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ABSTRACT

We introduce Directed Information γ-covering, a simple but general framework
for redundancy-aware context engineering. Directed information (DI), a causal
analogue of mutual information, measures asymmetric predictiveness between
chunks. If DIi→j ≥ H(Cj) − γ, then Ci suffices to represent Cj up to γ bits.
Building on this criterion, we formulate context selection as a γ-cover problem
and propose a greedy algorithm with provable guarantees: it preserves query in-
formation within bounded slack, inherits (1+ lnn) and (1− 1/e) approximations
from submodular set cover, and enforces a diversity margin. Importantly, building
the γ-cover is query-agnostic: it incurs no online cost and can be computed once
offline and amortized across all queries. Experiments on HotpotQA show that
γ-covering consistently improves over BM25, a competitive baseline, and pro-
vides clear advantages in hard-decision regimes such as context compression and
single-slot prompt selection. These results establish DI γ-covering as a principled,
self-organizing backbone for modern LLM pipelines.

1 INTRODUCTION

Ever since the seminal work of Brown et al. (2020), which introduced GPT-3 and demonstrated
the potential of few-shot prompting, prompt engineering—and later the broader field of context
engineering—has flourished. Retrieval-augmented generation (RAG) (Lewis et al., 2020) and
model–context protocols (MCP) (Hou et al., 2025) have made externalized systems the de facto
way to handle long or dynamic context, appropriating techniques from information retrieval and
vector databases. Yet despite the variety of approaches and framings, the core challenge remains un-
changed: How can we select, compress, and diversify context under strict budget constraints without
losing essential information?

While these advances have pushed the field forward, existing methods still rely heavily on sparse
heuristics, ad hoc tricks, or query-dependent signals. This reliance highlights the need for a more
principled foundation. Inspired by Heinz von Foerster’s principles of self-organization (von Foer-
ster, 1962) and Hermann Haken’s Synergetics (Haken, 1977), we argue that what is missing is a
self-organizing principle for context engineering. Like all other forms of information, context
exhibits emergent patterns that can and should be leveraged, rather than imposed through manual
heuristics. This perspective echoes parallel developments in self-supervised learning: LeCun (2022)
explicitly argued that self-supervised learning is the central organizing principle for intelligence, a
view further reinforced by the comprehensive survey of methods in Balestriero et al. (2023). We
view our work as the natural counterpart of self-supervised learning in the domain of context en-
gineering: just as self-supervised learning organizes internal representations, context engineering
demands an information-theoretic, self-organizing mechanism for external knowledge.

We propose Directed Information (DI) as this principle. DI (Massey, 1990; Kim, 2008) describes a
fine-grained, asymmetric predictive relationship among context chunks. Unlike symmetric measures
such as entropy or perplexity, DI naturally induces directionality: one chunk may nearly determine
another without the converse being true. This directional structure can be exploited to let context
self-organize, guiding which chunks should be selected, compressed, or merged.
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In this paper, we introduce Directed Information γ-covering as a self-organizing backbone for
context engineering. Our approach provides a unified solution across diverse applications including
reranking, context compression, and system prompt selection. Concretely, we make the following
contributions:

1. DI as a self-organizing principle. We introduce directed information as a fine-grained,
asymmetric measure that endows context with an emergent, self-organizing structure, in
contrast to heuristic or query-dependent approaches.

2. From query-dependent to query-agnostic. We prove that DI bounds pointwise mutual
information (PMI), bridging from expensive query-specific relevance signals to a query-
agnostic framework. Crucially, this structure incurs no online cost: γ-covers can be com-
puted once offline and amortized across all queries, enabling efficient large-scale deploy-
ment.

3. Operationalizable via γ-covering. We formulate context selection as a γ-cover problem
and design a greedy algorithm that inherits classical set cover guarantees, making DI-based
context engineering practical and efficient.

4. Theoretical guarantees. We establish bounds for soundness (information preservation),
diversity (non-redundancy margins), and approximation ( (1 + lnn) and (1 − 1/e) ), pro-
viding a principled foundation for selection, compression, and reranking.

5. Empirical validation. Across reranking, context compression, and system prompt selec-
tion on HotpotQA, we show consistent improvements over BM25 and clear advantages in
hard-decision regimes (hard compression and minimum prompt selection), confirming the
practical value of our framework.

Taken together, our results position Directed Information γ-covering as a self-organizing backbone
for context engineering, bridging the gap between theoretical information measures and practical
LLM retrieval pipelines.

2 RELATED WORK

Context engineering—the design and selection of input context—has emerged as a critical chal-
lenge in large language models (LLMs) (Mei et al., 2025). It subsumes many applications, ranging
from retrieval-augmented generation (RAG) (Lewis et al., 2020) to reranking methods (Carbonell &
Goldstein, 1998; Nogueira & Cho, 2019; Li et al., 2020). Among the most relevant lines of work
to this paper are information-theoretic approaches. Peyrard (2019) introduced an entropy-based
framework balancing redundancy, relevance, and informativeness for summarization. Khurana &
Bhatnagar (2022) studied entropy as a signal in document summarization, while Li et al. (2023)
proposed using self-information to compress context. Several recent works leverage token entropy
to manage long contexts: Yao et al. (2024) designed SIRLLM, a system for long-term memory in
infinite-length dialogues without fine-tuning, and Jung et al. (2024) used entropy with masked lan-
guage models to distill a powerful summarizer. The LLMLingua family (Jiang et al., 2023; 2024)
employs perplexity as a measure of information density for query-aware long-context compression;
their later work (Pan et al., 2024) extends the approach to task-agnostic settings via a binary clas-
sification formulation. More recently, pointwise mutual information has been proposed as a gauge
for RAG (Liu et al., 2025). Despite these advances, existing methods primarily rely on symmet-
ric measures such as entropy or perplexity. To the best of our knowledge, there is no theoretical
framework that leverages directed information (DI) (Massey, 1990; Kim, 2008). DI enables the def-
inition of fine-grained, asymmetric predictive relations between context chunks, which we exploit
to self-organize and compress context in a principled way.

Information theory has long provided a principled basis for selecting and compressing features.
Rate–distortion theory (Shannon, 1959) formalizes the idea of retaining information up to a fidelity
tolerance. The information bottleneck method (Tishby et al., 1999; Strouse & Schwab, 2017) ex-
tends this perspective, seeking minimal sufficient representations that preserve predictive power for
a target variable. Related ideas appear in approximate sufficiency and generalization analysis in
learning theory (Xu & Raginsky, 2017). In natural language processing, mutual information (MI)
has been widely used for feature selection and retrieval scoring (e.g., Liu et al. (2025)).
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The set cover problem is a classical NP-hard combinatorial problem (Karp, 1972), where the greedy
algorithm achieves a (1 + lnn)-approximation (Johnson, 1974). For the budgeted maximum cover-
age variant, greedy achieves a (1− 1/e) approximation (Nemhauser et al., 1978). These guarantees
rely on the monotonicity and submodularity of the coverage objective. Extensions of these ideas
appear in influence maximization (Kempe et al., 2003), where greedy selection of seed nodes ap-
proximates the spread of influence under diffusion models.

3 DIRECTED INFORMATION γ-COVERING

3.1 POINTWISE MUTUAL INFORMATION AND DIRECTED INFORMATION

First, we formally introduce pointwise mutual information (PMI) and directed information (DI), and
establish that PMI can be bounded by DI. This result serves as the cornerstone of our framework,
providing the bridge from query-dependent to query-agnostic measures.

Let q denote a query and {Ci} a collection of candidate chunks (token sequences). Let p⋆ be the
reference distribution (the “ideal” language model).
Definition 3.1 (Task-conditioned PMI). For any query q and chunk C, define

PMI⋆(q;C) = log
p⋆(q | C)

p⋆(q)
= I⋆(q;C).

Intuitively, the greater the mutual information shared between a context chunk and a query, the more
effectively the context can contribute to answering the query. Since PMI is query-dependent, it
introduces substantial computational overhead at runtime. A more desirable alternative is a query-
agnostic structure that can bound PMI. To this end, we propose leveraging Directed Information
(DI) (Massey, 1990) between context chunks to facilitate context selection.
Definition 3.2 (Directed Information (Massey, 1990)). For token sequence Cj = (yj,1, . . . , yj,Tj ),
the directed information from Ci to Cj is

DIi→j =

Tj∑
t=1

I⋆
(
C≤t

i ; yj,t | yj,<t

)
.

DI is a causal analogue of MI and can be used to bound both MI and PMI (proof in A.1).
Lemma 3.1 (PMI coupling bounds). For any q, Ci, Cj under p⋆,

PMI⋆(q;Ci)−H⋆(Ci | Cj) ≤ PMI⋆(q;Cj) ≤ PMI⋆(q;Ci) +H⋆(Cj | Ci).

By Massey’s decomposition (Massey, 1990; Kim, 2008), I(Ci;Cj) = DIi→j +DIj→i, and
H(Cj |Ci) = H(Cj) − I(Ci;Cj), we immediately have H(Cj |Ci) ≤ H(Cj) − DIi→j , and sym-
metrically H(Ci|Cj) ≤ H(Ci)−DIj→i. Hence the following corollaries.
Corollary 3.1.1 (Pruning rule). If PMI⋆(q;Ci) ≤ τ and DIi→j ≥ H⋆(Cj)− γ, then

PMI⋆(q;Cj) ≤ τ + γ.

Corollary 3.1.2 (Promotion rule). If PMI⋆(q;Cj) ≥ τ and DIj→i ≥ H⋆(Ci)− γ, then

PMI⋆(q;Ci) ≥ τ − γ.

The pruning and promotion corollaries are the core rules of our theoretical framework. Intuitively,
if chunk Ci strongly predicts Cj , then including Cj becomes unnecessary if Ci is already selected.
Conversely, if Cj is in the context, replacing it with Ci should yield comparable, if not superior,
performance.

3.2 EMPIRICAL PREDICTIVENESS

While the directed information DIi→j provides the theoretically correct measure of directional pre-
dictiveness, computing it exactly is not practical: it requires expectations under the true distribution
p⋆ and summing over all possible token prefixes. In practice, we approximate DIi→j by an empirical
NLL-drop estimator ŵi→j .
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Definition 3.3 (Empirical predictiveness). Given a parametric LM pθ, define the empirical predic-
tiveness score

ŵi→j =
1

Tj

(
NLLθ(Cj)−NLLθ(Cj | Ci)

)
,

where NLLθ(Cj) = −
∑Tj

t=1 log pθ(yj,t | yj,<t) denotes the negative log-likelihood.

Next we show the empirical NLL-drop estimator ŵi→j is a consistent proxy under mild assumptions.

Theorem 3.2 (Estimator consistency). Assume (A1) bounded log-likelihood error supz | log pθ(z)−
log p⋆(z)| ≤ ϵ, and (A2) per-token losses are sub-Gaussian. Then

∣∣ŵi→j − 1
Tj

Tj∑
t=1

I⋆(C≤t
i ; yj,t | yj,<t)

∣∣ ≤ ϵ+OP

(
1√
Tj

)
.

Sketch. (See A.2 for full proof) Compare the two conditional log-likelihoods tokenwise; apply As-
sumption A1 for approximation error and Hoeffding–Azuma for concentration of averages.

Theorem 3.2 justifies replacing the ideal directed information DIi→j with its empirical counterpart
ŵi→j . Building on this result, Theorem 3.3 establishes that, with high probability, our estimator
yields valid pruning guarantees (proof in A.3).

Theorem 3.3 (Safe pruning under estimation error). Let δi, δj , ηj , ϵij ≥ 0 be numbers such that
with probability at least 1− α the following hold simultaneously:∣∣P̂MI(q;Ci)− PMI⋆(q;Ci)

∣∣ ≤ δi,∣∣P̂MI(q;Cj)− PMI⋆(q;Cj)
∣∣ ≤ δj ,∣∣Ĥ(Cj)−H⋆(Cj)
∣∣ ≤ ηj ,∣∣ŵi→j −DIi→j

∣∣ ≤ ϵij .

Then, with probability at least 1− α,

P̂MI(q;Cj) ≤ P̂MI(q;Ci) + Ĥ(Cj) − ŵi→j + (δi + δj + ηj + ϵij).

With these preliminaries in place, we now introduce the γ-covering algorithm.

3.3 GREEDY γ-COVERING ALGORITHM

First, we formally define γ-covering and γ-coverage set.
Definition 3.4 (γ-covering edge). For two context chunks Ci and Cj , we say that i γ-covers j if

DIi→j ≥ H(Cj)− γ

Our γ-cover criterion follows the spirit of rate–distortion theory (Shannon, 1959) and information
bottleneck methods (Tishby et al., 1999), where sufficiency is relaxed up to a fidelity tolerance.
Here, γ quantifies a tolerance in bits: we require that the residual uncertainty H(Cj |Ci) be at most
γ. Similar “ϵ-sufficient” definitions appear in feature selection and approximate Markov sufficiency
(e.g., (Xu & Raginsky, 2017)).

Intuitively, i γ-covering j means that directed information from Ci to Cj nearly saturates the entropy
of Cj , leaving at most γ bits unexplained. In other words, Ci almost fully predicts Cj .

Definition 3.5 (γ-coverage set). Given a chunk Ci, its γ-coverage set is

Covγ(i) = {j | DIi→j ≥ H(Cj)− γ}

Remark. Because DI is directional, it may hold that i γ-covers j but not vice versa. This asymmetry
highlights the predictive directionality and is central to our framework.

4
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Input: Candidate chunks {Ci | i ∈ [1,M ]}; coverage sets Covγ(i); budget k.
Output: Representative set S.
Initialize S ← ∅, U ← [1,M ] (uncovered items);
while |S| < k and U ̸= ∅ do

pick i⋆ = argmaxi/∈S |Covγ(i) ∩ U |;
S ← S ∪ i⋆;
U ← U \ Covγ(i⋆);

end
return S

Algorithm 1: Greedy γ-covering

We now introduce the Greedy γ-covering algorithm, which operationalizes the γ-covering defini-
tions into a practical selection procedure.

Given candidate chunks {Ci} and their γ-coverage sets Covγ(i), algorithm 1 selects a representative
subset S ⊆ [1,M ]. At each step, the algorithm adds the chunk that covers the largest number
of currently uncovered items. The process repeats until either all items are covered or a budget
constraint is met.

The set cover objective f(S) = |∪i∈SCovγ(i)| is monotone and submodular (Nemhauser et al.,
1978), and the problem of finding a minimum cover is NP-hard (Karp, 1972). Greedy achieves a
(1+lnn)-approximation for unconstrained set cover (Johnson, 1974) and a (1−1/e)-approximation
for the budgeted/max-coverage variant (Nemhauser et al., 1978), as formally stated in theorem 3.4

Theorem 3.4 (Approximation guarantees of Greedy γ-covering). Let f(S) =
∣∣ ∪i∈S Covγ(i)

∣∣
denote the γ-cover objective. Then Algorithm 1 achieves a (1 + lnn)-approximation in the un-
constrained setting. Under a budget of k representatives, the algorithm guarantees a (1 − 1/e)-
approximation.

In addition, Algorithm 1 admits a simplified “static” variant, obtained by removing the update step
U ← U \ Covγ(i⋆). In this case, items are ranked once according to their singleton coverage
|Covγ(i)|, resulting in significantly lower computational cost. However, compared to the “dynamic”
version, the “static” algorithm achieves only a 1

k -approximation in the worst case (Khuller et al.,
1999), as formalized below. The “static” variant finds application in the diffusion algorithm in
section 5.1

Proposition 3.1 (Static greedy). Selecting the k items with the largest singleton coverage yields at
best a 1

k -approximation to the optimal budgeted solution in the worst case.

Algorithm 1 also admits a clustering interpretation: each selected representative Ci defines a
cluster containing all items Cj it γ-covers. The greedy procedure can thus be viewed as a merge
process: iteratively add the most influential node, merge its cluster, and continue until the budget is
exhausted.

3.4 SOUNDNESS OF γ-REPRESENTATIVES

We slightly abuse notation by allowing i to denote a node or the cluster rooted at i.

Theorem 3.5 (Soundness of γ-cover representatives). Let U be a set of candidate chunks and let
S ⊆ U be a set of representatives such that for every j ∈ U \ S there exists i ∈ S with DIi→j ≥
H(Cj) − γ (i.e., i γ-covers j). Suppose the estimation slacks (δi, δj , ηj , ϵij) hold with probability
at least 1− α as in Theorem 3.3. Then, with probability at least 1− α,

I(q;U) ≤ I(q;S) +
∑

j∈U\S

[γ + δi + δj + ηj + ϵij ]

in particular, if all slacks are bounded by δ̄,

I(q;U) ≤ I(q;S) + |U \ S|(γ + 3δ̄)

5
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Proof is in A.4. Theorem 3.5 formalizes that, once a set S γ-covers the rest, keeping only the root
of S preserves query information up to s small additive tolerance. The PMI-DI coupling and
the empricial “safe pruning” inequality are the only ingredients.

3.5 DIVERSITY MARGIN AMONG REPRESENTATIVES

Another useful property of the γ-coverage set is that it provides a lower bound on the diversity of
the selected cluster roots. Diversity, in turn, is a valuable attribute in context engineering (Lewis
et al., 2020; Zamani & Croft, 2018; Carbonell & Goldstein, 1998), as it promotes complementary
information and reduces redundancy.
Proposition 3.2 (Diversity margin). Let S be any set of representatives produced by a γ-cover (i.e.,
no i ∈ S γ-covers any other j ∈ S). Then

min
i̸=j∈S

min{H(Ci | Cj), H(Cj | Ci)} > γ.

Equivalently, using Massey’s decomposition I(Ci;Cj) = DIi→j +DIj→i,

min
i̸=j∈S

{H(Ci)−DIj→i, H(Cj)−DIi→j} > γ.

Proof is in A.5. Proposition 3.2 provides an information-theoretic margin: any two chosen represen-
tatives differ by at least γ bits of irreducible uncertainty in at least one direction. This formalizes the
intuitive “non-redundancy” (diversity) benefit of γ-covering and complements the approximation
guarantees in Theorem 3.4.

4 CONTEXT COMPRESSION AND SYSTEM PROMPT SELECTION

This section applies the γ-covering algorithm to two practical settings: context compression and
system prompt selection. Our goal is to evaluate whether the theoretical guarantees of γ-covering—
soundness and diversity—translate into empirical gains under controlled conditions.

We design experiments to carefully control sensitive hyperparameters, specifically the number of
context chunks before and after compression. To create an idealized evaluation condition, we con-
struct test inputs where the “optimal” number of relevant chunks is known. Concretely, we use the
distractor subset of HotpotQA (Yang et al., 2018), which provides both a set of gold support-
ing facts (supporting facts) and several distractor chunks. Let s denote the number of gold
supporting facts and d the number of distractors. For each example, we retrieve all s+d chunks (the
full gold + distractor set), and then compress to the following sizes:

s+ d− 1, s+ d− 2, s, s− 1, s− 2.

Note that the cases s− 1 and s − 2 constitute hard compression, since at least one gold supporting
fact is squeezed out. In contrast, all other cases are soft compression, where all gold facts can in
principle be retained.

We compare γ-covering against a query-dependent PMI baseline, which ranks chunks by PMI(q;C)
and keeps the top k. For each setting, we run 5 trials over randomly sampled 2,000 HotpotQA
examples, reporting mean± standard deviation for exact match (EM) and F1. To assess significance,
we compute paired single-tailed t-tests against the PMI baseline.

Results for context compression is summarized in Table 1. We observe that in hard compression
(s − 1, s − 2), γ-covering achieves significantly higher EM and F1 than PMI (with p < 0.05).
Here, the algorithm must discard some gold facts; γ-covering makes these decisions by favoring
chunks with maximal predictive coverage, which aligns with our theoretical soundness guarantee.
By contrast, PMI is unable to distinguish which gold chunk can safely be removed without severe
information loss.

Although PMI performs better in soft compression in our limited experiments, we note that Hot-
potQA may not be a representative dataset for this setting, as it contains distractors, which is query-
dependent, but relatively little redundancy. Moreover, PMI is query-dependent and incurs substantial
online computational cost, whereas γ-covering operates offline and its cost can be amortized.
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Table 1: Prompt compression results on HotpotQA. Compressed K (CK ) denotes the number of context
chunks remaining after compression.

CK
EM (%) ↑ F1 (%) ↑

PMI γ-cover p-value ↓ PMI γ-cover p-value ↓

s− 2 31.33± 0.69 33.43± 1.31 2.91e− 3 36.49± 0.60 38.51± 1.00 4.69e− 3

s− 1 35.09± 0.64 36.57± 1.23 9.14e− 3 40.23± 0.51 41.83± 0.83 2.50e− 3

s 46.69± 0.70 43.71± 1.38 4.93e− 4 52.00± 0.40 49.01± 1.14 6.52e− 4

s+ d− 2 52.59± 0.70 49.60± 0.59 8.67e− 4 57.33± 0.55 54.10± 0.27 2.68e− 4

s+ d− 1 56.20± 0.75 53.24± 1.09 6.89e− 4 60.61± 0.70 57.81± 0.57 8.57e− 4

For system prompt selection, we use the same experimental setup to evaluate system prompt se-
lection, this time varying the retained budget CK ∈ {1, 2}. This forces the model to keep only the
most critical instructions or exemplars. The results (table 2) mirror the compression study. When
CK = 1, γ-covering significantly outperforms PMI. With a single slot available, the query-agnostic
predictive criterion of γ-covering is better at identifying a representative prompt that subsumes the
information of others. When CK = 2, PMI performs better. Again, the average number of chunks
in the ground truth is approximately 2.4. Hence, CK = 2 can be regarded as partially within the soft
compression regime.

Table 2: System prompt selection results on HotpotQA. Compressed K (CK ) denotes the number of context
chunks in the system prompt.

CK
EM (%) ↑ F1 (%) ↑

PMI γ-cover p-value ↓ PMI γ-cover p-value ↓

1 30.38± 0.86 33.11± 1.32 7.42e− 4 35.46± 0.66 37.99± 1.12 2.14e− 3

2 43.78± 0.36 41.10± 1.21 2.21e− 3 49.08± 0.27 46.42± 1.00 2.19e− 3

5 RERANKING

Reranking is a standard post-processing step in retrieval pipelines: a base retriever produces an
initial candidate set, which is then reordered by a stronger or more specialized model (Nogueira &
Cho, 2019; Li et al., 2020; Carbonell & Goldstein, 1998; Lewis et al., 2020). While the γ-covering
algorithm (Algorithm 1) naturally induces an ordering of context chunks—which we call the γ-
covering selection order—applying this order directly in reranking does not always yield satisfying
results. The reason is that retrievers already provide query-dependent scores indicating relevance to
the input, whereas the γ-covering order is entirely query-agnostic. To combine their strengths, we
adopt a Lagrangian fusion approach (Cao et al., 2007; Metzler & Croft, 2007), interpolating between
the retriever’s relevance scores and the structural ordering induced by the γ-covering graph.

5.1 DIFFUSION ALGORITHM

Algorithm 2 presents our graph-aware reranker, DIG-R (Directional Information Graph for
Reranking). DIG-R is designed as a plug-and-play component that can be integrated into any re-
trieval system. Given a query and retriever scores, DIG-R refines the scores by diffusing relevance
over the directional information graph. The algorithm implements a single-step diffusion, though
multi-step diffusion is natural. Crucially, the computation of edge weights ŵi→j can be performed
offline and amortized across queries, ensuring scalability. See A.6 for formal complexity and termi-
nation guarantee of Algorithm 2.
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Input: Query q; retriever scores r(0) over neighborhood N ; damping α ∈ (0, 1).
Output: Top-k chunks under token budget B.
foreach i, j ∈ N do

compute ŵi→j = NLL(Cj)−NLL(Cj | Ci)
end
normalize columns of W = [ŵi→j ] to form transition matrix P ;
r(1) ← αr(0) + (1− α)P⊤r(0) ;
return top-k chunks by r(1) whose combined length ≤ B ;

Algorithm 2: DIG-R: Graph-aware Reranking via Directional Information

5.2 EXPERIMENTS OF DIG-R

We evaluate our proposed reranker on top of a strong BM25 retriever. We use pyserini (Lin
et al., 2021) with its prebuilt BM25 index (Robertson & Zaragoza, 2009) over HotpotQA (Yang
et al., 2018), specifically the beir-v1.0.0-hotpotqa.flat index. Llama3.2-3B is used as
the reader. We report both exact match (EM) and token-level F1, following standard HotpotQA
evaluation. We adopt the same protocol to run each configuration is run with five independent trials
over 2,000 randomly sampled examples.

Table 3: Reranking results on HotpotQA. Retriever K (RTK ) is the number of context chunks returned by
the retriever. Reader K (RDK ) is the number of chunks passed to the reader. We tune α = 0.88 once and fix
it across all settings. Crossed-out p-values indicate non-significance at the 95% confidence level.

RTK , RDK
EM (%) ↑ F1 (%) ↑

BM25 DIG-R p-value ↓ BM25 DIG-R p-value ↓

4, 4 30.79± 1.31 31.23± 1.13 4.05e− 3 32.71± 1.04 32.90± 0.96 5.29e− 3

8, 4 30.79± 1.31 30.99± 1.26 ���0.0771 32.71± 1.04 32.90± 1.14 0.0308

16, 8 30.63± 1.26 31.08± 1.26 ���0.0556 31.80± 1.04 31.88± 0.83 ���0.358

As shown in Table 3, DIG-R yields modest but consistent gains in both EM and F1 across config-
urations. Improvements are statistically significant when the reader consumes exactly the retrieved
set (RTK = 4, RDK = 4), where reranking directly reshapes the context order. These results echo
the observation of Liu et al. (2025) that context ordering often makes subtle differences: fusing the
retriever’s query-dependent ranking with the γ-covering selection order appears to produce contexts
that are more LLM-friendly.

6 ABLATION STUDY

First we present ablation study on MI vs. DI. Although our theoretical framework is developed
using DI, a similar formulation can be obtained by replacing DI with mutual information (MI). Since
I(Ci;Cj) = DIi→j +DIj→i, one can derive analogous bounds, albeit slightly looser than those
based on DI. We repeated several experiments with DI replaced by MI and observed a statistically
significant degradation in performance (see Table 4).

Table 4: Replacing DI with MI. Compressed K (CK ) denotes the number of context chunks remaining after
compression. Crossed-out p-values indicate non-significance at the 95% confidence level.

CK
EM (%) ↑ F1 (%) ↑

DI MI p-value ↓ DI MI p-value ↓

s− 2 33.43± 1.31 32.71± 1.13 0.108 38.51± 1.00 37.84± 0.93 5.22e− 3

1 33.11± 1.32 32.08± 1.10 1.90e− 3 37.99± 1.12 37.16± 0.95 9.68e− 4

We then ablate the dynamic γ-covering by replacing it with its static variant. The static variant
of the γ-covering algorithm ranks items once by their singleton coverage size and selects the top k,

8
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without recomputing marginal gains. This makes it computationally attractive for reranking, since
the resulting static order can be easily fused with retriever scores or other ranking signals.

Theoretically, static selection can be much weaker: it admits only a 1
k -approximation in the worst

case (Khuller et al., 1999), compared to the (1− 1/e) bound of dynamic greedy (Nemhauser et al.,
1978). Nevertheless, our empirical results suggest that such worst-case behavior rarely materializes
in practice. As shown in Table 5, the static variant exhibits only a very slight degradation com-
pared to the dynamic version, while being significantly simpler and easier to integrate into reranking
pipelines.

Table 5: Replacing dynamic clustering with static clustering. Compressed K (CK ) denotes the number
of context chunks remaining after compression. Crossed-out p-values indicate non-significance at the 95%
confidence level.

CK
EM (%) ↑ F1 (%) ↑

Dynamic Static p-value ↓ Dynamic Static p-value ↓

s− 2 33.43± 1.31 33.39± 1.37 ���0.307 38.51± 1.00 38.54± 0.99 ���0.250

1 33.11± 1.32 33.08± 1.35 ���0.187 37.99± 1.12 38.04± 1.08 ���0.136

Finally, we ablate DIG-R. Table 6 compares reranking results using γ-order with those of the DIG-
R algorithm. Accuracy decreases slightly, though the difference is not statistically significant.

Table 6: Replacing DIG-R with γ-order. Retriever K (RTK ) is the number of context chunks returned by
the retriever. Reader K (RDK ) is the number of chunks passed to the reader. Crossed-out p-values indicate
non-significance at the 95% confidence level.

RTK , RDK
EM (%) ↑ F1 (%) ↑

DIG-R γ-Order p-value ↓ DIG-R γ-Order p-value ↓

4, 4 31.23± 1.13 30.83± 1.16 ���0.102 32.90± 0.96 33.17± 1.09 ���0.241

7 DISCUSSION AND CONCLUSION

We introduced Directed Information γ-covering as a self-organizing principle for context en-
gineering. By leveraging directed information to capture asymmetric predictive relations among
chunks, we defined γ-covering as a query-agnostic structure that both preserves information (sound-
ness) and enforces non-redundancy (diversity). Through its connection to submodular set cover, the
greedy algorithm inherits (1 + lnn) and (1− 1/e) approximation guarantees, while admitting both
dynamic and static variants for different computational trade-offs.

Our empirical study across reranking, compression, and system prompt selection demonstrates con-
sistent improvements over BM25, a highly competitive retrieval baseline. Although our experiments
are still limited in scope, the results suggest that γ-covering is particularly effective when forced
to make hard decisions, such as discarding gold facts under hard compression or retaining only a
single chunk for system prompts. These are precisely the settings where our framework provides a
principled safeguard.

At the same time, we acknowledge that our experiments do not yet establish clear superiority over
query-dependent PMI. We attribute this partly to the choice of dataset: HotpotQA contains dis-
tractors, which is query-dependent, but little true redundancy, whereas redundancy is abundant in
real-world applications where γ-covering is expected to shine. Plus, PMI is query-dependent and
incurs substantial online computational cost, whereas γ-covering operates offline and its cost can
be amortized. As future work, we plan to extend evaluation to redundancy-rich settings such as
multi-document QA and long-form summarization, where γ-covering is expected to shine. By re-
ducing redundancy and stabilizing context under strict budgets, γ-covering has the potential to lower
inference costs and make LLM pipelines more reliable and efficient.

9
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A APPENDIX

A.1 PROOF OF PMI COUPLING BOUNDS

Proof of Lemma 3.1. By the chain rule for MI, I(q;Cj) = I(q;Ci) + I(q;Cj | Ci) − I(q;Ci |
Cj). Also, 0 ≤ I(q;Cj |Ci) = H(Cj |Ci) − H(Cj|q, Ci) ≤ H(Cj |Ci) and symmetrically 0 ≤
I(q;Ci|Cj) ≤ H(Ci|Cj), the inequality follows.

A.2 PROOF OF ESTIMATOR CONSISTENCY

Proof of Theorem 3.2. Fix a chunk pair (Ci, Cj) and write Cj = (y1, . . . , yT ) with T = Tj for
brevity. Let the (ideal) reference distribution be p⋆ and the parametric model be pθ. For each token
position t, define the per-token log-ratio scores

s⋆t := log p⋆
(
yt
∣∣ y<t, C

≤t
i

)
− log p⋆

(
yt
∣∣ y<t

)
, sθt := log pθ

(
yt
∣∣ y<t, C

≤t
i

)
− log pθ

(
yt
∣∣ y<t

)
.

By definition of ŵi→j , we have

ŵi→j =
1

T

T∑
t=1

(
log pθ(yt | y<t, C

≤t
i )− log pθ(yt | y<t)

)
=

1

T

T∑
t=1

sθt .

Moreover, by the standard identity for directed information(Massey, 1990),

I⋆
(
C≤t

i ; yt
∣∣ y<t

)
= Ep⋆

[
s⋆t
∣∣ y<t

]
,
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and hence the directed-information rate appearing in the theorem equals

1

T

T∑
t=1

I⋆
(
C≤t

i ; yt
∣∣ y<t

)
=

1

T

T∑
t=1

Ep⋆

[
s⋆t
∣∣ y<t

]
.

We now decompose the target deviation by a triangle inequality into an approximation term and a
stochastic term:∣∣∣∣ŵi→j −

1

T

T∑
t=1

I⋆(C≤t
i ; yt | y<t)

∣∣∣∣ = ∣∣∣∣ 1T
T∑

t=1

sθt −
1

T

T∑
t=1

Ep⋆

[
s⋆t | y<t

]∣∣∣∣
≤
∣∣∣∣ 1T

T∑
t=1

(
sθt − s⋆t

)∣∣∣∣︸ ︷︷ ︸
(A) approximation error

+

∣∣∣∣ 1T
T∑

t=1

(
s⋆t − Ep⋆ [s⋆t | y<t]

)∣∣∣∣︸ ︷︷ ︸
(B) stochastic error

.

(A) Approximation error bound. By Assumption (A1), we have a uniform log-likelihood ap-
proximation error

sup
z

∣∣ log pθ(z)− log p⋆(z)
∣∣ ≤ ε.

Applying this with z = (yt | y<t, C
≤t
i ) gives

∣∣ log pθ(yt | y<t, C
≤t
i )− log p⋆(yt | y<t, C

≤t
i )

∣∣ ≤ ε,

Similarly, with z = (yt | y<t) gives

∣∣ log pθ(yt | y<t)− log p⋆(yt | y<t)
∣∣ ≤ ε.

Hence, by the triangle inequality for differences of these two terms,∣∣ sθt − s⋆t
∣∣ = ∣∣ (log pθ(· | y<t, C

≤t
i )− log pθ(· | y<t))

− (log p⋆(· | y<t, C
≤t
i )− log p⋆(· | y<t))

∣∣
≤ 2ε.

Therefore, ∣∣∣∣ 1T
T∑

t=1

(
sθt − s⋆t

)∣∣∣∣ ≤ 1

T

T∑
t=1

2ε = 2ε.

(B) Stochastic error bound. Define the martingale difference sequence

ξt := s⋆t − Ep⋆

[
s⋆t | y<t

]
, t = 1, . . . , T,

with respect to the filtration Ft = σ(y≤t, C
≤t
i ). By construction, Ep⋆ [ξt | Ft−1] = 0. Assumption

(A2) states per-token losses are sub-Gaussian; since s⋆t is a difference of two such log-likelihood
terms, ξt is also sub-Gaussian (with some proxy variance parameter σ2). Hence, by the Azuma–
Hoeffding (see, e.g., Boucheron et al. (2013)) inequality for martingale differences,

P

(∣∣∣∣ 1T
T∑

t=1

ξt

∣∣∣∣ ≥ u

)
≤ 2 exp

(
− c T u2

σ2

)
for all u > 0,

for a universal constant c > 0. Equivalently,

1

T

T∑
t=1

(
s⋆t − Ep⋆ [s⋆t | y<t]

)
= OP

( 1√
T

)
.
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Conclusion. Combining (A) and (B), we obtain∣∣∣∣ŵi→j −
1

T

T∑
t=1

I⋆(C≤t
i ; yt | y<t)

∣∣∣∣ ≤ 2ε + OP

( 1√
T

)
.

In practice, autoregressive LMs operate with a finite context window. Assuming truncation error is
negligible (A3), the same consistency guarantee holds with an added δtrunc term.

A.3 PROOF OF SAFE PRUNING

Proof of Theorem 3.3. Work on the high-probability event E where all four estimation bounds hold.
By Lemma 3.1 and triangle bounds,

P̂MI(q;Cj) ≤ PMI⋆(q;Cj) + δj ≤ PMI⋆(q;Ci) +H⋆(Cj)−DIi→j +δj

≤
(
P̂MI(q;Ci) + δi

)
+
(
Ĥ(Cj) + ηj

)
−
(
ŵi→j − ϵij

)
+ δj

= P̂MI(q;Ci) + Ĥ(Cj)− ŵi→j + (δi + δj + ηj + ϵij).

Since P(E) ≥ 1− α, the claim follows.

A.4 PROOF OF SOUNDNESS OF γ-REPRESENTATIVES

Proof of Theorem 3.5. By lemma 3.1,

PMI(q;Cj) ≤ PMI(q;Ci) +H(Cj | Ci)

We also have H(Cj | Ci) ≤ H(Cj) + DIi→j , hence if i γ-covers j we have PMI(q;Cj) ≤
PMI(q;Ci) + γ in the ideal (p⋆) case. Incorporating estimation, Theorem 3.3 gives the high-
probability bound

PMI(q̂;Cj) ≤ PMI(q̂;Ci) + Ĥ(Cj)− ŵi→j + (δi + δj + ηj + ϵij),

and under the γ-cover test ŵi→j ≥ Ĥ(Cj)− γ this becomes

PMI(q̂;Cj) ≤ PMI(q̂;Ci) + γ + (δi + δj + ηj + ϵij) (1)

Now order the items of U \ S arbitrarily as j1, . . . , jm and apply the chain rule / subadditivity for
mutual information to expand I(q;U) by adding Cjt one at a time. Each increment is I(q;Cjt |
S ∪ j<t) ≤ PMI(q;Cjt); substitute the bound (1) with its representative i ∈ S, and sum over
t = 1, . . . ,m. This yields the claimed bound relative to I(q;S) with the additive slacks. The
uniform-slack corollary follows immediately.

A.5 PROOF OF DIVERSITY MARGIN

Proof of Proposition 3.2. By definition of a representative set for a γ-cover, for any distinct i ̸= j ∈
S neither i γ-covers j nor j γ-covers i. Thus DIi→j < H(Cj) − γ and DIj→i < H(Ci) − γ.
Using H(Cj | Ci) = H(Cj)− I(Ci;Cj) ≤ H(Cj)−DIi→j (and symmetrically), both conditional
entropies exceed γ, establishing the claim.

A.6 PROOF OF DIFFUSION ALGORITHM COMPLEXITY AND TERMINATION

In Algorithm 2, computing all pairwise ŵi→j requires O(M2T ) forward passes, where M is the
candidate pool size and T the average chunk length. The diffusion step costs O(M2), reducible to
O(MK) if each node retains only its top-K predictive neighbors. Iterating the update

r(t+1) = αr(0) + (1− α)P⊤r(t)
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yields an affine contraction with constant 1 − α, guaranteeing a unique fixed point and geometric
convergence by the Banach fixed-point theorem (Page et al., 1999). Theorem A.1 summarizes the
computational and convergence properties.
Theorem A.1 (Algorithmic complexity and termination). Consider DIG-R with neighborhood size
M and chunk length ≤ T .

1. Edge computation costs O(M2T ) forward tokens, batchable across GPUs.

2. Propagation costs O(M2) (or O(MK) for sparse K-Nearest Neighbor edges).

3. With damping α ∈ (0, 1), the propagation step is a contraction mapping and converges to
a unique fixed point in O(log(1/ε)) iterations.

Proposition A.1 (Convergence of the damped propagation). Let P ∈ RM×M be column-stochastic
(each column sums to 1 and entries are nonnegative), fix α ∈ (0, 1), and define

F (r) := α r(0) + (1− α)P⊤r, r ∈ RM .

Then F is a contraction mapping on (RM , ∥ · ∥1) with contraction factor (1 − α), hence admits a
unique fixed point r⋆ and the iteration r(t+1) = F (r(t)) converges to r⋆ at a geometric rate:

∥r(t) − r⋆∥1 ≤ (1− α)t ∥r(0) − r⋆∥1,

so that ∥r(t) − r⋆∥1 ≤ ε after t = O(log(1/ε)) steps.

Proof sketch. For any r, u ∈ RM ,

∥F (r)− F (u)∥1 = (1− α) ∥P⊤(r − u)∥1.

Since P is column-stochastic, P⊤ is row-stochastic and is a nonexpansive linear operator in ℓ1:

∥P⊤v∥1 ≤ ∥v∥1 for all v ∈ RM .

Therefore,
∥F (r)− F (u)∥1 ≤ (1− α) ∥r − u∥1,

so F is a contraction with constant (1−α) < 1. By the Banach fixed-point theorem, F has a unique
fixed point r⋆ and the Picard iteration r(t+1) = F (r(t)) converges to r⋆ with

∥r(t) − r⋆∥1 ≤ (1− α)t ∥r(0) − r⋆∥1.

Solving (1− α)t∥r(0) − r⋆∥1 ≤ ε yields t ≥ log
(
∥r(0)−r⋆∥1/ε

)
log(1/(1−α)) = O(log(1/ε)).
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