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ABSTRACT

Centralized multi-agent reinforcement learning requires global policy access and
coordination, often infeasible in decentralized applications. A challenge in de-
centralized MARL with individual rewards is misaligned local objectives without
global coordination. Existing methods that share rewards, values or full policies
have high overheads and coupled learning. We introduce a novel decentralized
MARL method called Anticipation Sharing that induces coordination by sharing
limited policy information. Agents update anticipations of peer action distribu-
tions, share these with neighbors, and identify deviations between individual and
collective objectives. By exchanging anticipations, agents align behaviors with-
out prohibitive overheads of full policy sharing. Our simulations demonstrate
Anticipation Sharing enables decentralized cooperative learning using only local
interactions.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) enables collaborative decision-making in environments
with distributed agents. It has diverse real-world applications including autonomous vehicles, robotics,
and communications systems. Centralized MARL requires global information access and a central
coordinator, often infeasible in decentralized settings.

Without access to team rewards or objectives, decentralized agents face social dilemmas - prioritizing
individual rewards can produce suboptimal collective outcomes. The Prisoner’s Dilemma exemplifies
this tension. When agents act purely out of self-interest, they achieve lower returns compared to
cooperating for the common good [1954). Yet determining optimal collaborative strategies
is challenging when only seeing a local viewpoint. Decentralized MARL tackles these cooperation
challenges in distributed environments with individual rewards. By developing algorithms that align
decentralized policies without global knowledge, agents can learn to optimize collective returns
through only local interactions. This addresses real-world coordination problems where central
controllers are infeasible.

Several MARL methodologies have recently been proposed to enable decentralized learning, but they
attribute a team reward to each agent, which is infeasible when an agent is privy only to its individual
reward (Sun et al} 2022} [Lauer & Riedmiller, 2000; Boutilier, [1996}; Jiang & Lu} 2022)). To enhance
cooperation among agents while keeping private individual rewards, several methods propose the
exchange of information. For instance, some strategies involve sharing rewards to guide agents

towards a collective optimum (Chu et al., 20200} [Yi et al, 2022} [Chu et al [20204). Others suggest

sharing value function model parameters or values of the value functions through the aggregation
from neighboring agents to achieve similar ends (Zhang et al.| 2018aljb} 2020} [Suttle et al} [2020;
2022). In these approaches, agents calculate a global value based on shared rewards or
values, and subsequently, they adjust their policies to maximize this aggregated value. Some studies
have explored consensus strategies focusing on policy rather than value (Zhang & Zavlanos, [2019;

Stankovic et al.| [2022alb).

In real-world applications, the issue of privacy, particularly concerning rewards and values, becomes
a significant hurdle. Agents often prioritize keeping this information confidential, posing a challenge
to the practicality of methods that require such sharing. Additionally, sharing model parameters
incurs substantial communication overhead and also privacy concerns, which can also result in the
transfer of excessive and non-essential information, thereby slowing the learning process.
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In this paper, in response to the above challenges, we introduce a novel approach for decentralized
cooperative policy learning when agents have individual rewards and no global perspectives. A key
advantage of our method is achieving emergent collaboration without sharing sensitive information
like actual rewards or model parameters between agents. The core concept we leverage is anticipa-
tion sharing (AS). Agents share anticipated action distributions, reflecting their preferences. The
anticipations to other agents are solved by each agents to maximize its own return and then sent to
corresponding agents for them to include as constrains when maximizing their returns. Such anticipa-
tions carry the information of individual returns implicitly. By exchanging these peer anticipations
iteratively, agents can estimate their impacts on collective preferences while preserving individual
privacy.

We establish a theoretical lower bound that quantifies the discrepancy between an agent’s individual
returns and the global collective returns. This enables formulating a surrogate objective for each
agent aligned with the global goal while dependent only on local information. Our proposed
decentralized MARL algorithm has agents optimize this surrogate through a dual-clipped policy
update approach. It imposes constraints that penalize deviations between an agent’s policy and peer
anticipated policies. This drives agents to converge not just to optimal local policies, but policies
contributing to coordination. The iterative anticipation sharing process is central to enabling this
decentralized collaborative learning.

In essence, our method induces emergent cooperative behaviors without exposing sensitive individual
rewards or models through a decentralized learning framework. Our empirical investigations reinforce
the validity of the AS framework, demonstrating its compatitive performance in specific tasks
compared to traditional methods. This establishes AS not only as a theoretically sound but also
practically effective avenue for harmonizing individual and collective objectives in decentralized
cooperation.

2 RELATED WORK

Centralised learning. Centralized learning in MARL typically involves a central unit that processes
and coordinates actions across all agents. This approach, facilitating a comprehensive view of the
environment, enables agents to optimize policies based on collective goals and shared information.
Numerous contemporary MARL studies focus on optimizing multi-agent policies under the assump-
tion of an evenly split shared team reward (Kuba et al.| 2022} [Su & Lu} [2022; [Wu et all, [2021]).
These studies often employ a blend of centralized learning and decentralized execution. For instance,
some utilize centralized learning during policy development for optimal coordination, followed by
decentralized execution allowing agents to act independently |Kuba et al.|(2022)); Wu et al.| (2021).
Conversely, others adopt a decentralized learning approach while maintaining shared parameters
across networks, a method that navigates between full centralization and independent agent operation
2022)]. In contrast to these methodologies, our research takes a distinct path by explor-
ing decentralized MARL in environments where each agent operates based on individual rewards,
without the reliance on a common team reward. This approach reflects a more realistic scenario in
many real-world applications, where agents need to make autonomous decisions based on limited,
individual information, and where centralized coordination is either impractical or undesirable due to
privacy or scalability concerns.

Value sharing. Value sharing methods use shared Q-values or state-values among agents to better
align individual and collective goals. Many of these methods utilize consensus techniques to estimate
the value of a joint policy and guide individual policy updates accordingly. For instance, a number of
networked actor-critic algorithms exist based on value function consensus, wherein agents merge
individual value functions towards a global consensus by sharing parameters (Zhang et al.| 2018afb;
2020 [Suttle et al.,[2020). For communication efficiency, some algorithms reduce the parameters
shared (Lin et al., while others emphasize sharing function values for global value estimation
2022). However, these methods have an inherent limitation: agents modify policies
individually, using fixed Q-values or state-values, making them less adaptive to immediate policy
shifts from peers, which may introduce policy discoordination. In contrast, our approach enables
more adaptive decentralized coordination by having agents directly share and respond to peer policy
anticipations.
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Reward sharing. Reward sharing is about receiving feedback from a broader system-wise outcome
perspective, ensuring that agents act in the group’s collective best interest. Some works have
introduced a spatially discounted reward function (Chu et al., 2020bja). In these approaches, each
agent collaboratively shares rewards within its vicinity. Subsequently, an adjusted reward is derived
by amalgamating the rewards of proximate agents, with distance-based discounted weights. Other
methods advocate for the dynamic learning of weights integral to reward sharing, which concurrently
evolve as agents refine their policies (Y1 et al.,|2022). In our research, we focus on scenarios where
agents know only their individual rewards and are unaware of their peers’ rewards. This mirrors
real-world situations where rewards are kept confidential or sharing rewards suffers challenges such
as communication delays and errors. Consequently, traditional value or reward sharing methods
fall short in these contexts. In contrast, our method induces coordination without requiring reward
sharing.

Policy sharing. Policy sharing strives to unify agents’ behaviors through an approximate joint policy.
However, crafting a global policy for each agent based on its individual reward can lead to suboptimal
outcomes. Consensus update methods offer a solution by merging individually learned policies
towards an optimal policy. Several studies have employed such a strategy, focusing on a weighted
sum of neighboring agents’ policy model parameters (Zhang & Zavlanos} |2019; Stankovic et al.,
2022alb). These methods are particularly useful when sharing individual rewards or value estimates
is impractical. Yet, sharing policy model parameters risks added communication overheads and data
privacy breaches. Whereas these methods share model parameters directly for policy consensus, we
have agents share anticipations of policy outputs, avoiding parameter sharing.

Social dilemmas. Social dilemmas highlight the tension between individual pursuits and collective
outcomes. In these scenarios, agents aiming for personal gains can lead to compromised group
results. For instance, one study has explored self-driven learners in sequential social dilemmas using
independent deep Q-learning (Leibo et al.,|2017). A prevalent research direction introduces intrinsic
rewards to encourage collective-focused policies. For example, moral learners have been introduced
with varying intrinsic rewards (Tennant et al., |2023)) whilst other approaches have adopted an inequity
aversion-based intrinsic reward (Hughes et al., 2018]) or rewards accounting for social influences and
predicting other agents’ actions (Jaques et al.,|2019). Borrowing from economics, certain methods
have integrated formal contracting to motivate global collaboration (Christoffersen et al., [2023)).
While these methods modify foundational rewards, we maintain the original objectives, emphasizing
a collaborative, information-sharing strategy to nurture cooperative agents.

Teammate modelling Teammate/opponent modeling in MARL often relies on agents having access
to, or inferring, information about teammates’ goals, actions, or rewards. This information is then used
to improve collective outcomes (Albrecht & Stone} 2018} He et al.,[2016)). Our approach differs from
traditional team modeling. Rather than focusing on predicting teammates’ exact actions or strategies,
our method involves each agent calculating and sharing anticipated action distributions that would
benefit its own strategy. These anticipations are used by other agents (not the agent itself) to balance
their own returns with the return of the agent sending the anticipation. This approach emphasizes
anticipations that serve the agent’s own return optimization. Coordination occurs through strategic
adaptation based on others’ anticipations that implicitly include information about their returns,
rather than accurately modeling their behaviors. This key difference highlights our decentralized
decision-making and coordination approach. It contrasts with conventional team modeling in MARL
that focuses on modeling teammates’ behaviors directly.

3 BACKGROUND AND PROBLEM STATEMENT

In this work, we approach the collaborative, decentralized multi-agent reinforcement learning problem
with individual rewards using Networked Multi-agent Markov Decision Processes (Networked
MMDPs). Specifically, we consider a Networked MMDP with N agents, which can be represented
asatuple < G, S, {A}N |, P, {R} |, v >, where G = (V, £) denotes a communication graph, S
denotes a global state space, A’ is the individual action space, A = ITY ; A’ is the joint action space,
P:S x AxS8 — [0,1] is the state transition function, R* : S x A — R is the individual reward
function, and + is a discount factor. Each agent i selects action a’ € A’ based on its individual policy
7t S x A" — [0, 1]. The joint action of all agents is represented by a € A, and the joint policy

across these agents, conditioned on state s € S, is denoted as 7 (-|s) = Hfil 7i(-]s).
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The primary objective in this setting is to maximize the cumulative discounted return for all agents,

N 00 )
N(m) =Y B [ > 271, ey
=1 t=0

where the expectation, E[-], is computed over trajectories with an initial state distribution sy ~
d™(s), action selection a; ~ 7(-|s;), and state transitions s;11 ~ P(-|s¢, a;). The reward for an
agent i is 7i = R’(s, a). In our setup, agents must adjust their strategies in situations where rewards
might conflict and without access to shared reward information.

An individual advantage function is also introduced,

AT (s,a) = QF (s,a) = Vi (s) @
which depends on the individual state-value and action-value functions, respectively
oo o0
V7 (s) = Ernr ZVtTﬂSo =s|, QF(s,a)=E,ur ZWtTﬂSO =s,a0=a|. 3)
t=0 t=0

4 METHODOLOGY

In decentralized settings with individual rewards, agents must balance personal objectives with collec-
tive goals, despite lacking global perspectives. Our approach, anticipation sharing (AS), facilitates
this dual awareness without direct reward or objective sharing. Agents exchange anticipations about
peer actions solved by maximizing their own return and take the anticipations from others into
account when solving policies to maximize individual return, enabling each agent to infer collective
objectives. This allows understanding broader impacts of actions through localized interactions.

Unlike traditional methods that share explicit rewards or objectives, AS involves agents exchanging
anticipations that implicitly include the information of others’ objectives. By observing how its
actions align with aggregated anticipations, each agent can perceive the divergence between its
individual interests and the inferred collective goals. This drives policy updates to reduce the
identified discrepancy, bringing local and global objectives into closer alignment.

Our constrained optimization approach leverages the identified divergences between individual and
collective objectives to align decentralized policies. Agents iteratively share anticipated actions and
adapt policies accounting for peer anticipations. This fosters continuous, adaptive refinement of
strategies balancing both individual returns and collective dynamics inferred from shared anticipations.
Our algorithm harnesses this divergence identification, ensuring decision-making integrates individual
rewards and collective objectives surmised from interactions.

4.1 THEORETICAL DEVELOPMENTS

We commence our technical developments by analyzing joint policy shifts in a centralized setting.
This parallels foundational trust region policy optimization work Schulman et al.|(2015). We prove
the following bound on the expected return difference between new and old joint policies:

Theorem 1 We establish a bound for the difference in expected returns between an old joint policy
To1q and a newer policy T e :

77(77new) > 7](770[11) + Cﬂ'old (ﬂ'new) -C- D?GLI (7701(1‘ |7rnew)7 4)
where
Crrora (Tnew) = Eswdmota (s),ammnew(ls)
[ Ao | X, AT (s.a)ly 5)
17

DR (motal|Tnew) = msaxDKL(Wold('|5)||7Tnew(‘|s))-

ZA?“Zd(sm] :

4
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The proof is given in Appendix [A:]]

The key insight is that the expected improvement in returns under the new policy depends on both
the expected advantages it provides over the old policy, as well as the divergence between policy
distributions. This quantifies the impact of joint policy changes on overall system performance given
global knowledge, extending trust region concepts to multi-agent domains.

However, this result relies on the strong assumption of centralized execution with full observability of
joint policies. To address this limitation, we introduce the concept of an anticipated joint policy from
each agent’s local perspective. As we will show, the anticipated joint policy is solved by optimizing
individual objectives. Analyzing anticipated policies is crucial for assessing the discrepancy between
individual objectives and the original collective one in decentralized learning.

Definition 1 For each agent in a multi-agent system, we define the anticipated joint policy, denoted as
7t, formulated as 7' (a|s) = vazl 7% (a’|s). Here, for each agent i, ™ represents the anticipation

from agent i to agent j’s policy when j # i. When j = i, we use ©° = 7' to indicate agent i’s own
policy. To represent the collection of all such anticipated joint policies across agents, we use the
notation 1 := (7', &' ... &N).

The anticipated joint policy represents an agent’s perspective of the collective strategy constructed
from its own policy and anticipations to peers. We will present how to solve such anticipated joint
policy in Section 2]

Definition 2 The total expectation of individual advantages, considering the anticipated joint
policies and a common state distribution, is defined as follows:

Crer (H) = ZEswd""/(s),awﬁ'i (als) [AZT

’

(s.a)] . O

where (. (II) represents the sum of expected advantages for each agent i, calculated over their
anticipated joint policy &* and a shared state distribution, d~’ (8). The advantage AZ"/ (s,a) for each
agent is evaluated under a potential joint policy 7', which may differ from the actual joint policy 7
in play. This definition captures the expected benefit each agent anticipates based on the anticipated
Jjoint actions, relative to the potential joint policy '

This concept quantifies the expected cumulative advantage an agent could hypothetically gain
by switching from some reference joint policy to the anticipated joint policies of all agents. It
encapsulates the perceived benefit of the anticipated decentralized policies versus a centralized
benchmark. Intuitively, if an agent’s anticipations are close to the actual policies of other agents, this
expected advantage will closely match the actual gains. However, discrepancies in anticipations will
lead to divergences, providing insights into the impacts of imperfect decentralized knowledge.

Equipped with these notions of anticipated joint policies and total advantage expectations, we can
analyze the discrepancy of the expectation of the total advantage caused by policy shift from the
actual joint policy to the individually anticipated ones. Specifically, we prove the following bound
relating this discrepancy:

Theorem 2 The discrepancy between (s (I1) and Cni (75) is upper bounded as follows:
- / 1 ’ ~ 2
G () = G () < £ 4+ 5 max AT (s,a)| - 3 (#(als) ~ wals))*. 3)
i s,a

where

7= g

?

AT (s, @) 14 - |~ |3 ®)

The proof is given in Appendix [A2]

This result quantifies the potential drawbacks of relying on imperfect knowledge in decentralized
settings, where agents’ anticipations may diverge from actual peer policies. It motivates reducing the
difference between anticipated and actual policies.
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Previous results bounded the deviation between total advantage expectations under the actual joint
policy versus under anticipated joint policies. We now build on this to examine how relying too much
on past policies can lead to misjudging the impact of new joint policy shifts over time. Specifically,
we consider the relationship between (r,, (l:IneW), the perceived benefit of the new anticipated joint
policies IT,., assessed from the perspective of the previous joint policy 7oiq, and 77(7r,,e. ), which
measures the performance of the new joint policy. The former represents a potentially myopic
perspective informed heavily by the past policy and, as such, it may inaccurately judge the actual
impact of switching to 7,y as quantified by 7(7rney ). The following result provides a lower bound
of the expected return, 7(7 ey ), Of the newer joint policy.

Theorem 3 The expected return of the newer joint policy is lower bounded as follows:
N(Tnew) = Crprg(Mnew) + n(wora) — C- Z DR (mhrallmie.,)

1 » )
— [T — Z 5 max |ATe (s, a)] - Z (Fhew(als) — 7\-new(a\s))2 .

s,a

The full proof is given in Appendix [A.3]

This theorem explains the nuanced dynamics of policy changes in decentralized multi-agent rein-
forcement learning, where agents learn separately. It sheds light on how uncoordinated local updates
between individual agents affect the collective performance. At the same time, this result suggests a
potential way to improve overall performance by leveraging the anticipated joint policies held by
each agent.

4.2 A SURROGATE OPTIMIZATION OBJECTIVE

Our preceding results established analytical foundations for assessing joint policy improvement in
such settings. We now build upon these results to address the practical challenge of how agents can
effectively optimize system-wide returns in a decentralized fashion.

Directly maximizing the expected collective returns, 7(7r) is intractable without a global view.
However, Theorem 3] provides the insight that agents can optimize a more tractable localized surrogate
objective, (r,, (IT). This simplifies the global objective into a decentralized form dependent only on
an agent’s individual policy, denoted as 7%, and its anticipations to others, 7%/, retaining the relevant
complexities in a decentralized form. To this end, instead of using the original global objective,
we leverage the lower bound given by Theorem 3} by maximizing the lower bound, the collective
return can be maximized. Since the terms 7(7r,;4) and f™ featuring in Theorem are not relevant
to optimizing II, they can be been omitted. Thus, we propose the following global constrained
optimization problem as a surrogate objective of the original collective one:

max Cr,,, (1)
Vi
_ B » >, 30
s.t. E DRI (moal|m™) <6, E max |AT " (s, a)] - E (ﬂz(a|s) - 7r(a|5)) <4

s,a

This global optimization objective captures the essence of coordinating joint policies to maximize
localized advantages. However, it still assumes a centralized executor with full knowledge of II.

To make this feasible in decentralized MARL, we reformulate it from each agent’s limited perspective.
Remarkably, we can distill the relevant components into a local objective and constraints for each
individual agent, as follows:

max Eonar, ,(s),a~wi(als) [A7 (s, @)]

st.r @) DRE(mhallt™) <61, () ki Y (77 (ajls) — 7% (as]s))* < 02, V) # 1, .
S,aj

© mie Y (7" (ails) — 7" (ails))® < 62, Vi # 1,

s,a;
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where r; = max; o A7 7 (s, a)|.

Note that the constraints in Eq. . depend on other agents’ policies 777 as well as their anticipations
of agent s policy, 7J%, To evaluate these terms, each agent j needs to share its action distribution
773 (-|s) and the anticipated action distribution 77%(-|s) to agent i. This sharing allows each agent
i to assess the constraint terms, which couple the individual advantage optimizations under local
constraints. Such constraints reflect not only the differences between the true policy of others and the
anticipations to them from an agent, but also the discrepancy between the agent’s own true policy
and the anticipations from others. Distributing the optimization while exchanging critical policy
information in this way balances autonomy for decentralized execution with maintaining global
coordination between agents.

This setup differs from teammate modeling where agent i tries to approximate peer policies 7% and
use them when solving 7%, whereas Eq. . aims to optimize the anticipations 7%/ together with 7%
and then 7% is used by agent j to solve 777, Therefore, the anticipations include the information
about individual objectives implicitly. By exchanging the anticipations, individual agents can balance
others’ objectives and thus the collective performance when optimizing its own objective. This setup
also significantly differs from fully centralized learning where a coordinator has access to all policies.
Here agents only share action distributions to evaluate coupling constraints, retaining decentralized
computation.

4.3 A PRACTICAL ALGORITHM FOR LEARNING WITH AS

We propose a structured approach to optimize the objective in Eq. [[T} The derivation of the algorithm
involves specific steps, each targeting different aspects of the optimization challenge. Note that in
this practical algorithm, we present a general setup where the network topology of the system does
not need to be fully-connected. Each agent only exchanges information with neighbours {j|j € A;}.
This provides an approximation of the theoretical results.

Step 1: Clipping Policy Ratio for KL Constraint. Addressing the KL divergence constraint (a) in
Eq.[T1]is crucial in ensuring our decentralized learning process remains effective. This constraint
ensures that updates to an agent’s individual policy do not deviate excessively from its previous policy.
To manage this, we incorporate a clipping mechanism, inspired by PPO-style clipping
2017), adapted for decentralized agents.

We start by defining probability ratios for the individual policy and anticipated peer policies:

g = T ailsi07) IT 5 7# (a]5:07) (12)

Tora(ails’s 054) jen; T (ay‘svgold)

These ratios measure the extent of change in an agent’s policy relative to its previous one and its
anticipations to others. We then apply a clipping operation to &;, the individual policy ratio:

Esndrota(s),anmoa(als) [min (&fx\/ﬂu clip(§, 1 — e, 1+ €)én; Ai)} :

This method selectively restricts major changes to the individual policy 7%, while allowing more
flexibility in updating anticipations of peer policies. It balances the adherence to the KL constraint
with the flexibility needed for effective learning and adaptation in a decentralized environment.

Step 2: Penalizing Anticipation Discrepancies. The objective of this step is to enforce constraints
(b) and (c) in Eq. [TT} which aim to penalize discrepancies between the anticipated and actual
policies. Simply optimizing the advantage function may not sufficiently increase these discrepancies.
Therefore, we introduce penalty terms that are activated when policy updates inadvertently increase
these discrepancies. Specifically, we define states X% to identify when the policy update driven
by the advantage exacerbates the discrepancies between the resulting anticipated policies and other
agents’ current policies, and X* to identify the discrepancies between the resulting agent’s own
policy and the ones anticipated from other agents. These are defined as

Xij:{(57a)|wAi>Ai}7 i :{(S7a)|MA >A} (13)

™7 (ajs) 7t (ails)
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where the pairs (s, a) represent scenarios in which the gradient influenced by A; increases the
divergence between the two policies. The following indicator function captures this effect:

1 if(s,a) € X
I = ’ ’ 14
x(s,a) {O otherwise. (14

Step 3: Dual Clipped Objective. In the final step, we combine the clipped surrogate objective with
coordination penalties to form our dual clipped objective:

eglgx Eswd"old(s),awﬂnld(als) [mln (é’lé'/\/’z Ai: Chp(glf 1—¢€1+ 6)5/\/1141)

— ki Y pilxii(s,@)|[77 (]5:07) — 777 ([s)]13 + pjlxis (s, @)[|w" (] 50™) — 77 (-]s) ).
JEN;

5s)

This step balances individual policy updates with the need for coordination among agents, thereby
aligning individual objectives with collective goals.

Implementation details. In our implementation, we use ~; = means,a|flf| to approximate «; in
order to mitigate the impact of value overestimation. Additionally, we adopt the same value for the
coefficients p; and p’; across different j, and denote it as p. We also utilize the generalized advantage
estimator (GAE) Schulman et al.| (2016) due to its well-known properties to obtain estimates

o]

Ai=3"0N'60, 85 =T Vilsisn) = Vilsen), (16)
=0

where V; is approximated by minimizing the following loss function,

Lv, =E[(Vi(s)) = > _+'rit)?). (17
=0
Algorithm [T] in Appendix. [F] presents the detailed procedure used in our experimental section.
Appendix. [E|shows an illustration of our method.

5 EXPERIMENTS

5.1 TASKS AND BASELINES

We evaluate the performance of our AS algorithm across a spectrum of tasks, spanning both discrete
(Exchange and Cooperative Navigation) and continuous (Cooperative Predation) spaces and featuring
diverse agent counts (from 3 to 20 agents). For a comprehensive assessment, we benchmark AS
against three prominent baselines: Value Sharing (VS) Du et al.|(2022), Value Function Parameter
Sharing (VPS) Zhang et al.|(2018b), and Policy Model Sharing (PS)[Zhang & Zavlanos|(2019). A
detailed description of the environments and baselines can be found in the Appendix.

5.2 RESULTS

The training curves and final total returns of the different algorithms are shown in Figure [T} For
the two discrete environments, “Exc.” and ”Navi.”, there are 3 agents. The neighboring agents
of each agent are enclosed within the dashed outline rectangles, as depicted in Figures [2(a) and
(b) in Appendix [B| In the continuous domain, we assess the algorithms using 6, 8, and 12 agents.
Neighboring agents are defined as those within a normalized distance of 0.1. For each algorithm
and task, we conduct 5 runs with different seeds. As seen in Figure[T] our AS algorithm performs
the best consistently across all tasks, attaining policies that gain more total return than the baselines.
This demonstrates the effectiveness and superiority of AS. It is important to note that the aim of our
study is not to outperform the baseline algorithms but to provide a viable alternative in settings where
agents cannot exchange values or rewards due to privacy constraints.

For the baseline algorithms, VS and VPS exhibit unstable performance across tasks. This implies
merely sharing values or value functions and achieving value consensus may be insufficient for
cooperative policies. A hypothesis for the performance disparities is that despite approximating
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Figure 1: Training curves (top row) and normalized final total return (bottom row).

system-wide values, policy updates in these methods lack coordination, leading to inferior cooperation.
Particularly in the Pred. task, VS and VPS exhibit better performance in some scenarios compared to
Exc. and Navi. tasks. This difference can be explained by the nature of the tasks themselves. Exc.
and Navi. demand a higher level of coordination, especially because agents are heterogeneous with
unique individual objectives. Such environments intensify the need for precise and synchronized
policy updates, making the coordination challenge more pronounced. In contrast, our method aims
to address this discoordination by enabling more harmonized policy updates among agents, taking
into consideration the anticipations of other agents’ policies, which leads to a more cohesive policy
development process. PS also focuses on direct policy coordination rather than value consensus.
However, results show PS has slow convergence on some tasks. Sharing policy parameters may
entail redundant information unnecessary for effective coordination. In contrast, AS avoids sharing
policy parameters, instead exchanging action distributions from policies. Furthermore, in AS each
agent selectively shares anticipations only with corresponding agents, not indiscriminately with all
neighbors. Our superior training efficiency and performance compared to PS showcases this benefit.
As agent populations increase, PS convergence slows, while AS remains robust.

We also conducted further studies regarding the scalability, impact of neighbourhood range, sensitivity
to the penalty weight. Experimental results indicate AS’s robust performance with sparse network
topology, different neighbour counts, and varying penalty weigh. Details are given in Appendix.

6 CONCLUSIONS AND FUTURE WORK

In this work, we tackled the challenge of decentralized multi-agent policy optimization under
individual reward conditions, where individual interests can conflict with collective objectives. We
introduced Anticipation Sharing (AS) as an alternative to traditional methods like intrinsic rewards,
value sharing, and policy model sharing. AS enables agents to incorporate their individual interests
into anticipations regarding the action distributions of other agents. In the process of exchanging their
anticipations with each other, agents become aware of the collective interest implicitly, despite the
fact that rewards, values, and policies are private to each agent.

Theoretically, we established that the difference between agents’ actual action distributions and the
anticipations from others bounds the difference between individual and collective objectives. We
used this insight to create a novel individual objective that serves as a lower bound for the original
collective objective, driving agents toward cooperative behaviors. Our decentralized MARL algorithm
based on AS demonstrated the capability to produce pro-social agents in empirical experiments.

In the future, several opportunities exist to enhance our understanding and application of the AS
framework. We can refine individual objectives by investigating tighter bounds for measuring dis-
crepancies between individual and collective interests, and delve deeper into alternative optimization
strategies based on AS framework. Another prospective avenue involves exploring the integration
of additional communication mechanisms into AS. It would be especially insightful to study these
mechanisms within the context of dynamic topology structures that dictate cooperative information
flows. Additionally, a thorough analysis of our algorithm’s convergence properties would be insightful.
Lastly, applying our methodology to more complex tasks remains a promising direction.
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A PROOFS

A.1 PROOF OF THEOREM 1

Theorem 1] The following bound holds for the difference between the expected returns of the current
policy 7,4 and another policy 7r;,¢q,

n(ﬂnew) Z n(ﬂold) + Cﬂ'old (ﬂ'new) -C- DTI?%I (ﬂ'old‘ |7rnew)7 (] 8)

where

Crora (Tnew) = Bandmora (s).anmycu (1s)

Z Az?r()ld (87 a)] )

dmaxsq |y, AT (s, a)ly (19)
(1—9)?

DR (Totdl|Tnew) = m?XDKL(Wold('lsﬂ‘Wnew('|s))-

O:

Lemma 1 Given two joint policies ;4 and e,

N(Tnew) = N(Totd) + Ernmpeny [ZZ’YﬁA’TOM 3t7at)1 ) (20)

=1 t=0

where E; ., ., [-] means the expectation is computed over trajectories where the initial state distribu-
tion s ~ d™ev (), action selection a; ~ 7rycq (+|St), and state transitions s;1 ~ P(-|s¢, ar).

Proof: The expected discounted reward of the joint policy, i.e., Eq.[I] can be expressed as

N
(m) = ZEMW Vi (s)]. 1)

Using AT (sy, ar) = Eg[ri + V™ (s") — V.7*!4(s)], we have

N oo
Z Z ,ytAZTold(St7 at)]

i=1 t=0

= TN‘”new [szt Tt +’YV Old(st+1) V Old(st))]

=1t=0
, ] (22)

T YT hew

(=Vi""(s0) + Z vr
=1 t=0
N

_ ZESO Vﬂ'old 50 ] Z S lzv ]
= 77’(7rold) + n(ﬂnew)-
Thus, we have Eq.[20]

Define an expected joint advantage Ajoint as

Mz

=Erempen

Ajoint(s) = Etl’\‘ﬂ'new(“s)

N
Z ATl (s, a)] . (23)

=1

Define Ly, (Tnew) as

Lﬂ'old (Trnew) = n(ﬂold + ZP St = Slﬂ'old Z'Y ]omt(st)~ (24)
t=0
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Leveraging the Lemma 2, Lemma 3, and Theorem 1 provided by TRPO |Schulman et al.| (2015), we
have
|77(7Tnew) - Lﬂ'old (ﬁnew) | S C- (Hl?X DTV (Trold(' ‘5) | |7rnew (|5)))2 . (25)

Based on the relationship: (Drv (p||q))? < Dx1(q||q), we have
|7)(7Tnew) - Lﬂ'old(ﬂ-new” < c- D%%I (Trold| |7rnew)~ (26)

For the second term of the RHS of Eq.[24] we have the following equivalent form

Z P(s; = s|mo1a) Z ’yt[ljomt(st)
p t=0

= Z ZVtP(St = s|mo1d) Ajoint (st)

s t=0
_ Z dTold (S)Ajoint(st) o
N
= Z dﬂ'old (S)E(l’\‘ﬂ'new (‘9) Z A;T()ld (87 a)
s =1

= Crrora (Wnew)-

Thus, we have L, ,(Tnew) = 1(oi1d) + Crory (Fnew)- Then, replacing L, , (Tpew) in Eq. we
have

|77(7Tnew) - (n(ﬁold) + Cﬂ'old(ﬂ'new)” S C- D}?%m (ﬂold| |7Tnew)7 (28)
and thus Theorem [I]is proved.

A.2 PROOF OF THEOREM 2]

Theorem The discrepancy between (g (l:I) and the sum of the expected individual advantages
calculated with policy ' over the true joint policy , i.e., (x/(7), is upper bounded as follows.

Gor () = G () < ™ 4+ 3 Smax |47 (s.a)|- 3 (F(als) ~ m(als)’, @9)

s,a

where

7= g e

K2

AT (s,0)] - |4] - ™1 (30)

Proof:
Cﬂ" (]':‘[) - Cﬂ"(ﬂ-) = Z‘Eswd‘"/(s),awii(ah) |:A;T/(S7 a‘):| - Eswd"‘"(s),awﬂ'(ab) |:AZT/(S’ a’)i|

=33 d™ (s)(#(als) — w(als) AT (. ),

i s,a
<D max
<D max
B 1

— 2 gm
3 5

1
— fﬂ" 4 XL: % H;%X ‘AZ‘J (s, a)’ . Z (ﬁ'i(a|5> - 7"'(a‘|s))2

s,a

A7 (s,a)| -

> d™ (s) (7' (als) — m(als))

AT ) -3 5 (0 (Rl - ma)’)

s,a

A7 (s,a)| - (a7 ()2 + (7' (als) - m(als))?)

A7 (s,a)] <A| ™ B+ (7 (als) - w<a|s>)2>
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where

AT (s,0)] - 1] - ™.

A.3 PROOF OF THEOREM[3]

Theorem [3| The expected return of the newer joint policy is lower bounded as follows:

N(Tnew) =Croia (Hnew) +n(mora) — C - Z KL oldHWnew)

) (32)
zi: 2 H;%LX |A7"old S a’ Z ma‘X dﬂ-()ld ( new(a’|s) - 7'rnew(a|s))2
Proof According to Theorem [} we have
n(ﬂnew) > gﬂ'old (Wnew) + n(ﬂold) C- Dma:z: (ﬁoldHﬂ'new) (33)
The KL divergence has the following property |Su & Lu|(2022):
D?QL (ﬂ-Old”ﬂ-new < Z Dmaw old||7rnew) (34)
Based on Eq.[33]and Eq.[34] we have
N(Tnew) 2> Crora(Tnew) + 1(mwora) — C - Z Dy ( old||7TrL€w) (35)
Using Theoreml Crropa ( new) and (r,,, (Ttnew) satisfy the following inequality:
Crrora (Tnew)
> Crrpra (ﬁnew Z maX ‘Aﬂ-om s,a) Zmax d™e (s (~ﬁew(a| ) 7Tnew(a|5))2-
(36)

By replacing (r,,, (Tpnew) of Eq. with the RHS of Eq. |36, we have Eq.|32} and thus Theorem is
proved.

B ENVIRONMENTS

Exchange (Exc.). We introduce a new discrete domain setup that delves into the intricate dynamics
of agent interactions amidst conflicting interests. Here, n agents are paired with n boxes. Each box
contains food for a specific agent but can only be opened by another agent at a cost of 5 reward points.
The food’s intended recipient gains 10 reward points. Every agent loses 0.01 reward point per time
step taken. In a purely self-interested setup, agents would avoid opening boxes for others, leading to
a free-rider problem. An illustration of this environment is depicted in Appendix.[B] Figure (). The
state includes agents’ and food items’ positions, with random initialization each episode. Agents can
move up, down, left, or right, or opt to open a box or stay, based on their alignment with a box.

Cooperative navigation (Navi.). Building on the framework from Zhang et al.|(2018b), this task
requires every agent to approach a landmark. Adopting the same observation and action configurations
as in|Zhang et al.|(2018b)), agents earn rewards relative to their proximity to targets. However, they
incur a -1 penalty upon collisions. Agents are restricted to exchanging information only with adjacent
counterparts. Figure 2{b) in Appendix. [B]visualizes the environment setup.

Cooperative predation (Pred.). We introduce a novel continuous domain task. This environment
involves multiple predator agents aiming to capture a single prey, presenting a cooperate-versus-defect
conundrum. If all predators cooperate, they each gain a reward of —1. In contrast, universal defection
results in a —3 reward for every predator. A mixed scenario, with only a subset actively engaging
the prey, penalizes those participating with a —4 reward, while the non-participating predators gain
a 0 reward. The challenge is to nurture a cohort of agents favoring cooperative behaviors over
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defection-driven individualistic tendencies. For each episode, the prey’s position, z+,, € X, and the
starting positions of agents, x,4, € X, are randomized, with X’ = [0, 30]. The state is represented
as st = [zggl — Ttar, - - - amfng — Ztar|, @ continuous variable. Actions fall within A = {—1, +1},

corresponding to left and right movements. Figure 2{c) in Appendix.[B]illustrates this environment.

&
LR =
e .| ® *

(a) Exchange (b) Cooperative navigation
Defect Cooperate Cooperate Defect
—_ A —
- ¢ (s

(c) Cooperative predators

Figure 2: Illustrations of three environments

C BASELINES

We compare our AS algorithm to three typical decentralized MARL algorithms that share information
under individual reward conditions: value function parameter sharing|Zhang et al.[|(2018b)), value
sharing [Du et al.| (2022), and policy parameter sharing [Zhang & Zavlanos| (2019). For notation
simplicity, we refer to these as VPS, VS, and PS respectively. We demonstrate AS’s competitiveness
despite not relying on value or policy sharing.

VPS employs consensus updates of individual value functions. The updates utilize each agent’s
unique reward, along with a weighted aggregation of neighboring agents’ value function parameters.
In contrast, in VS, each agent learns a value function independently without consensus. However,
they update individual policy networks based on the average neighborhood value function. PS uses
consensus updates to learn global policies. Each agent learns a global policy and aggregates policy
parameters from neighbors, but value functions are learned independently without consensus.

D ADDITIONAL RESULTS

Assessing impact of neighbourhood range. To assess the potential impact of the neighborhood
range, we vary the maximum neighborhood distance. In the discrete domain, the maximum neighbor-
hood distance is defined as d = 1 and 2 units from the agent. In the earlier experiments, d = 1.5. In the
continuous domain, we set the normalized distance limit as d = 0.03 and 0.3, which is 0.1 previously.
The results shown in Figure [3|indicate that AS exhibits good performance compared with baselines.
In contrast, VPS exhibits a notable performance degradation when the range is decreased in Pred.
tasks. VS also degrades in performance slightly with a reduced range. The performance of PS does
not improve with an increased range.

Assessing sensitivity to penalty weight. We investigate the sensitivity of our algorithm to the weight
of the penalty terms in Eq.[T3] As an illustrative example, in cooperative predation tasks, the weight
is set as p = 0.1 in the previous experiments. In this part, we set p = 0.03 and 0.3. Results are shown
in Figure[d] The training curves show that our algorithm is robust to the penalty weight in a large
scale. The results also confirm that this robustness persists across different agent quantities. On the
other side, when using a small weight, the performance exhibits a minor decline. It indicates the
importance of the penalty terms in adjusting individual policies towards enhancing cooperation.
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Figure 3: Training curves with different neighbourhood ranges.
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Figure 4: Training curves with different penalty weights.

Scalability and communication study. We further consider the scalability of our proposed algorithm
when the number of agents increases. A sparse network topology of the decentralized system,
where each agent randomly selects another to exchange information, as well as low communication
frequency, can help reduce computational complexity. For this study, we tested two different versions
of our AS algorithm: (1) each agent randomly selects another agent to exchange information, and
(2) the system adopts a random skip (0.5 probability) of communication between steps. When
communication is skipped, each agent does not update the anticipated policies of others, and does
not use the constraints that constrain the discrepancies between the anticipated action distributions
m_i(a—;|0_;;) and the true action distributions 7w_;(a_;|6_;), i.e. the last two terms in Eq. [15|are
removed. Additionally, the policy ratio &/, involving others’ true policies are also removed from Eq.
[T3] As a result, each agent updates its own policy independently. The same approach is used in the
baseline algorithms, i.e. when skipping communication, agents update policies independently. The
experimental results using 20 agents in Predation task (Figure[5) demonstrate the effectiveness of our
proposed AS algorithm. VS and VPS fall into suboptimal results, while PS cannot learn within the
same amount of training episodes.
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Figure 5: Experimental results of N=20.
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Figure 6: Illustration of AS algorithm, where d represents the function regarding the discrepancy
term used in Eq. T3]
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F ALGORITHM

Algorithm 1: Decentralized MARL via Anticipation Sharing (AS)

1 Initialize: Policy networks 7t¢ = (7%, .. | 7*V), value networks V;,Vi € {1,--- | N};
2 for episode = 1 to E do
s | Dy bV
4 Observe initial state sq ;
5 for r1=1to T do
6 Execute action a} € 7% (+|s;) ;
7 Observe reward ¢ and next state s; 41 ;
8 Store (s¢, al,ri, s¢41) € D;
9 end
10 for iteration = 1 to K do
1 for i=1to N do
12 Compute advantage estimates 12111, S /1? using Eq
13 Share action distributions [7% ,(-|s1), -+ , 7% (-|sT)] to neighbors {k € N;};
14 Share anticipated action distributions [7'],(:|s1), -+ , 7., (-|s7)] to each
neighbor agent j, 7 € N; ;
15 Update V; using Eq|17];
16 Update 7* using Eq|15|;
17 wh
18 end
19 end
20 end

G HYPERPARAMETERS

Table 1: Common hyperparameters used in all tasks.

Hyperparameter Value

Critic network (128,64, 1)
Actor network (128, 64, dim_a)
Activation ReLLU
Optimizer Adam

Critic learning rate  le-4
Discount factor v 0.99
GAE X\ 0.98
Clipping € 0.2
Update iteration X' 3

Table 2: Different hyperparameters used for discrete and continuous domains.

Domain Continuous  Discrete
Actor learning rate  le-4 5e-5
p 0.1 led
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