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ABSTRACT

End-to-end reinforcement learning on images showed significant performance
progress in the recent years, especially with regularization to value estimation
brought by data augmentation (Yarats et al., 2020). At the same time, domain
randomization and representation learning helped push the limits of these algo-
rithms in visually diverse environments, full of distractors and spurious noise,
making RL more robust to unrelated visual features. We present DIQL, a method
that combines risk invariant regularization and domain randomization to reduce
out-of-distribution (OOD) generalization gap for temporal-difference learning. In
this work, we draw a link by framing domain randomization as a richer exten-
sion of data augmentation to RL and support its generalized use. Our model-free
approach improve baselines performances without the need of additional repre-
sentation learning objectives and with limited additional computational cost. We
show that DIQL outperforms existing methods on complex visuo-motor control
environment with high visual perturbation. In particular, our approach achieves
state-of the-art performance on the Distracting Control Suite benchmark, where
we evaluate the robustness to a number of visual perturbators, as well as OOD
generalization and extrapolation capabilities.

1 INTRODUCTION

Data augmentation is used extensively in computer vision models for regularization. One can not
imagine reaching state-of-the-art performance on usual benchmarks without using a careful combi-
nation of transformation on images. Yet reinforcement learning lags behind on the usage of these
techniques.

First, this stems from the high variance reinforcement learning suffers during training. This is es-
pecially true for off-policy algorithms such as Q-learning (Watkins & Dayan, 1992; Mnih et al.,
2013), where noisy Q values caused by uncertainty induced an overestimation bias which renders
training extremely difficult. A number of methods directly tackle the problem of overestimation
with algorithmic or architectural changes to the value function (Van Hasselt et al., 2016; Wang et al.,
2016; Bellemare et al., 2017; Kumar et al., 2021). Regularizing the value estimation with light data
augmentation is another successful approach (Yarats et al., 2020; Laskin et al., 2020b) but exten-
sive data augmentation in reinforcement means adding even more noise and can lead to difficult or
unstable training (Hansen et al., 2021).

Secondly, standard computer vision tasks mostly focus on extracting high level semantic information
from images or videos. Because classifying the content of an image is a substantially high level
task, the class label is resilient to a lot of intense visual transformation of the image (e.g. geometric
transformations, color distortion, kernel filtering, information deletion, mixing). Features such as
exact position, relative organization and textures of entities in the image is usually not predictive of
the class label and data augmentation pipelines take advantage of it. From a causal perspective, data
augmentation performs interventions on the ”style” variable which is not linked to the class label
in the causal graph. It happens that for classification tasks the dimension of the style variable is
much bigger than in visuo-motor control tasks where reinforcement learning is involved. Intuitively,
we can change a lot of factors of variation in the visual aspect of a particular object without it
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Figure 1: Domain Invariant Q-Learning. For training, DIQL uses 2 visually different domains
(Interpolation domains) based on the same inner state of the environment to learn a Q-function
that is invariant to spurious visual features. DIQL promotes risk extrapolation and prevents drastic
collapse of the accuracy of the Q-function in out-of-distribution settings (Extrapolation domains).

being not recognizable anymore: we can still recognize a car on the street with very sparse and
highly perturbed visual cues. With visuo-motor control, these factors of variation (dimensionality
of the style variable) are in fewer number and less obvious. In particular, geometric deformations
or occlusions could destroy crucial information for control such as relatives distances of objects
in the image. Simple data augmentation, under the form of random shift, proved to be crucial for
boosting RL performance (Yarats et al., 2020; 2021; Laskin et al., 2020b;a; Hansen et al., 2020)
and is now used as a baseline in state-of-the-art methodologies. Though, it remains less clear which
combination of image transformations is optimal for reinforcement learning (Hansen et al., 2021;
Raileanu et al., 2021).

A related technique, Domain randomization (Tobin et al., 2017) was introduced in robotics to close
the gap from simulation to real world, by randomizing dynamics and components in simulation. We
argue in this paper that domain randomization is a more general case of data augmentation more
suited for reinforcement learning that allows for finer control over visual factors of variation by
directly changing the hidden state of the system in simulation. Contrary to data augmentation in
general, domain randomization directly acts on the causal factors instead of adding uncorrelated
noise to the observation, which could destroy useful information.

Starting from this observation, we present Domain Invariant Q-Learning (DIQL) for robust visuo-
motor control under visual distractions. We show that DIQL is able to efficiently train an agent with
visual generalization capabilities without losing on convergence speed and asymptotic performance
on the original task. In particular, we derive a domain-invariant temporal-difference loss combining
domain randomization and risk extrapolation (Figure 1). We show that domain randomization can be
better integrated in reinforcement learning than is classically done in order to improve performance
at very low cost. Our main contributions are:

• a novel methodology for robust visuomotor control based on temporal-difference learning
on images using invariance principles,

• empirical results on the Distracting Control Suite benchmark (Stone et al., 2021) with state-
of-the-art results on raw training performance and out-of-distribution (OOD) generalization
under the hardest setting of dynamic distractions

2 PRELIMINARIES

Value-based reinforcement learning We define the MDP M = ⟨S,A, P,R, γ⟩ where S is the
set of states, A the set of actions, P the transition probability function, R the reward function and γ
a discounting factor for future rewards. We also define the transition containing state, action, reward
and next state at timestep t as T = (St, At, rt, St+1). Reinforcement learning aims to maximize
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the total reward received by the agent. Mathematically, it corresponds to finding a policy π that
maximizes the (discounted) expected return ET ∼π[

∑∞
t=0 γ

tr(St, At, St+1)]

We are interested here in value-based reinforcement learning and in particular deep Q-learning,
which approximates the state-action value function with a deep neural network to handle high-
dimensional observations. The Q-network is optimized with gradient by minimizing the following
temporal-difference loss:

JQ(θ) = E(st,at,rt,st+1)∼D [LQ(st,at, rt, st+1)]

where LQ(st,at, rt, st+1) = (Qθ(st,at)− rt + γmax
a′

Qθ̄(st+1, a
′))2

(1)

θ̄ follow the trainable weights with an exponential moving average: θ̄ = τθ + (1 − τ)θ̄ with τ the
smoothing factor.

Risk minimization and OOD generalization The empirical risk associated to a model with pa-
rameters θ trained with a loss function l with data X situated on a domain D is the expected
loss value of the model over that domain Rl(D; θ) = EX∼D[l(X; θ)]. When working on out-of-
distribution generalization and domain shift problems, we sometimes have multiple training do-
mains. The true joint distribution P (X,Y ) of the data X and labels/predictions Y is often unknown
and the simplest solution we can imagine to improve generalization is to minimize the averaged
empirical risk above across data points and domains. Empirical risk minimization (ERM) is conser-
vative and averages the training risk over the training distribution, without making further assump-
tions on out-of-distribution behavior. Formally, if the training dataset is composed of into multiple
domains D = {Di}i∈1,n, then using empirical risk minimization to optimize parameters θ of the
model is equivalent to minθ

1
|D|

∑
i R(Di, θ) where R(Di, θ) is the risk or cost function computed

with data of domain Di. However, ERM is naı̈ve as the minimizer of the sum of the risks is not
necessarily a minimizer of each subdomains. We can easily imagine a scenario where the joint ob-
jective of ERM is optimized even though the performance on one or more of the training domains is
suboptimal. A fortiori, there is no guarantee of generalization to out-of-distribution domains at test
time. Multiple improvements over ERM have been made, through causal inference (Peters et al.,
2016) and invariant prediction (Arjovsky et al., 2019).

A more recent approach, V-REx (Krueger et al., 2021), directly tackles the issue of OOD general-
ization which is overlooked by previous methods. The problem is formulated as robust optimization
and the objective is to minimize the risk ROOD = maxDi∈D R(Di)). To practically minimize this
worst-case risk, the empirical risk is complemented with a penalty based on the variance between
training risks:

RV−REx(θ) =
∑
i

R(Di, θ) + βVar({R(D1, θ), . . . , R(Dn, θ)}) (2)

This principle of invariance of risks promotes risk extrapolation and provably enables causal discov-
ery.

3 METHOD

Our method builds upon deep Q-learning by regularizing and enriching the temporal-difference
error with multi-domain and cross-domain risk minimization, taking fully advantage of domain
randomization.

3.1 ON THE USE OF DOMAIN RANDOMIZATION

Data augmentation is a transformation applied a posteriori to an image. The transformation itself is
most of the time completely independent from the image and agnostic to its content. Domain ran-
domization on the other hand is acting directly inside an environment before an image is produced.
Its subtlety lies in its ability to change appearances of scenes without changing its semantic content
and inner state such as object classes and relative positions. Because our objective is to have an
agent robust to visual perturbations, we will restrict the definition of domain randomization only to
visual changes which do not causally change the inner state of the environment, usually called style
variables or spurious features, as they are irrelevant for control.
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Figure 2: Causal Graphical Model of the en-
vironment and Q-function. (Top): data aug-
mentation. (Bottom): domain randomization.
Grey variables are hidden, white are visible.
Dashed arrows indicate causality through in-
ference by the policy and Q-value modules of
RL, full arrows are invisible causal relation-
ships.

Let’s consider the causal graphical model between
the environment and the Q-function with data aug-
mentation or domain randomization in Figure 2.
We are dealing with image observation, thus the
true inner state (st, s̄t) of the environment is hid-
den. st is the controllable part of the state whereas
s̄t is control-irrelevant. We can think of s̄t as the
part of the state containing the causes of spurious
visual features in the observation ot rendered by
the environment. Qt denotes the true Q-value as-
sociated with st and at and is not affected by s̄t.
The difference between data augmentation and do-
main randomization is where the perturbation is in-
jected. While data augmentation adds uncorrelated
noise XDA directly to the observation, (visual) do-
main randomization XDR directly acts on s̄t inde-
pendently from st before rendering ot. From a
causal perspective, domain randomization performs
do-interventions on the style variable s̄t. This can
help disentangling of the inner states st and s̄t.
In particular, this help the Q-function performing
causal discovery by uncovering the effect of s̄t on
ot. Then, by encouraging invariance to visual do-
main randomization, the Q-function is forced to ig-
nore s̄t to make predictions and has to extract st
and rely entirely on it. We call the resulting model
a domain-invariant Q-function. This is not possi-
ble with data augmentation, as the noise is applied
after rendering, which prevents disentagnling of the
inner states. This motivates us to use domain ran-
domization and to perform interventions with it at
each step of learning.

3.2 DOMAIN INVARIANT Q-LEARNING

To maximize the utility of domain randomization and hopefully learn an invariant Q-function, we
constantly generate 2 different views from the same scene at each time step in the environment
(Figure 1). Formally, we can define the two views as two instances of the same scene where the style
variable belongs to different domains, where o1

t belongs to D1 and o2
t to D2. Because accuracy of

Q-values estimation is the main driver of performance for value-based model-free algorithms, our
goal is to regularize the Q-function to make it invariant to visual perturbations irrelevant to reward
and control.

We first regularize the Q-function by averaging the TD error over the two training domain previously
defined, D1 and D2 by averaging the temporal-difference error over the two observations:

LERM = LQ(o
1
t ,at, rt,o

1
t+1) + LQ(o

2
t ,at, rt,o

2
t+1) (3)

where LQ is defined in Equation 1. Action and rewards passed to the loss function are the same for
both domains, as the unknown underlying state.

We add a domain translation term to the loss to further encourage domain invariance for the Q-
function. For each additional TD error term, bootstrapped values are computed using the next ob-
servation ot+1 from the opposite domain of the current observation ot:

LDT = LQ(o
1
t ,at, rt,o

2
t+1) + LQ(o

2
t ,at, rt,o

1
t+1) (4)

As mentioned in section 2, only averaging training risks over multiple domain is not enough to
increase OOD generalization. In order to increase generalization to unseen domains, we regularize
the losses with a variance minimization term that enforces invariance of training risks (here TD
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Figure 3: Evaluation metrics aggregated over all benchmarks, tasks, 21 episodes and 4 seeds at
the end of training. Black stripes and colored bars represent aggregates and confidence interval
computed with stratified bootstrap sampling using the rrliable library (Agarwal et al., 2021b).

losses). Motivated by Krueger et al. (2021), this term prevents one loss from dominating the others
by ”flattening” the risk landscape across domains.

LV ar = V ar

([
LQ(o

i
t,at, rt,o

j
t+1)

]
(i,j)∈{1,2}

)
(5)

Putting all three losses together gives us our DIQL objective to train an invariant Q-function:

JDIQL
Q (θ) = E(o1t ,o1t+1,o

2
t ,o2t+1,at,rt)∼B [LERM + LDT + βLV ar] (6)

where β controls the invariance of risks. β at ∞ would force all risks to be equal but prevent
minimization, while β = 0 recovers ERM applied to multiple domain to the Q-function.

Coming back to the causal inference framework, Krueger et al. (2021) show that under three specific
hypothesis, equalizing training risks between domains is equivalent to performing causal discovery.
The three hypothesis are the following: causes of the target variable are observed, training domains
corresponds to interventions on X and the Bayes error rate of the model is the same over all training
points. The first hypothesis is verified: Qt has st and at as parents. Although st is hidden, all the
information in st is contained in ot due to the MDP framework. Thus, causes of Qt are observable.
Second hypothesis is true by definition of domain randomization in our graphical model: domain
randomization performs interventions on s̄t. We perform random visual intervention, yet the con-
trollable state of the environment is deterministic. In practice, we ensure that visual perturbations
do not destroy useful information in the image: all of st is contained in ot for all states. Because
we are using a single Q-network with fixed capacity on the training domains, we deduce that the
irreducible error, ie the Bayes error rate, is constant across all training samples. This validates the
third hypothesis. Per Krueger et al. (2021) this means that equalizing training losses between each
temporal-difference term in DIQL allows the Q-function to perform causal discovery. Thus, the
Q-function can learn the hidden causes of the real Q-value and disentangle st from s̄t: we have a
domain-invariant Q-function by definition.

4 EXPERIMENTS

4.1 BENCHMARK AND BASELINES

We aim to evaluate the training stability, robustness and out-of-distribution generalization of our
methodology with continuous control from images. We first present the Distracting Control Suite
(DCS) that will serve to train our agent and benchmark for robustness to visual distractions. We
detail our training procedures, baselines that will be used for comparison and evaluation protocol to
quantify OOD generalization performance. Finally, we showcase aggregated and detailed evaluation
measures on all six tasks of DCS, and present some ablations.

Environment. We use Distracting Control Suite (Stone et al., 2021) for our experiments. DCS
is a variant of the Deepmind Control Suite where visual distractions are dynamically added to the
rendered observations. The perturbations consists in the following non-exclusive dimension of vari-
ations: color randomization of physical bodies, background randomization with videos and camera
movement. Distractions are dynamic, temporally consistent and continuous. Colors of bodies are
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continuously changing at each time step. The background is displaying frame by frame a randomly
selected video from the DAVIS dataset, which is played forward then backward to avoid discontinu-
ities. The camera’s orientation is rotating with a random angle at each step while keeping the agent
in the field of view. As described in part 3, we produce two observations at each time step of the
environment with two different visually randomized observations. In practice, instead of generat-
ing two randomized views, with generate a clean observation from the original environment and a
noisy observation using a combination of camera, color and background distractions. This reduces
computational burden and helps training by reducing variance in the data, which helps training as
shown by Hansen et al. (2021). We define 5 variants of the environment, based on different com-
binations of distraction intensities and parameters. We use DCS with all three types of distractions
applied together and varying the intensity value of the distractions. We refer to Easy, Medium and
Hard benchmarks for 0.1, 0.2 and 0.3 intensity respectively. Furthermore, we define Very Easy
benchmark as DCS with intensity 0.1 and without camera movement. Clean refers to the clean
environment with all distractions disabled (see example images in the appendix).

Figure 4: Performance profile aggregated
over all benchmarks, tasks, 21 episodes and
4 seeds at the end of training. Shaded areas
represent stratified bootstrap confidence in-
tervals.

Training. We compare our methodology with sev-
eral baselines. SAC refers to Soft Actor-Critic ap-
plied with only access with one observation at each
time step. This corresponds to the usual implemen-
tation of SAC on top of a visually randomized en-
vironment. ERM average policy and Q-value losses
of SAC over two different observations of the same
step at each step, while keeping the action and re-
ward fixed. DIQL refers to our methodology, which
is implemented with SAC and described in section
3. Main results with DIQL, ERM and SAC are ob-
tained by training on the Easy benchmark. We might
refer to DIQL-VE, DIQL-E or DIQL-M which de-
scribe DIQL trained with the Very Easy, Easy and
Medium benchmarks respectively to compare them.
Otherwise, ERM and SAC are always trained with
the Easy domain. For each experience, we train 4
random seeds for over 500k steps of gradient descent
with Adam optimizer. We use the SAC implementa-
tion of ACME (Hoffman et al., 2020) in Jax (Brad-
bury et al., 2018) for faster training. Both policy
and Q-network are implemented with convolutional

stack followed by a MLP. The policy and Q-network only share weights of the convolution stack to
compute lower-dimensional visual features.

Evaluation. We evaluate our models during and at the end of training over the 5 benchmarks
defined above: Clean, Very Easy, Easy, Medium and Hard. We run evaluation episode on each
benchmark every 50000 steps of training and accumulate the return over each episode. Episodic
return adds up to 1000 but we normalized the score. We systematically use the rlliable library
(Agarwal et al., 2021b) to evaluate our models, using stratified boostrap over seeds and/or tasks on
the benchmark to provide robust evaluation metrics. In particular, we use the inter-quartile mean
(IQM) as a robust replacement to the mean while being more sample efficient than the median. To
properly test for generalization, the evaluation environment uses a different dataset of videos for the
background even when training and evaluation have the same distraction difficulty.

4.2 RESULTS

Aggregated metrics. As shown in figure 3, DIQL largely outperforms all baselines when aggre-
gating results over all benchmarks. One the one hand, ERM averages both policy and Q-function
losses over both training domains but does not improve over plain SAC trained directly on a sin-
gle distracting domain. On the other hand, DIQL-E completely outperforms these baselines for the
same computational costs, thanks to the efficient use of domain randomization to enforce Q-value
invariance. DIQL-E improves IQM by roughly 30 % over the baseline and is significantly above on
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Figure 5: Sample efficiency plots for each task on the Easy evaluation benchmark. Models are
evaluated every 50k steps and scores are aggregated over 10 episodes and 4 seeds. Shaded areas
represent stratified bootstrapped confidence intervals.

(a) (b)

Figure 6: Evaluation at the end of training of DIQL variants and baselines across all 5 benchmark
difficulties. Points are normalized IQM episodic returns, and vertical bars are bootstrapped confi-
dence intervals. (a): Comparison of DIQL, ERM and SAC results trained on Easy. (b): Comparison
of DIQL results trained on Very Easy, Easy or Medium.

the performance profile of figure 4. Figure 5 shows sample efficiency curves for each six tasks on
the Easy benchmark (the other benchmarks are in the appendix). We observe that DIQL especially
improve performance in more complex tasks like Walker walk and Cheetah run. They both have a
high-dimensional action space, which hints at a potential successful transfer of our method to harder
tasks in robotics. However, all tasks are overall affected by the difficulty of the benchmark and its
dynamic aspect compared to a clean environment. In particular, Cartpole Swingup which should be
solved easily actually shows poor performance because of the original action repeat value of 8: in
between two consecutive frames seen by the agent, camera and background will have moved by 8
frames which breaks the continuity of distractions and make the task particularly hard.

OOD generalization. We evaluate generalization capabilities of the agent in figure 6. We seek
robustness to out-of-distribution shifts and look for extrapolation in the evaluation benchmark. In
this setting, DIQL is trained on each Very Easy, Easy and Medium benchmarks and evaluated on
all five benchmarks. Because the evaluation benchmarks are ordered by distraction intensity, each
evaluation domain is included in the next domain along the X axis. Evaluation domains easier or
equal than the training domain are considered in-distribution: they interpolate between the Clean
domain and the training domain. Domains strictly above the training domain are out-of-distribution:
they require the model to extrapolate. Figure 6a shows final normalized IQM aggregated over tasks
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Figure 7: Evaluation score on all benchmarks for different β values. Shaded areas are bootstrapped
confidence intervals.

for each testing benchmark and all baselines and variants presented. ERM increases total return
in the Clean benchmark. However, it fails to improve generalization to all distracting benchmarks
and degrades results compared to plain SAC. Pitfalls of empirical risk minimization are to blame: it
is much easier to optimize the RL objective over with non-noisy observations which leads to most
capacity being dedicated to overfitting on the Clean domain. DIQL is able to correct this problem
and redistribute the model capacity between both training environment by enforcing invariance of
risks with the penalty term. Performance is lifted on all distracting benchmark as a result, but is also
decreased on the Clean domain. Overall, the risk landscape across domains flattens, a phenomenon
already observed and described in the seminal paper on risk extrapolation (Krueger et al., 2021).

This flattening of risk landscape is also observed by changing the training distribution used with
DIQL. We trained DIQL on three different benchmark difficulties: Very Easy, Easy and Medium.
We evaluate on all benchmarks and show results in Figure 6b. Training on harder domains helps gen-
eralization to harder benchmarks as expected, but reduce overall performance: the network capacity
and training time remained constant while the training task became harder. Even though Figure 6a
shows a clear improvement by DIQL in the out-of-distribution, we see in Figure 6b an expected drop
of performance when going from in-distribution to OOD evaluation regime. In particular, DIQL-VE
score drops by more than 50 % between Very Easy and Easy evaluations while DIQL-E score drops
less than 40 % between Easy and Medium. DIQL-M only drops by rougly 30% between Medium
and Hard but overall performance is lower.

The risk extrapolation term controlled by β plays a significant role in flattening the risk space across
domains as shown in Krueger et al. (2021). In particular, higher β forces equalization of training
losses of DIQL which prevents overfitting on easy domains. Figure 7 shows evaluation scores as a
function of β. Each task has its own different optimal β value depending on the task dynamics and
complexity, which makes this parameter important to optimize for maximum performance.

Ablations. We performed a detailed ablation of LERM and LDT described in section 3 and show
that both term in their symmetric form are necessary for good performance across all benchmarks.
Results are shown in appendix E.

5 RELATED WORKS

Data augmentation. Although not studied in this work, data augmentation is an efficient and easy
to implement method to regularize models and increase generalization performance. Some methods
study which type of data augmentation is better suited for reinforcement learning. Apart from the
standard random shift/random crop (Yarats et al., 2020; 2021; Laskin et al., 2020b), some work ex-
plored data mixing strategies (Wang et al., 2020; Zhang & Guo, 2021; Zhou et al., 2020) inspired by
mixup style data augmentation. Lee et al. (2020); Zhou et al. (2020) explored random convolutions
and convolution mixing respectively. Recents works (Seo et al., 2022; Xiao et al., 2022) used patch-
based masking, inspired from masked autoencoders in computer vision. Automatic adjustment of
data augmentation is also studied, with Raileanu et al. (2021) using upper-confidence-bound bandit
algorithm to find the transformation that maximizes return, Zhang & Guo (2021); Agarwal & Chin-

8



Under review as a conference paper at ICLR 2023

chali (2022) opting for an adversarial objective making the task as difficult as possible for the policy
and Lu et al. (2020) using learned causal models to apply visual interventions. Other works study
how and when data augmentation should be applied. Hansen & Wang (2021); Hansen et al. (2021)
apply DA assymetrically to source and target encoder and/or Q-value functions. Ko & Ok (2021)
show that data augmentation shouldn’t be applied uniformly during training, while Fan et al. (2021)
only use strong data augmentation for behavior cloning of an expert policy. While efficient, these
methods are sub-optimal if our goal is to increase data diversity for control because data augmenta-
tion is only a post-processing transformation as explained in our paper.

Visual domain randomization. Contrary to data augmentation, domain randomization is directly
provided by the environment, as the changes are applied at render time or even while building
the scene components. Hansen & Wang (2021); Stone et al. (2021); Grigsby & Qi (2020) mod-
ify the original Deepmind Control Suite (Tassa et al., 2018) to include visual distractions, Xing
et al. (2021); Zhu et al. (2020) involve robotic tasks and Ahmed et al. (2020) specifically focus on
causal relationships in robotic toy environments. Domain randomization can also be integrated in-
side the methodology, by enforcing inductive bias to the agent such that it remains robust to visual
changes. Akkaya et al. (2019) dynamically adapts the level of domain randomization to the agent’s
performance while Ren et al. (2020) use an adversarial objective similar to Zhang & Guo (2021).
Other works run multiple versions of the same environment in parallel and use adversarial objectives
Ren et al. (2020); Li et al. (2021) or enforce invariance between environments Zhao & Hospedales
(2021); James et al. (2019); Zhang et al. (2020).

Invariant representation learning is another approach to ensure good generalization across visual
perturbations and is usually implemented as an auxiliary self-supervised task to the reinforcement
learning algorithm. Zhang et al. (2021); Agarwal et al. (2021a); Bertran et al. (2022) use bisim-
ulation and behavioural similarity to learn invariant representations. Other works use the causal
inference framework to isolate causal feature sets. Zhang et al. (2020) learns a model of the envi-
ronment with invariant causal prediction (Peters et al., 2016) in the block-MDP setting by unrolling
multiple versions of the same environment in parallel while Sonar et al. (2021) uses invariant risk
minimization (Arjovsky et al., 2019) across multiple domains to learn representations that are invari-
ant to action prediction. Lu et al. (2020) combined data augmentation with counterfactuals to learn
a structured causal model with an adversarial GAN-like objective. Li et al. (2021) also uses an ad-
versarial objective combined with gradient reversal to learn a representation that is less predictive of
interventions on style variable. Mozifian et al. (2020) combined bisimulation and risk extrapolation
(Krueger et al., 2021) to learn robust representations under domain randomization for robotic tasks.
We differ from this line of work as DIQL is model-free and does not use an auxiliary representation
learning loss.

6 CONCLUSION

We presented in this paper DIQL (Domain-invariant Q-learning), a model-free method that extends
deep Q-learning for robust control from images under visual distractions. Our method combines
efficient use of domain randomization with risk extrapolation to learn a domain-invariant Q-function.
We demonstrated strong results and sample efficiency on the Distracting Control Suite benchmark.
To our knowledge, DIQL shows state-of-the-art performance on Easy and Medium benchmarks
(intensity 0.1, 0.2) with all three types of dynamic distractions at the same time, especially camera
movement distractions. Due to the simplicity of implementation and low computational burden of
the method compared to representation learning or model-based approaches, we advocate for a more
generalized integration of domain randomization into reinforcement learning algorithms.

An obvious limitation of DIQL is its need for domain randomization, although one could adapt
the loss function to work with well-suited data augmentation as in Hansen et al. (2021). Yet, recent
development of simulations with increased speed and photo-realism call for systematic integration of
domain randomization into RL pipelines for robust agents acting from images. Future work involve
scaling the method to more realistic environment, with more interventions per step to maximize
sample efficiency and testing results on real robot learning.
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REPRODUCIBILITY STATEMENT

We provide in Appendix B all hyperparameters associated with the method, implementation de-
tails for the method and the environment, as well as links to the github repositories we based our
implementation on.
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Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Andrew Cowie, Ziyu Wang, Bilal Piot, and Nando
de Freitas. Acme: A research framework for distributed reinforcement learning. arXiv preprint
arXiv:2006.00979, 2020.

Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex Irpan, Julian Ibarz,
Sergey Levine, Raia Hadsell, and Konstantinos Bousmalis. Sim-to-real via sim-to-sim: Data-
efficient robotic grasping via randomized-to-canonical adaptation networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12627–12637, 2019.

Byungchan Ko and Jungseul Ok. Time matters in using data augmentation for vision-based deep
reinforcement learning. arXiv preprint arXiv:2102.08581, 2021.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapo-
lation (rex). In International Conference on Machine Learning, pp. 5815–5826. PMLR, 2021.

Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George Tucker, and Sergey Levine.
Dr3: Value-based deep reinforcement learning requires explicit regularization. In International
Conference on Learning Representations, 2021.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. In International Conference on Machine Learning, pp. 5639–
5650. PMLR, 2020a.

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. Advances in neural information processing systems, 33:
19884–19895, 2020b.

Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Network randomization: A simple tech-
nique for generalization in deep reinforcement learning. In International Conference on Learning
Representations, 2020.

Bonnie Li, Vincent François-Lavet, Thang Doan, and Joelle Pineau. Domain adversarial reinforce-
ment learning. arXiv preprint arXiv:2102.07097, 2021.
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A CONTINUOUS CONTROL WITH DIQL

Soft Actor-Critic extends Q-learning to continuous control with an entropy maximizing actor-
critic algorithm. The policy loss is defined as follow:

Jπ(ϕ) = Est∼D
[
Eat∼πϕ

[α log (πϕ (at | st))−Qθ (st,at)]
]
= Est∼D [Lπ(st)]

The temporal-difference loss used to learn the action-value function is similar to equation 1 with an
additional entropy regularization term and sampling at+1 ∼ πϕ(st):

Qtarget = rt + γ (Qθ̄(st+1,at+1)− α log πϕ (at+1 | s+1))

where α is a temperature parameter controlling exploration and is either fixed or trainable.

Deep Q-learning in itself only implements a Q-function and can only output discrete actions. For
continuous control, we adapt the invariant Q-learning loss to Soft Actor-Critic (Haarnoja et al.,
2018) where the temporal-difference error is naturally replaced with the soft Bellman error. On top
of augmenting the soft TD error with the DIQL loss, we average the policy loss of SAC over the two
observations of the same state. In theory, an invariant Q-function would suffice to learn an invariant
policy with SAC as the policy takes actions that maximizes Q-values. In practice, this is rarely true
during training. We enforce the policy to also stay invariant by averaging the policy loss over both
observations.

JDIQL
π (ϕ) =

1

2

(
Jπ(o

1
t ) + Jπ(o

2
t )
)

where Jπ is defined just above.

B IMPLEMENTATION

Each experience in the paper is run on 4 different seeds for reproducibility. We use the SAC im-
plementation of ACME1 (Hoffman et al., 2020) in Jax (Bradbury et al., 2018) for our DIQL imple-
mentation, and only change the critic and actor losses as described in section 3 and A. Both policy
and Q-network are implemented with convolutional stack followed by a MLP. The policy and Q-
network only share weights of the convolution stack to compute lower-dimensional visual features.
The convolutional stack (or ”encoder) is composed of 4 convolutional layers with 32 filters and
3 × 3 kernel sizes. Stride is 2 for the first convolutional layer then 1 for the rest. Outputs features
are flattened and put through a linear layer to reach a final dimension of 50. Layer normalization
and tanh activation is applied to the features before passing them to actor or critic’s MLP. Encoder
layers are initialized with delta orthogonal initialization, while all linear layers used Lecun uniform
unitialization. All networks use ReLU activations units. Trainig is done with the Adam optimizer,
and all hyperparameters used are described in table 1. Importantly, β was optimized only for two
tasks (Walker and Ball in cup) for compute availability reasons and kept at a constant value of 1 for
others. Results can be improved for the four other tasks by finding a more optimal β for each of
them.

We use the github2 implementation of the Distracting Control suite for the Easy, Medium and Hard
benchmarks and only modify the Very Easy by removing camera movement.

1https://github.com/deepmind/acme
2https://github.com/geyang/gym-distracting-control

13

https://github.com/deepmind/acme
https://github.com/geyang/gym-distracting-control


Under review as a conference paper at ICLR 2023

Table 1: Hyperparameters

Hyperparameter Value
Replay buffer size 100000
Initial collection steps 25000
Optimizer Adam
Actor learning rate 3e-4
Critic learning rate 3e-4
Weight decay 0
Initial temperature α 0.1
Temperature learning rate 3e-4
Batch size 128
τ EMA 5e-3
Actor hidden layers [512, 512]
Critic hidden layers [512, 512]
Frame stacking 3
Action repeat 8 if Cartpole; 2 if Finger, Walker; 4 otherwise
DIQL variance penalty β 5 if Walker; 0.1 if Ball in Cup; 1 otherwise

C DISTRACTING CONTROL SUITE
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Figure 8: Distracting Control Suite tasks and evaluation benchmarks used in the paper.

D DETAILED RESULTS

D.1 SAMPLE EFFICIENCY CURVES
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Figure 9: Sample efficiency curves on Clean benchmark. Line is normalized IQM and shaded area
bootstrapped CI.

Figure 10: Sample efficiency curves on Very Easy benchmark. Line is normalized IQM and shaded
area bootstrapped CI.
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Figure 11: Sample efficiency curves on Easy benchmark. Line is normalized IQM and shaded area
bootstrapped CI.

Figure 12: Sample efficiency curves on Medium benchmark. Line is normalized IQM and shaded
area bootstrapped CI.
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Figure 13: Sample efficiency curves on Hard benchmark. Line is normalized IQM and shaded area
bootstrapped CI.
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D.2 GENERALIZATION

Figure 14: Evaluation at the end of training of DIQL, ERM and SAC across all 5 benchmark difficul-
ties splitted per task. Points are normalized IQM episodic returns, and vertical bars are bootstrapped
confidence intervals.

Figure 15: Evaluation at the end of training of DIQL-E, DIQL-VE and DIQL-L across all 5 bench-
mark difficulties splitted per task. Points are normalized IQM episodic returns, and vertical bars are
bootstrapped confidence intervals.
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E ABLATIONS

We perform ablations on the ERM and DT (domain translation) terms from the DIQL loss and
show that all four TD error terms are necessary for good performance. To perform the ablation, we
disabled risk extrapolation by fixing β to 0. We define the following notations for the ablations:
LERM is composed of ERM1 and ERM2, LDT of DT1 and DT2 (each corresponding to one of
the two TD loss of each term). ERM refers to LERM . DT refers to LDT . ERM+DT is equivalent
to DIQL with β = 0. Training is done on the Easy benchmark for all ablations.

Figure 16: IQM and bootstrapped CI of ablations on Clean

Figure 17: IQM and bootstrapped CI of ablations on Very Easy
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Figure 18: IQM and bootstrapped CI of ablations on Easy

Figure 19: IQM and bootstrapped CI of ablations on Medium

Figure 20: IQM and bootstrapped CI of ablations on Hard
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