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Abstract

This paper studies M-estimators with gradient-Lipschitz loss function regularized1

with convex penalty in linear models with Gaussian design matrix and arbitrary2

noise distribution. A practical example is the robust M-estimator constructed with3

the Huber loss and the Elastic-Net penalty and the noise distribution has heavy-tails.4

Our main contributions are three-fold. (i) We provide general formulae for the5

derivatives of regularized M-estimators β̂(y,X) where differentiation is taken with6

respect to both y andX; this reveals a simple differentiability structure shared by7

all convex regularized M-estimators. (ii) Using these derivatives, we characterize8

the distribution of the residual ri = yi−x>i β̂ in the intermediate high-dimensional9

regime where dimension and sample size are of the same order. (iii) Motivated10

by the distribution of the residuals, we propose a novel adaptive criterion to select11

tuning parameters of regularized M-estimators. The criterion approximates the12

out-of-sample error up to an additive constant independent of the estimator, so13

that minimizing the criterion provides a proxy for minimizing the out-of-sample14

error. The proposed adaptive criterion does not require the knowledge of the15

noise distribution or of the covariance of the design. Simulated data confirms the16

theoretical findings, regarding both the distribution of the residuals and the success17

of the criterion as a proxy of the out-of-sample error. Finally our results reveal18

new relationships between the derivatives of β̂(y,X) and the effective degrees of19

freedom of the M-estimator, which are of independent interest.20

1 Introduction21

This paper studies properties of robust estimators in linear models y = Xβ∗ + ε with response22

y ∈ Rn, unknown regression vector β∗ whereX is a design matrix with n rows x1, ...,xn, each row23

xi being a high-dimensional feature vector in Rp with covariance Σ. Throughout, let β̂ = β̂(y,X)24

be a regularized M -estimator given as a solution of the convex minimization problem25

β̂(y,X) = argminb∈Rp
1
n

∑n
i=1 ρ(yi − x>i b) + g(b) (1)

where ρ : R → R is a convex data-fitting loss function and g : Rp → R a convex penalty. We26

may write β̂ρ,g(y,X) for (1) to emphasize the dependence on the loss-penalty pair (ρ, g); if the27

argument (y,X) is dropped then β̂ is implicitly understood at the observed that (y,X). Typical28

examples of losses include the square loss ρ(u) = u2/2, the Huber loss H(u) =
∫ |u|
0

min(1, t)dt29

or its scaled version ρ = Λ2H(u/Λ) for some tuning parameter Λ > 0, while typical examples of30

penalty functions include the Elastic-Net g(b) = λ‖b‖1 + µ‖b‖2/2 for tuning parameters λ, µ ≥ 0.31

The paper introduces the following criterion to select a loss-penalty pair (ρ, g) with small out-of-32

sample error ‖Σ1/2(β̂ − β∗)‖2: for a given set of candidate loss-penalty pairs {(ρ, g)} and the33
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corresponding M -estimator β̂ρ,g in (1), select the pair (ρ, g) that minimizes the criterion34

Crit(ρ, g) =
∥∥∥r+

d̂f

tr[V ]
ψ
(
r
)∥∥∥

2

with





r = y −Xβ̂ρ,g ∈ Rn,
d̂f = tr[X(∂/∂y)β̂ρ,g] ∈ R,
V = diag{ψ′(r)}(In −X(∂/∂y)β̂ρ,g) ∈ Rn×n

(2)

where tr[·] is the trace, ψ : R → R is the derivative of ρ, ψ′ the derivative of ψ and we extend ψ35

and ψ′ to functions Rn → Rn by componentwise application of the univariate function of the same36

symbol. Above, (∂/∂y)β̂ρ,g ∈ Rp×n denotes the Jacobian of (1) with respect to y for X fixed,37

at the observed data (y,X). As we will see while studying particular examples, for pairs (ρ, g)38

commonly used in robust high-dimensional statistics such as the square loss, Huber loss with the39

`1-penalty or Elastic-Net penalty, the ratio d̂f/ tr[V ] in (2) admits simple, closed-form expressions40

and can be computed at a negligible computational cost once β̂ρ,g(y,X) itself has been computed.41

The criterion (2) has an appealing adaptivity property: it does not require any knowledge of the noise42

ε or its distribution, nor any knowledge of the covariance Σ of the design.43
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Figure 1: Heatmaps for ‖Σ1/2(β̂ − β∗)‖2, its approximation ‖r + (d̂f/tr[V ])ψ(r)‖2/n− ‖ε‖2/n
and the approximation error |‖Σ1/2(β̂ − β∗)‖2 − ‖r + (d̂f/tr[V ])ψ(r)‖2/n − ‖ε‖2/n| for the
Huber loss and Elastic-Net penalty on a grid of tuning parameters (λ, τ) where λ ∈ [0.0032, 0.41]
and τ ∈ [10−10, 0.1]. Each cell is the average over 100 repetitions. See Section 6 for more details.

1.1 Contributions44

1. The end goal of paper is to provide theoretical justification and theoretical guarantees for the45

criterion (2) in the high-dimensional regime where the ratio p/n has a finite limit and X has46

anisotropic Gaussian distribution. The theoretical results will justify the approximation47

∥∥r +
(
d̂f/ tr[V ]

)
ψ
(
r
)∥∥2/n ≈ ‖ε‖2/n+ ‖Σ1/2(β̂ − β∗)‖2. (3)

Figure 1 illustrates the accuracy of (3) on simulated data. To study the criterion (2) and derive the48

approximation (3), we develop novel results of independent interest regarding M -estimators in (1):49

2. The paper derives general formula for the derivatives (∂/∂yi)β̂ and (∂/∂xij)β̂. This sheds light50

on the differentiability structure ofM -estimators for general loss-penalty pairs: for any ρ, g with g51

strongly convex, there exists Â ∈ Rp×p depending on (y,X) such that for almost every (y,X),52

(∂/∂yi)β̂(y,X) = ÂX>eiψ
′(ri), (∂/∂xij)β̂(y,X) = Âejψ(ri)− ÂX>eiψ′(ri)β̂j ,

for ri = yi − x>i β̂, ∀i ∈ [n],j ∈ [p] where ej ∈ Rp and ei ∈ Rn are canonical basis vectors.53

3. The paper obtains a stochastic representation for the residual yi−x>i β̂ for some fixed i = 1, ..., n,54

extending some results of [10] on unregularized M -estimators to penalized ones as in (1). In55

short, for each i = 1, ..., n the i-th residual satisfies ri = yi − x>i β̂56

ri + (d̂f/ trV )ψ(ri) ≈ εi + Zi‖Σ1/2(β̂ − β∗)‖ (4)

where Zi ∼ N(0, 1) is independent of εi. This stochastic representation is the motivation for57

the criterion (2) as the amplitude of the normal part in the right-hand side is proportional to the58

out-of-sample error ‖Σ1/2(β̂ − β∗)‖ that we wish to minimize, while the variance of the noise59

εi does not depend on the choice of (ρ, g).60

2



Simulated data in Figure 2 confirms that the stochastic representation for the i-th residual ri =61

yi − x>i β̂ is accurate. Our working assumption throughout the paper is the following.62

Assumption 1.1. For constants γ, µ > 0 independent of n, p we have p/n ≤ γ, the loss ρ : R→ R63

is convex with a unique minimizer at 0, continuously differentiable and its derivative ψ = ρ′ is64

1-Lipschitz. The design matrix X has iid N(0,Σ) rows for some invertible covariance Σ and the65

noise ε is independent of X with continuous distribution. The penalty g : Rp → R is µ-strongly66

convex w.r.t. Σ in the sense that b 7→ g(b)− (µ/2)b>Σb is convex in b ∈ Rp.67

Throughout the paper, we consider a sequence (say, indexed by n) of regression problems with p,68

β∗, Σ and the loss-penalty pair (ρ, g) depending implicitly on n. For some deterministic sequence69

(an), the stochastically bounded notation OP (an) in this context may hide constants depending on70

γ, µ only, that is, OP (an) denotes a sequence of random variables Wn such that for any ε > 0 there71

exists K depending on (ε, γ, µ) satisfying P(|Wn| ≥ Kan) ≤ ε.72

Since Assumption 1.1 requires p/n ≤ γ, the Bolzano-Weierstrass theorem lets us extract a subse-73

quence of regression problems such that p/n→ γ′ along this subsequence, for some constant γ. This74

is the asymptotic regime we have in mind throughout the paper, although our results do not require a75

specific limit for the ratio p/n. For some results, we will require the following additional assumption76

which is satisfied by robust loss functions and penalty that shrink towards 0.77

Assumption 1.2. The penalty is minimized at 0, that is, g(0) = minb∈Rp g(b); the loss is Lipschitz as78

in |ψ| ≤M for some constant M independent of n, p; the signal is bounded as in ‖Σ1/2β∗‖2 ≤M .79

1.2 Related works80

The context of the present work is the study of M -estimators in the regime p
n has a finite limit. This81

literature pioneered in [2, 10, 9, 15] typically describes the subtle behavior of β̂ in this regime by82

solving a system of nonlinear equations. This system typically depends on a prior distribution for the83

components of β∗, and either depends on the covariance Σ [7] or assume Σ = Ip [2, 16, 6, among84

many others]. Solutions to the nonlinear system are a powerful tool to understand β̂ in theory, e.g.,85

to characterize the deterministic limit of ‖Σ1/2(β̂ − β∗)‖, see e.g., the general results in [6] for the86

square loss and [16] for general loss-penalty pairs. However, since the system and its solution depend87

on unobservable quantity (Σ and prior on β∗), the system solution is not directly usable for practical88

purposes such as parameter tuning.89

The present work distinguishes itself from most of this literature as the goal is to describe the behavior90

of β̂ using observable quantities that only depend on the data (y,X) (and not unobservable ones such91

as Σ or a prior distribution on β∗ that appear in the aforementioned nonlinear system of equations).92

As we will see this view lets us perform adaptive tuning of parameters in a fully adaptive manner93

using the criterion (2). The criterion (2) appeared in previous works for the square loss only: [1, 12]94

studied (2) for the Lasso with Σ = Ip and [3, Section 3] for the square loss and general penalty95

(note that for the square loss ρ(u) = u2/2, (2) reduces to n2‖r‖2/(n− d̂f)2 due to ψ(u) = u and96

tr[V ] = n − d̂f. The property ψ(u) = u of the square loss hides the subtle interplay between97

r, ψ(r), d̂f and tr[V ] in (2) for ρ different than the square loss). A criterion different from (2) is98

studied in [12, 3] to estimate the out-of-sample error. That criterion has the drawback to require the99

knowledge of Σ, unlike (2) which is fully adaptive.100

This work leverages probabilistic results on functions of standard normal random variables [4][3,101

§6, §7] which are consequences of Stein’s formula [14]. Consequently, the main limitation of our102

work is that it currently requires Gaussian design for the probabilistic results (on the other hand, the103

differentiability result (5) is deterministic and does not rely on any probabilistic assumption).104

2 Differentiability of regularized M-estimators105

The first step towards the study of the criterion (2) is to justify the almost sure existence of the106

derivatives of β̂ that appear in (2) through the scalar scalar d̂f and the matrix V in (2). Although the107

criterion (2) only involves the derivatives of β̂(y,X) with respect to y for a fixedX , the proof of108

3



our results rely on the interplay between the derivatives with respect to y and with respect toX: this109

differentiability structure of M -estimators is the content of the following result.110

Theorem 2.1. Let Assumption 1.1 be fulfilled. For almost every (y,X) the map (y,X) 7→ β̂(y,X)111

is differentiable at (y,X) and there exists a matrix Â ∈ Rp×p with ‖Σ1/2ÂΣ1/2‖op ≤ (nµ)−1 s.t.112

(∂/∂yi)β̂(y,X) = ÂX>eiψ
′(ri),

(∂/∂xij)β̂(y,X) = Âejψ(ri)− ÂX>eiψ′(ri)β̂j ,
where ri = yi − x>i β̂, (5)

ei ∈ Rn, ej ∈ Rp are canonical basis vectors , ψ := ρ′ and ψ′ denote the derivatives. Furthermore,113

d̂f = tr[X(∂/∂y)β̂] = tr[XÂX diag{ψ′(r)}], (6)

V = diag{ψ′(r)}(In −X(∂/∂y)β̂) = diag{ψ′(r)} − diag{ψ′(r)}XÂX diag{ψ′(r)}. (7)

satisfy 0 ≤ d̂f ≤ n and 0 ≤ tr[V ] ≤ n.114

Since the same matrix Â appears in both the derivatives with respect to yi and to xij , (5) provides115

relationship between (∂/∂yi)β̂ and (∂/∂xij)β̂, for instance (∂/∂xij)β̂ = Âejψ(ri)− β̂j(∂/∂yi)β̂.116

Although the matrix Â is not explicit for arbitrary loss-penalty pair, closed-form expressions are117

available for particular examples such as the Elastic-Net penalty as discussed in Section 6.118

Remark 2.1. For the square loss ρ(u) = u2/2, the differentiability formulae (5) reduce to119

(∂/∂yl)β̂(y,X) = ÂX>el, (∂/∂xij)β̂(y,X) = Âej(yi − x>i β̂)− ÂX>eiβ̂j
for most every (y,X) and some matrix Â ∈ Rp×p depending on (y,X), since in this case ψ′ = 1.120

In the simple case where g is twice continuously differentiable, (5) follows [4] with121

Â =
(
X> diag{ψ′(r)}X + n∇2g(β̂)

)−1
(8)

by differentiating the KKT conditions X>ψ(y −Xβ̂) = n∇g(β̂). To illustrate why this is true,
provided that β̂(y,X) is differentiable, if (y(t),X(t)) are smooth perturbations of (y,X) with
(y(0),X(0)) = (y,X) and d

dt (y(t),X(t))|t=0 = (ẏ, Ẋ), differentiation of X(t)>ψ(y(t) −
X(t)β̂(y(t),X(t))) = n∇g(β̂(y(t),X(t))) at t = 0 and the chain rule yields

Ẋ>ψ(r)−X> diag{ψ′(r)}(ẏ − Ẋβ̂(y,X)) = Â−1 ddt β̂(y(t),X(t))
∣∣
t=0

with Â in (8). This gives (5) if the penalty g is twice-differentiable. Theorem 2.1 reveals that for122

arbitrary convex penalty functions including non-differentiable ones, the differentiability structure123

(5) always holds, as in the case of twice differentiable penalty g, even for penalty functions such as124

g(b) = µ‖b‖2/2 + λ‖mat(b)‖nuc where mat : Rp → Rd1×d2 is a linear isomorphism to the space of125

d1 × d2 matrices and ‖ · ‖nuc is the nuclear norm: in this case by Theorem 2.1 there exists a matrix126

Â ∈ Rp×p such that (5) holds although no closed-form expression for Â is known.127

The representation (5) is a powerful tool as it provides explicit derivatives of quantities of interest128

such as r = y −Xβ̂, ‖ψ(r)‖2 or ‖Σ1/2(β̂ − β∗)‖2. These explicit derivatives can then be used in129

probabilistic identities and inequalities that involve derivatives, for instance Stein’s formulae [14],130

the Gaussian Poincaré inequalty [5, Theorem 3.20], or normal approximations [8, 4].131

Remark 2.2. Similar derivative formulae hold if an intercept is included in the minimization, as in132

(
β̂0(y,X), β̂(y,X)

)
= argmin
b0∈R,b∈Rp

1

n

n∑

i=1

ρ(yi − b0 − x>i b) + g(b) (9)

Let Assumption 1.1 be fulfilled, and assume further ‖ψ′(r)‖2 > 0 with r := y− 1nβ̂0−x>i β̂ where133

1n = (1, ..., 1)> ∈ Rn. For almost every (y,X) the map (y,X) 7→ β̂(y,X) is differentiable at134

(y,X), and there exists Â ∈ Rp×p depending on (y,X) with ‖Σ1/2ÂΣ1/2‖op ≤ (nµ)−1 such that135

136

(∂/∂yi)β̂(y,X) = ÂX>Ψ′ei, (∂/∂xij)β̂(y,X) = Âejψ(ri)− ÂX>Ψ′eiβ̂j , (10)

where ei ∈ Rn, ej ∈ Rp are canonical basis vectors, ψ = ρ′ and Ψ′ := diag{ψ′(r)} −137

ψ′(r)ψ′(r)>/
∑
i∈[n] ψ

′(ri).138

4



3 Distribution of individual residuals139

We now turn to the distribution of a single residual ri = yi − x>i β̂ for some fixed observation140

i ∈ {1, ..., n} (for instance, fix i = 1). By leveraging the differentiability structure (5) and the normal141

approximation from [4], the following result provides a clear picture of the distribution of ri.142

Theorem 3.1. Let Assumption 1.1 be fulfilled and let Â ∈ Rp×p be given by Theorem 2.1. Then for143

every i = 1, ..., n there exists Zi ∼ N(0, 1) such that144 ∣∣∣
(
ri+tr[ΣÂ]ψ(ri)

)
−
(
εi+‖Σ1/2(β̂−β∗)‖Zi

)∣∣∣ ≤ OP (n−1/4)(|ψ(εi)|+‖Σ1/2(β̂−β∗)‖) (11)

Furthermore, if εi has a fixed distribution F , there exists a bivariate variable (ε̃ni , Z̃
n
i ) converging in145

distribution to the product measure F ⊗N(0, 1) such that146

ri + tr[ΣÂ]ψ(ri) = ε̃ni + ‖Σ1/2(β̂ − β∗)‖Z̃ni . (12)

If εi has a fixed distribution F and Assumption 1.2 holds then |ψ(εi)|+ ‖Σ1/2(β̂ − β∗)‖ = OP (1).147
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Figure 2: Histogram and QQ-plot for ζ1 in (13) under Huber Elastic-Net regression for different
choices of tuning parameters (λ, τ). Left Top: (0.036, 10−10), Right Top: (0.054, 0.01), Left
Bottom: (0.036, 0.01), Right Bottom: (0.024, 0.1). Each figure contains 600 data points generated
with anisotropic design matrix and iid εi from the t-distribution with 2 degrees of freedom. A detailed
setup is provided in Section 6.

Theorem 3.1 is a formal statement regarding the informal normal approximation148

ζi :=
ri + tr[ΣÂ]ψ(ri)− εi
‖Σ1/2(β̂ − β∗)‖

≈ N(0, 1). (13)

Simulations in Figure 2 confirm the normality of ζi for the Huber loss with Elastic-Net penalty149

and four combinations of tuning parameters. For the square loss ρ(u) = u2/2, because ψ(u) = u,150

asymptotic normality of the residuals hold in the following form.151

Theorem 3.2. Let Assumption 1.1 hold with ρ(u) = u2/2 and ε ∼ N(0, σ2In). Then for i = 1,152

(σ2 + ‖Σ1/2(β̂ − β∗)‖2)−1/2(1 + tr[ΣÂ])(yi − x>i β̂)→d N(0, 1) as n→ +∞. (14)

It is informative to provide a sketch of the proof of Theorem 3.1 explain the appearance of ψ(ri) and153

tr[ΣÂ] in the normal approximation results (11) and (13). A variant of the normal approximation154

of [4] proved in the supplement states that for a differentiable function f : Rq → Rq \ {0} and155

z ∼ N(0, Iq), there exists Z ∼ N(0, 1) such hat156

E
[∣∣∣ f(z)>z −

∑q
k=1(∂/∂zk)fk(z)

‖f(z)‖
− Z

∣∣∣
2]
≤ C1E

[∑q
k=1 ‖(∂/∂zk)f(z)‖2

‖f(z)‖2
]
. (15)

Some technical hurdles aside, the proof sketch is the following: Apply the previous display to q = p,157

z = Σ−1/2xi conditionally on (ε, (xl)l∈[n]\{i}) and to f(z) = Σ1/2(β̂ − β∗) in the simple case158

where β∗ = 0 (this amounts to performing a change of variable by translation of β̂ to β̂ − β∗). Then159

the right-hand side of the previous display is negligible in probability compared to Z, and in the160

left-hand side f(z)>z = x>i (β̂ − β∗) and
∑q
k=1(∂/∂zk)fk(z) ≈ tr[ΣÂ]ψ(ri) as the second term161

in (5) is negligible. This completes the sketch of the proof of (13).162
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Proximal operator representation. From the above asymptotic normality results, a stochastic
representation for the i-th residual ri = yi − x>i β̂ can be obtained as follows: With prox[tρ](u) the
proximal operator of x 7→ tρ(x) defined as the unique solution z ∈ R of equation z + tψ(z) = u,

ri = yi − x>i β̂ = prox[t̂ρ]
(
ε̃ni + ‖Σ1/2(β̂ − β∗)‖Z̃ni

)
with t̂ = tr[ΣÂ]

where (ε̃ni , Z̃
n
i ) converges in distribution to product measure F ⊗N(0, 1) where F is the law of εi.163

4 A proxy of the out-of-sample error if Σ is known164

The approximations of the previous sections for ri + tr[ΣÂ]ψ(ri) and the fact that εi is independent165

of Zi ∼ N(0, 1) in (11) suggest that (ri + tr[ΣÂ]ψ(ri))
2 ≈ ε2i + ‖Σ1/2(β̂ − β∗)‖2Z2

i ; and166

averaging over {1, ..., n} one can hope for the approximation ‖r + tr[ΣÂ]ψ(r)‖2/n ≈ ‖ε‖2/n+167

‖Σ1/2(β̂ − β∗)‖2. The following result makes this heuristic precise.168

Theorem 4.1. Let Assumption 1.1 be fulfilled and Â be given by Theorem 2.1. Then169

‖Σ1/2(β̂ − β∗)‖2 + ‖ε‖2/n =
∥∥r + tr[ΣÂ]ψ(r)

∥∥2/n+OP (n−1/2) Rem,

where Rem := ‖Σ1/2(β̂−β∗)‖2 + 1
n‖ψ(r)‖2 + (‖Σ1/2(β̂−β∗)‖2 + 1

n‖ψ(r)‖2)1/2‖ 1√
n
ε‖. Thus

‖Σ1/2(β̂ − β∗)‖2 + ‖ε‖2/n = (1 +OP (n−1/2))
∥∥r + tr[ΣÂ]ψ(r)

∥∥2/n.

Theorem 4.1 provides a first candidate,
∥∥r + tr[ΣÂ]ψ(r)

∥∥2/n to estimate170

‖Σ1/2(β̂ − β∗)‖2 + ‖ε‖2/n. (16)

Estimation of (16) is useful as ‖ε‖2/n is independent of the choice of the estimator β̂ and in particular171

independent of the chosen loss-penalty pair in (1). Given two or more estimators (1), choosing the172

one with smallest
∥∥r + tr[ΣÂ]ψ(r)

∥∥2 is thus a good proxy for minimizing the out-of-sample error.173

Corollary 4.2. Let β̂, β̃ be two M -estimators (1) Assumption 1.1 with loss-penalty pair (ρ, g) and174

(ρ̃, g̃) respectively. Assume that both satisfy Assumption 1.1 and let ψ = ρ′ and ψ̃ = ρ̃′. Let175

r = y −Xβ̂, r̃ = y −Xβ̃ be the residuals, Â, Ã be the corresponding matrices of size p × p176

given by Theorem 2.1. Further assume that both estimators satisfy Assumption 1.2 and that ε has iid177

coordinates independent with E[|εi|1+q] ≤M for constants q ∈ (0, 1),M > 0 independent of n, p.178

Let Ω = {‖XΣ−1/2‖op ≤ 2
√
n+
√
p} ∩ {‖ε‖2 ≤ n2/(1+q)}. Then for any η > 0 independent of179

n, p there exists C(γ, µ, η, q,M) > 0 depending only on {γ, µ, η, q,M} such that180

P
(
‖Σ1/2(β̂ − β∗)‖2 − ‖Σ1/2(β̃ − β∗)‖2 > η, ‖r + tr[ΣÂ]ψ(r)‖2 ≤ ‖r̃ + tr[ΣÃ]ψ̃(r̃)‖2

)

≤ C(γ, µ, η, q,M)n−q/(1+q) + P(Ωc)→ 0.

Provided that the noise random variables εi have at least 1 + q moments, Corollary 4.2 implies181

that with probability approaching one given two M -estimators β̂ and β̃, choosing the estimator182

corresponding to the smallest criteria among ‖r + tr[ΣÂ]r‖2 and ‖r̃ + tr[ΣÃ]r̃‖2 leads to the183

smallest out-of-sample error, up to any small constant η > 0. This allows noise random variables εi184

with infinite variance. A similar result can be obtained to select among K different M -estimators (1).185

Corollary 4.3. As in Corollary 4.2, assume E[|εi|1+q] ≤M and let β̂1, ..., β̂K be M -estimators of186

the form (1) with loss-penalty pair (ρk, gk) satisfying Assumptions 1.1 and 1.2. For each k = 1, ...,K,187

let rk = y−Xβ̂k be the residuals and Âk be the corresponding matrix of size p×p from Theorem 2.1.188

Let k̂ ∈ argmink=1,...,K ‖rk + tr[ΣÂk]ψk(rk)‖ where ψk = ρ′k. Then if (γ, µ, η, q,M) are189

constants independent of n, p190

P
(
‖Σ1/2(β̂k̂ − β

∗)‖2 > mink=1,...,K ‖Σ1/2(β̂k − β
∗)‖2 + η

)
→ 0 if K = o(nq/(1+q)).
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Given K different loss-penalty pairs and the corresponding M -estimators in (1), minimizing the191

criterion ‖r + tr[ΣÂ]r‖ thus provably selects a loss-penalty pair that leads to an optimal out-192

of-sample error, up to an arbitrary small constant η > 0 independent of n, p. The requirement193

K = o(nq/(1+q)) means that the cardinality of the collection of M -estimators to select from should194

grow more slowly than a power of n. This is typically satisfied for default tuning parameter grids in195

popular libraries (e.g., sklearn.linear_model.Lasso [13]) with tuning parameters evenly spaced196

in a log-scale that consequently have cardinality logarithmic in the parameter range. The major197

drawback of the criterion ‖r + tr[ΣÂ]r‖ is the dependence through tr[ΣÂ] on the covariance Σ198

of the design, which is typically unknown. The next section introduces an estimator of tr[ΣÂ] that199

does not require the knowledge of Σ.200

5 Degrees of freedom and estimating tr[ΣÂ] without the knowledge of Σ201

This section focuses on estimating tr[ΣÂ]. The matrix Â from Theorem 2.1 can estimated from
the data (y,X) in the sense that Â is a measurable function of (y,X) (thanks to the observation
that derivatives are limits, and limits of measurable functions are again measurable). The difficulty
is thus to estimate tr[ΣÂ] without the knowledge of Σ. To illustrate this difficulty, consider
Ridge regression with square loss ρ(u) = u2/2 and penalty g(b) = τ‖b‖2/2. Then β̂(y,X) =

(X>X + τnIp)
−1X>y and Â in Theorem 2.1 is given explicitly by Â = (X>X + τnIp)

−1 and

tr[ΣÂ] = tr[(G>G+ nτΣ−1)−1], whereG = XΣ−1/2.

Above,G is a random matrix with iid N(0, 1) entries the value of tr[ΣÂ] is highly dependent on the202

spectrum of Σ−1. In this particular case, the limit of tr[(G>G+ nτΣ−1)−1] can be obtained using203

random matrix theory [11] as the limiting behavior of the Stieltjes transform of G>G/n + τΣ−1204

and its spectral distribution is known; however the limit of the spetral distribution depends on the205

spectrum of τΣ−1. This is not desirable here as we wish to construct estimators that require no206

knowledge on Σ. For more involved loss-penalty pairs such as the Elastic-Net in Example 6.1, such207

random matrix theory results do not apply as tr[ΣÂ] depends on the random support of β̂.208

Instead, we do not rely on known random matrix theory results. With the matrix Â ∈ Rp×p given by209

Theorem 2.1, our proposal to estimate tr[ΣÂ] is the ratio d̂f/ tr[V ] with d̂f and V in (6)-(7). Both210

the scalar d̂f and the matrix V ∈ Rn×n are observable; in particular they do not depend on Σ.211

Theorem 5.1. Let Assumption 1.1 be fulfilled and Â be given by Theorem 2.1. Then212

E[| tr[ΣÂ] tr[V ]/n− d̂f/n|] ≤ C2(γ, µ)n−1/2. (17)

Simulations in Figure 3 and Table 1 confirm that the approximation tr[ΣÂ] ≈ d̂f/ tr[V ] is accurate213

for the Huber loss with Elastic-Net penalty. For the square loss, ψ′ = 1 and tr[V ] = n− d̂f so that214

(17) becomes E|(1− d̂f/n)(1 + tr[ΣÂ])− 1| ≤ C3(γ, µ)n−1/2 and the following result holds.215

Corollary 5.2. Let Assumption 1.1 be fulfilled with ρ(u) = u2/2 and ε ∼ N(0, σ2In). Then216

(1−d̂f/n)(1+tr[ΣÂ])→P 1 and the normality (14) holds with 1+tr[ΣÂ] replaced by (1−d̂f/n)−1.217

For general loss ρ, the criterion (2) replaces tr[ΣÂ] by d̂f/ tr[V ] in the proxy of the out-of-sample218

error ‖r+ tr[ΣÂ]ψ(r)‖2 studied in the previous section. Thanks to (17), this replacement preserves219

the good properties of ‖r + tr[ΣÂ]ψ(r)‖2 proved in Corollaries 4.2 and 4.3.220

Theorem 5.3. For k = 1, ...,K, let (ρk, gk) be a loss-penalty pair satisfying Assumptions 1.1 and 1.2
with ψk = ρ′k, let β̂k, rk, Âk be the corresponding M -estimator residual vector and matrix of size
p × p given by Theorem 2.1 as in Corollary 4.3 and let d̂fk = tr[XAkX

> diag{ψ′k(rk)}] and
V k = diag{ψ′k(rk)}(In −XAkX

> diag{ψ′k(rk)}). For a small constant η > 0 independent of
n, p, say η = 0.05, define

k̂ ∈ argmin
k=1,...,K

∥∥∥rk +
d̂fk

tr[V k]
ψk(rk)

∥∥∥
2

subject to
1

n

n∑

i=1

ψ′k(rki) ≥ η.
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Figure 3: Above: Boxplots for d̂f, p̂, n̂, tr[V ], tr[ΣÂ] and | tr[ΣÂ]− d̂f/ tr[V ]| in Huber Elastic-
Net regression with τ = 10−10 and λ ∈ [0.0032, 0.41]. Each box contains 200 data points. Below:
heatmaps for d̂f/n, tr[V ]/n and n̂/n =

∑n
i=1 ψ

′(ri)/n under the simulation setup in Figure 1. The
detailed simulation setup is given in Section 6.
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If εi has 1 + q moments in the sense that E[|εi|1+q] ≤ M for constants q ∈ (0, 1),M > 0. If221

(M, q, η, µ, γ) and η̃ > 0 are independent of n, p then222

P
(
‖Σ1/2(β̂k̂−β

∗)‖ > min
k=1,...,K: 1n

∑n
i=1 ψ

′
k(rki)≥η

‖Σ1/2(β̂k−β
∗)‖+η̃

)
→ 0 if K = o(nq/(1+q)).

Figure 1 illustrates on simulations the success of the criterion (2) over a grid of tuning parameters223

for M -estimators with the Huber loss and Elastic-Net penalty. The criterion (2) is thus successful224

at selecting a M -estimator with smallest out-of-sample error up to an additive constant η̃, among225

those M -estimators indexed in {1, ...,K} that are such that 1
n

∑n
i=1 ψ

′
k(rki) ≥ η. On the one hand226

it is unclear to us whether the restriction 1
n

∑n
i=1 ψ

′
k(rki) ≥ η; on the other hand there is a practical227

meaning in excluding M -estimators with small 1
n

∑n
i=1 ψ

′
k(rki): For the Huber loss H(u) := u2/2228

for |u| ≤ 1 and |u| − 1/2 for |u| ≥ 1 the quantity 1
n

∑n
i=1 ψ

′
k(rki) is the number of of data points229

in {1, ..., n} such that the residual yi − x>i β̂k fall within the quadratic regime of the loss function.230

Observations i ∈ {1, ..., n} that fall in the linear regime of the loss are excluded from the fit, in the231

sense that for some iwith rki = yi−x>i β̂k > 1, replacing yi by ỹi = yi+1000 (or any positive value)232

does not change the M -estimator solution β̂k (this can be seen from the KKT conditions directly,233

or by integration the derivative with respect to yi in (5)). Thus the constraint 1
n

∑n
i=1 ψ

′
k(rki) ≥ η234

requires that at most a constant fraction of the observations are excluded from the fit (or equivalently,235

at least a constant fraction of the n observations participate in the fit). For scaled versions of the236

Huber loss, ρk(u) = a2H(a−1u) for some a > 0, the value n̂ = 1
n

∑n
i=1 ψ

′
k(rki) again counts237

the number of residuals falling in the quadratic regime of the loss, i.e., the number of observations238

participating in the fit. The heatmaps of Figure 3 illustrate n̂ in a simulation for a wide range of239

parameters. Similarly, for smooth robust loss functions such as ρk(u) =
√

1 + u2, the constraint240
1
n

∑n
i=1 ψ

′
k(rki) ≥ η requires that at most a constant fraction of the n observations are such that241

ψ′k(rki) < η/2, i.e., such that the second derivative ψ′k is too small (and the loss ρk too flat).242

Theorems 2.1, 3.2, 4.1 and 5.1 provide our general results applicable to a single regularized M -243

estimator (1) while corollaries such as Theorem 5.3 are obtained using the union bound. The next244
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section specializes our results and notation to the Huber loss with Elastic-Net penalty and details the245

simulation setup used in the figures.246

6 Example and simulation setting: Huber loss with Elastic-Net penalty247

In simulations and in the example below, we focus on the loss-penalty pair248

ρ(u; Λ) = Λ2H(Λ−1u), g(b;λ, τ) = λ‖b‖1 + (τ/2)‖b‖22 (18)
for tuning parameters Λ, λ, τ ≥ 0 where H(u) := u2/2 for |u| ≤ 1 and |u| − 1/2 for |u| ≥ 1.249

Example 6.1. With (ρ, g) in (18), matrix Â in (5) matrix V in (7) and d̂f in (6) we have250

ÂŜ,Ŝ = (X>
Ŝ

diag{ψ′(r)}X Ŝ + nτI p̂)
−1, Ai,j = 0 if i 6∈ Ŝ or j 6∈ Ŝ,

V = diag{ψ′(r)} − diag{ψ′(r)}X Ŝ(X>
Ŝ

diag{ψ′(r)}X Ŝ + nτI p̂)
−1X>

Ŝ
diag{ψ′(r)},

d̂f = tr[X Ŝ(X>
Ŝ

diag{ψ′(r)}X Ŝ + nτI p̂)
−1X>

Ŝ
diag{ψ′(r)}],

(19)

where Ŝ is the active set {j ∈ [p] : β̂j 6= 0} and p̂ is the size of Ŝ; X Ŝ is the submatrix of X251

selecting columns with index in Ŝ and ÂŜ,Ŝ is the submatrix of Â with entries indexed in Ŝ × Ŝ.252

(λ, τ) (0.036, 10−10) (0.054, 0.01) (0.036, 0.01) (0.024, 0.1)

d̂f/n 0.31± 0.012 0.21± 0.0095 0.3± 0.011 0.37± 0.0093
p̂/n 0.31± 0.012 0.22± 0.0098 0.31± 0.012 0.47± 0.014
n̂/n 0.83± 0.011 0.76± 0.014 0.83± 0.012 0.84± 0.012
tr[ΣA] 0.58± 0.039 0.39± 0.027 0.58± 0.038 0.8± 0.038

| tr[ΣA]− d̂f/ tr[V ]| 0.0019± 0.0015 0.0015± 0.0012 0.0021± 0.0016 0.0023± 0.0017

‖Σ1/2(β̂ − β∗)‖2 1.3± 0.18 1.7± 0.25 1.3± 0.19 1.9± 0.21
ζ1 0.056± 1 0.021± 1 0.0044± 1 0.042± 0.97

Table 1: Simulation for Huber Elastic-Net regression under different choices of (λ, τ). (n, p) =
(1001, 1000). For each choice of (λ, τ), 600 data points are simulated with anisotropic design matrix
and i.i.d. t-distributed noises with 2 degrees of freedom. A detailed setup is provided in Section 6.

The identities (19) are proved in [3, §2.6]. Simulations in Figures 1 to 3 and Table 1 illustrate typical253

values for d̂f, tr[V ], tr[ΣÂ], the out-of-sample error and the criterion (2), n̂ =
∑n
i=1 ψ

′(ri) and254

p̂ = |Ŝ| under anisotropic Gaussian design and heavy-tailed εi. The simulation setup is as follows.255

Data Generation Process. Simulation data are generated from a linear model y = Xβ∗ + ε with256

anisotropic Gaussian design Σ and heavy-tail noise vector ε. The design matrix X has n = 1001257

rows and p = 1000 columns. Each row of X is i.i.d. N(0,Σ), with the same Σ across all258

repetitions, generated once by Σ = R>R/(2p) withR ∈ R2p×p being a Rademacher matrix with259

i.i.d. entries P(Rij = ±1) = 1
2 . The true signal vector β∗ ∈ Rp has its first 100 coordinates set to260

p1/2/100 =
√

10/10 and the rest 900 coordinates set to 0. The noise vector ε ∈ Rn has i.i.d. entries261

from the t-distribution with 2 degrees of freedom (so that Var[εi] =∞, i.e., εi is heavy-tailed).262

Estimation Process. Each dataset (y,X) is fitted by a Huber Elastic-Net estimator with263

loss-penalty pair in (18). We focus on 2d heatmaps with respect to the two penalty parame-264

ters (λ, τ) of the penalty; to this end the Huber loss parameter Λ is set to Λ = 0.054n1/2265

and a grid for (λ, τ) in then set so that d̂f/n varies on the grid from 0 to 1 (cf. the mid-266

dle heatmap in Figure 3). The Elastic-Net penalty g(b;λ, τ) = λ‖b‖1 + (τ/2)‖b‖22 is used267

with (λ, τ) ∈ {(0.036, 10−10), (0.054, 0.01), (0.036, 0.01), (0.024, 0.1)} in Figure 2 and Table 1,268

(λ, τ) ∈ [0.0032, 0.41]×{10−10} in Figure 3, and (λ, τ) ∈ [0.0032, 0.041]×[10−10, 0.1] in Figure 1.269

More simulation results are provided in the supplementary materials.270
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