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Abstract

The overarching goal of protein engineering is the design and optimization of
proteins customized for specific purposes. Generative protein language models
(PLMs) allow for de novo protein sequence generation, however current PLMs
lack capabilities for controllable sequence generation of sequences tailored with
desired properties. Here we present ProteinRL, a flexible, data-driven reinforce-
ment learning framework for fine-tuning generative PLMs for the de novo design
of sequences optimized for specific sequence and/or structural properties. We high-
light two example cases of realistic protein design goals: a single-objective design
for sequences containing unusually high charge content, and a multi-objective
design scenario of a hit expansion, diversifying a target sequence with generated
sequences having high-confidence structure predictions and high probability pre-
dictions of soluble expression. In both cases ProteinRL fine-tuning guides the PLM
towards generating sequences optimized for the defined properties, extending to
values rarely or never seen in natural sequences or sequences generated without
ProteinRL fine-tuning. The demonstrated success and adaptability of the ProteinRL
framework allows for the de novo design of novel protein sequences optimized for
applications across many areas of protein engineering.

1 Introduction

Over the past few years, developments in generative protein language models (PLMs) have led to
major advancements in de novo protein sequence design. Trained on large databases of natural
protein sequences such as UniProt [1], generative PLMs can learn the statistical patterns of amino
acids found in natural proteins. Once trained, generative PLMs can be sampled to generate novel
de novo-designed protein sequences that match those amino acid patterns of natural sequences
[2]. While generative PLMs have been developed using various deep learning model architectures
[3–6], recent developments in transformer-based PLMs have shown particularly promising success
in protein sequence generation capabilities [2, 7–10]. Protein sequences generated from a recent
transformer-based generative PLM were found to express, fold into their predicted globular structures,
and maintain biological activity [7].

One important remaining challenge with current generative PLMs is the controllable generation of
sequences tailored or optimized for specific properties. One approach developed in this direction is
training PLMs that couple training sequences to control codes that condition sequences on functional
annotations such as Pfam family annotations, Gene Ontology terms, or Enzyme Commission numbers
[7, 11]. While such strategies allow for tailoring sequence generations towards specific biological
functions, they are limited to properties for which these annotations exist and cannot be adapted to
properties that the foundational model was not trained on.
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Outside of the field of protein design, reinforcement learning (RL) has been used as a strategy for
task-directed tuning of language models. Famously, OpenAI’s ChatGPT was trained to increase
human-like quality of text generation by fine-tuning a pre-trained GPT-3.5 model using human
feedback as a reward. In the field of chemistry, researchers developed the REINVENT framework
to fine-tune a pre-trained recurrent neural network (RNN) chemical language model to generate
molecules with desired properties [12]. While RL approaches have been used in other areas protein
design [13–15], no current approaches design full protein sequences for specific properties by
fine-tuning a generative PLM.

Towards the goal of custom-tailored de novo sequence design we developed ProteinRL, a policy-based
reinforcement learning approach to fine-tune generative PLMs for the generation of protein sequences
that possess specified desired properties. To highlight these capabilities, we show that an agent
PLM learns to generate sequences that contain high degrees of either positive or negative net charge.
Sequences generated as a result of ProteinRL fine-tuning show net charges at very extreme ends
of the distribution of net charges observed among natural sequence and are predicted to maintain
the natural protein fold. A multi-objective scoring function allows for simultaneous optimization of
multiple protein properties. We demonstrate multi-property optimization capabilities of ProteinRL
with an example use case of a hit expansion, where we simultaneously optimize generated sequences
for high sequence identity to a specific target sequence, high confidence of structural models, and
high predicted probability of soluble expression. Again, ProteinRL guides the PLM to generate
sequences with values for all three properties that fewer than 0.2% of natural sequences possess. Our
approach allows for the de novo design of novel protein sequences optimized for specific properties,
with applications across many areas of protein engineering.

2 Methods

2.1 ProteinRL property-directed fine-tuning

Figure 1: ProteinRL workflow. During training, the agent PLM generates sequences. Structures
for generated sequences can be predicted using ESMFold. User-defined sequence and/or structural
properties of interest are calculated for generated sequences and used to train agent PLM towards
generating sequences with these properties. An untrained, prior PLM regularizes the agent PLM to
mitigate catastrophic forgetting.

The workflow for the RL approach is outlined in Figure 1). We adapted the REINVENT [12] RL
approach for fine-tuning a pre-trained generative PLM using a reward score calculated for a desired
property. At the outset of fine-tuning, two pre-trained PLMs are instantiated: an agent PLM that
is fine-tuned by RL and a prior PLM that is not trained, but used to regularize the agent PLM to
preserve knowledge of the initial protein sequences and mitigate catastrophic forgetting. We use
the pre-trained ProGen2 generative PLM [8] as the foundational PLM for ProteinRL fine-tuning,
however we note that any pre-trained generative PLM will work within the ProteinRL framework.
During training, the agent PLM performs the episodic task of generating sequences by iterative next
residue prediction until an end-of-sequence token is reached. A sequence reward function scores the

2



generated sequences for the user-specified desired property or properties of interest. If any property
for optimization is determined from protein structure, structural models of the generated sequences
are determined using the protein structure prediction model ESMFold [16]. Again we note that any
protein structure prediction model will work within the ProteinRL framework. A property-scaled,
prior-regularized loss function is determined from the generated sequences as:

L(θ) = [logPAgent(seq)− logPAugmented(seq)]
2. (1)

In Equation 1, logPAgent(seq) is the sequence log likelihood as determined by the agent PLM, given
by:

logPAgent(seq) =

l∑
i=1

logP (xi|x<i) (2)

where xi denotes the residue x at position i over the entire protein sequence length l and x<i

indicates the entire sequence preceding position i. The logPAugmented(seq) term is an augmented
log likelihood of a sequence given by:

logPAugmented(seq) = logPPrior(seq) + σ ∗ ϕ(R(seq)) (3)

composed of two terms. The first term is the log likelihood of the sequence given by the prior model
as in Equation 2. The second term is the score determined from the specified sequence reward
function R(seq), transformed to the interval [0,1] by transformation function ϕ (where property
scores that are favorable are greater), and scaled by a user-defined scaling factor σ that modulates
the contribution of the property reward score to the overall loss. Such a loss function guides the
agent PLM towards sequence generations that score well by the property reward score function while
maintaining knowledge of sequences that are favorable according to the prior PLM.

At each step of the ProteinRL fine-tuning loop, sequences were generated by the agent PLM, scored by
the desired sequence property reward function, and the mean loss (by Equation 2) among sequences
backpropagated through the agent PLM. Over repeated iterations for fine-tuning, the agent PLM is
guided towards sequence generations that score well by the property reward score function(s) but
remain favorable by the prior PLM, resulting in quality sequences that are optimized for the specific
property or properties of interest.

Further details of ProteinRL finetuning for the two example protein design tasks highlighted below
are given in the Supplementary Methods.

3 Results

3.1 Optimization for high net charge content

To demonstrate the ability of ProteinRL to optimize sequences for specific defined properties, we
fine-tuned generative PLMs to generate sequences with highly positive or highly negative charge
content (Figure 2) The design of proteins with high charge content represents a realistic protein
engineering goal, as supercharging proteins has been identified as a strategy to impart high stability
[17]. We used β-lactamase as the example protein family for this task.

Throughout the process of fine-tuning, the PLMs learn to generate sequences with extreme positive
or negative net charge. The net charges of sequences generated by the PLMs fine-tuned by ProteinRL
reach mean values of +18 and -39 for the PLMs optimizing positive and negative net charge content
respectively (Figure 2). These values of sequence net charges are at the extreme ends of the
distribution of net charges observed among natural β-lactamase sequences (mean net charge of -2,
Figure 2), and are more extreme than those observed in 1,000 sequences generated from sampling
the prior PLM model that is not fine-tuned towards increasing or decreasing net charge (mean net
charge of -3; Figure 2). Importantly, fine-tuning towards extreme charge content does not come
at the cost of generating sequences that maintain important sequence and structural features of
β-lactamase sequences. Sequences generated by the fine-tuned PLMs have low perplexities as
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Figure 2: Fine-tuning sequence generation for high net charge content. (Left) Top plot shows mean
net charge of sequences generated at each step of ProteinRL fine-tuning to increase (blue) or decrease
(red) sequence net charge. Right panel shows distributions of net charges for natural β-lactamase
sequences (black) and sequences generated from the prior model (yellow). Y-axes scales are shared.
Bottom plot shows mean sequence perplexities determined from the prior model for sequences
generated by the agent throughout the iterations of ProteinRL fine-tuning. (Right) Overlaid ESMFold
structural models of the natural β-lactamase TEM-1 (gray) and representative sequences generated
from the PLM fine-tuned for increasing (blue) or decreasing (red) net charge.

determined by the prior PLM, indicating that they remain high-likelihood β-lactamase sequences
(Figure 2). Structural models of representative sequences generated from the fine-tuned PLMs with
extreme positive and negative net charges overlay with low RMSD to the natural TEM-1 β-lactamase
sequence, despite possessing extreme net charges (+14 for the positively charged sequence, -54
for the negatively charged sequence, -7 for TEM-1) and sharing low sequence identity to TEM-1
(24% identity for the positively charged sequence, 34% identity for the negatively charged sequence)
(Figure 2, Figure S2). Active site residues involved in catalysis and substrate recognition are all
maintained in generated sequences, and the imparted charged predominantly localize on the protein
surface despite no structural information being explicitly included in the design strategy (Figure S3).

3.2 Multi-objective optimization of sequence and structural properties

Next, we tested the capabilities of ProteinRL for simultaneous optimization of multiple properties.
We used the scenario of a hit expansion, with the aim of diversifying a target sequence with generated
sequences having high-confidence structure predictions and high probability predictions of soluble
expression in E. coli to enable experimental characterization. For this scenario, we used lysozyme
as a test-case, with hen egg white (HEW) lysozyme as the target sequence of interest for expansion.
To accomplish this, we defined property reward functions for each of these goals to be combined
in a multi-objective reward function (see Supplementary Materials): percent identity of generated
sequences to HEW lysozyme, mean pLDDT of residues in ESMFold structural models of generated
structures, and predicted probability of soluble expression of generated sequences determined by a
BERT-based model that we previous developed [18].

Throughout the multi-objective fine-tuning, the PLM learns to generate sequences that are improved
in all three properties (Figure 3 left). Before ProteinRL fine-tuning, sequences generated by the PLM
shared 23% identity to the target HEW lysozyme sequence, had mean residue pLDDT of structural
models of 60, and had predicted probabilities of expression 84% on average. Throughout fine-tuning,
generated sequences reached 85% identity to the HEW lysozyme target sequence, mean residue
pLDDT of structural models of 89, and predicted probabilities of expression of 95% on average. Only
12 of 6,507 (<0.2%) of natural lysozyme sequences and no sequences among 1,000 generated from
sampling the prior PLM model had values for all three properties greater than these values achieved
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Figure 3: Multi-objective fine-tuning for a hit expansion. (Left) Mean values of sequence identity to
the target HEW lysozyme sequence (top), mean pLDDT of ESMFold structural model confidence
(middle), and predicted probability of expression determined from an in-house developed model
(bottom) for generated sequences throughout iterations of ProteinRL fine-tuning. (Right) Comple-
mentary cumulative distributions for property scores for natural lysozyme sequences (black) and
sequences generated from the prior model (yellow). The proportion represents the proportion of
natural sequences with the indicated score value or greater. Note some distributions truncated with
values for the lowest around one-third of natural sequences not shown; full distributions are shown in
Figure S4. Y-axes shared with scale on plots to left.

by ProteinRL fine-tuning, indicating that fine-tuning guides the PLM towards a sparsely populated
region of sequence space for which all three properties are simultaneously optimized (Figure 3 right).
Structural models of sequence generated from the fine-tuned model are predicted to maintain the
lysozyme structure (Figure S5), though we note that this is an expected outcome given the goal of
increasing sequence identity to the natural lysozyme sequence.

4 Conclusions

ProteinRL is a flexible, data-driven approach for the de novo design of protein sequences optimized
for specific properties. For two different protein design tasks, including both single- and multi-
objective designs, applied to different protein families, ProteinRL showed high success at generating
sequences optimized for the desired scenario. In both cases, few or no sequences that possess similar
levels of the desired properties were present in natural sequences or sequences generated from PLMs
without ProteinRL fine-tuning. Though the cases we highlight here represent realistic goals in
protein design, ProteinRL offers great flexibility in the engineering tasks to which it can be applied;
any property that can be calculated from proteins sequence or structure can be used in a reward
function for property-directed sequence design. We believe ProteinRL is a promising method in the
design of fit-for-purpose de novo designed proteins for therapeutic, industrial, and biotechnological
applications.
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6 Appendix

6.1 Supplementary Methods

6.1.1 Foundational PLM

We used the pre-trained ProGen2-base (764M parameter) model as a foundational generative PLM
[8] in ProteinRL. To allow for protein family-specific sequence generation, we first fine-tuned the
ProGen2 model on a set of homolog sequences for a particular family. The two protein families
used for the two outlined ProteinRL training objective examples were β-lactamase and lysozyme.
Homolog sequences were identified by searching the Uniref100 database [19] with the mmseqs2
package [20], using the TEM-1 β-lactamase sequence and hen egg white (HEW) lysozyme sequences
as query sequences.

The model was fine-tuned on the sequence homolog set for 2 epochs using a cross entropy loss
function, the AdamW optimizer (β1 = 0.9, β2 = 0.999), a maximum learning rate of 10−4 with a
cosine decay, weight decay of 0.1, max gradient norm clipping at 1.0, and an effective batch size
of 128 sequences. Fine-tuning was performed using 2 Nvidia A6000 GPUs (48 GB VRAM each).
This fine-tuned family-specific Progen2 model was used as the initial generative PLM to be further
fine-tuned as an agent PLM for property-directed optimization.

To generate sequences from the generative PLM, we used autoregressive next residue prediction
sampling from a specified initial sequence context (given below for specific cases) until an end-of-
sequence token was reached. Sequences were generated using nucleus sampling with a sampling
temperature of 0.8 using the most probable tokens up to a cumulative probability of 95% [21].

6.1.2 ProteinRL fine-tuning for highly charged β-lactamase sequences

We used ProteinRL to fine-tune a generative PLM to generate β-lactamase sequences with high
net charge content. At each step of ProteinRL fine-tuning, 16 sequences were generated from the
agent PLM. The initial sequence context of "1MSI" (the first three residues of TEM-1 β-lactamase)
was used to seed all sequence generations at every step. We calculated sequence net charge using
the charge_at_pH (using a pH of 7.4) method within the biopython python package [22]. For
fine-tuning for positive and negative net charge, sequence net charges were transformed by the
functions:

ϕ(x)positive = (1 + 10
10m

x−0.5(xhigh+xlow)

xhigh−xlow )−1 (4)

ϕ(x)negative = (1 + 10
10m

x−0.5(xhigh+xlow)

xhigh+xlow )−1 (5)

where x is the sequence net charge, xhigh and xlow are high and low net charge values observed
among natural β-lactamase sequences (black distribution in top right panel of main text Figure 2, and
m is the sigmoid slope set to 0.5. Equations 4 and 5 are plotted in Figure S1. A value of σ=120 was
used in the augmented log likelihood equation (Equation 3). ProteinRL fine-tuning was run for 100
iterations using an AdamW optimizer (β1 = 0.9, β2 = 0.999) and a constant learning rate of 10−6.
Fine-tuning was performed using 2 Nvidia A6000 GPUs (48 GB VRAM each) and took around 3
wall hours for each run.

6.1.3 ProteinRL fine-tuning for a lysozyme hit expansion

We used ProteinRL in the scenario of a hit expansion to generete lysozyme sequence optimizing
for three properties: high sequence identity to hen egg white (HEW) lysozyme, high confidence
of ESMFold structural models, and high predicted probability of expression in E. coli. At each
step of ProteinRL fine-tuning, 16 sequences were generated using "1MRS" (the first three residues
of HEW lysozyme) as the initial sequence context. Sequence identity to HEW lysozyme was
calculated using the align_optimal method within the biotite python package [23]. The confidence
of ESMFold structural models was determined as the mean pLDDT score among C-α residues in
the structural model. The predicted probability of expression was determined from a model we
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previously developed [18]. Since the goal was to increase values for all properties, similar sigmoidal
transformation functions to Equation 4 were used for all three properties.

To allow for multi-objective optimization of all three properties we defined a multi-objective reward
function given by the weighted geometric mean of sequence property scores among multiple specified
properties as:

Rmulti(seq) = (

n∏
j=1

ϕj(Rj(seq))
wi)

1∑n
j=1

wj (6)

where each specified property receives it’s own sequence property reward function Rj(seq), data
transformation ϕj , and weight wj that allows for customizable prioritization of the specified properties.
Weights for all three properties were set equally at 1.

A value of σ=120 was used in the augmented log likelihood equation (Equation 3). ProteinRL
fine-tuning was run for 300 iterations using an AdamW optimizer (β1 = 0.9, β2 = 0.999) and a
constant learning rate of 10−6. Fine-tuning was performed using 3 Nvidia A6000 GPUs (48 GB
VRAM each) and took around 6 wall hours.
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6.2 Supplementary Figures

Figure S1: Transformation functions for optimizing β-lactamase sequences for high and low net
charges. Functions plotted for Equation 4 (left) and Equation 5 (right).
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Figure S2: Surface electrostatic potential maps of β-lactamases. Vacuum electrostatic surface
potentials generated using PyMOL [24] for of ESMFold structural models for the natural TEM-1
β-lactamase (left) and representative sequences generated from the PLM fine-tuned for increasing
net (center) or decreasing net charge (right). Top and bottom rows show two different view of each
structure, rotated by 180 degrees.
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Figure S3: Conservation of β-lactamase sequence features in generated designs. (Top) Snapshot of
active sites for overlaid ESMFold structural models of the natural β-lactamase TEM-1 (gray) and
representative sequences generated from the PLM fine-tuned for increasing net (blue) or decreasing
net charge (red), and a crystal structure of the TEM-1 β-lactamase co-crystallized with a boronic
acid inhibitor (protein shown in periwinkle, boronic acid inhibitor shown in cyan, PDB: 1NXY
[25]). Residues involved in catalysis and substrate recognition shown as sticks. (Bottom) Box
plots distributions of residue relative solvent accessible surface accessibility (SASA) grouped by
charged/uncharged residue type for TEM-1β-lactamase (left) and representative sequences generated
from the PLM fine-tuned for increasing net (middle) or decreasing net charge (right). Relative SASA
is determined as the residue SASA calculated in the structure normalized to the residue exposed
maximum SASA described in [26].
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Figure S4: Lysozyme property distributions. Distributions for sequence identities to the target HEW
lysozyme sequence (left), mean pLDDT of ESMFold structural model confidence (middle), and
predicted probability of expression (right) for natural lysozyme sequences (black) and sequences
generated from the prior PLM (yellow).
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Figure S5: ESMFold structural models of HEW lysozyme (gray) and a representative sequence
generated from the PLM fine-tuned with ProteinRL (pink).
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