

000 001 002 003 004 005 SRUM: FINE-GRAINED SELF-REWARDING FOR 006 UNIFIED MULTIMODAL MODELS 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100

Paper under double-blind review

ABSTRACT

Recently, remarkable progress has been made in Unified Multimodal Models (UMMs), which integrate generation and understanding capabilities within a single framework. However, a key challenge remains: a model’s powerful understanding often fails to transfer into complex image generation. This often occurs because the understanding and generation modules are trained separately or leading an internal conflict during co-training. As a result, a model can accurately assess a prompt against an image but cannot generate a correct image from that same prompt. To resolve this challenge, we introduce SRUM, the self-rewarding post-training framework designed to improve the model to align its generation with its understanding module. Without needing any new human-labeled data, SRUM creates a self-improvement loop where the model’s own understanding module acts as an internal “evaluator”, providing corrective feedback by rewarding to its generation module. Our core innovation is a two-part reward system that offers comprehensive guidance: comprising a **global reward** for overall compositional structure and a **local reward** for fine-grained, object-level fidelity. This multi-scale feedback proves critical for complex generation. SRUM sets a new state of the art and strong generalization, boosting performance as on T2I-CompBench from 82.18 to **88.37** and on T2I-ReasonBench from 40.7 to **50.4** in image accuracy. Overall, our work establishes a powerful new paradigm for enabling the UMMs’ understanding module to guide its own generation.

1 INTRODUCTION

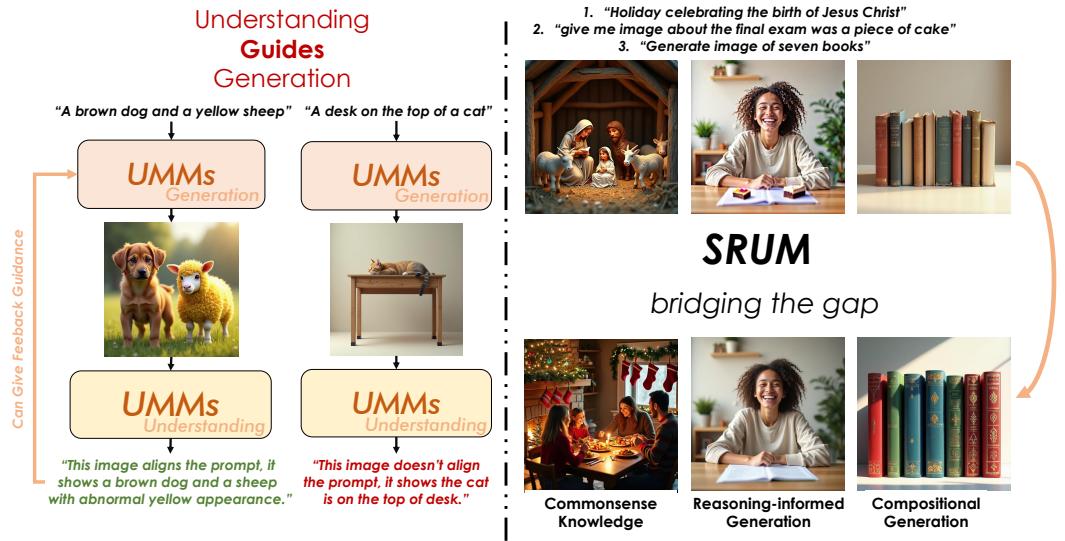
Text-to-Image (T2I) models have achieved remarkable progress in generating high-quality and diverse images from given prompts (Ramesh et al., 2021; Saharia et al., 2022; Podell et al., 2024). However, they often fail to accurately interpret instructions involving world knowledge, complex spatial relationships, detailed attribute binding, or compositional reasoning (Huang et al., 2023). These limitations point to a fundamental lack of deep semantic understanding of T2I models.

To address this challenge, researchers have developed Unified Multimodal Models (UMMs) based on large multimodal models. UMMs represent a promising direction by integrating both understanding and generation capabilities within a single framework (Wu et al., 2024b;a; Dong et al., 2024; Xie et al., 2024). By sharing a common backbone for the two core capabilities of multimodal understanding and generation, UMMs possess the inherent potential for synergy, offering a path to resolve the comprehension challenges that are difficult for standard T2I models.

A key challenge for UMMs is that their training methods often fail to unlock the full potential of their advanced architecture. For simplicity, the most common strategy is to train the understanding and generation modules separately (Tong et al., 2024a; Chen et al., 2025b; Pan et al., 2025). While practical, this approach creates a disconnect, preventing the model’s understanding capabilities from being effectively transferred to its generation module. Alternatively, some models jointly train two modules but the gradient conflicts between different tasks make them unable to promote each other (Xie et al., 2025b; Wang et al., 2024d). This leads a significant capability gap: the model’s understanding module consistently outperforms its generation capabilities. Model can often confirm if an image matches a prompt but can’t generate the image from the text alone Figure 1. Consequently, the key to unlocking the full potential of UMMs lies in bridging this internal gap. The challenge is to harness the model’s innate understanding to guide and improve its generative process (Zhou et al.,

054 2024). Targeting this pivotal challenge, we introduce a novel self-rewarding method during the
 055 post-training stage called **Self-Rewarding for Unified Multimodal Models (SRUM)**.
 056

057 Our core insight is that the solution to this internal conflicts lies within the UMMs’ architecture
 058 itself. The model’s **generation module** can act as the “generator”, while its powerful **understanding**
 059 **module** with function of grounding and judging can serve as the internal “evaluator”. This
 060 establishes a natural, closed-loop system for self-rewarding without scoring by external judgment
 061 model. However, a simple, holistic score is insufficient for complex compositional tasks. As our
 062 ablation studies later confirm, such coarse feedback fails to provide the nuanced guidance required for
 063 meaningful improvement. Therefore, we introduce a fine-grained judgment and scoring framework
 064 that decomposes the internal reward into two synergistic components. First, to ensure the overall
 065 scene structure aligns with the prompt, we introduce a **global reward** to assess compositional co-
 066 herence. Second, to enforce precise, object-level fidelity, we employ a **local reward** that provides
 067 fine-grained feedback on specific image regions, addressing attribute binding and semantic accuracy.



085 Figure 1: The example on the left indicates that the capability of the current UMMs’ understanding
 086 module surpasses that of its generation module: the understanding module can reasonably identify
 087 mismatches between the generated content and the prompt, whereas the generation module is prone
 088 to producing incorrect candidates based on the given prompt in relevant cases. This not only high-
 089 lights a gap between understanding and generation but also reveals the potential for understanding
 090 to guide generation. Inspired by this insight, we propose **SRUM** to bridge this gap, particularly in
 091 complex generation domains..

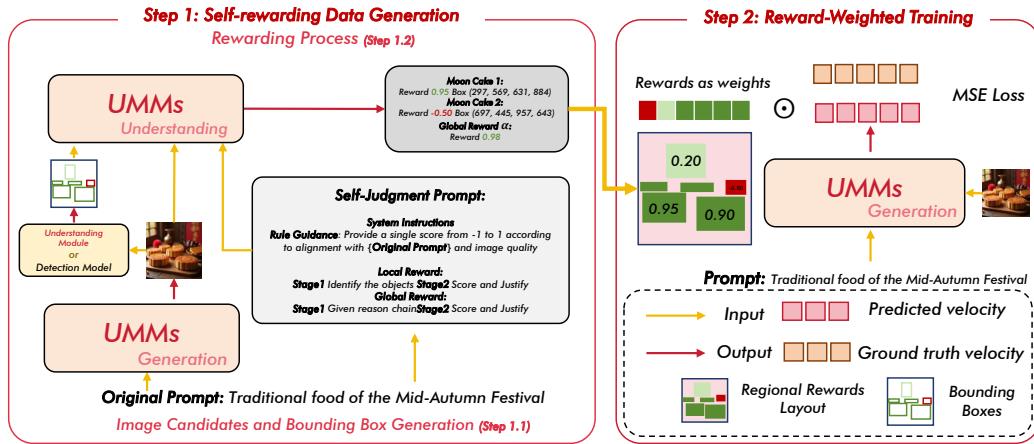
092 Through extensive experiments, we demonstrate that our approach significantly improves the com-
 093 position, reasoning, and visual fidelity of UMM, and demonstrates generalization across in-domain
 094 and out-of-domain settings. SRUM achieves SOTA results on the T2I-CompBench and T2I-
 095 ReasonBench, improving the overall score of a strong baseline model from 82.18 to 88.37 in com-
 096 position and from 40.7 to 50.4 in image accuracy with given prompts. Our key contributions can be
 097 summarized as follows:

- 098 1. We are the first to propose and implement a more mature self-rewarding framework for UMMs
 099 during post-training stage, successfully bridging the gap between their advanced understanding
 100 and generation modules through a self-improvement loop.
- 102 2. We introduce a novel decomposed reward design that combines global compositional assessment
 103 with local object-level feedback, providing multi-scale and fine -grained guidance that our abla-
 104 tions show is critical for performance.
- 105 3. We not only achieve superior performance on complex compositional benchmarks but also
 106 demonstrate strong generalization to in-domain and out-of-domain tasks. Ultimately, SRUM pro-
 107 vides a powerful paradigm for the under- standing module to guide the generation module of
 UMMs.

108
109
110
111
112
2 RELATED WORKS113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
2.1 ARCHITECTURES FOR UNIFIED MULTIMODAL MODELS131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
Unified Multimodal Models (UMMs) have emerged as a prominent research direction, aiming to integrate diverse tasks like visual understanding and generation within a single, end-to-end trained architecture. Recent architectural paradigms can be broadly categorized. The **Purely Autoregressive (AR)** approach extends the next-token prediction paradigm of LLMs to visual data, treating images as a sequence of discrete tokens (Team, 2024; Wang et al., 2024d). A key refinement in this area involves decoupling the visual encoders, using a semantic encoder for understanding tasks while retaining a reconstruction-based tokenizer for generation (Wang et al., 2024e; Team et al., 2025), as demonstrated by Janus (Wu et al., 2024a). Show-O further refines this by integrating a discrete-diffusion schedule to improve token prediction (Xie et al., 2024). More prevalent are hybrid architectures that combine the strengths of AR and diffusion models. One major category consists of **Sequential AR-Diffusion** models, where an AR component generates an intermediate representation that conditions a diffusion-based decoder. In some variants, a pre-trained MLLMs is kept frozen for reasoning, and its features are routed via learnable queries or hidden states to an external image generator (Tong et al., 2024a; Shi et al., 2024; Lin et al., 2025). This cascaded design effectively leverages powerful existing models. A more integrated approach uses a **Unified Transformer Backbone** (Zhao et al., 2024; Chen et al., 2024a), where both AR and diffusion objectives are optimized simultaneously within a single transformer. To improve scalability, the **Mixture-of-Transformers (MoT)** paradigm has been introduced (Liang et al., 2025; Deng et al., 2025). This approach, exemplified by Bagel, employs a sparse, modular design where specialized experts handle different modalities but share information through a common attention mechanism.133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
2.2 POST-TRAINING STAGE IN UMMs153
154
155
156
157
158
159
160
161
In addition to architectural innovations, considerable research has focused on post-training strategies to enhance the generative abilities of UMMs. Methods such as Chain-of-Thought (CoT) and test-time verification introduce explicit reasoning steps or iterative output validation (Guo et al., 2025b; Fang et al., 2025; Duan et al., 2025). However, these often depend on external models and do not fundamentally improve the native generative capacity of the UMMs. Reinforcement learning techniques—including Direct Preference Optimization (DPO) and Group Relative Policy Optimization (GRPO)—leverage human or automated feedback to refine generation policies. While effective, these require carefully curated paired data and delicate advantage function tuning with text dependent rewards (Rafailov et al., 2023; Guo et al., 2025a). Reconstruction Alignment (RecA) introduces a post-training method based on reconstruction loss, yielding improved semantic understanding (Xie et al., 2025a). Some work has also attempted to use rule-level rewards for guidance, but this is not universal and needs to be designed for different tasks (Hong et al., 2025; Mao et al., 2025). In contrast, SRUM operates without additional data generation. It leverages the model’s inherent understanding to score self-generated samples and incorporates them into training, thereby enhancing performance.151
152
153
154
155
156
157
158
159
160
161
2.3 SELF-REWARDING IN UNDERSTANDING MODELS153
154
155
156
157
158
159
160
161
Self-rewarding mechanisms have emerged as a significant paradigm for enhancing the understanding and reasoning capabilities of MLLMs. These approaches aim to reduce reliance on external preference data by enabling models to generate their own reward signals, thereby facilitating continuous self-improvement. For instance, CSR (Zhou et al., 2024) achieves zero-cost self-enhancement through iterative online DPO with visual constraint rewards. SRPO (Choi et al., 2024) introduces a two-stage reflective reward mechanism, significantly improving the quality of reflection and answer accuracy in complex reasoning tasks. R1-Reward leverages process consistency rewards and stable reinforcement learning algorithms to enhance long-range reasoning stability (Guo et al., 2025a). Collectively, these works signal a paradigm shift from external rewards to self-criticism and optimization. Our SRUM framework proposes a more holistic approach.

162 3 CONSTRUCTION OF SELF-REWARDING UNIFIED MULTIMODAL MODELS 163 STEP BY STEP 164

165 This section details the pipeline of our SRUM. Our process begins with the generation of high-
166 quality image candidates and their corresponding bounding boxes using a Unified Multimodal Mod-
167 els (UMMs) (Section 3.1). These candidates are then meticulously evaluated by a dual-level prompts
168 that assesses both local fidelity and global composition. Subsequently, the scores from this eval-
169 uation are transformed into a dense, spatially-aware reward map during the rewarding process (Sec-
170 tion 3.2). Finally, this reward map is integrated into a novel reward-weighted training, which allows
171 for targeted, region-specific model refinement while preventing reward hacking (Section 3.3).



186 Figure 2: Showcase of the pipeline of the **SRUM**. Including the rewards generation steps, the design
187 of regional rewards, and how to apply them to the generation end for training.
188

190 3.1 IMAGE CANDIDATES AND BOUNDING BOX GENERATION

192 As depicted in Figure 2, our pipeline begins by synthesizing a set of candidate images using a Unified
193 Multimodal Models (UMMs) conditioned on input prompts. To ensure high-fidelity outputs, this
194 generative process leverages the “think” mode or called CoT mode of the Bagel (Deng et al., 2025).
195 Subsequently, we produce bounding box proposals for each image using either the UMMs’ internal
196 understanding module or a lightweight external detector like SAM (Kirillov et al., 2023). Finally,
197 to enable precise grounding and reward modeling, the understanding module filters these proposals,
198 retaining only those semantically aligned with the initial prompt.

199 3.2 REWARDING PROCESS

200 **Self-Judgment Prompt Design.** Then, we devise a dual-level judgment mechanism to assess im-
201 age quality and prompt alignment, building upon recent work in automated evaluation (Xu et al.,
202 2023; Zhang et al., 2023b; Lin et al., 2024; Ghosh et al., 2023). Our approach first performs a local
203 judgment of object fidelity and artifacts using a strict $[-1.0, 1.0]$ scoring scale, where a man-
204 datory “Reason” field elicits an interpretable rationale akin to chain-of-thought prompting (Guo et al.,
205 2025b; Fang et al., 2025). We enforce semantic grounding by ensuring identified objects correspond
206 to prompt keywords, and a non-linear penalty maps severe distortions to a high-penalty negative
207 range (e.g., -0.9 to -0.5) to reflect human visual sensitivity. Subsequently, a global judgment eval-
208 uates the holistic composition and spatial alignment with the prompt’s intent. Crucially, for prompts
209 lacking specific compositional directives (e.g., “a picture of a tree”), a neutral score range (e.g., -0.4
210 to 0.4) is applied. This avoids unfairly penalizing plausible layouts when no specific arrangement
211 was requested, thereby ensuring a solid assessment.

212 **Rewarding Process.** Next, we leverage the UMMs’ inherent grounding capabilities to generate
213 fine-grained reward scores for all relevant image regions, including both foreground objects and
214 background, that are relevant to the given prompt. Our scoring mechanism consists of both a local
215 and a global reward. To ensure meaningful aggregation, the global reward is normalized to the $[0, 1]$
range. This prevents the product of two negative values from yielding a spurious positive reward

216 signal (see Appendix Section D for details). All regional rewards are ultimately aggregated into a
 217 dense reward map, enabling its integration into our training.
 218

219 3.3 REWARD-WEIGHTED TRAINING

220 The core of our reward-weighted training is the reward-driven term \mathcal{L}_r , which operates on the
 221 model’s velocity prediction v_θ from a standard practice in flow-based diffusion frameworks (Liu
 222 et al., 2023b; Lipman et al., 2023; Esser et al., 2024). This term is modulated by two distinct feed-
 223 back signals: a regional reward map $R \in [-1, 1]$ for localized refining, and a global scalar α that
 224 assesses overall compositional quality, provided by an understanding module. The product of these
 225 signals, $\alpha \cdot R$, weights the squared error between the predicted velocity v_θ and the target velocity de-
 226 rived from the original latent x_0^{gt} . This mechanism enables fine-grained control, encouraging preser-
 227 vation where feedback is positive ($\alpha \cdot R > 0$) and repulsion where it is negative ($\alpha \cdot R < 0$). This use
 228 of rewards to guide the training objective is inspired by preference optimization techniques (Rafailov
 229 et al., 2023):
 230

$$\mathcal{L}_r = \mathbb{E} \left[\alpha \cdot R \odot (v_\theta - (\epsilon - x_0^{\text{gt}}))^2 \right] \quad (1)$$

231 Second, to ensure that the output of the model conforms to the desired overall structure and prevents
 232 reward hacking, we introduce a constraint term. This term acts as a regularizer by penalizing the
 233 squared ℓ_2 distance to the target velocity of the artifact-free and x_0^{gt} :
 234

$$\mathcal{L}_{\text{ref}} = \mathbb{E} \left[\|v_\theta - (\epsilon - x_0^{\text{gt}})\|^2 \right] \quad (2)$$

235 The final training objective is a weighted sum of these two losses, balanced by a tunable hyperpa-
 236 rameter, λ_c :
 237

$$\mathcal{L}_{\text{Total}} = \mathcal{L}_r + \lambda_c \cdot \mathcal{L}_{\text{ref}} \quad (3)$$

238 This composite design enables targeted local refinement while maintaining global coherence. It also
 239 inherently prevents reward hacking, thereby safeguarding the generated output distribution against
 240 significant distortion.
 241

242 4 ANALYSIS OF SELF-REWARDING: GENERALIZATION AND PRINCIPLES

243 We validate our Self-Rewarding for Unified Multimodal Models (SRUM) method across various
 244 unified multimodal models (UMMs) and evaluation benchmarks. In particular, we investigate the
 245 following aspects:
 246

- 247 • **Generality and Performance:** SRUM achieves state-of-the-art (SOTA) performance on complex
 248 compositional text-to-image generation benchmark and delivers consistent performance gains
 249 across different UMM frameworks, demonstrating its broad applicability. (Table 1)
- 250 • **Component Efficacy:** Ablation studies confirm that each component of the SRUM framework
 251 makes a critical contribution to the overall performance. (Figure 3)
- 252 • **Generalization:** SRUM demonstrates robust in-domain and out-of-domain generalization, indi-
 253 cating that its improvements stem from enhanced reasoning capabilities rather than data memo-
 254 rization. (Tables 3 to 5)

255 4.1 EXPERIMENTAL SETUP

256 **Model Architectures.** We evaluate SRUM on two powerful open-source UMMs. All experiments
 257 are conducted as a post-training phase, starting from the official pre-trained weights. **Bagel** (Deng
 258 et al., 2025) is a versatile UMM that serves as our primary model for comprehensive analysis, in-
 259 cluding main results, ablation studies, and generalization tests. We evaluate both its standard and
 260 Chain-of-Thought (CoT) inference modes. **Blip3o** (Chen et al., 2025a) is another state-of-the-art
 261 UMM used to validate the generality and effectiveness of our proposed SRUM method.
 262

263 **Datasets and Benchmarks.** Our experiments leverage several specialized datasets for training
 264 and evaluation to ensure a thorough and multi-faceted analysis. For consistent and objective
 265 scoring across all generation benchmarks, we employ QwenVL-2.5-72B (Bai et al., 2025) as the
 266 designated multimodal evaluator. Our experiment begins with instruction data sourced from the
 267

270 T2I-CompBench training set (Huang et al., 2023). For our primary evaluation, we use the standard split of the same benchmark to compare SRUM-enhanced models against leading T2I and UMMs’ baselines. To assess generalization, we evaluate the model’s in-domain transferability on GenEval (Ghosh et al., 2023) and WISE (Niu et al., 2025), which feature similar compositional challenges, without any fine-tuning. Furthermore, we test broader, out-of-domain reasoning capabilities on T2I-ReasonBench (Sun et al., 2025), a benchmark containing complex prompts that require knowledge beyond the training distribution.

277 4.2 MAIN RESULTS

279 Our main results are presented in Table 1, which compares leading Text-to-Image (T2I) models
280 and Unified Multimodal Models (UMMs) on the T2I-CompBench standard split. To ensure a sta-
281 ble and consistent assessment, we employed the QwenVL-2.5-72B (Bai et al., 2025) model as the
282 multimodal evaluator [for evaluating the results, not for our rewarding algorithm](#).

283 The results clearly show that incorporating our method, SRUM, yields substantial and consistent
284 performance gains across nearly all compositional categories. Notably, Bagel₊SRUM with Chain-
285 of-Thought (CoT) achieves the highest overall score among UMMs at 88.37. This represents a
286 significant 3.91-point improvement over its base CoT version and a 6.19-point gain over the standard
287 Bagel model, affirming SRUM’s ability to enhance these architectures.

288 A detailed breakdown reveals that SRUM’s impact is most pronounced in categories requiring so-
289 phisticated structural and logical reasoning. For instance, BLIP3o₊SRUM sets a new SOTA score
290 of 93.88 in the Spatial category, demonstrating superior handling of object positioning. Similarly,
291 Bagel₊SRUM with CoT reaches a new peak of 88.60 in 3D Spatial, indicating an improved grasp
292 of complex layouts. These gains extend to other challenging tasks, with both Bagel₊SRUM variants
293 showing marked improvement in Numeracy.

294 However, despite the global performance boost, we observed a nuanced trade-off. For example,
295 while BLIP3o₊SRUM excels in structural tasks, it exhibits a slight performance decrease in the Texture
296 category compared to its baseline.

297 **Table 1: Comprehensive T2I-CompBench Results.** This table includes T2I (Labs, 2024; Esser
298 et al., 2024; Podell et al., 2024) and Unified Multimodal Models (Chen et al., 2025b; Xie et al.,
299 2025b). Models incorporating the SRUM are denoted with a subscript. **Bold values** indicate the
300 highest score in each respective column under. **Green** values indicate the improvements.

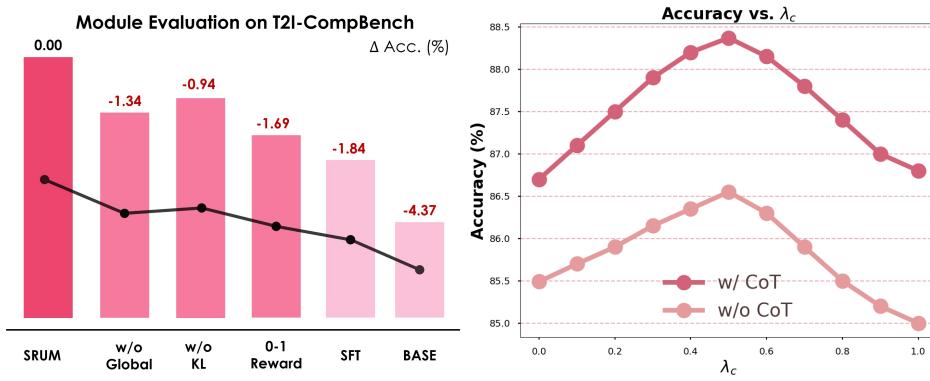
302 Model	3d spatial	Color	Complex	Nonspatial	Numeracy	Shape	Spatial	Texture	Overall
<i>T2I Models</i>									
304 FLUX.1-dev	76.39	90.63	83.51	87.47	75.30	80.20	84.23	87.07	83.10
305 FLUX.1-schnell	79.38	84.53	81.96	85.55	72.82	82.20	85.49	86.38	82.29
306 SD-3-medium	77.83	91.63	84.73	86.12	72.80	83.72	88.20	89.03	84.26
307 SD-xl-base-1	72.25	77.75	75.00	85.28	57.14	72.18	77.08	78.38	74.38
<i>Unified Multimodal Models</i>									
310 Janus-Pro	76.17	84.25	80.28	80.47	56.43	65.14	79.67	69.67	74.01
311 Show-o2	88.61	87.73	87.88	85.91	69.74	73.99	86.60	82.17	82.83
312 OmniGen2	82.21	92.22	86.87	88.51	72.00	83.95	90.07	90.88	85.84
313 BLIP3o	81.73	89.92	85.55	84.78	71.67	83.75	92.47	87.45	84.66
314 Bagel	77.98	89.30	83.32	85.03	70.40	81.94	81.52	87.93	82.18
315 Bagel (CoT)	84.66	88.85	86.10	85.64	75.36	84.33	82.71	88.07	84.46
316 BLIP3o ₊ SRUM	83.78	90.22	86.57	85.10	74.52	85.44	93.88	86.52	85.75
317 Bagel ₊ SRUM	83.10	92.90	88.69	88.47	78.52	84.23	86.92	89.57	86.55
318 Bagel ₊ SRUM (CoT)	88.60	92.90	91.31	90.48	80.12	84.47	89.93	89.15	88.37

319 4.3 EMPIRICAL STUDY

320 We primarily employed three basic models for Bagel analysis: **Base Model**, Bagel’s open-source
321 weights are used directly for inference. **SFT Model**, Bagel generates images based on training
322 instructions, then directly trains the model itself to create a self-training SFT model. **SRUM Model**,

324 Bagel generates images according to the training instructions, and then uses the SRUM training to
 325 obtain the final evaluation model.
 326

327 **Ablation Results.** To further verify the effectiveness of our proposed reward configuration, we
 328 perform an ablation study on the results of Bagel on T2I-CompBench by systematically modifying
 329 the reward scheme. As shown in the Figure 3, we experimented with several variants, including a
 330 sample-level reward, a binarized reward, the removal of the KL constraint, and the omission of the
 331 **global reward** component. Our findings highlight that the full SRUM model achieves the highest
 332 overall accuracy, with the ablation results confirming the critical role of each component. The omis-
 333 sion of the global reward led to a notable decrease in performance, underscoring its importance for
 334 capturing the overarching coherence and compositional structure of the generated images. While our
 335 findings highlight that the **KL constraint** is crucial for the model’s performance, its removal resulted
 336 in a less severe drop, proving its value in ensuring training stability. Furthermore, using a simple
 337 **binarized reward** led to a significant performance degradation, which reinforces the necessity of a
 338 continuous and fine-grained reward signal to provide richer gradient information.
 339



351 **Figure 3: Left:** Module Evaluation. We report the accuracy drop (Δ Acc. %) from our SRUM.
 352 Specifically, 0-1 Reward represents the sparse reward. **Right:** Hyperparameters Evaluation on T2I-
 353 CompBench. We report the accuracy in different λ under two models: CoT and without CoT.

354 In the Figure 3 Right, we analyze the effect of different constraint ratios on the experimental out-
 355 comes. Across both Bagel with CoT and without CoT configurations, the results consistently indi-
 356 cate that $\lambda_c = 0.5$ is the most effective choice. Consequently, we set this hyperparameter as fixed
 357 one in our subsequent experiments for more significant evaluation results.
 358

359 Finally, relying on a basic **sample-level reward** yielded the most significant performance drop
 360 among all variants, thereby validating that the complexity of the T2I-CompBench task demands
 361 a more holistic and comprehensive reward scheme. In conclusion, this systematic ablation study
 362 confirms that the efficacy of our proposed framework stems from the synergistic contributions of
 363 each reward component. This aligns with conclusions from post-training methods like Direct
 364 Preference Optimization (DPO) (Rafailov et al., 2023) where such a constraint is essential to prevent
 365 the model from significant policy deviation due to reward hacking. Additionally, we also explore
 366 the binarized rewards like Dance-GRPO (Xue et al., 2025). We observed that this type of reward
 367 can underperform SFT and is ill-suited for regional feedback, which highlights the value of a dense
 368 reward structure.

369 **Further Analysis.** For a more granular investigation, we leverage the same powerful MLLM like
 370 QwenVL-2.5-72B from our primary evaluation to conduct a deeper analysis of our method and the
 371 baseline. Specifically, we employ the MLLM to perform a step-by-step scoring of the inference
 372 process. The evaluation is divided into two metrics: (1) layout, which assesses the concordance of
 373 the overall structure and quality, and (2) detail, which measures the fidelity of the generated fine-
 374 grained details. Our ablation study, visualized in Figure 4, systematically isolates the effects of each
 375 component. We observe that the “think” mode primarily bolsters the initial layout generation by
 376 improving the high-level reasoning process. The global reward component of SRUM then further
 377 refines this layout during the early stages of inference. In contrast, a baseline using only this global
 378 reward (labeled ‘sample reward’) yields negligible improvements in detail fidelity. This highlights
 379 a crucial finding: the fine-grained, local rewards are essential for the subsequent optimization of

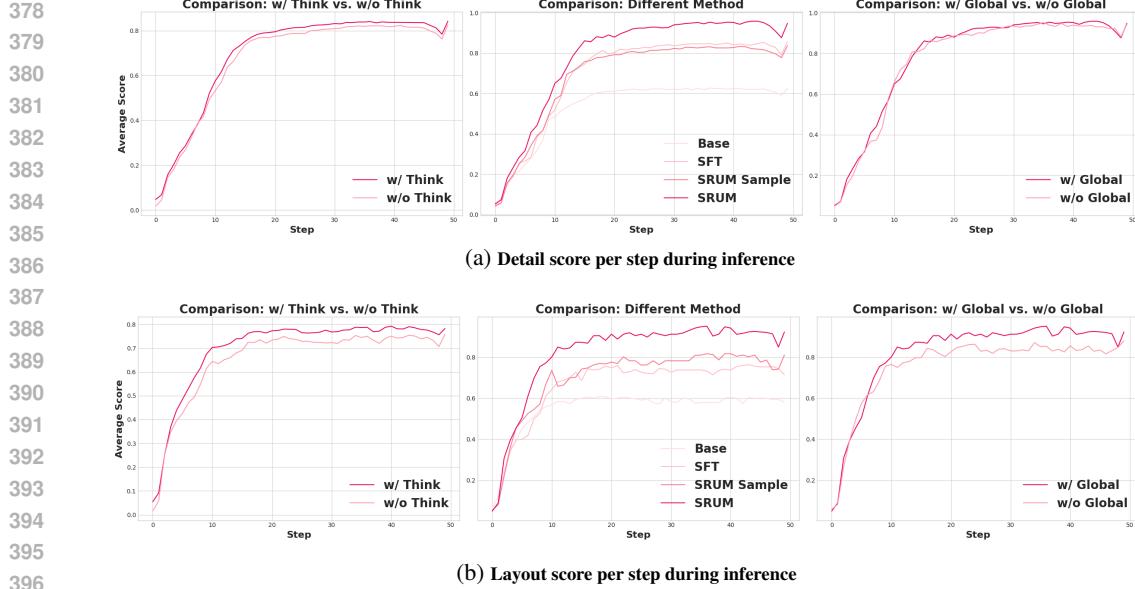


Figure 4: Score per step during inference in Bagel with its ablation models.

details, with their benefits becoming most apparent in the later inference steps. Collectively, these results demonstrate that our dual global-local reward mechanism provides a multi-stage optimization path: first establishing a coherent layout and then progressively refining the details. This synergistic approach allows SRUM to significantly outperform standard SFT on same self-generated data.

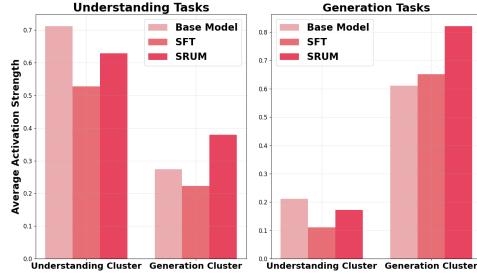


Figure 5: Functional cluster activation patterns of the different models (Bagel, SFT and SRUM) on understanding and generation tasks. The average activation strength of Understanding and Generation clusters is shown.

	Base	SFT	SRUM
MME-P	1687	1682	1673
MME-C	701	683	677
MMBench	85.0	84.6	84.8
MM-Vet	67.2	66.5	67.0
MMMU	55.3	55.0	55.2
MathVista	73.1	72.8	73.0
MMVP	69.3	68.7	70.0

Table 2: Comparison with the results of different models (Bagel, SFT and SRUM) on understanding benchmarks. MME-P and MME-C represents the perception and the cognition part respectively.

Impact on Understanding Module. Table 2 As shown in Table 2, our method has a minimal impact on the model’s core understanding capabilities. On prevalent benchmarks such as MME (Fu et al., 2023), MM-Vet (Yu et al., 2024b), MMBench (Liu et al., 2024b), MMMU (Yue et al., 2024), and MathVista (Lu et al., 2023), the results exhibit only marginal fluctuations compared to the base version. Notably, performance on MMVP (Tong et al., 2024b) even improves which consistent with prior works (Tong et al., 2024a; Wang et al., 2024c;a). This indicates that our method holds significant potential for further iterative enhancement. In Figure 5, we track the activation dynamics of two distinct functional clusters, Understanding and Generation, across Base model, SFT and SRUM. In Bagel’s inference, the mainstream parameters activated in the general understanding reasoning process are defined as the understanding cluster of parameters, and the mainstream parameters activated in the general generative reasoning process are defined as the understanding cluster of parameters. Our analysis reveals two distinct finetuning paradigms. Conventional SFT exhibits a narrowing effect, achieving specialization by suppressing irrelevant functional clusters. In contrast, our SRUM algorithm demonstrates an enhancing and orchestrating effect, strengthening the primary

task-relevant cluster while maintaining supportive activation in secondary clusters. This promotes robust and generalizable representations. Details setting can be seen in Appendix Section C.

In-Domain Generalization. We then investigate the in-domain generalization capability of our model. We posit that the compositional abilities learned from the T2I-CompBench training set should be transferable to other benchmarks with similar evaluation perspectives. To test this hypothesis, we evaluate our model—trained solely on T2I-CompBench—on the GenEval benchmark without any further fine-tuning. The comparative results are summarized in Table 3. As shown in the table, SRUM achieves strong performance across multiple attribute categories on GenEval. It obtains the highest scores in two key aspects: **Counting** (0.83) and **Color attr.** (0.83), outperforming both the base Bagel model and SFT. This indicates a robust understanding of numerical and color-based constraints, which are core to compositional reasoning. Although SFT excels in the **Colors** category (0.92), our method maintains competitive performance (0.90) while providing more balanced results across attributes. These results clearly demonstrate that the improvement enabled by our approach on this comparable benchmark is unequivocal. The model not only retains proficiency in simpler tasks such as single-object generation but also shows enhanced performance in more complex scenarios like object counting and color–attribute binding. This confirms strong in-domain generalization, affirming that improvements introduced in our method can transfer effectively to unseen data from a similar domain.

Table 3: Results on key visual attributes at GenEval. For brevity, some model names have been shortened. **Bold values** are the best in each column.

Model	Single obj.	Two obj.	Counting	Colors	Position	Color attr.
Bagel	0.99	0.94	0.81	0.88	0.64	0.82
Bagel+SFT	0.96	0.94	0.79	0.92	0.59	0.78
Bagel+SRUM	0.98	0.94	0.83	0.90	0.64	0.83

Knowledge-based Generalization. Following this, we explore whether our method holds a distinct advantage for the task of reasoning generation, a current area of focus in the community. Consequently, we designed an experiment wherein we train the model on one category of prompts from the WISE Benchmark and perform in-domain evaluations on the remaining two categories. This method allows us to construct three distinct evaluation sets for a thorough analysis of the model’s generalization capabilities.

Table 4: The performance gain of the Bagel on unseen tasks after being trained on a specific domain. This table shows the percentage improvement in scores for the base model and the CoT model under different training/testing combinations.

Training Domain	Spatio-temporal		Natural science		Common sense	
	Base	CoT	Base	CoT	Base	CoT
Common sense	+0.7%	+6.0%	+2.3%	+1.0%	—	—
Natural science	+2.7%	+4.0%	—	—	+4.0%	+2.0%
Spatio-temporal	—	—	+1.3%	+2.0%	+2.0%	+1.0%

As illustrated in Table 4, selecting any single group for training universally enhances the image generation performance of the other two groups. This improvement is consistent across both standard and chain-of-thought (CoT) reasoning paradigms.

Out-of-Domain Knowledge-based Generalization. To further assess our model’s generalization to unseen domains, we utilize T2I-ReasonBench, a large-scale and well-regarded benchmark for analyzing the reasoning quality of generated images. In this experiment, we take the model trained with the T2I-CompBench prompts and directly evaluate its performance on the benchmark. This setup is designed to demonstrate our model’s out-of-domain generalization for advanced, reasoning-based image generation. Our primary focus is on accuracy-related scores, which measure the high-level semantic alignment between the model’s output and the given prompt.

As illustrated in the Table 5, our SRUM method achieves a superior understanding of the given instructions compared to both the SFT and Base models. While SFT also yields a noticeable improvement, the enhanced performance of SRUM demonstrates that our approach effectively improves

486
487 Table 5: Detailed evaluation results of the Bagel model for different categories, combining accuracy
488 (Acc.) and quality (Qual.) scores. **Bold values** represent the best performance in each column.
489
490
491

Model	Entity		Idiom		Scientific		Textual Image	
	Acc.	Qual.	Acc.	Qual.	Acc.	Qual.	Acc.	Qual.
Bagel	36.9	88.1	29.7	77.3	40.2	69.5	40.49	71.5
Bagel _{SFT}	38.4	86.9	35.1	78.4	40.3	68.9	41.2	70.0
Bagel _{SRUM}	40.9	88.7	36.1	80.2	40.7	69.2	42.86	72.6

492
493
494
495
496 generalization on complex problems from both a data and an algorithmic perspective. Furthermore,
497 in the evaluation of image-based instructions, SRUM provides consistent performance gains, in stark
498 contrast to the volatility exhibited by the SFT model. This further substantiates that our algorithmic
499 design is more adaptable, taking into account more nuanced factors than a SFT approach.
500

5 CONCLUSION

501 This paper introduces SRUM, a fine-grained post-training framework that enables a model’s under-
502 standing module to reward its generation module. Additionally, SRUM decomposes the reward into
503 local and global components, facilitating multi-scale alignment and refinement. Extensive experi-
504 ments validate SRUM’s effectiveness, setting new state-of-the-art results on complex compositional
505 and reasoning benchmarks such as T2I-CompBench and T2I-ReasonBench. The framework demon-
506 strates robust in-domain and out-of-domain generalization, and our empirical analysis confirms the
507 efficacy of the fine-grained reward design. These findings illuminate the synergistic development
508 of understanding and generation capabilities within a single model and establish the principle of
509 self-reward as a promising direction for future research.
510
511

ETHICS STATEMENT

512 In accordance with the ICLR Code of Ethics, this work aims to contribute to society and human
513 well-being by advancing fundamental knowledge in machine learning. Our research is primarily
514 theoretical and was validated on publicly available, anonymized benchmark datasets. We are com-
515 mitted to upholding high standards of scientific excellence by presenting our methods and results in
516 a transparent and reproducible manner, as detailed in our Reproducibility Statement.
517
518

519 We have considered the ethical principles outlined in the Code and do not foresee any direct negative
520 consequences, risks to privacy, or potential for discrimination arising from this research. Our goal
521 is the responsible stewardship of scientific inquiry, and we have been honest and transparent about
522 the scope and limitations of our work.
523
524

REPRODUCIBILITY STATEMENT

525 The source code for the SRUM framework will be made publicly available upon publication. To
526 ensure the transparency and verifiability of our results, we have included detailed training logs for
527 our main experiments in the supplementary materials. These logs provide a record of the training
528 process and convergence, supporting the outcomes reported in our paper.
529
530

531 Furthermore, our work is based on publicly available models (Bagel and Blip30), and we have pro-
532 vided a comprehensive description of our methodology in Section Section 3.3. A complete training
533 recipe, including all necessary hyperparameters for replication, is detailed in Appendix Section B.
534 We believe that these materials offer a clear and sufficient basis for the community to reproduce our
535 findings.
536
537
538
539

540 REFERENCES
541

542 Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
543 Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
544 points. *arXiv preprint arXiv:2305.13245*, 2023.

545 Jinbin Bai, Wei Chow, Ling Yang, Xiangtai Li, Juncheng Li, Hanwang Zhang, and Shuicheng Yan.
546 Humanedit: A high-quality human-rewarded dataset for instruction-based image editing. *arXiv
547 preprint arXiv:2412.04280*, 2024.

548 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
549 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
550 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
551 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv
552 preprint arXiv:2502.13923*, 2025.

553 James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
554 Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *OpenAI
555 blog*, 2023.

556 Tim Brooks, Aleksander Holynski, and Alexei A. Efros. Instructpix2pix: Learning to follow image
557 editing instructions. In *CVPR*, 2023.

558 Boyuan Chen, Diego Martí Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitz-
559 mann. Diffusion forcing: Next-token prediction meets full-sequence diffusion. In *NeurIPS*,
560 2024a.

561 Juhai Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi
562 Zhou, Saining Xie, Silvio Savarese, et al. Blip3-o: A family of fully open unified multimodal
563 models-architecture, training and dataset. *arXiv preprint arXiv:2505.09568*, 2025a.

564 Xiaokang Chen, Chengyue Wu, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu,
565 Zhenda Xie, Xingkai Yu, Chong Ruan, and Ping Luo. Janus-pro: Unified multimodal understand-
566 ing and generation with data and model scaling. *arXiv preprint arXiv:2501.17811*, 2025b.

567 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,
568 Kongzhi Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to
569 commercial multimodal models with open-source suites. *SCIS*, 2024b.

570 Eugene Choi, Arash Ahmadian, Matthieu Geist, Olivier Pietquin, and Mohammad Gheshlaghi Azar.
571 Self-improving robust preference optimization. *arXiv preprint arXiv:2406.01660*, 2024.

572 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
573 Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. *arXiv
574 preprint arXiv:2505.14683*, 2025.

575 Runpei Dong, Chunrui Han, Yuang Peng, Zekun Qi, Zheng Ge, Jinrong Yang, Liang Zhao, Jianjian
576 Sun, Hongyu Zhou, Haoran Wei, et al. Dreamllm: Synergistic multimodal comprehension and
577 creation. In *ICLR*, 2024.

578 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
579 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
580 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
581 scale. In *ICLR*, 2021.

582 Chengqi Duan, Rongyao Fang, Yuqing Wang, Kun Wang, Linjiang Huang, Xingyu Zeng, Hong-
583 sheng Li, and Xihui Liu. Got-r1: Unleashing reasoning capability of mllm for visual generation
584 with reinforcement learning. *arXiv preprint arXiv:2505.17022*, 2025.

585 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
586 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
587 high-resolution image synthesis. In *ICML*, 2024.

594 Rongyao Fang, Chengqi Duan, Kun Wang, Linjiang Huang, Hao Li, Shilin Yan, Hao Tian, Xingyu
 595 Zeng, Rui Zhao, Jifeng Dai, et al. Got: Unleashing reasoning capability of multimodal large
 596 language model for visual generation and editing. *arXiv preprint arXiv:2503.10639*, 2025.

597

598 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
 599 Zheng, Ke Li, Xing Sun, et al. Mme: A comprehensive evaluation benchmark for multimodal
 600 large language models. *arXiv preprint arXiv:2306.13394*, 2023.

601 Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
 602 for evaluating text-to-image alignment. In *NeurIPS*, 2023.

603

604 P Goyal. Accurate, large minibatch sg d: training imagenet in 1 hour. *arXiv preprint*
 605 *arXiv:1706.02677*, 2017.

606

607 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 608 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 609 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025a.

610 Ziyu Guo, Renrui Zhang, Chengzhuo Tong, Zhizheng Zhao, Rui Huang, Haoquan Zhang, Manyuan
 611 Zhang, Jiaming Liu, Shanghang Zhang, Peng Gao, et al. Can we generate images with cot? let's
 612 verify and reinforce image generation step by step. *arXiv preprint arXiv:2501.13926*, 2025b.

613

614 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
 615 *arXiv:2207.12598*, 2022.

616 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*,
 617 2020.

618

619 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 620 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
 621 nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
 622 Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
 623 Training compute-optimal large language models. *arXiv preprint arxiv:2203.15556*, 2022.

624

625 Jixiang Hong, Yiran Zhang, Guanzhong Wang, Yi Liu, Ji-Rong Wen, and Rui Yan. Reinforcing mul-
 626 timodal understanding and generation with dual self-rewards. *arXiv preprint arXiv:2506.07963*,
 627 2025.

628

629 Shengding Hu, Yuge Tu, Xu Han, Ganqu Cui, Chaoqun He, Weilin Zhao, Xiang Long, Zhi Zheng,
 630 Yewei Fang, Yuxiang Huang, Xinrong Zhang, Zhen Leng Thai, Chongyi Wang, Yuan Yao,
 631 Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia, Guoyang Zeng, dahai
 632 li, Zhiyuan Liu, and Maosong Sun. Minicpm: Unveiling the potential of small language models
 633 with scalable training strategies. In *COLM*, 2024.

634

635 Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A com-
 636 prehensive benchmark for open-world compositional text-to-image generation. *Advances in Neural*
Information Processing Systems, 36:78723–78747, 2023.

637

638 Mude Hui, Siwei Yang, Bingchen Zhao, Yichun Shi, Heng Wang, Peng Wang, Yuyin Zhou, and
 639 Cihang Xie. Hq-edit: A high-quality dataset for instruction-based image editing. *arXiv preprint*
arXiv:2404.09990, 2024.

640

641 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom Brown, Benjamin Chess, Rewon Child, Scott
 642 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. In
ICML, 2020.

643

644 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 645 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceed-
 646 ings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.

647

648 Qingyun Li, Zhe Chen, Weiyun Wang, Wenhui Wang, Shenglong Ye, Zhenjiang Jin, Guanzhou
 649 Chen, Yinan He, Zhangwei Gao, Erfei Cui, et al. Omnicorpus: A unified multimodal corpus of
 650 10 billion-level images interleaved with text. *arXiv preprint arXiv:2406.08418*, 2024a.

651 Xianhang Li, Haoqin Tu, Mude Hui, Zeyu Wang, Bingchen Zhao, Junfei Xiao, Sucheng Ren, Jieru
 652 Mei, Qing Liu, Huangjie Zheng, et al. What if we recaption billions of web images with llama-3?
 653 *arXiv preprint arXiv:2406.08478*, 2024b.

654 Weixin Liang, LILI YU, Liang Luo, Srinivas Iyer, Ning Dong, Chunting Zhou, Gargi Ghosh, Mike
 655 Lewis, Wen tau Yih, Luke Zettlemoyer, and Xi Victoria Lin. Mixture-of-transformers: A sparse
 656 and scalable architecture for multi-modal foundation models. *TMLR*, 2025.

657 Bin Lin, Zongjian Li, Xinhua Cheng, Yuwei Niu, Yang Ye, Xianyi He, Shanghai Yuan, Wangbo Yu,
 658 Shaodong Wang, Yunyang Ge, et al. Uniworld: High-resolution semantic encoders for unified
 659 visual understanding and generation. *arXiv preprint arXiv:2506.03147*, 2025.

660 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 661 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *ECCV*, 2014.

662 Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and
 663 Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. In *European
 664 Conference on Computer Vision*, pp. 366–384. Springer, 2024.

665 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 666 for generative modeling. In *ICLR*, 2023.

667 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *NeurIPS*,
 668 36:34892–34916, 2023a.

669 Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng Li, Tianhe Ren, Xueyan Zou, Jianwei Yang,
 670 Hang Su, Jun Zhu, et al. Llava-plus: Learning to use tools for creating multimodal agents. In
 671 *ECCV*, 2024a.

672 Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
 673 with rectified flow. In *ICLR*, 2023b.

674 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 675 Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
 676 player? In *ECCV*, 2024b.

677 I Loshchilov. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.

678 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
 679 Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
 680 foundation models in visual contexts. In *NeurIPS Workshop on Mathematical Reasoning and AI*,
 681 2023.

682 Weijia Mao, Zhenheng Yang, and Mike Zheng Shou. Unirl: Self-improving unified multimodal
 683 models via supervised and reinforcement learning. *arXiv preprint arXiv:2505.23380*, 2025.

684 Igor Molybog, Peter Albert, Moya Chen, Zachary DeVito, David Esiobu, Naman Goyal, Punit Singh
 685 Koura, Sharan Narang, Andrew Poulton, Ruan Silva, et al. A theory on adam instability in large-
 686 scale machine learning. *arXiv preprint arXiv:2304.09871*, 2023.

687 Yuwei Niu, Munan Ning, Mengren Zheng, Bin Lin, Peng Jin, Jiaqi Liao, Kunpeng Ning, Bin Zhu,
 688 and Li Yuan. Wise: A world knowledge-informed semantic evaluation for text-to-image genera-
 689 tion. *arXiv preprint arXiv:2503.07265*, 2025.

690 Xichen Pan, Satya Narayan Shukla, Aashu Singh, Zhuokai Zhao, Shlok Kumar Mishra, Jialiang
 691 Wang, Zhiyang Xu, Juhai Chen, Kunpeng Li, Felix Juefei-Xu, Ji Hou, and Saining Xie. Transfer
 692 between modalities with metaqueries. *arXiv preprint arXiv:2504.06256*, 2025.

693 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 694 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 695 synthesis. In *ICLR*, 2024.

702 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 703 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 704 *in neural information processing systems*, 36:53728–53741, 2023.

705 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 706 and Ilya Sutskever. Zero-shot text-to-image generation. In *ICML*, 2021.

708 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 709 resolution image synthesis with latent diffusion models. In *CVPR*, pp. 10684–10695, 2022.

710 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 711 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 712 text-to-image diffusion models with deep language understanding. In *NeurIPS*, 2022.

713 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 714 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 715 open large-scale dataset for training next generation image-text models. In *NeurIPS*, 2022.

716 Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
 717 hypernymed, image alt-text dataset for automatic image captioning. In *ACL*, 2018.

718 Noam Shazeer. Glu variants improve transformer. *arXiv preprint arXiv:2002.05202*, 2020.

720 Weijia Shi, Xiaochuang Han, Chunting Zhou, Weixin Liang, Xi Victoria Lin, Luke Zettlemoyer, and
 721 Lili Yu. Llamafusion: Adapting pretrained language models for multimodal generation. *arXiv*
 722 *preprint arXiv:2412.15188*, 2024.

723 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 724 learning using nonequilibrium thermodynamics. In *ICML*, pp. 2256–2265. PMLR, 2015.

725 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 726 Poole. Score-based generative modeling through stochastic differential equations. In *ICLR*, 2021.

727 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 728 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

729 Kaiyue Sun, Rongyao Fang, Chengqi Duan, Xian Liu, and Xihui Liu. T2i-reasonbench: Bench-
 730 marking reasoning-informed text-to-image generation. *arXiv preprint arXiv:2508.17472*, 2025.

731 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint*
 732 *arXiv:2405.09818*, 2024.

733 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 734 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 735 capable multimodal models. *arXiv preprint arxiv:2312.11805*, 2023.

736 NextStep Team, Chunrui Han, Guopeng Li, Jingwei Wu, Quan Sun, Yan Cai, Yuang Peng, Zheng
 737 Ge, Deyu Zhou, Haomiao Tang, et al. Nextstep-1: Toward autoregressive image generation with
 738 continuous tokens at scale. *arXiv preprint arXiv:2508.10711*, 2025.

739 Shengbang Tong, David Fan, Jiachen Zhu, Yunyang Xiong, Xinlei Chen, Koustuv Sinha, Michael
 740 Rabbat, Yann LeCun, Saining Xie, and Zhuang Liu. Metamorph: Multimodal understanding and
 741 generation via instruction tuning. *arXiv preprint arXiv:2412.14164*, 2024a.

742 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
 743 shut? exploring the visual shortcomings of multimodal llms. In *CVPR*, pp. 9568–9578, 2024b.

744 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 745 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, 2017.

746 Haochen Wang, Anlin Zheng, Yucheng Zhao, Tiancai Wang, Zheng Ge, Xiangyu Zhang, and Zhaoxi-
 747 ang Zhang. Reconstructive visual instruction tuning. *arXiv preprint arXiv:2410.09575*, 2024a.

756 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 757 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 758 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's
 759 perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024b.

760 Wenzuan Wang, Quan Sun, Fan Zhang, Yepeng Tang, Jing Liu, and Xinlong Wang. Diffusion
 761 feedback helps clip see better. *arXiv preprint arXiv:2407.20171*, 2024c.

763 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 764 Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
 765 *arXiv preprint arXiv:2409.18869*, 2024d.

766 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 767 Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
 768 *arXiv preprint arXiv:2409.18869*, 2024e.

770 Cong Wei, Zheyang Xiong, Weiming Ren, Xeron Du, Ge Zhang, and Wenhui Chen. Omnidit:
 771 Building image editing generalist models through specialist supervision. In *ICLR*, 2024.

772 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
 773 Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*,
 774 2025.

776 Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu,
 777 Zhenda Xie, Xingkai Yu, Chong Ruan, and Ping Luo. Janus: Decoupling visual encoding for
 778 unified multimodal understanding and generation. *arXiv preprint arXiv:2410.13848*, 2024a.

779 Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng
 780 Zhu, Enze Xie, Hongxu Yin, Li Yi, Song Han, and Yao Lu. Vila-u: A unified foundation model
 781 integrating visual understanding and generation. *arXiv preprint arXiv:2409.04429*, 2024b. URL
 782 <https://arxiv.org/abs/2409.04429>.

784 Ji Xie, Trevor Darrell, Luke Zettlemoyer, and XuDong Wang. Reconstruction alignment improves
 785 unified multimodal models, 2025a. URL <https://arxiv.org/abs/2509.07295>.

786 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 787 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 788 to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024.

790 Jinheng Xie, Zhenheng Yang, and Mike Zheng Shou. Show-o2: Improved native unified multimodal
 791 models. *arXiv preprint arXiv:2506.15564*, 2025b.

792 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 793 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
 794 *Advances in Neural Information Processing Systems*, 36:15903–15935, 2023.

796 Zeyue Xue, Jie Wu, Yu Gao, Fangyuan Kong, Lingting Zhu, Mengzhao Chen, Zhiheng Liu, Wei
 797 Liu, Qiushan Guo, Weilin Huang, et al. Dancegrpo: Unleashing grpo on visual generation. *arXiv
 798 preprint arXiv:2505.07818*, 2025.

799 Qifan Yu, Wei Chow, Zhongqi Yue, Kaihang Pan, Yang Wu, Xiaoyang Wan, Juncheng Li, Siliang
 800 Tang, Hanwang Zhang, and Yueting Zhuang. Anyedit: Mastering unified high-quality image
 801 editing for any idea. *arXiv preprint arXiv:2411.15738*, 2024a.

803 Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
 804 and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. In
 805 *ICML*, 2024b.

806 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens,
 807 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal
 808 understanding and reasoning benchmark for expert agi. In *CVPR*, 2024.

809 Biao Zhang and Rico Sennrich. Root mean square layer normalization. In *NeurIPS*, 2019.

810 Kai Zhang, Lingbo Mo, Wenhui Chen, Huan Sun, and Yu Su. Magicbrush: A manually annotated
811 dataset for instruction-guided image editing. In *NeurIPS*, 2023a.
812

813 Weixia Zhang, Guangtao Zhai, Ying Wei, Xiaokang Yang, and Kede Ma. Blind image quality assess-
814 ment via vision-language correspondence: A multitask learning perspective. In *Proceedings of*
815 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14071–14081, 2023b.

816 Chuyang Zhao, Yuxing Song, Wenhao Wang, Haocheng Feng, Errui Ding, Yifan Sun, Xinyan Xiao,
817 and Jingdong Wang. Monoformer: One transformer for both diffusion and autoregression. *arXiv*
818 preprint [arXiv:2409.16280](https://arxiv.org/abs/2409.16280), 2024. URL <https://arxiv.org/abs/2409.16280>.

819

820 Yiyang Zhou, Zhiyuan Fan, Dongjie Cheng, Sihan Yang, Zhaorun Chen, Chenhang Cui, Xiyao
821 Wang, Yun Li, Linjun Zhang, and Huaxiu Yao. Calibrated self-rewarding vision language models.
822 *Advances in Neural Information Processing Systems*, 37:51503–51531, 2024.

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **A USE OF LLM**
865866 We used a large language model (LLM) in a very limited capacity, restricted to minor editing of
867 grammar, phrasing, and readability. The LLM was not involved in designing the method, developing
868 theoretical results, or conducting experiments. All technical contributions, equations, and results are
869 solely the work of the authors.
870871 **B DETAIL SETTINGS**
872873 Following the configuration of stage 4 from the **Bagel** (Deng et al., 2025) framework during our
874 post-training phase, we employed the **AdamW** optimizer (Loshchilov, 2017), configured with mo-
875 mentum parameters $\beta_1 = 0.9$ and $\beta_2 = 0.95$. Drawing inspiration from (Molybog et al., 2023), we
876 set the epsilon value to 1.0×10^{-15} to mitigate loss spikes. When we increase the resolution dur-
877 ing generation, we also adjust the diffusion timestep from 1.0 to 4.0, which helps maintain a stable
878 noise-level distribution. We chose a constant learning rate, as this approach, as suggested by (Hu
879 et al., 2024), simplifies the scaling of training data without needing to restart the training process.
880 These empirical observations, along with established practices for large-scale model training (Goyal,
881 2017; Hoffmann et al., 2022; Kaplan et al., 2020), informed our final training protocol.
882883 Our model architecture builds upon the standard Transformer (Vaswani et al., 2017) and Vision
884 Transformer (ViT) (Dosovitskiy et al., 2021) paradigms, incorporating modern enhancements for
885 stability and efficiency, such as Root Mean Square Layer Normalization (Zhang & Sennrich, 2019),
886 GLU variants for activation functions (Shazeer, 2020), Rotary Position Embedding (RoPE) (Su et al.,
887 2024), and Grouped-Query Attention (Ainslie et al., 2023). The generative process is fundamen-
888 tally based on principles from Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020;
889 Sohl-Dickstein et al., 2015), score-based modeling (Song et al., 2021), and utilizes classifier-free
890 guidance (Ho & Salimans, 2022) within a latent space (Rombach et al., 2022) for high-resolution
891 synthesis. The complete training recipe is summarized in Table 6.
892893 **Table 6: Training recipe of SRUM.**
894

895 Hyperparameters	896 Post-training
897 Learning rate	2.5×10^{-5}
898 LR scheduler	Constant
899 Weight decay	0.0
900 Gradient norm clip	1.0
901 Optimizer	AdamW ($\beta_1 = 0.9, \beta_2 = 0.95, \epsilon = 1.0 \times 10^{-15}$)
902 Warm-up steps	500
903 Max context window	40k
904 Gen resolution (min short side, max long side)	(512, 1024)
905 Diffusion timestep shift	4.0

906 In Section 3.1, we explain how to generate detection boxes in all cases. Here, we note that Bagel
907 uses an external model (SAM), while BLIP3o relies on its own native capabilities. We suggest that
908 the rationale for this choice can be based on the model’s performance on grounding benchmarks
909 (such as RefCOCO).
910911 **C DEFINITION AND CALCULATION OF AVERAGE ACTIVATION STRENGTH**
912913 To investigate the internal functional mechanisms of different training methods, we introduce the
914 metric of *Average Activation Strength*. This metric is designed to quantify the overall activity level
915 of a predefined functional neural cluster when the model is performing a specific type of task. This
916 appendix provides a detailed definition, mathematical formulation, and the statistical implemen-
917 tation procedure. The **Average Activation Strength** is defined as the mean activation value of all
918 neurons within a specific functional cluster, averaged over an entire dataset for a given task. The
919 calculation involves a two-level averaging process:
920

918
919
920
921
922

1. **Intra-Cluster Average:** For a single input sample, we compute the mean of the activation values of all neurons belonging to the target cluster.
2. **Dataset-Wide Average:** We then average these single-sample cluster means across all samples in the entire task dataset.

923 This metric reflects the degree of engagement of a functional cluster (e.g., the “Understanding Cluster”) while processing a certain category of tasks (e.g., “Generation Tasks”). A higher value indicates
924 that the cluster is more strongly and broadly activated for that task.
925

926 To formalize this definition, we first introduce the following notation:
927

928
929
930
931
932
933
934
935
936
937
938
939

- M : A specific neural network model (e.g., Base, SFT, or SRUM).
- C_k : A functional neural cluster k (e.g., $C_{\text{understand}}$ or C_{generate}), which is a set of specific neuron indices.
- $|C_k|$: The number of neurons in cluster C_k .
- D_T : The dataset for a specific task type T (e.g., $D_{\text{understanding}}$ or $D_{\text{generation}}$).
- $|D_T|$: The number of samples in the dataset D_T .
- x : An individual input sample from the dataset, where $x \in D_T$.
- $a_i(x)$: The activation value of neuron i in model M given the input x , where $i \in C_k$. This typically refers to the output of a neuron after its activation function (e.g., ReLU or GeLU) has been applied.

940 For a single input sample x , the average activation strength of a cluster C_k , denoted as S_{sample} , is
941 calculated as:
942

$$S_{\text{sample}}(M, C_k, x) = \frac{1}{|C_k|} \sum_{i \in C_k} a_i(x) \quad (4)$$

943 The final **Average Activation Strength** of cluster C_k for model M over the entire dataset D_T ,
944 denoted as S_{final} , is the expected value of S_{sample} over all samples. In practice, this is estimated by
945 averaging across the dataset:
946

$$S_{\text{final}}(M, C_k, D_T) = \frac{1}{|D_T|} \sum_{x \in D_T} S_{\text{sample}}(M, C_k, x) = \frac{1}{|D_T||C_k|} \sum_{x \in D_T} \sum_{i \in C_k} a_i(x) \quad (5)$$

947 This S_{final} value corresponds to the height of each bar in the activation figures. Algorithm details
948 can be seen in Algorithm 1.
949

950 D DATA CURATION

951 We leverage the training instructions from T2I-CompBench (Huang et al., 2023) to guide our image
952 generation process. Specifically, we utilize the generation capabilities of UMs (Wu et al., 2024b;a;
953 Xie et al., 2024; Dong et al., 2024), which are representative of the state-of-the-art in text-to-image
954 synthesis (Betker et al., 2023; Saharia et al., 2022; Esser et al., 2024; Labs, 2024; Wu et al., 2025),
955 to synthesize corresponding images based on these instructions. Subsequently, the understanding
956 end of UMs, which possesses powerful vision-language comprehension abilities akin to models like
957 LLaVA, InternVL, and Gemini (Liu et al., 2024a; Chen et al., 2024b; Wang et al., 2024b; Team
958 et al., 2023), is employed to evaluate and score the generated images.
959

960 The capabilities of these models are built upon massive web-scale datasets (Schuhmann et al., 2022;
961 Li et al., 2024a) and canonical vision datasets (Lin et al., 2014), which are often enhanced with
962 high-quality captioning and instruction-following data (Sharma et al., 2018; Li et al., 2024b; Liu
963 et al., 2023a). Our prompting strategy for eliciting rewards is inspired by the methodologies used in
964 instruction-based image editing (Brooks et al., 2023; Wei et al., 2024; Zhang et al., 2023a; Yu et al.,
965 2024a; Hui et al., 2024; Bai et al., 2024). The detailed data used in this evaluation are as follows:
966

967
968
969
970
971

972

973

974

975

976

977

978

979

Algorithm 1 Calculation of Average Activation Strength (with Single Threshold-Based Cluster Definition)

980

981

1: **Step 1: Define Neuron Clusters**
 2: **Require:**
 3: M_{base} : Base model.
 4: D_{und} : Understanding dataset.
 5: D_{gen} : Generation dataset.
 6: τ_{act} : Activation percentile threshold (%)
 7: **Ensure:** $C_{\text{understand}}, C_{\text{generate}}$.
 8:
 9: *// (1.1) Collect mean activations*
 10: Let N be set of FFN neurons.
 11: Init maps $\mu_{\text{und}}, \mu_{\text{gen}}, \mu_{\text{max}}$.
 12: **for** each neuron $n \in N$ **do**
 13: $\mu_{\text{und}}[n] \leftarrow \text{mean}_{x \in D_{\text{und}}} a_n(x)$
 14: $\mu_{\text{gen}}[n] \leftarrow \text{mean}_{x \in D_{\text{gen}}} a_n(x)$
 15: **end for**
 16:
 17: *// (1.2) Calculate max activation and threshold*
 18: **for** each neuron $n \in N$ **do**
 19: $\mu_{\text{max}}[n] \leftarrow \max(\mu_{\text{und}}[n], \mu_{\text{gen}}[n])$
 20: **end for**
 21: $V_{\text{act}} \leftarrow \text{Percentile}(\{\mu_{\text{max}}[n] \mid n \in N\}, \tau_{\text{act}})$
 22:
 23: *// (1.3) Filter clusters based on activation threshold and max activation task*
 24: $C_{\text{understand}} \leftarrow \emptyset, C_{\text{generate}} \leftarrow \emptyset$
 25: **for** each neuron $n \in N$ **do**
 26: **if** $\mu_{\text{max}}[n] \geq V_{\text{act}}$ **then** ▷ Must be an active neuron
 27: **if** $\mu_{\text{und}}[n] > \mu_{\text{gen}}[n]$ **then** ▷ More active for understanding
 28: $C_{\text{und}} \leftarrow C_{\text{und}} \cup \{n\}$
 29: **else if** $\mu_{\text{gen}}[n] > \mu_{\text{und}}[n]$ **then** ▷ More active for generation
 30: $C_{\text{gen}} \leftarrow C_{\text{gen}} \cup \{n\}$
 31: **end if**
 32: **end if**
 33: **end for**
 34: *// Clusters fixed*

1019

1020

1021

1022

1023

1024

1025

1: **Step 2: Prepare Eval Data & Model**2: Prepare dataset (e.g., D_{und}).3: Load model M .

4:

5: **Step 3: Forward Pass & Log**6: Init lists: $\text{und_activ} = [], \text{gen_activ} = []$ 7: **for** each sample $x \in D_{\text{understanding}}$ **do**8: Forward pass $M(x)$.9: Record $a_i(x)$ for $i \in C_{\text{und}}, C_{\text{gen}}$.

10: Calc sample avg activation:

11: $S_{\text{samp, und}} \leftarrow \text{mean}_{i \in C_{\text{und}}} a_i(x)$ 12: $S_{\text{samp, gen}} \leftarrow \text{mean}_{i \in C_{\text{gen}}} a_i(x)$ 13: Append $S_{\text{samp, und}}$ to und_activ 14: Append $S_{\text{samp, gen}}$ to gen_activ 15: **end for**

16:

17: **Step 4: Final Aggregation**18: $S_{\text{final, und}} \leftarrow \text{mean}(\text{und_activ})$ 19: $S_{\text{final, gen}} \leftarrow \text{mean}(\text{gen_activ})$ 20: Output $S_{\text{final, und}}, S_{\text{final, gen}}$.

21:

22: **Step 5: Repeat Process**23: Repeat Steps 3-4 using D_{gen} .

24: Repeat Steps 2-5 for each model.

```

1026
1027
1028
1029
1030
1031
1032 Generated Prompt Content:
1033
1034 # TASK: Global Layout and Composition Analysis
1035 You are an expert image analyst.
1036
1037 Your task is to score the overall composition
1038 of an image based on a user's prompt. Focus solely
1039 on how the arrangement of elements and scene structure
1040 align with the prompt's spatial intent.
1041
1042 **Original Prompt:** "{original_prompt}"
1043 ---
1044 ## YOUR TASK & OUTPUT FORMAT
1045 Provide a single score from **-1.0 to 1.0** and a brief reason.
1046
1047 * **Scoring Guide:**
1048 * **1.0:** Perfect alignment with the prompt's
1049 spatial intent.
1050 * **0.5 to 0.9:** Mostly correct layout
1051 with minor flaws.
1052 * **-0.4 to 0.4:** Neutral. No specific spatial
1053 info in prompt, or generic layout.
1054 * **-0.9 to -0.5:** Incorrect layout or
1055 contradictory to the prompt.
1056 * **-1.0:** Fundamentally contradicts the
1057 prompt's spatial intent.
1058
1059 * **Output Lines:**
1060     'Score: [A single number between -1.0 and 1.0]'
1061     'Reason: [Your justification]'
1062 ---
1063 ## DIVERSE EXAMPLES
1064
1065     ### Example 1 (Perfect Alignment)
1066     Score: 0.95
1067     Reason: The wide shot of a sunset over the ocean perfectly
1068     matches the prompt's implied composition.
1069
1070     ### Example 2 (Contradictory Layout)
1071     Score: -0.7
1072     Reason: The cat is on the right of the dog, but the prompt
1073     asked for the cat on the left.
1074
1075     Begin your analysis now.

```

Table 7: Documentation for `create_global_layout_reward_prompt`.

```

1080
1081
1082 Generated Prompt Content:
1083
1084 # TASK: Integrated Region Analysis and Scoring
1085 You are an expert AI image analyst.
1086 Your task is to analyze unlabeled regions in an image
1087 based on a user's prompt.
1088 For each region, you will perform a two-stage analysis.
1089
1090 **Original Prompt:** "{original_prompt}"
1091 ---  

1092 **UNLABELED REGIONS FOR YOUR ANALYSIS:**
1093 {regions_text}
1094 ---  

1095 ## YOUR TWO-STAGE TASK & OUTPUT FORMAT
1096 For **every Region ID** listed above,
1097 you must perform the following steps.
1098
1099 ### STAGE 1: Identify Object
1100 First, identify the primary object within the bounding box.
1101 * **Output Line:**
1102 'Identified Object: [Your description of the object]'  

1103
1104 ### STAGE 2: Score and Justify
1105 Provide a single, overall score
1106 from **-1.0 to 1.0** that considers BOTH the object's
1107 **relevance** to the prompt and its **visual quality**.
1108 You must provide a clear reason for your score.
1109 Be as strict as possible and only give full marks
1110 when the image quality is beyond doubt.
1111
1112 * **Scoring Guide:**
1113   * **1.0:** Perfect. The object is exactly what the
1114     prompt asks for and is technically flawless and perfect.
1115   * **0.5 to 0.9:** Very good. A highly relevant object
1116     with minor flaws, or a well-executed secondary element.
1117   * **-0.4 to 0.4:** Neutral/Acceptable. A moderately
1118     relevant object, an object with mixed qualities, or an
1119     irrelevant but harmless background element.
1120     A score of 0.0 is perfectly neutral.
1121   * **-0.9 to -0.5:** Bad. The object is irrelevant
1122     and distracting, or it is a relevant object with
1123     severe visual artifacts/flaws.
1124   * **-1.0:** Very Bad. The object actively
1125     undermines the image and directly
1126     contradicts the prompt's intent.
1127
1128 * **Output Lines:**
1129   'Score: [A single number between -1.0 and 1.0]'  

1130 ---  

1131 ## EXAMPLE OUTPUT STRUCTURE
1132 *Region ID: 1**
1133 Identified Object: A running golden retriever.
1134 Score: 0.95
1135 ---  

1136 *Region ID: 2**
1137 Identified Object: A tall green tree in the background.
1138 Score: 0.2
1139 ---  

1140 Begin your analysis now.
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
322
```

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145

Table 9: VLM Rewards for Prompt: “a microwave hidden by a horse”

Object	Bounding Box (bbox)	Score	Reason
global_layout_reward	[0, 0, 1024, 1024]	1.00	The image perfectly aligns with the prompt’s spatial intent by depicting a horse positioned in front of a microwave, effectively hiding it from view. The composition is well-executed, with the horse’s body and legs obscuring the microwave, and the plain background ensuring focus on the interaction between the two elements.
A brown horse with a white blaze and white socks.	[164, 97, 957, 990]	0.95	–
A brown horse with a white blaze and white socks.	[0, 0, 1023, 831]	0.95	–
A brown horse with a white blaze and white socks.	[349, 28, 920, 880]	0.95	–
A microwave.	[349, 28, 920, 389]	0.50	–
The floor.	[0, 681, 1023, 1023]	0.00	–
The floor.	[0, 838, 1023, 1023]	0.00	–
A brown horse with a white blaze and white socks.	[422, 94, 748, 292]	0.95	–
A brown horse with a white blaze and white socks.	[429, 589, 856, 795]	0.95	–
A brown horse with a white blaze and white socks.	[430, 121, 848, 793]	0.95	–
A brown horse with a white blaze and white socks.	[430, 607, 755, 780]	0.95	–

1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188
1189

E FAILURE CASES STUDY

1190
1191

We conducted an analysis of three failure cases:

1192

1. **The language model is unable to arrive at the correct answer.** Our prompt was:

1193

“Given the following mapping: 1 – apple, 2 – banana, 3 – watermelon. Compute:
1 + 3 – 2 + 1, then return the fruit corresponding to the result.”

1194

In this scenario, most language models answer incorrectly. Therefore, the generation module in this case can only generate “apple.”

1195

2. **Causal multi-image generation.** Because the training data for Bagel rarely contains data representing causality in a single image, we are unable to achieve good results for this type of task. Our example was:

1196

“Generate a comparison image of British cities before and after the Industrial Revolution.”

1197

3. **Aesthetic generation issues.** Our method focuses on problems related to reasoning, knowledge, and composition. Consequently, aesthetics are not a primary consideration, which is also a common issue in existing models. Our example was:

1198

“Generate a particularly beautiful chair.”

1199

The top row shows our failure cases, and the bottom row shows the failure cases of nano-banana (current frontier model), illustrating that this failure is a systemic problem in generative models.

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241