autonomy is unique in our taxonomy, 
in that it is a composite of operational and intentional autonomy, 
as shown in Figure 3. High shared autonomy occurs when the 
human and robot are more equally involved, and low shared au-
tonomy is when one is much more involved than the other. This 
concept of shared autonomy corresponds to myriad terms in the 
HRI literature: symbiotic autonomy [12, 176, 179], shared-autonomy 
teleoperation [62], adjustable autonomy [64, 77, 108, 118], adaptive 
autonomy [11, 75], shared control [26, 58, 89, 127, 172], assistive ro-
bot control [7], traded control [126], semi-autonomy [13, 21, 38, 94, 
99, 107, 114, 138, 139, 156, 158, 169, 175, 185], confidence-based au-
tonomy [161], collective autonomy [35], and shared autonomy [7, 
26, 72, 98, 116, 124]. Our conceptualization is partly influenced by 
the outside literature on collective autonomy. Some studies in HRI 
refer to collective autonomy in the context of “teams” or “swarms” 
of more than two systems collaborating [95, 110, 134], even explic-
itly circumscribing collective autonomy as being under the com-

mand of a single operator [35]. Outside of HRI, however, collective 
autonomy can encompass a unique sort of autonomy altogether for 
collections of individuals (e.g., the general public). 

Shared autonomy manifests in two ways: simultaneous control 
and exchanged control. In simultaneous control, the human opera-
tor and the robot take action at the same time [94, 138, 185]. For 
instance, a robotic arm picking items off of a shelf may perform the 
movements themselves without human involvement, but with the 
direction and speed of the task being simultaneously dictated by 
the human operator. In exchanged control, only one party takes ac-
tion at a time [6, 26, 89, 123]. For example, if a human picks up their 
robot vacuum and sets it in each room of a house, where the robot 
vacuum cleans without human involvement, this is a case of ex-
changed control between the human while moving between rooms 
and the robot while in a room. Most papers that define shared au-
tonomy, or a closely associated concept, emphasize its benefits, 
particularly its flexibility in either the robot or human deciding 
when to take or yield control. Veloso [179] defines symbiotic auton-
omy as “the robots explicitly include actions to ask for help from 
humans in their behavior policies.” Similarly, Naghsh et al. [118] de-
fine adjustable autonomy as one in which, “the robot entity needs 
not make all decisions autonomously, rather it can choose to re-
duce its own autonomy level and transfer decision making control 
to other users or agents.” Supervision can also serve to correct 
errors [112], and many researchers describe the human-robot co-
operation as a “blend” of user and robot involvement [26, 32, 57, 
116, 127]. As robots become more sophisticated and collaborative 
(e.g., “Human-Autonomy Teams” [1]), questions of collective au-
tonomy will become more pertinent–not just for robot autonomy, 
but also how robots should be deployed when their autonomous 
operation may affect the collective autonomy of political states and 
other institutions. 

During runtime (i.e., the period in which the robot is operational), 
both the human operator and robot can have input and control over 
the robot’s autonomy. Prior to runtime, however, only the human 
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Figure 4: Non-deterministic autonomy is the degree to which 
a robot’s behavior is not specified prior to runtime, as shown 
by the example of a navigational robot. 

takes action since the robot is not operational. Therefore, there is 
only one axis of autonomy, which we characterize in this section 
as non-deterministic autonomy. 

4.2.1 Non-deterministic autonomy. We define non-deterministic 
autonomy as the degree to which the robot’s behavior is not spec-
ified prior to runtime. Figure 4 (left) illustrates a robot with low 
non-deterministic autonomy because it is given exact instructions 
to reach its destination; there is no leeway for the robot to further 
optimize or diverge from its navigation path. Examples of low non-
deterministic autonomy in the literature include robots that are 
explicitly said to be “pre-programmed,” [3, 84, 102] “scripted previ-
ously,” [151] or have “predefined” [31] or “manually designed” [111] 
behavior. On the other hand, the robot with high non-deterministic 
autonomy in Figure 4 (right) is not provided the exact sequence 
and execution of its runtime operation. Instead, the robot can de-
cide the optimal path during runtime to reach its destination and 
adapt to novel situations at runtime, such as “what information is 
needed and at what time and place it is requested” [73], in order to 
accomplish its goal. Examples of highly non-deterministic robots 
in the literature include those that are able to adapt to their envi-
ronment [31, 78, 140, 162] or adapt to people [79, 142] in real-time. 

In practice, non-deterministic autonomy may correlate strongly 
with intentional autonomy. However, we view these two forms of 
autonomy as distinct. For example, a robot that has extensive speci-
fication of behavior prior to runtime may behave in a goal-oriented 
way during runtime (e.g., navigating to a specific location despite 
alternative rewards), but that behavior has still been specified prior 
to runtime. The robot would thus have low non-deterministic au-
tonomy but high intentional autonomy. 

It remains unclear exactly how non-deterministic autonomy 
could be operationalized or measured. One could measure the de-
gree of conditionality (e.g., number of “if” statements in the code), 
the diversity of possible runtime environments, or the sophistica-
tion of action selection subprocesses, but in each case the robot’s 
programming would still determine its actions in a given context. 
Nonetheless, this concept seems to capture an important sense of 
autonomy in the HRI literature that varies even if the robot has full 
operational or intentional autonomy. 

4.3 Expressions of Robot Autonomy at Runtime 
In addition to considering robot and human involvement in a robot’s 
operation before and during runtime, there are different ways in 
which robot autonomy is expressed at runtime, which we categorize 
as cognitive and physical. 

4.3.1 Cognitive autonomy. We define cognitive autonomy as the 
degree to which the robot takes cognitive action. Generally, cogni-
tion is defined as “[t]he action or faculty of knowing taken in its 
widest sense, including sensation, perception, conception, etc., as 
distinguished from feeling and volition” [36]. Robot cognition in-
cludes the ability to make and execute decisions [135, 148, 155], set 
and achieve goals [15, 98], understand others’ mental and affective 
states [14, 108, 128], act upon one’s senses and planning [15, 37, 
101], and learn from the environment and past experiences [19, 86, 
144, 189]. Discussion of robot cognition is rife with the same sort 
of disagreement as has persisted for decades in the human cogni-
tion literature [97]. Some have explicitly defined robot cognition 
as synonymous with artificial intelligence and autonomy [77]. We 
view cognitive autonomy as not requiring intentional autonomy. It 
is possible for a robot to reason about the world in complex ways 
without a particular goal in mind. 

In our literature review, forms of cognitive autonomy fell natu-
rally into two categories: moral autonomy and decisional autonomy. 
Moral autonomy means the robot is capable of using moral reason-
ing to select actions, such as distinguishing right from wrong [25, 49, 
129, 174] and resolving morally ambiguous scenarios [160]. Moral 
autonomy often involves an awareness of ethical and social norms 
prior to operation [68, 181] and of moral stakeholders during oper-
ation [133, 171]. Decisional autonomy is a robot’s decision-making 
ability, such as the “ability to observe and act on their environ-
ment, as well as conduct activities toward achieving both individ-
ual and collective goals” [98] or to “generate its own strategies for 
action” [37] and independently evaluate or deliberate on those ac-
tions [55, 101, 135]. For example, decisionally autonomous robots 
can independently reason about “manipulation goals” when pre-
defined goals by the human operator may fail [87]. A particularly 
important decision-making ability is the “ability to disregard hu-
man commands” [2], which was only utilized in one paper in our 
review [2], but several included papers cited Złotowski et al. [191], 
who utilized this form of decision-making. 

4.3.2 Physical autonomy. We define physical autonomy as the de-
gree to which the robot takes physical action. The paradigmatic 
case of restricting physical autonomy is confining the robot in a 
physical space, such as a cage [150], which we refer to as move-
ment autonomy. Levillain et al. [100] discuss autonomy as “bursting 
into sudden movements,” which would require significant freedom 
of movement. Physical autonomy can also manifest through the 
resource requirements of the robot, particularly its energy source, 
which we refer to as energetic autonomy. An example of a robot 
with high energetic autonomy is a drone that can recharge itself to 
fly indefinitely [115]. Physical autonomy can be increased or de-
creased based on the desired robot behavior. In a study by Horn et 
al. [83], the same robot could be used either in a “passive mode” as 
a walking aid or in an an “autonomous mode” wherein the robot 
can move towards the user without human assistance. 
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5 FUTURE CONSIDERATIONS FOR ROBOT 
AUTONOMY 

In this section, we discuss future considerations for autonomy in 
HRI that emerged from this work: moral consequences, the ideal-
ization of “full” robot autonomy, and connections to agency and 
free will. Developing these perspectives will allow the HRI com-

munity to better manage, predict, and revise expectations for the 
scaling and enrichment of human interactions with autonomous 
robots. 

5.1 Moral Consequences of Robot Actions 
We defined moral autonomy as a robot’s capability to select actions 
through moral reasoning, but there is a wide spectrum between 
merely having behavior with moral consequence, such as being 
pre-programmed to encourage a human patient to take their med-

ication [174], and human-level consideration of right and wrong, 
such as in Kantian moral theory through adherence to universal 
moral law. In both cases, HRI designers face difficult decisions 
in choosing between ethical frameworks like utilitarianism and 
deontology, and these challenges will only increase as increased 
autonomy involves robots making more decisions with significant 
moral implications [49, 181]. An initial step towards tackling these 
challenges is addressing how robot autonomy can both erode and 
enhance the autonomy of humans. Robots shifting roles from “tool” 
to “colleague” [157] and gaining humans’ trust [153] and moral 
consideration [5, 76, 137] may make humans feel as though their 
autonomy is threatened by and traded off with robot autonomy [18], 
or it could complement and preserve human autonomy by provid-
ing aid [183] and maximizing the user’s capabilities, especially on 
command [43, 178]. 

5.2 Moving Towards “Full Autonomy” 
Within their study, Wright et al. [186] state “full autonomy is an es-
sential objective,” and it is generally regarded as desirable but “not 
yet practical” [29] or “far from reality” [62]. Robot autonomy will 
scale towards this “fullness” in different ways and towards differ-
ent forms. Operational autonomy is relatively straightforward: full 
operational autonomy refers to states where the degree of human 
operator disinvolvement is near 100% [51]. However, “full” auton-
omy is unclear for the other five forms we describe. In general, HRI 
researchers have expressed that robots are not, and should not be, 
able to possess free will [46] or commit harm against humans [113]. 
And yet, some argue that, “as the cognitive, perceptual, and motor 
capabilities of robots expand, they will be expected to be explicit 
ethical agents” [174]. As HRI research strives to keep pace with the 
real-world increase in robot autonomy, the ideals of human auton-
omy can be a useful yardstick. For instance, just as some accounts 
of human autonomy are based in reflective self-evaluation, more 
“advanced” robot autonomy, and its regulation, could be based in 
the robot’s ability to reflect upon and criticize its choices. 

5.3 Robot Agency and Free Will 
We focus on autonomy because of its importance in HRI, its relative 
concreteness, and the lack of existing comprehensive frameworks. 
However, there are related concepts that also bear on the future 
of HRI. Agency is arguably the most closely related concept, as 

reflected in the numerous discussions of agency in the reviewed 
items. For example, Zafari and Koeszegi [188] define agency as “the 
capacity to perform a goal-oriented task to an extent autonomously 
on the environment,” implying that agency requires autonomy, but 
others define autonomy and agency as separate concepts [132, 145]. 
In many papers focused on reinforcement learning, the word “agent” 
is used merely to differentiate the subject of the model from its 
environment, which presumably does not require autonomy in any 
of the definitions considered in this review. This minimal sense 
of agency is also the most common outside of HRI, in which an 
agent is merely a system that takes action [152]. Bennett et al. [16] 
provide a thorough and timely review of agency and autonomy 
in the context of HCI, though their focus is on that of the human, 
rather than the computational or robotic system. 

We did not often find the concept of “free will” in the reviewed 
items. The outside literature has many different conceptualizations 
of free will, and there seems to be agreement that it is a more so-
phisticated and less common property compared to autonomy. This 
helps explain the lack of discussion in HRI and robotics, because 
while robots are increasingly complex and capable, few would ar-
gue that they are sophisticated enough to possess free will [46]. If 
we adapted the Kantian notion of autonomy to robots, such that 
autonomy relied on free will, then robot autonomy is not even a pos-
sibility for current systems. Human-like robots such as Sophia, the 
world’s first robot with legal citizenship, make salient the possible 
futures of robots with roles, responsibilities, and even rights [74]. 
HRI needs rigorous frameworks of autonomy, agency, and free will 
to answer impending questions of moral responsibility, fairness, 
accountability, and transparency. 

6 CONCLUSION 
Robot autonomy influentially and ubiquitously shapes the user ex-
perience in HRI, yet its conceptualization and usage within HRI 
faces two primary challenges: conceptual ambiguity and unidimen-

sionality. In this paper, we addressed these challenges by broadening 
the conceptualization of robot autonomy in HRI. We conducted 
a systematic literature review of robot autonomy in HRI and in-
tegrated this with interdisciplinary literatures outside of HRI to 
propose a taxonomy with six distinct forms of autonomy: those 
based on robot and human involvement at runtime (operational 
autonomy, intentional autonomy, shared autonomy), human involve-
ment before runtime (non-deterministic autonomy), and expressions 
of autonomy at runtime (cognitive autonomy, physical autonomy). 
A number of future considerations for autonomy in HRI emerged 
from this process, including moral consequences, the idealization 
of “full” robot autonomy, and connections to agency and free will. 
Going forward, we encourage HRI researchers to clarify which sort 
of autonomy they are analyzing in their conceptual and empirical 
studies, as well as to extend and critique this taxonomy to better 
evaluate the evolving nature and effects of autonomous robots in 
human society. 
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