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ABSTRACT

Recently, remarkable progress has been made in Unified Multimodal Models
(UMMs), which integrate generation and understanding capabilities within a sin-
gle framework. However, a key challenge remains: a model’s powerful under-
standing often fails to transfer into complex image generation. This often occurs
because the understanding and generation modules are trained separately or lead-
ing an internal conflict during co-training. As a result, a model can accurately as-
sess a prompt against an image but cannot generate a correct image from that same
prompt. To resolve this challenge, we introduce SRUM, the self-rewarding post-
training framework designed to improve the model to align its generation with
its understanding module. Without needing any new human-labeled data, SRUM
creates a self-improvement loop where the model’s own understanding module
acts as an internal “evaluator”, providing corrective feedback by rewarding to its
generation module. Our core innovation is a two-part reward system that offers
comprehensive guidance: comprising a global reward for overall compositional
structure and a local reward for fine-grained, object-level fidelity. This multi-
scale feedback proves critical for complex generation. SRUM sets a new state
of the art and strong generaliztion, boosting performance as on T2I-CompBench
from 82.18 to 88.37 and on T2I-ReasonBench from 40.7 to 50.4 in image accu-
racy. Overall, our work establishes a powerful new paradigm for enabling the
UMMs’ understanding module to guide its own generation.

1 INTRODUCTION

Text-to-Image (T2I) models have achieved remarkable progress in generating high-quality and di-
verse images from given prompts (Ramesh et al., 2021; Saharia et al., 2022; Podell et al., 2024).
However, they often fail to accurately interpret instructions involving world knowledge, complex
spatial relationships, detailed attribute binding, or compositional reasoning (Huang et al., 2023).
These limitations point to a fundamental lack of deep semantic understanding of T2I models.

To address this challenge, researchers have developed Unified Multimodal Models (UMMs) based
on large multimodal models. UMMs represent a promising direction by integrating both under-
standing and generation capabilities within a single framework (Wu et al., 2024b;a; Dong et al.,
2024; Xie et al., 2024). By sharing a common backbone for the two core capabilities of multimodal
understanding and generation, UMMs possess the inherent potential for synergy, offering a path to
resolve the comprehension challenges that are difficult for standard T2I models.

A key challenge for UMMs is that their training methods often fail to unlock the full potential of their
advanced architecture. For simplicity, the most common strategy is to train the understanding and
generation modules separately (Tong et al., 2024a; Chen et al., 2025b; Pan et al., 2025). While practi-
cal, this approach creates a disconnect, preventing the model’s understanding capabilities from being
effectively transferred to its generation module. Alternatively, some models jointly train two mod-
ules but the gradient conflicts between different tasks make them unable to promote each other (Xie
et al., 2025b; Wang et al., 2024d). This leads a significant capability gap: the model’s understanding
module consistently outperforms its generation capabilities. Model can often confirm if an image
matches a prompt but can’t generate the image from the text alone Figure 1. Consequently, the
key to unlocking the full potential of UMMs lies in bridging this internal gap. The challenge is to
harness the model’s innate understanding to guide and improve its generative process (Zhou et al.,
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2024). Targeting this pivotal challenge, we introduce a novel self-rewarding method during the
post-training stage called Self-Rewarding for Unified Multimodal Models (SRUM).

Our core insight is that the solution to this internal conflicts lies within the UMMs’ architecture
itself. The model’s generation module can act as the “generator”, while its powerful understand-
ing module with function of grounding and judging can serve as the internal “evaluator”. This
establishes a natural, closed-loop system for self-rewarding without scoring by external judgment
model. However, a simple, holistic score is insufficient for complex compositional tasks. As our ab-
lation studies later confirm, such coarse feedback fails to provide the nuanced guidance required for
meaningful improvement. Therefore, we introduce a fine-grained judgment and scoring framework
that decomposes the internal reward into two synergistic components. First, to ensure the overall
scene structure aligns with the prompt, we introduce a global reward to assess compositional co-
herence. Second, to enforce precise, object-level fidelity, we employ a local reward that provides
fine-grained feedback on specific image regions, addressing attribute binding and semantic accuracy.

“A desk on the top of a cat”

1. “Holiday celebrating the birth of Jesus Christ”

2. “give me image about the final exam was a piece of cake”

3. “Generate image of seven books”

UMMs

“This image doesn’t align 

the prompt, it shows the cat 

is on the top of desk.”

Generation

UMMs
Understanding

UMMs
Generation

UMMs
Understanding

SRUM

“This image aligns the prompt, it 

shows a brown dog and a sheep 

with abnormal yellow appearance.”

bridging the gap
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Figure 1: The example on the left indicates that the capability of the current UMMs’ understanding
module surpasses that of its generation module: the understanding module can reasonably identify
mismatches between the generated content and the prompt, whereas the generation module is prone
to producing incorrect candidates based on the given prompt in relevant cases. This not only high-
lights a gap between understanding and generation but also reveals the potential for understanding
to guide generation. Inspired by this insight, we propose SRUM to bridge this gap, particularly in
complex generation domains..

Through extensive experiments, we demonstrate that our approach significantly improves the com-
position, reasoning, and visual fidelity of UMM, and demonstrates generalization across in-domain
and out-of-domain settings. SRUM achieves SOTA results on the T2I-CompBench and T2I-
ReasonBench, improving the overall score of a strong baseline model from 82.18 to 88.37 in com-
position and from 40.7 to 50.4 in image accuracy with given prompts. Our key contributions can be
summarized as follows:

1. We are the first to propose and implement a more mature self-rewarding framework for UMMs
during post-training stage, successfully bridging the gap between their advanced understanding
and generation modules through a self-improvement loop.

2. We introduce a novel decomposed reward design that combines global compositional assessment
with local object-level feedback, providing multi-scale and fine -grained guidance that our abla-
tions show is critical for performance.

3. We not only achieve superior performance on complex compositional benchmarks but also
demonstrate strong generalization to in-domain and out-of-domain tasks. Ultimately, SRUM pro-
vides a powerful paradigm for the under- standing module to guide the generation module of
UMMs.
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2 RELATED WORKS

2.1 ARCHITECTURES FOR UNIFIED MULTIMODAL MODELS

Unified Multimodal Models (UMMs) have emerged as a prominent research direction, aiming to
integrate diverse tasks like visual understanding and generation within a single, end-to-end trained
architecture. Recent architectural paradigms can be broadly categorized. The Purely Autoregres-
sive (AR) approach extends the next-token prediction paradigm of LLMs to visual data, treating
images as a sequence of discrete tokens (Team, 2024; Wang et al., 2024d). A key refinement in
this area involves decoupling the visual encoders, using a semantic encoder for understanding tasks
while retaining a reconstruction-based tokenizer for generation (Wang et al., 2024e; Team et al.,
2025), as demonstrated by Janus (Wu et al., 2024a). Show-O further refines this by integrating
a discrete-diffusion schedule to improve token prediction (Xie et al., 2024). More prevalent are
hybrid architectures that combine the strengths of AR and diffusion models. One major category
consists of Sequential AR-Diffusion models, where an AR component generates an intermediate
representation that conditions a diffusion-based decoder. In some variants, a pre-trained MLLMs
is kept frozen for reasoning, and its features are routed via learnable queries or hidden states to an
external image generator (Tong et al., 2024a; Shi et al., 2024; Lin et al., 2025). This cascaded design
effectively leverages powerful existing models. A more integrated approach uses a Unified Trans-
former Backbone (Zhao et al., 2024; Chen et al., 2024a), where both AR and diffusion objectives
are optimized simultaneously within a single transformer. To improve scalability, the Mixture-of-
Transformers (MoT) paradigm has been introduced (Liang et al., 2025; Deng et al., 2025). This
approach, exemplified by Bagel, employs a sparse, modular design where specialized experts handle
different modalities but share information through a common attention mechanism.

2.2 POST-TRAINING STAGE IN UMMS

In addition to architectural innovations, considerable research has focused on post-training strategies
to enhance the generative abilities of UMMs. Methods such as Chain-of-Thought (CoT) and test-
time verification introduce explicit reasoning steps or iterative output validation (Guo et al., 2025b;
Fang et al., 2025; Duan et al., 2025). However, these often depend on external models and do not
fundamentally improve the native generative capacity of the UMMs. Reinforcement learning tech-
niques—including Direct Preference Optimization (DPO) and Group Relative Policy Optimization
(GRPO)—leverage human or automated feedback to refine generation policies. While effective,
these require carefully curated paired data and delicate advantage function tuning with text depen-
dent rewards (Rafailov et al., 2023; Guo et al., 2025a). Reconstruction Alignment (RecA) introduces
a post-training method based on reconstruction loss, yielding improved semantic understanding (Xie
et al., 2025a). Some work has also attempted to use rule-level rewards for guidance, but this is not
universal and needs to be designed for different tasks (Hong et al., 2025; Mao et al., 2025). In
contrast, SRUM operates without additional data generation. It leverages the model’s inherent un-
derstanding to score self-generated samples and incorporates them into training, thereby enhancing
performance.

2.3 SELF-REWARDING IN UNDERSTANDING MODELS

Self-rewarding mechanisms have emerged as a significant paradigm for enhancing the understand-
ing and reasoning capabilities of MLLMs. These approaches aim to reduce reliance on external
preference data by enabling models to generate their own reward signals, thereby facilitating contin-
uous self-improvement. For instance, CSR (Zhou et al., 2024) achieves zero-cost self-enhancement
through iterative online DPO with visual constraint rewards. SRPO (Choi et al., 2024) introduces a
two-stage reflective reward mechanism, significantly improving the quality of reflection and answer
accuracy in complex reasoning tasks. R1-Reward leverages process consistency rewards and sta-
ble reinforcement learning algorithms to enhance long-range reasoning stability (Guo et al., 2025a).
Collectively, these works signal a paradigm shift from external rewards to self-criticism and opti-
mization. Our SRUM framework proposes a more holistic approach.
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3 CONSTRUCTION OF SELF-REWARDING UNIFIED MULTIMODAL MODELS
STEP BY STEP

This section details the pipeline of our SRUM. Our process begins with the generation of high-
quality image candidates and their corresponding bounding boxes using a Unified Multimodal Mod-
els (UMMs) (Section 3.1). These candidates are then meticulously evaluated by a dual-level prompts
that assesses both local fidelity and global composition. Subsequently, the scores from this evalu-
ation are transformed into a dense, spatially-aware reward map during the rewarding process (Sec-
tion 3.2). Finally, this reward map is integrated into a novel reward-weighted training, which allows
for targeted, region-specific model refinement while preventing reward hacking (Section 3.3).

Original Prompt: Traditional food of the Mid-Autumn Festival

Moon Cake 1: 
Reward 0.95 Box (297, 569, 631, 884)

Moon Cake 2: 
Reward -0.50 Box (697, 445, 957, 643)

Global Reward 𝜶: 

Reward 0.98

0.95 0.90

0.20

-0.50

Prompt: Traditional food of the Mid-Autumn Festival

MSE Loss
Rewards as weights

⨀

Rewarding Process (Step 1.2)

Image Candidates and Bounding Box Generation (Step 1.1)

Self-Judgment Prompt:

System Instructions
Rule Guidance: Provide a single score from -1 to 1 according 

to alignment with {Original Prompt} and image quality

Local Reward: 
Stage1 Identify the objects Stage2 Score and Justify

Global Reward:
Stage1 Given reason chainStage2 Score and Justify

Step 1: Self-rewarding Data Generation Step 2: Reward-Weighted Training

Understanding 
Module

or
Detection Model 

UMMs

UMMs
Generation

UMMs
Understanding

Generation

Input

Output Ground truth velocity

Predicted velocity

Regional Rewards 
Layout

Bounding 
Boxes

Figure 2: Showcase of the pipeline of the SRUM. Including the rewards generation steps, the design
of regional rewards, and how to apply them to the generation end for training.

3.1 IMAGE CANDIDATES AND BOUNDING BOX GENERATION

As depicted in Figure 2, our pipeline begins by synthesizing a set of candidate images using a Unified
Multimodal Models (UMMs) conditioned on input prompts. To ensure high-fidelity outputs, this
generative process leverages the “think” mode or called CoT mode of the Bagel (Deng et al., 2025).
Subsequently, we produce bounding box proposals for each image using either the UMMs’ internal
understanding module or a lightweight external detector like SAM (Kirillov et al., 2023). Finally,
to enable precise grounding and reward modeling, the understanding module filters these proposals,
retaining only those semantically aligned with the initial prompt.

3.2 REWARDING PROCESS

Self-Judgment Prompt Design. Then, we devise a dual-level judgment mechanism to assess im-
age quality and prompt alignment, building upon recent work in automated evaluation (Xu et al.,
2023; Zhang et al., 2023b; Lin et al., 2024; Ghosh et al., 2023). Our approach first performs a local
judgment of object fidelity and artifacts using a strict [−1.0, 1.0] scoring scale, where a manda-
tory “Reason” field elicits an interpretable rationale akin to chain-of-thought prompting (Guo et al.,
2025b; Fang et al., 2025). We enforce semantic grounding by ensuring identified objects correspond
to prompt keywords, and a non-linear penalty maps severe distortions to a high-penalty negative
range (e.g., -0.9 to -0.5) to reflect human visual sensitivity. Subsequently, a global judgment evalu-
ates the holistic composition and spatial alignment with the prompt’s intent. Crucially, for prompts
lacking specific compositional directives (e.g., “a picture of a tree”), a neutral score range (e.g., -0.4
to 0.4) is applied. This avoids unfairly penalizing plausible layouts when no specific arrangement
was requested, thereby ensuring a solid assessment.

Rewarding Process. Next, we leverage the UMMs’ inherent grounding capabilities to generate
fine-grained reward scores for all relevant image regions, including both foreground objects and
background, that are relevant to the given prompt. Our scoring mechanism consists of both a local
and a global reward. To ensure meaningful aggregation, the global reward is normalized to the [0, 1]
range. This prevents the product of two negative values from yielding a spurious positive reward

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

signal (see Appendix Section D for details). All regional rewards are ultimately aggregated into a
dense reward map, enabling its integration into our training.

3.3 REWARD-WEIGHTED TRAINING

The core of our reward-weighted training is the reward-driven term Lr, which operates on the
model’s velocity prediction vθ from a standard practice in flow-based diffusion frameworks (Liu
et al., 2023b; Lipman et al., 2023; Esser et al., 2024). This term is modulated by two distinct feed-
back signals: a regional reward map R ∈ [−1, 1] for localized refining, and a global scalar α that
assesses overall compositional quality, provided by an understanding module. The product of these
signals, α ·R, weights the squared error between the predicted velocity vθ and the target velocity de-
rived from the original latent xgt

0 . This mechanism enables fine-grained control, encouraging preser-
vation where feedback is positive (α ·R > 0) and repulsion where it is negative (α ·R < 0). This use
of rewards to guide the training objective is inspired by preference optimization techniques (Rafailov
et al., 2023):

Lr = E
[
α ·R⊙

(
vθ − (ϵ− xgt

0 )
)2]

(1)

Second, to ensure that the output of the model conforms to the desired overall structure and prevents
reward hacking, we introduce a constraint term. This term acts as a regularizer by penalizing the
squared ℓ2 distance to the target velocity of the artifact-free and xgt

0 :

Lref = E
[∥∥vθ − (ϵ− xgt

0 )
∥∥2] (2)

The final training objective is a weighted sum of these two losses, balanced by a tunable hyperpa-
rameter, λc:

LTotal = Lr + λc · Lref (3)
This composite design enables targeted local refinement while maintaining global coherence. It also
inherently prevents reward hacking, thereby safeguarding the generated output distribution against
significant distortion.

4 ANALYSIS OF SELF-REWARDING: GENERALIZATION AND PRINCIPLES

We validate our Self-Rewarding for Unified Multimodal Models (SRUM) method across various
unified multimodal models (UMMs) and evaluation benchmarks. In particular, we investigate the
following aspects:

• Generality and Performance: SRUM achieves state-of-the-art (SOTA) performance on complex
compositional text-to-image generation benchmark and delivers consistent performance gains
across different UMM frameworks, demonstrating its broad applicability. (Table 1)

• Component Efficacy: Ablation studies confirm that each component of the SRUM framework
makes a critical contribution to the overall performance. (Figure 3)

• Generalization: SRUM demonstrates robust in-domain and out-of-domain generalization, indi-
cating that its improvements stem from enhanced reasoning capabilities rather than data memo-
rization. (Tables 3 to 5)

4.1 EXPERIMENTAL SETUP

Model Architectures. We evaluate SRUM on two powerful open-source UMMs. All experiments
are conducted as a post-training phase, starting from the official pre-trained weights. Bagel (Deng
et al., 2025) is a versatile UMM that serves as our primary model for comprehensive analysis, in-
cluding main results, ablation studies, and generalization tests. We evaluate both its standard and
Chain-of-Thought (CoT) inference modes. Blip3o (Chen et al., 2025a) is another state-of-the-art
UMM used to validate the generality and effectiveness of our proposed SRUM method.

Datasets and Benchmarks. Our experiments leverage several specialized datasets for training
and evaluation to ensure a thorough and multi-faceted analysis. For consistent and objective
scoring across all generation benchmarks, we employ QwenVL-2.5-72B (Bai et al., 2025) as the
designated multimodal evaluator. Our experiment begins with instruction data sourced from the
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T2I-CompBench training set (Huang et al., 2023). For our primary evaluation, we use the stan-
dard split of the same benchmark to compare SRUM-enhanced models against leading T2I and
UMMs’ baselines. To assess generalization, we evaluate the model’s in-domain transferability on
GenEval (Ghosh et al., 2023) and WISE (Niu et al., 2025), which feature similar compositional
challenges, without any fine-tuning. Furthermore, we test broader, out-of-domain reasoning ca-
pabilities on T2I-ReasonBench (Sun et al., 2025), a benchmark containing complex prompts that
require knowledge beyond the training distribution.

4.2 MAIN RESULTS

Our main results are presented in Table 1, which compares leading Text-to-Image (T2I) models
and Unified Multimodal Models (UMMs) on the T2I-CompBench standard split. To ensure a sta-
ble and consistent assessment, we employed the QwenVL-2.5-72B (Bai et al., 2025) model as the
multimodal evaluator for evaluating the results, not for our rewarding algorithm.

The results clearly show that incorporating our method, SRUM, yields substantial and consistent
performance gains across nearly all compositional categories. Notably, Bagel+SRUM with Chain-
of-Thought (CoT) achieves the highest overall score among UMMs at 88.37. This represents a
significant 3.91-point improvement over its base CoT version and a 6.19-point gain over the standard
Bagel model, affirming SRUM’s ability to enhance these architectures.

A detailed breakdown reveals that SRUM’s impact is most pronounced in categories requiring so-
phisticated structural and logical reasoning. For instance, BLIP3o+SRUM sets a new SOTA score
of 93.88 in the Spatial category, demonstrating superior handling of object positioning. Similarly,
Bagel+SRUM with CoT reaches a new peak of 88.60 in 3D Spatial, indicating an improved grasp
of complex layouts. These gains extend to other challenging tasks, with both Bagel+SRUM variants
showing marked improvement in Numeracy.

However, despite the global performance boost, we observed a nuanced trade-off. For example,
while BLIP3o+SRUM excels in structural tasks, it exhibits a slight performance decrease in the Texture
category compared to its baseline.

Table 1: Comprehensive T2I-CompBench Results. This table includes T2I (Labs, 2024; Esser
et al., 2024; Podell et al., 2024) and Unified Multimodal Models (Chen et al., 2025b; Xie et al.,
2025b). Models incorporating the SRUM are denoted with a subscript. Bold values indicate the
highest score in each respective column under. Green values indicate the improvements.

Model 3d spatial Color Complex Nonspatial Numeracy Shape Spatial Texture Overall

T2I Models

FLUX.1-dev 76.39 90.63 83.51 87.47 75.30 80.20 84.23 87.07 83.10
FLUX.1-schnell 79.38 84.53 81.96 85.55 72.82 82.20 85.49 86.38 82.29
SD-3-medium 77.83 91.63 84.73 86.12 72.80 83.72 88.20 89.03 84.26
SD-xl-base-1 72.25 77.75 75.00 85.28 57.14 72.18 77.08 78.38 74.38

Unified Multimodal Models

Janus-Pro 76.17 84.25 80.28 80.47 56.43 65.14 79.67 69.67 74.01
Show-o2 88.61 87.73 87.88 85.91 69.74 73.99 86.60 82.17 82.83
OmniGen2 82.21 92.22 86.87 88.51 72.00 83.95 90.07 90.88 85.84

BLIP3o 81.73 89.92 85.55 84.78 71.67 83.75 92.47 87.45 84.66
Bagel 77.98 89.30 83.32 85.03 70.40 81.94 81.52 87.93 82.18
Bagel (CoT) 84.66 88.85 86.10 85.64 75.36 84.33 82.71 88.07 84.46

BLIP3o+SRUM 83.78 90.22 86.57 85.10 74.52 85.44 93.88 86.52 85.75
Bagel+SRUM 83.10 92.90 88.69 88.47 78.52 84.23 86.92 89.57 86.55
Bagel+SRUM (CoT) 88.60 92.90 91.31 90.48 80.12 84.47 89.93 89.15 88.37

4.3 EMPIRICAL STUDY

We primarily employed three basic models for Bagel analysis: Base Model, Bagel’s open-source
weights are used directly for inference. SFT Model, Bagel generates images based on training
instructions, then directly trains the model itself to create a self-training SFT model. SRUM Model,
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Bagel generates images according to the training instructions, and then uses the SRUM training to
obtain the final evaluation model.

Ablation Results. To further verify the effectiveness of our proposed reward configuration, we
perform an ablation study on the results of Bagel on T2I-CompBench by systematically modifying
the reward scheme. As shown in the Figure 3, we experimented with several variants, including a
sample-level reward, a binarized reward, the removal of the KL constraint, and the omission of the
global reward component. Our findings highlight that the full SRUM model achieves the highest
overall accuracy, with the ablation results confirming the critical role of each component. The omis-
sion of the global reward led to a notable decrease in performance, underscoring its importance for
capturing the overarching coherence and compositional structure of the generated images. While our
findings highlight that the KL constraint is crucial for the model’s performance, its removal resulted
in a less severe drop, proving its value in ensuring training stability. Furthermore, using a simple
binarized reward led to a significant performance degradation, which reinforces the necessity of a
continuous and fine-grained reward signal to provide richer gradient information.

Figure 3: Left: Module Evaluation. We report the accuracy drop (∆ Acc. %) from our SRUM.
Specifically, 0-1 Reward represents the sparse reward. Right: Hyperparameters Evaluation on T2I-
CompBench. We report the accuracy in different λ under two models: CoT and without CoT.

In the Figure 3 Right, we analyze the effect of different constraint ratios on the experimental out-
comes. Across both Bagel with CoT and without CoT configurations, the results consistently indi-
cate that λc = 0.5 is the most effective choice. Consequently, we set this hyperparameter as fixed
one in our subsequent experiments for more significant evaluation results.

Finally, relying on a basic sample-level reward yielded the most significant performance drop
among all variants, thereby validating that the complexity of the T2I-CompBench task demands
a more holistic and comprehensive reward scheme. In conclusion, this systematic ablation study
confirms that the efficacy of our proposed framework stems from the synergistic contributions of
each reward component. This aligns with conclusions from post-training methods like Direct Pref-
erence Optimization (DPO) (Rafailov et al., 2023) where such a constraint is essential to prevent
the model from significant policy deviation due to reward hacking. Additionally, we also explpore
the binarized rewards like Dance-GRPO (Xue et al., 2025). We observed that this type of reward
can underperform SFT and is ill-suited for regional feedback, which highlights the value of a dense
reward structure.

Further Analysis. For a more granular investigation, we leverage the same powerful MLLM like
QwenVL-2.5-72B from our primary evaluation to conduct a deeper analysis of our method and the
baseline. Specifically, we employ the MLLM to perform a step-by-step scoring of the inference
process. The evaluation is divided into two metrics: (1) layout, which assesses the concordance of
the overall structure and quality, and (2) detail, which measures the fidelity of the generated fine-
grained details. Our ablation study, visualized in Figure 4, systematically isolates the effects of each
component. We observe that the “think” mode primarily bolsters the initial layout generation by
improving the high-level reasoning process. The global reward component of SRUM then further
refines this layout during the early stages of inference. In contrast, a baseline using only this global
reward (labeled ’sample reward’) yields negligible improvements in detail fidelity. This highlights
a crucial finding: the fine-grained, local rewards are essential for the subsequent optimization of

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Detail score per step during inference

(b) Layout score per step during inference

Figure 4: Score per step during inference in Bagel with its ablation models.

details, with their benefits becoming most apparent in the later inference steps. Collectively, these
results demonstrate that our dual global-local reward mechanism provides a multi-stage optimization
path: first establishing a coherent layout and then progressively refining the details. This synergistic
approach allows SRUM to significantly outperform standard SFT on same self-generated data.

Figure 5: Functional cluster activation pat-
terns of the different models (Bagel, SFT and
SRUM) on understanding and generation tasks.
The average activation strength of Understand-
ing and Generation clusters is shown.

Base SFT SRUM
MME-P 1687 1682 1673
MME-C 701 683 677
MMBench 85.0 84.6 84.8
MM-Vet 67.2 66.5 67.0
MMMU 55.3 55.0 55.2
MathVista 73.1 72.8 73.0
MMVP 69.3 68.7 70.0

Table 2: Comparison with the results of
different models (Bagel, SFT and SRUM)
on understanding benchmarks. MME-
P and MME-C represents the perception
and the cognition part respectively.

Impact on Understanding Module. Table 2 As shown in Table 2, our method has a minimal im-
pact on the model’s core understanding capabilities. On prevalent benchmarks such as MME (Fu
et al., 2023), MM-Vet (Yu et al., 2024b), MMBench (Liu et al., 2024b), MMMU (Yue et al., 2024),
and MathVista (Lu et al., 2023), the results exhibit only marginal fluctuations compared to the base
version. Notably, performance on MMVP (Tong et al., 2024b) even improves which consistent
with prior works (Tong et al., 2024a; Wang et al., 2024c;a). This indicates that our method holds
significant potential for further iterative enhancement. In Figure 5, we track the activation dynam-
ics of two distinct functional clusters, Understanding and Generation, across Base model, SFT and
SRUM. In Bagel’s inference, the mainstream parameters activated in the general understanding rea-
soning process are defined as the understanding cluster of parameters, and the mainstream param-
eters activated in the general generative reasoning process are defined as the understanding cluster
of parameters. Our analysis reveals two distinct finetuning paradigms. Conventional SFT exhibits a
narrowing effect, achieving specialization by suppressing irrelevant functional clusters. In contrast,
our SRUM algorithm demonstrates an enhancing and orchestrating effect, strengthening the primary
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task-relevant cluster while maintaining supportive activation in secondary clusters. This promotes
robust and generalizable representations. Details setting can be seen in Appendix Section C.

In-Domain Generalization. We then investigate the in-domain generalization capability of our
model. We posit that the compositional abilities learned from the T2I-CompBench training set
should be transferable to other benchmarks with similar evaluation perspectives. To test this hy-
pothesis, we evaluate our model—trained solely on T2I-CompBench—on the GenEval benchmark
without any further fine-tuning. The comparative results are summarized in Table 3. As shown
in the table, SRUM achieves strong performance across multiple attribute categories on GenEval.
It obtains the highest scores in two key aspects: Counting (0.83) and Color attr. (0.83), outper-
forming both the base Bagel model and SFT. This indicates a robust understanding of numerical
and color-based constraints, which are core to compositional reasoning. Although SFT excels in
the Colors category (0.92), our method maintains competitive performance (0.90) while providing
more balanced results across attributes. These results clearly demonstrate that the improvement en-
abled by our approach on this comparable benchmark is unequivocal. The model not only retains
proficiency in simpler tasks such as single-object generation but also shows enhanced performance
in more complex scenarios like object counting and color–attribute binding. This confirms strong
in-domain generalization, affirming that improvements introduced in our method can transfer effec-
tively to unseen data from a similar domain.

Table 3: Results on key visual attributes at GenEval. For brevity, some model names have been
shortened. Bold values are the best in each column.

Model Single obj. Two obj. Counting Colors Position Color attr.

Bagel 0.99 0.94 0.81 0.88 0.64 0.82
Bagel+SFT 0.96 0.94 0.79 0.92 0.59 0.78
Bagel+SRUM 0.98 0.94 0.83 0.90 0.64 0.83

Knowledge-based Generalization. Following this, we explore whether our method holds a distinct
advantage for the task of reasoning generation, a current area of focus in the community. Conse-
quently, we designed an experiment wherein we train the model on one category of prompts from
the WISE Benchmark and perform in-domain evaluations on the remaining two categories. This
method allows us to construct three distinct evaluation sets for a thorough analysis of the model’s
generalization capabilities.

Table 4: The performance gain of the Bagel on unseen tasks after being trained on a specific domain.
This table shows the percentage improvement in scores for the base model and the CoT model under
different training/testing combinations.

Training Domain Spatio-temporal Natural science Common sense

Base CoT Base CoT Base CoT

Common sense +0.7% +6.0% +2.3% +1.0% — —
Natural science +2.7% +4.0% — — +4.0% +2.0%
Spatio-temporal — — +1.3% +2.0% +2.0% +1.0%

As illustrated in Table 4, selecting any single group for training universally enhances the image gen-
eration performance of the other two groups. This improvement is consistent across both standard
and chain-of-thought (CoT) reasoning paradigms.

Out-of-Domain Knowledge-based Generalization. To further assess our model’s generalization
to unseen domains, we utilize T2I-ReasonBench, a large-scale and well-regarded benchmark for
analyzing the reasoning quality of generated images. In this experiment, we take the model trained
with the T2I-CompBench prompts and directly evaluate its performance on the benchmark. This
setup is designed to demonstrate our model’s out-of-domain generalization for advanced, reasoning-
based image generation. Our primary focus is on accuracy-related scores, which measure the high-
level semantic alignment between the model’s output and the given prompt.

As illustrated in the Table 5, our SRUM method achieves a superior understanding of the given in-
structions compared to both the SFT and Base models. While SFT also yields a noticeable improve-
ment, the enhanced performance of SRUM demonstrates that our approach effectively improves
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Table 5: Detailed evaluation results of the Bagel model for different categories, combining accuracy
(Acc.) and quality (Qual.) scores. Bold values represent the best performance in each column.

Model Entity Idiom Scientific Textual Image

Acc. Qual. Acc. Qual. Acc. Qual. Acc. Qual.

Bagel 36.9 88.1 29.7 77.3 40.2 69.5 40.49 71.5
Bagel+SFT 38.4 86.9 35.1 78.4 40.3 68.9 41.2 70.0
Bagel+SRUM 40.9 88.7 36.1 80.2 40.7 69.2 42.86 72.6

generalization on complex problems from both a data and an algorithmic perspective. Furthermore,
in the evaluation of image-based instructions, SRUM provides consistent performance gains, in stark
contrast to the volatility exhibited by the SFT model. This further substantiates that our algorithmic
design is more adaptable, taking into account more nuanced factors than a SFT approach.

5 CONCLUSION

This paper introduces SRUM, a fine-grained post-training framework that enables a model’s under-
standing module to reward its generation module. Addtionally , SRUM decomposes the reward into
local and global components, facilitating multi-scale alignment and refinement. Extensive experi-
ments validate SRUM’s effectiveness, setting new state-of-the-art results on complex compositional
and reasoning benchmarks such as T2I-CompBench and T2I-ReasonBench. The framework demon-
strates robust in-domain and out-of-domain generalization, and our empirical analysis confirms the
efficacy of the fine-grained reward design. These findings illuminate the synergistic development
of understanding and generation capabilities within a single model and establish the principle of
self-reward as a promising direction for future research.
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A USE OF LLM

We used a large language model (LLM) in a very limited capacity, restricted to minor editing of
grammar, phrasing, and readability. The LLM was not involved in designing the method, developing
theoretical results, or conducting experiments. All technical contributions, equations, and results are
solely the work of the authors.

B DETAIL SETTINGS

Following the configuration of stage 4 from the Bagel (Deng et al., 2025) framework during our
post-training phase, we employed the AdamW optimizer (Loshchilov, 2017), configured with mo-
mentum parameters β1 = 0.9 and β2 = 0.95. Drawing inspiration from (Molybog et al., 2023), we
set the epsilon value to 1.0 × 10−15 to mitigate loss spikes. When we increase the resolution dur-
ing generation, we also adjust the diffusion timestep from 1.0 to 4.0, which helps maintain a stable
noise-level distribution. We chose a constant learning rate, as this approach, as suggested by (Hu
et al., 2024), simplifies the scaling of training data without needing to restart the training process.
These empirical observations, along with established practices for large-scale model training (Goyal,
2017; Hoffmann et al., 2022; Kaplan et al., 2020), informed our final training protocol.

Our model architecture builds upon the standard Transformer (Vaswani et al., 2017) and Vision
Transformer (ViT) (Dosovitskiy et al., 2021) paradigms, incorporating modern enhancements for
stability and efficiency, such as Root Mean Square Layer Normalization (Zhang & Sennrich, 2019),
GLU variants for activation functions (Shazeer, 2020), Rotary Position Embedding (RoPE) (Su et al.,
2024), and Grouped-Query Attention (Ainslie et al., 2023). The generative process is fundamen-
tally based on principles from Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020;
Sohl-Dickstein et al., 2015), score-based modeling (Song et al., 2021), and utilizes classifier-free
guidance (Ho & Salimans, 2022) within a latent space (Rombach et al., 2022) for high-resolution
synthesis. The complete training recipe is summarized in Table 6.

Table 6: Training recipe of SRUM.

Hyperparameters Post-training

Learning rate 2.5× 10−5

LR scheduler Constant
Weight decay 0.0
Gradient norm clip 1.0
Optimizer AdamW (β1 = 0.9, β2 = 0.95, ϵ = 1.0× 10−15)
Warm-up steps 500
Max context window 40k
Gen resolution (min short side, max long side) (512, 1024)
Diffusion timestep shift 4.0

In Section 3.1, we explain how to generate detection boxes in all cases. Here, we note that Bagel
uses an external model (SAM), while BLIP3o relies on its own native capabilities. We suggest that
the rationale for this choice can be based on the model’s performance on grounding benchmarks
(such as RefCOCO).

C DEFINITION AND CALCULATION OF AVERAGE ACTIVATION STRENGTH

To investigate the internal functional mechanisms of different training methods, we introduce the
metric of Average Activation Strength. This metric is designed to quantify the overall activity level
of a predefined functional neural cluster when the model is performing a specific type of task. This
appendix provides a detailed definition, mathematical formulation, and the statistical implementa-
tion procedure. The Average Activation Strength is defined as the mean activation value of all
neurons within a specific functional cluster, averaged over an entire dataset for a given task. The
calculation involves a two-level averaging process:
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1. Intra-Cluster Average: For a single input sample, we compute the mean of the activation
values of all neurons belonging to the target cluster.

2. Dataset-Wide Average: We then average these single-sample cluster means across all
samples in the entire task dataset.

This metric reflects the degree of engagement of a functional cluster (e.g., the “Understanding Clus-
ter”) while processing a certain category of tasks (e.g., “Generation Tasks”). A higher value indicates
that the cluster is more strongly and broadly activated for that task.

To formalize this definition, we first introduce the following notation:

• M : A specific neural network model (e.g., Base, SFT, or SRUM).
• Ck: A functional neural cluster k (e.g., Cunderstand or Cgenerate), which is a set of specific

neuron indices.
• |Ck|: The number of neurons in cluster Ck.
• DT : The dataset for a specific task type T (e.g., Dunderstanding or Dgeneration).
• |DT |: The number of samples in the dataset DT .
• x: An individual input sample from the dataset, where x ∈ DT .
• ai(x): The activation value of neuron i in model M given the input x, where i ∈ Ck. This

typically refers to the output of a neuron after its activation function (e.g., ReLU or GeLU)
has been applied.

For a single input sample x, the average activation strength of a cluster Ck, denoted as Ssample, is
calculated as:

Ssample(M,Ck, x) =
1

|Ck|
∑
i∈Ck

ai(x) (4)

The final Average Activation Strength of cluster Ck for model M over the entire dataset DT ,
denoted as Sfinal, is the expected value of Ssample over all samples. In practice, this is estimated by
averaging across the dataset:

Sfinal(M,Ck, DT ) =
1

|DT |
∑

x∈DT

Ssample(M,Ck, x) =
1

|DT ||Ck|
∑

x∈DT

∑
i∈Ck

ai(x) (5)

This Sfinal value corresponds to the height of each bar in the activation figures. Algorithm details
can be seen in Algorithm 1.

D DATA CURATION

We leverage the training instructions from T2I-CompBench (Huang et al., 2023) to guide our image
generation process. Specifically, we utilize the generation capabilities of UMs (Wu et al., 2024b;a;
Xie et al., 2024; Dong et al., 2024), which are representative of the state-of-the-art in text-to-image
synthesis (Betker et al., 2023; Saharia et al., 2022; Esser et al., 2024; Labs, 2024; Wu et al., 2025),
to synthesize corresponding images based on these instructions. Subsequently, the understanding
end of UMs, which possesses powerful vision-language comprehension abilities akin to models like
LLaVA, InternVL, and Gemini (Liu et al., 2024a; Chen et al., 2024b; Wang et al., 2024b; Team
et al., 2023), is employed to evaluate and score the generated images.

The capabilities of these models are built upon massive web-scale datasets (Schuhmann et al., 2022;
Li et al., 2024a) and canonical vision datasets (Lin et al., 2014), which are often enhanced with
high-quality captioning and instruction-following data (Sharma et al., 2018; Li et al., 2024b; Liu
et al., 2023a). Our prompting strategy for eliciting rewards is inspired by the methodologies used in
instruction-based image editing (Brooks et al., 2023; Wei et al., 2024; Zhang et al., 2023a; Yu et al.,
2024a; Hui et al., 2024; Bai et al., 2024). The detailed data used in this evaluation are as follows:
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Algorithm 1 Calculation of Average Activation Strength (with Single Threshold-Based Cluster Def-
inition)

1: Step 1: Define Neuron Clusters
2: Require:
3: Mbase: Base model.
4: Dund: Understanding dataset.
5: Dgen: Generation dataset.
6: τact: Activation percentile threshold

(%).
7: Ensure: Cunderstand, Cgenerate.
8:
9: // (1.1) Collect mean activations

10: Let N be set of FFN neurons.
11: Init maps µund, µgen, µmax.
12: for each neuron n ∈ N do
13: µund[n]← meanx∈Dundan(x)
14: µgen[n]← meanx∈Dgenan(x)
15: end for
16:
17: // (1.2) Calculate max activation and

threshold
18: for each neuron n ∈ N do
19: µmax[n]← max(µund[n], µgen[n])
20: end for
21: Vact ← Percentile({µmax[n] | n ∈

N}, τact)
22:
23: // (1.3) Filter clusters based on activation

threshold and max activation task
24: Cunderstand ← ∅, Cgenerate ← ∅
25: for each neuron n ∈ N do
26: if µmax[n] ≥ Vact then ▷ Must be an

active neuron
27: if µund[n] > µgen[n] then ▷ More

active for understanding
28: Cund ← Cund ∪ {n}
29: else if µgen[n] > µund[n] then ▷

More active for generation
30: Cgen ← Cgen ∪ {n}
31: end if
32: end if
33: end for
34: // Clusters fixed

1: Step 2: Prepare Eval Data & Model
2: Prepare dataset (e.g., Dund).
3: Load model M .
4:
5: Step 3: Forward Pass & Log
6: Init lists: und activ = [], gen activ = []
7: for each sample x ∈ Dunderstanding do
8: Forward pass M(x).
9: Record ai(x) for i ∈ Cund, Cgen.

10: Calc sample avg activation:
11: Ssamp, und ← meani∈Cundai(x)
12: Ssamp, gen ← meani∈Cgenai(x)
13: Append Ssamp, und to und activ
14: Append Ssamp, gen to gen activ
15: end for
16:
17: Step 4: Final Aggregation
18: Sfinal, und ← mean(und activ)
19: Sfinal, gen ← mean(gen activ)
20: Output Sfinal, und, Sfinal, gen.
21:
22: Step 5: Repeat Process
23: Repeat Steps 3-4 using Dgen.
24: Repeat Steps 2-5 for each model.
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Generated Prompt Content:

# TASK: Global Layout and Composition Analysis
You are an expert image analyst.

Your task is to score the overall composition
of an image based on a user’s prompt. Focus solely
on how the arrangement of elements and scene structure
align with the prompt’s spatial intent.

**Original Prompt:** "{original_prompt}"
---
## YOUR TASK & OUTPUT FORMAT
Provide a single score from **-1.0 to 1.0** and a brief reason.

* **Scoring Guide:**
* **1.0:** Perfect alignment with the prompt’s
spatial intent.
* **0.5 to 0.9:** Mostly correct layout
with minor flaws.
* **-0.4 to 0.4:** Neutral. No specific spatial
info in prompt, or generic layout.
* **-0.9 to -0.5:** Incorrect layout or
contradictory to the prompt.
* **-1.0:** Fundamentally contradicts the
prompt’s spatial intent.

* **Output Lines:**
‘Score: [A single number between -1.0 and 1.0]’
‘Reason: [Your justification]’

---
## DIVERSE EXAMPLES

### Example 1 (Perfect Alignment)
Score: 0.95
Reason: The wide shot of a sunset over the ocean perfectly
matches the prompt’s implied composition.

### Example 2 (Contradictory Layout)
Score: -0.7
Reason: The cat is on the right of the dog, but the prompt
asked for the cat on the left.
---
Begin your analysis now.

Table 7: Documentation for create global layout reward prompt.
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Generated Prompt Content:

# TASK: Integrated Region Analysis and Scoring
You are an expert AI image analyst.
Your task is to analyze unlabeled regions in an image
based on a user’s prompt.
For each region, you will perform a two-stage analysis.

**Original Prompt:** "{original_prompt}"
---
**UNLABELED REGIONS FOR YOUR ANALYSIS:**
{regions_text}
---
## YOUR TWO-STAGE TASK & OUTPUT FORMAT
For **every Region ID** listed above,
you must perform the following steps.

### STAGE 1: Identify Object
First, identify the primary object within the bounding box.
* **Output Line:**
‘Identified Object: [Your description of the object]’

### STAGE 2: Score and Justify
Provide a single, overall score
from **-1.0 to 1.0** that considers BOTH the object’s
**relevance** to the prompt and its **visual quality**.
You must provide a clear reason for your score.
Be as strict as possible and only give full marks
when the image quality is beyond doubt.

* **Scoring Guide:**
* **1.0:** Perfect. The object is exactly what the
prompt asks for and is technically flawless and perfect.
* **0.5 to 0.9:** Very good. A highly relevant object
with minor flaws, or a well-executed secondary element.
* **-0.4 to 0.4:** Neutral/Acceptable. A moderately
relevant object, an object with mixed qualities, or an
irrelevant but harmless background element.
A score of 0.0 is perfectly neutral.
* **-0.9 to -0.5:** Bad. The object is irrelevant
and distracting, or it is a relevant object with
severe visual artifacts/flaws.
* **-1.0:** Very Bad. The object actively
undermines the image and directly
contradicts the prompt’s intent.

* **Output Lines:**
‘Score: [A single number between -1.0 and 1.0]’

---
## EXAMPLE OUTPUT STRUCTURE
**Region ID: 1**
Identified Object: A running golden retriever.
Score: 0.95
---
**Region ID: 2**
Identified Object: A tall green tree in the background.
Score: 0.2
---
Begin your analysis now.

Table 8: Documentation for create hybrid evaluation prompt.
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Table 9: VLM Rewards for Prompt: “a microwave hidden by a horse”

Object Bounding Box (bbox) Score Reason
global layout reward [0, 0, 1024, 1024] 1.00 The image perfectly

aligns with the prompt’s
spatial intent by depict-
ing a horse positioned
in front of a microwave,
effectively hiding it from
view. The composition
is well-executed, with
the horse’s body and
legs obscuring the mi-
crowave, and the plain
background ensuring
focus on the interaction
between the two ele-
ments.

A brown horse with a white
blaze and white socks.

[164, 97, 957, 990] 0.95 –

A brown horse with a white
blaze and white socks.

[0, 0, 1023, 831] 0.95 –

A brown horse with a white
blaze and white socks.

[349, 28, 920, 880] 0.95 –

A microwave. [349, 28, 920, 389] 0.50 –
The floor. [0, 681, 1023, 1023] 0.00 –
The floor. [0, 838, 1023, 1023] 0.00 –
A brown horse with a white
blaze and white socks.

[422, 94, 748, 292] 0.95 –

A brown horse with a white
blaze and white socks.

[429, 589, 856, 795] 0.95 –

A brown horse with a white
blaze and white socks.

[430, 121, 848, 793] 0.95 –

A brown horse with a white
blaze and white socks.

[430, 607, 755, 780] 0.95 –
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E FAILURE CASES STUDY

We conducted an analysis of three failure cases:

1. The language model is unable to arrive at the correct answer. Our prompt was:
“Given the following mapping: 1 – apple, 2 – banana, 3 – watermelon. Compute:
1 + 3− 2 + 1, then return the fruit corresponding to the result.”

In this scenario, most language models answer incorrectly. Therefore, the generation mod-
ule in this case can only generate “apple.”

2. Causal multi-image generation. Because the training data for Bagel rarely contains data
representing causality in a single image, we are unable to achieve good results for this type
of task. Our example was:

“Generate a comparison image of British cities before and after the Industrial
Revolution.”

3. Aesthetic generation issues. Our method focuses on problems related to reasoning, knowl-
edge, and composition. Consequently, aesthetics are not a primary consideration, which is
also a common issue in existing models. Our example was:

“Generate a particularly beautiful chair.”

The top row shows our failure cases, and the bottom row shows the failure cases of nano-banana
(current frontier model), illustrating that this failure is a systemic problem in generative models.
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