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ABSTRACT

Despite the impressive performance in various pattern recognition tasks, deep neu-
ral networks (DNNs) are typically overconfident in their predictions, making it
difficult to determine whether a test example is misclassified. In this paper, we
propose a simple yet effective method of class augmentation (classAug) to address
the challenge of misclassification detection in DNNs. Specifically, we increase the
number of classes during training by assigning new classes to the samples gener-
ated using between-class interpolation. In spite of the simplicity, extensive experi-
ments demonstrate that the misclassification detection performance of DNNs can
be significantly improved by seeing more generated pseudo-classes during train-
ing. Additionally, we observe that DNNs trained with classAug are more robust
on out-of-distribution examples. Finally, as a general regularization strategy, clas-
sAug can also enhance the original classification accuracy and few-shot learning
performance.

1 INTRODUCTION

Deep neural networks (DNNs) have recently demonstrated state-of-the-art performance in various
applications ranging from computer vision (He et al., 2016; Deng et al., 2019) to natural language
processing (Kenton & Toutanova, 2019; Yao et al., 2019). However, there are other aspects of DNNs
which are undesirable and less well understood. Recent works (Guo et al., 2017; Hendrycks & Gim-
pel, 2017) have shown that DNNs are typically overconfident in their predictions (shown in Figure 1),
which brings great concerns when DNNs being deployed in various real-world applications (Janai
et al., 2017; Miotto et al., 2016; Amodei et al., 2016). In safety-critical systems, one crucial require-
ment is to assign low confidence when a prediction is likely to be incorrect. Equipped with such
ability, a system could quantify the predictive confidence to make much safer decision. For instance,
an autonomous driving car should rely more on other sensors for braking or trigger an alarm when
the detection network is unable to confidently predict obstructions (Janai et al., 2017). Alternatively,
the control should be handed over to human doctors when the confidence of a disease diagnosis
network is low (Miotto et al., 2016). In conclusion, being able to provide reliable confidence is
practically important for real-world machine learning systems.

Reliable confidence is crucial for two related problems: out-of-distribution (OOD) detection and
misclassification detection (MD) (Hendrycks & Gimpel, 2017). The purpose of OOD detection
is to determine whether an input is outside of the distribution (unseen class) of the training data.
Differently, MD focuses on whether the model will make an erroneous prediction on a particular
test example (seen class). Recently, the machine learning community has paid significant attention
to the OOD detection (Liang et al., 2018; Lee et al., 2018; DeVries & Taylor, 2018; Malinin & Gales,
2018; Yu & Aizawa, 2019; Hendrycks et al., 2019b;a). However, MD remains far less explored. To
the best of our knowledge, there is no method that can significantly outperform the baseline (using
softmax probability as confidence) (Hendrycks & Gimpel, 2017) on MD task.

Related Work. Earlier works (Fumera & Roli, 2002; Grandvalet et al., 2009; Cortes et al., 2016)
studied the problem of MD with a reject option to improve the reliability of machine learning sys-
tems in real-world tasks. Typically such methods jointly learn a classifier to perform classification
and a rejection function to decide whether the classifiers decision should be accepted. However,
those methods are mainly based on support vector machines. For DNNs, Hendrycks & Gimpel
(2017) firstly established a standard baseline for detecting misclassified samples by using maximum
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Figure 1: An illustration of the overconfident problem in DNNs. (a) A high-accuracy model typ-
ically (b) assigns high confidence for misclassified samples from seen classes, and (c) classifies
out-of-distribution samples (from unseen classes) as seen classes confidently. We mainly focus on
misclassification detection problem, that is, detecting the misclassified samples from seen classes.

softmax probability. However, DNNs tend to overconfident in their false predictions, which con-
tributes to the main drawback of the baseline approach. “Trust Score” (Jiang et al., 2018), the ratio
between the distance from the sample to the nearest class different from the predicted class and the
distance to the predicted class, was adopted as a confidence measure. However, computing nearest
neighbors in large dataset and high dimensional spaces is expensive and unstable, therefore degrades
the practicality and extensibility of this method. Recently, Corbière et al. (2019) addressed MD prob-
lem by learning the true class probability (TCP) of misclassified examples with another DNN called
ConfidNet. Nevertheless, it turns out that when the model is well trained and has a high training
accuracy, few (or even none) misclassified examples will exist in training set, and the TCP of a train-
ing example is just the same as the highest softmax probability. Outlier Exposure (Hendrycks et al.,
2019a) leveraged diverse, realistic datasets to improve OOD detection performance. However, this
method has no or even negative effects on MD task. More recently, some works (Haldimann et al.,
2019; Xia et al., 2020) leveraged generative models such as generative adversarial network (Good-
fellow et al., 2014) to detect wrongly segmented instances by comparing the difference between the
generated image and the original input. However, it is inefficient to train generative models and the
quality of generated synthetic images is highly affected by generative models.

Method. In this paper, we propose a conjecture that the overconfident phenomenon of DNNs is
partially due to the fixed and limited number of classes used for training. Actually, for human
beings, the more we learn, the more we realize how much we do not know. Therefore, we propose
a simple approach of class augmentation to address the overconfident problem by letting the DNNs
to learn more classes during training. Intuitively, class augmentation enables the model to leverage
more robust and generalizable features by seeing more classes during training. New pseudo-classes
are generated by between-class interpolation, e.g., random interpolations of two samples drawn from
different classes. In the training process, an extend (K+M)-class problem is optimized by applying
softmax over all classes and using cross-entropy loss. In the inference process, however, we only
care about the original K classes, and softmax is applied on the first K outputs. As usual, the class
with maximum softmax probability is the predicted class, and the maximum probability is viewed
as the confidence.

The proposed method is related to the mixup (Zhang et al., 2018) which also apply random inter-
polation on a pair of training samples and the respective one-hot labels. However, mixup is a data
augmentation approach, and therefore, the interpolated samples are near original data. Differently,
our approach is aimed at class augmentation, therefore, the interpolated samples are among the
confusable region. In mixup, the number of classes is not changed, but in our method it is greatly
increased. As shown later, our approach can outperform mixup significantly, especially for misclas-
sification detection, due to the expanded classes. Moreover, our approach is also effective for other
tasks which are not achievable by mixup.

Contribution. In our approach, the augmented classes are actually laying in the confusing region of
two classes. By treating them as newly-added classes for the original problem, lower confidence will
be assigned for the samples which are likely to be erroneously classified, thus giving us possibility
to distinguish correct and misclassified samples. In spite of the simplicity, extensive experiments
demonstrate the effectiveness of class augmentation on improving the reliability of the confidence
outputted by DNNs, and we have achieved new benchmark results on misclassification detection
task. Moreover, we find that DNNs trained with class augmentation are more robust on out-of-
distribution examples. Finally, class augmentation can also be viewed as a general regularization
strategy for improving the generalization performance of the original classification task and the few-
shot learning (Snell et al., 2017; Bertinetto et al., 2018) task.
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Figure 2: Motivation. (a) For instance, real data is described by latent characteristics like w/o
legs and shape. Only the most discriminative characteristic (e.g., w/o legs) are learned by original
training scheme. (b) Class augmentation: more classes (realistic or synthetic samples) are introduced
during training, which enables the model to leverage more robust and generalizable features (e.g.
shape) to overcome overconfident problem. (c) A (K +M)-class problem is optimized in training
and only the original K classes are evaluated in testing.

2 MOTIVATION AND METHODOLOGY

2.1 MOTIVATION

To build machine learning models, it is normal to predefine and fix the number of classes, mainly for
two reasons. First, this will make the data collection process easier and straightforward, which are
reasonable in laboratory environment. Second, this is a requirement for most classification models,
for example, the last layer of DNNs is usually viewed as class nodes, and the number of them need
to be fixed for making the training process to work. However, the closed-world setting, i.e., there
are a fixed number of classes for both training and test, has potential influence on the overconfident
phenomenon of DNNs (Zhang et al., 2020). Since modern DNNs have very strong fitting capacity, it
is common to achieve near perfect accuracy on training set, resulting in a sharp posterior distribution
over classes which leads to the overconfident problem.

Figure 3: Misclassification detection can be im-
proved by seeing more real classes during train-
ing. The base class number is K = 4, and the
augmented class number is M = 0, 2, 4, 6.

Our motivation is illustrated in in Figure 2. For
example, a pattern recognition task is to classify
sofa and chair, which could be easily solved by
determining whether the input has legs. How-
ever, when deploying the system in open-world,
inputs from OOD (e.g., desk) or in-distribution
may be misclassified with very high confidence.
By introducing novel classes during training,
the model may learn other features that are less
discriminative for current task but useful for al-
leviating overconfident problem.

To verify our motivation, we use real data as
novel classes and carry out an experiment on
the CIFAR-10 dataset (Krizhevsky et al., 2009).
There are totally 10 classes in CIFAR-10, and
we view the first 4 of them as the base classes
(K = 4). The remaining classes hence give us
possibility to view the benefit of adding classes for training. We set the augmented class number
as M = 0, 2, 4, 6 respectively. As shown in Figure 2 (c), a (K + M)-class model is optimized in
training and only the original K-class are evaluated in test. The used model is ResNet-18 (He et al.,
2016). The used metrics are AUROC, AUPR-Error and FPR at 95%-TPR (Hendrycks & Gimpel,
2017) for misclassification detection. As show in Figure 3, we can find that: seeing more additional
real classes during training substantially improves the performance of misclassification detection.
However, it is unrealistic to always have access to more real classes in practice. In addition, it is also
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an open question to decide which dataset to use. Therefore, a natural question is: can we use some
algorithms for synthesizing classes, and will it also be effective like adding real classes?

2.2 METHODOLOGY

Here we consider the case that using the samples coming from K classes to synthesize more classes.
Actually, this is a difficult task due to the missing of description and also the large freedom of new
classes. This means the synthesized classes may not have any actual meanings. This is different
from the data augmentation approaches for which the generated samples still have clear meanings
of belonging to a known class. Moreover, the purpose of synthesizing classes is to improve the
confidence estimation when adding them to the training process. Therefore, it is better for them to
be representative for some low-confidence samples, because the original samples usually have high
confidence after standard training.

In light of this, we propose a class synthesis method named between-class interpolation (BCI). As
shown in Figure 4, the central idea is to randomly interpolate two samples from two different classes
for generating a new sample representing a new class. In this way, the synthesized class will lay
in the confusing area (low-confidence region) of two classes, which is beneficial for improving
confidence estimation. Considering that we have two real classes A and B, we use xa to denote a
sample randomly drawn from class A and xb to represent a sample randomly drawn from class B.
Since we focus on vision tasks, here xa and xb are images. To efficiently and effectively realize BCI,
we propose two different methods.

new class

new class

1-
[0.4,0.6]

Figure 4: Illustrations of BCI-1 (top)
and BCI-2 (bottom).

BCI-1. The first method to synthesize novel class is BCI-1,
which is based on linear interpolation of two images:

xnew
ab = λxa + (1− λ)xb, (1)

where λ is a random number drawn from [0, 1]. Suppose
class A has n1 samples and class B has n2 samples, there are
actually n1 × n2 kinds of sampling for xa and xb. Moreover,
the interpolation coefficient λ is also a random number. This
actually gives us possibility of generating infinite new sam-
ples. However, to reduce the overlap of the new class and
the old classes (A and B), we restrict λ to be sampled from
the interval of [0.4, 0.6]. In this way, the new class is actually
laying in the confusing area between two base classes.

BCI-2. Besides linear interpolation, we also consider a non-
linear approach of BCI-2 to generate synthesize samples for
novel class. Firstly, both the images of xa and xb are divided
into a 2 × 2 grids with equal sizes, and then 4 grids (2 grids from each example) are selected and
reorganized randomly to produce a new image. We define the combining operation as:

xnew
ab = M⊙ xa + (1−M)⊙ xb, (2)

where M denotes a binary mask, and ⊙ is element-wise multiplication. BCI-2 is builds upon cutmix
(Yun et al., 2019), who cuts and pastes patches among training images. Different from cutmix, we
focus on the confusing area (low-confidence region) of two classes, and assign new class label to the
generated samples.

The illustrations of BCI-1 and BCI-2 are shown in Figure 4. Via between-class interpolation, the
data in this new class have large probability of being wrongly classified to class A and B. However,
we view them as a new class during training, for making the model learn how to assign confusable
samples to another class, thus reducing its confidence on original classes (A and B). For a K-class
problem, we can generate K(K − 1)/2 new classes using BCI. As shown in Figure 2(c), we merge
the generated new classes to M auxiliary classes, and the original K-class problem is therefore
extended to a (K +M )-class problem. Softmax is applied on the K +M nodes and cross-entropy
loss is used for training. In the inference process, we only apply softmax on the original K classes.
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Table 1: Results on misclassification detection. All values are percentages. ↑ indicates larger value
is better, and ↓ indicates lower value is better.

Dataset Method AUROC ↑ AUPR-S ↑ AUPR-E ↑ FPR95 ↓ Prob-W ↓ Accuracy ↑

Fashion-MNIST
model C

Baseline 86.91 98.88 39.02 52.15 92.43 92.79
MCDropout 89.77 99.09 41.88 49.87 87.55 92.54
ConfidNet 86.97 98.91 41.26 50.47 88.18 92.79
Mixup 90.17 99.15 40.90 48.70 68.55 93.45
ClassAug (ours) 92.45 99.37 42.81 46.77 66.93 93.72

STL-10
VGG-16

Baseline 79.51 90.09 58.48 77.71 80.02 70.00
MCDropout 81.09 91.54 59.61 76.22 84.21 71.04
ConfidNet 79.86 90.68 59.54 75.38 75.68 70.00
Mixup 76.27 89.10 53.57 74.90 65.83 73.75
ClassAug (ours) 83.88 93.16 60.15 71.22 50.36 74.39

STL-10
ResNet-18

Baseline 80.89 91.58 58.47 80.08 82.19 70.50
MCDropout 81.07 90.96 61.59 77.06 84.90 70.61
ConfidNet 81.20 91.81 60.24 76.47 78.95 70.50
Mixup 83.04 93.18 59.13 70.38 57.58 73.88
ClassAug (ours) 84.67 93.98 61.92 69.99 52.11 74.97

CIFAR-10
ResNet-18

Baseline 91.35 99.27 42.95 47.75 88.95 92.88
MCDropout 92.22 99.26 47.20 45.90 87.60 91.96
ConfidNet 91.96 99.53 45.03 45.68 83.46 92.88
Mixup 91.00 98.91 47.70 42.27 69.74 93.91
ClassAug (ours) 93.80 99.60 49.75 36.86 63.57 94.46

CIFAR-10
ResNet-34

Baseline 92.68 99.37 46.77 42.46 87.56 92.77
MCDropout 91.90 99.25 45.34 46.46 87.41 92.23
ConfidNet 92.96 99.60 46.81 40.22 84.38 92.77
Mixup 88.01 98.65 45.72 40.25 63.87 93.59
ClassAug (ours) 94.51 99.60 47.71 34.46 74.80 95.13

CIFAR-100
ResNet-34

Baseline 85.48 93.79 68.69 66.06 80.51 69.98
MCDropout 85.54 93.63 68.65 70.35 75.59 68.62
ConfidNet 86.03 93.96 69.02 64.53 73.78 69.98
Mixup 85.33 92.65 68.52 64.42 67.12 72.45
ClassAug (ours) 87.16 95.02 69.43 63.90 65.38 72.80

3 EXPERIMENTS

In this section, we firstly compare our method, class augmentation (classAug), with several recent
baselines on misclassification detection (MD) of DNNs. We conduct experiments to demonstrate the
effectiveness of classAug, and results show that classAug outperforms other approaches on MD by a
large margin on a variety of datasets and network architectures. Specifically, we show that the more
class, the better performance of MD. Then we demonstrate that using real data from other datasets
does not work as well as using synthetic samples generated by BCI. Additionally, we compare our
method with OE (Hendrycks et al., 2019a) for MD task. Results show that classAug, which is a new
way to leverage synthetic samples, is more effective than OE for MD task. Furthermore, in Section
3.3, we show that DNNs trained with classAug are more robust on out-of-distribution examples, and
the accuracy of few-shot learning could be improved by classAug. Note that we mainly used BCI-1
for experiments, and compared BCI-1 and BCI-2 for MD in Section 3.2. Implementation details are
described in Appendix. Our code will be publicly available upon the publish of this paper.

3.1 EXPERIMENTAL SETUP

Datasets and network architectures. We thoroughly validate our method on several well-known
classification datasets: Fashion-MNIST (Xiao et al., 2017), STL-10 Coates et al. (2011), CIFAR-
10 and CIFAR-100 (Krizhevsky et al., 2009). We use a wide range of network architectures to
demonstrate the effectiveness and robustness of our approach. A small convolution network named
model C in (Springenberg et al., 2014), VGG-16 (Simonyan & Zisserman, 2015), ResNet-18 and
ResNet-34 (He et al., 2016) are mainly adopted in our experiments.

Evaluation metrics. We adopt the standard metrics as Hendrycks & Gimpel (2017) to measure
the quality of misclassification detection: FPR at 95%-TPR, AUPR-S, AUPR-E and AUROC.
Specifically, FPR at 95%-TPR can be interpreted as the probability that a negative (misclassified)
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Figure 5: (a) Predictive distributions on misclassified samples. For misclassified samples, the pre-
dictive distribution is smoother, and the softmax scores of the ground-truth class are increased by
training with classAug. (b) Average confidences (the max softmax scores) of correctly classified
samples and misclassified samples during training. We use ResNet-18 on CIFAR-10 dataset.

example is misclassified as a correct prediction when the true positive rate (TPR) is as high as 95%.
The metric AUPR-S and AUPR-E indicate the area under the precision-recall curve where correct
predictions and errors are specified as positives, respectively. AUROC is the area under the receiver
operating characteristic curve. As described in Hendrycks & Gimpel (2017), we also list the mean
predicted class probability of wrongly classified examples (Prob-W). In addition, we emphasize
that the classification accuracy of the neural network are also important since we can not sacrifice
the original task performance to improve the quality of confidence estimation. Further details about
these metrics are in Appendix.

Comparison Methods. We compare our method with several approaches: baseline (Hendrycks &
Gimpel, 2017), Minte-Carlo Dropout (MCDropout) (Gal & Ghahramani, 2016), ConfidNet (Cor-
bière et al., 2019), and Mixup Training (Thulasidasan et al., 2019).

3.2 RESULTS AND DISCUSSION

Comparative results on MD are summarized in Table 1. We observe that our method consistently
outperforms the baseline approach by a large margin, which confirms that classAug can effectively
improve the reliability of confidence estimation. Intuitively, by explicitly modeling the samples
laying in the confusing region of two classes, the network encourages samples which are prone to be
misclassified to have lower confidence over original class nodes. As shown in Figure 5(a), classAug
not only reduces the confidence over false prediction but also enhances the prediction values of
the ground-truth classes. This implies that classAug induces meaningful predictions by forcing the
model to leverage more generalizable features to recognize confusion introduced by BCI. Figure 5(b)
shows that the average confidence of misclassified samples can be reduced from 88.95% to 63.57%
by our approach.

Figure 6: MD can be improved by seeing more
synthetic classes during training.

Furthermore, it is also shown that mixup can
improve baseline results on some datasets and
network architectures such as Fashion-MNIST
and STL-10 with ResNet-18, while classAug
consistently performs well on larger category
tasks and more complex datasets. Actually,
mixup training can successfully reduce the con-
fidence of misclassified samples. However, as
shown in Figure 5(b), it also ruins the confi-
dence of correct classified samples, which can
not improve the separability between erroneous
and correct predictions, resulting in no effec-
tiveness or even negative influence on misclas-
sification detection performance. As a conclu-
sion, our approach outperforms other methods
for MD significantly and consistently, and also achieves better generalization performance.
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Novel class: the more the better? We empirically study how the number of new classes affect
MD performance. We fix the total number of generated samples, then increase the number of novel
classes. Specifically, we merge the novel samples into different number of classes, starting by merg-
ing all the new data to a single auxiliary class (similar in some ways to a reject option). From
Figure 6, we observe that increasing the number of new classes can improve the MD performance.
Specifically, the performance are improved significantly when the number of new classes rises from
1 to 10. Then, the growth moves slower against class number increasing. Intuitively, when merging
all new data to a single class, on the one hand, the variance of the features in this single class would
be big, which might be harmful for representation learning; on the other hand, the model would learn
less discriminative features since it has no need to perform classificaiton among those new data.

Real Class v.s. BCI. Actually, the class augmentation is a general idea. In this paper, we use BCI
to generate synthetic samples and classes. However, it is also possible to use real classes from other
datasets for class augmentation. Table 2 shows such comparisons. For the task of CIFAR-10, we
use SVHN, CIFAR-100, TinyImageNet, BCI-1 and BCI-2 for class augmentation. It is shown that
BCI-1 significantly outperforms real classes from other datasets on MD task. This is because the
real classes from other datasets have a domain gap to the base classes, while generated classes by
BCI are still in the same domain of original class (note that the purpose of MD task is to detect these
misclassified in-distribution samples). Lastly, we find that BCI-1 significantly outperforms BCI-2,
indicating linear interpolation of two images is an effective strategy in producing new classes.

Table 2: Comparative results on MD (Real Class v.s. BCI; OE v.s. classAug). All values are
percentages. ↑ indicates larger value is better, and ↓ indicates lower value is better.

New classes Real
AUROC ↑ AUPR-S ↑ AUPR-E ↑ FPR95 ↓

OE classAug OE classAug OE classAug OE classAug

SVHN ✓ 91.39 92.54 99.31 99.30 44.05 46.93 51.36 46.63
CIFAR-100 ✓ 90.84 92.50 99.15 99.26 42.49 47.26 50.33 46.62
TinyImageNet ✓ 90.99 92.88 99.05 99.37 45.59 48.20 53.36 44.35
BCI-2 % 88.06 92.95 98.88 99.33 34.59 47.76 58.87 44.59
BCI-1 % 89.01 93.80 98.88 99.60 34.43 49.75 59.11 36.86

OE v.s. classAug. Outlier Exposure (OE) (Hendrycks et al., 2019a) is a recently proposed method
to improve OOD detection performance by leveraging diverse, realistic datasets. Specifically, OE
minimize the Kullback-Leibler (KL) divergence between the predicted probability of OOD samples
and the uniform distribution. While our method, classAug, is a new and different way to use auxiliary
data. Here, we compare the effect of OE and classAug for MD task in Table 2. we can observe
that: (1) OE is less effective than classAug (on both real and synthetic data) for MD. (2) For OE,
real data is more effective than synthetic data. The reason why OE is useless for MD is that the
unreasonableness of forcing the model to output uniform distribution over all classes for samples
near the local class boundaries, especially for data generated by BCI.

Table 3: Comparative results on OOD detection. All values are percentages.

In-dist OOD
AUROC ↑ AUPR-In ↑ AUPR-Out ↑

Baseline Mixup classAug Baseline Mixup classAug Baseline Mixup classAug

CIFAR-10
ResNet-18

MNIST 87.02 92.46 94.99 79.89 89.00 93.05 92.26 95.48 97.20
Fashion-MNIST 90.28 93.37 94.40 86.18 89.11 92.43 94.26 96.19 96.78
LSUN 88.50 88.80 93.90 83.48 74.71 91.08 92.92 94.09 96.73
TinyImageNet 88.49 84.96 93.92 83.84 64.02 91.77 92.70 92.19 96.55
Mean 88.57 89.90 94.30 83.35 79.21 92.08 93.04 94.49 96.81

CIFAR-10
ResNet-34

MNIST 72.46 69.73 83.78 77.67 69.97 86.96 67.22 64.36 80.05
Fashion-MNIST 81.53 82.29 86.59 81.53 83.48 89.09 77.45 78.90 83.89
LSUN 74.07 54.73 74.92 74.07 50.84 79.13 69.07 54.18 69.77
TinyImageNet 71.92 54.25 72.05 72.03 49.53 75.98 67.04 54.53 67.27
Mean 75.00 65.25 79.33 75.03 63.45 82.79 70.19 62.99 75.24
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Computational cost. ClassAug adds extra training time complexity compared with vanilla training.
However, we find that increasing the number of classes is more effective than increasing the amount
of data. Therefore, we keep the same amount of total new samples as that of vanilla training to
speedup training. In fact, training time with classAug is less than twice of baseline since classAug
converges faster. Similar to mixup, we apply BCI between one minibatch and its random shuffled
counterpart to efficiently realize random sampling. We found this strategy works equally well but
reduces I/O requirements significantly compared with producing all classes and samples beforehand.

3.3 OTHER BENEFITS FROM CLASSAUG

Although classAug is mainly motivated and proposed for MD task, we find that classAug also im-
proves OOD detection performance. Moreover, as a regularization strategy, it can enhance the accu-
racy of few-shot learning task.

OOD detection. We use AUROC, AUPR-In and AUPR-Out in Hendrycks & Gimpel (2017) as
metrics to evaluate the quality of OOD detection. As shown in Table 3, classAug noticeably im-
proves the OOD detection performance of baseline method. By recognize synthetic samples in the
confusing area, DNNs could learn more robust and transferable features which could be general-
ized to OOD (illustrated in Figure 2), thus improving the OOD detection performance. Moreover,
as shown in Table 3, mixup sometimes damage the performance of OOD detection, which further
demonstrates that class augmentation is better than data augmentation for confidence estimation.

Few-shot learning. Building on the ProtoNet (Snell et al., 2017) and the R2D2 (Bertinetto
et al., 2018) methods, we demonstrate that classAug classAug can be utilized in few-shot learn-
ing tasks, and achieve state-of-the-art performance on FC100 (Oreshkin et al., 2018) and CIFAR-FS
(Bertinetto et al., 2018) benchmarks. Intuitively, a larger amount of novel classes are introduced by
classAug, thus more diverse tasks could be sampled during training, which would be beneficial to
learn more discriminative feature and generalize to unseen classes. Moreover, we can see that the
boost in few-shot accuracy from mixup training is not conclusive, which is also demonstrated by
Mangla et al. (2020). See Appendix for details about datasets, architectures, and implementation.

Table 4: Comparative results on few-shot learning. All values are percentages.

Dataset Method
ProtoNet R2D2

5-shot 3-shot 1-shot 5-shot 3-shot 1-shot

FC100
Original model 54.61 50.62 40.20 55.78 51.49 41.70
+ Mixup 55.32 51.08 41.30 56.92 53.04 42.93
+ ClassAug (ours) 57.25 53.30 43.02 56.96 53.64 43.68

CIFAR_FS
Original model 85.59 83.62 73.62 85.99 83.55 75.02
+ Mixup 85.55 83.60 73.36 85.96 83.88 74.13
+ ClassAug (ours) 87.25 85.59 76.41 87.34 84.79 76.10

4 CONCLUSION

DNNs are powerful and accurate models, however, they are often overconfident about themselves.
Recently, the overconfident problem has drawn significant attention form machine learning commu-
nity. However, they mainly focus on OOD detection and confidence calibration. Misclassification
detection, which is also important for many safety-critical applications, is far less explored. This pa-
per proposes a simple method of class augmentation to address miclassification detection problem
by letting DNNs to learn more classes synthesized by between-class interpolation. Comprehensive
experimental results show that class augmentation can improve the performance for misclassifica-
tion detection. As a regularization strategy, it is also effective to learn better representations for
improving generalization (accuracy and few-shot) performance.

Class augmentation is a simple but not studied topic in machine learning community. Compared
with data augmentation, there are still many unknowns and potentials worth further exploration in
class augmentation. Important future works include theoretic analysis of class augmentation and
other class synthesis method besides between-class interpolation.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

The number of new classes and the number of samples per novel class are two important hyper-
parameters for the implementation of classAug. In our experiments, we introduces 45 novel classes
for each dataset including Fashion-MNIST, STL-10 as well as CIFAR-10. For CIFAR-100, we
generate 1000 novel classes in addition to original 100 classes. We train all the models for 250
epochs with batch size 64 and Adam (Kingma & Ba, 2015) optimizer with 0.001 initial learning
rate. We drops the learning rate by 0.85 when validation error is not decreased. In each dataset, we
keep 10% of training samples as a validation dataset for model selection. All the experiments are
repeated five times and the average performances are reported.

A.2 EVALUATION METRICS FOR MISCLASSIFICATION DETECTION

We use the standard metrics in Hendrycks & Gimpel (2017) to measure the quality of misclassifica-
tion detection: FPR at 95%-TPR, AUPR-S, AUPR-E and AUROC.

(1) FPR at 95%-TPR can be interpreted as the probability that a negative (misclassified) exam-
ple is misclassified as a correct prediction when the true positive rate (TPR) is as high as 95%.
True positive rate can be computed by TPR=TP/(TP+FN), where TP and FN denote the number
of true positives and false negatives respectively. The false positive rate (FPR) can be computed
by FPR=FP/(FP+TN), where FP and TN denote the number of false positives and true negatives
respectively.

(2) AUPR is the Area under the Precision-Recall (PR) curve. The PR curve is a graph showing the
precision=TP/(TP+FP) versus recall=TP/(TP+FN). The metric AUPR-S and AUPR-E indicate the
area under the precision-recall curve where correct predictions and errors are specified as positives,
respectively. Specifically, AUPR-Error constitutes the primary metrics in our tests, since we want to
detect misclassified samples.

(3) AUROC measures the Area Under the Receiver Operating Characteristic curve (AUROC). The
ROC curve depicts the relationship between True Positive Rate and False Positive Rate. This metric
is a threshold-independent performance evaluation. The AUROC can be interpreted as the probabil-
ity that a positive example is assigned a higher prediction score than a negative example.

A.3 OUT-OF-DISTRIBUTION DETECTION

A.3.1 EVALUATION METRICS

Similarly to the metrics of misclassification detection, AUROC, AUPR-In, and AUPR-Out are the
widely used metrics for OOD detection. The metric AUPR-In and AUPR-Out indicate the area
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under the precision-recall curve where in-distribution samples and out-of-distribution samples are
specified as positives, respectively.

A.3.2 OOD DATASETS

The test set from CIFAR-10 (CIFAR-100) dataset can be viewed as the in-distribution (positive)
examples. For out-of-distribution (negative) examples, we test on MNIST LeCun (1998), Fashion-
MNIST (Xiao et al., 2017), LSUN (resize) Yu et al. (2015) and TinyImageNet (resize).

(1) LSUN. The Large-scale Scene UNderstanding dataset (LSUN) contains 10,000 test images from
10 different scenes (Yu et al., 2015). We downsample each image to size 32×32 to construct LSUN
(resize).

(2) TinyImageNet. The Tiny ImageNet dataset consists of contains 10,000 test images from 200
different classes, which is a subset of ImageNet images dataset (Deng et al., 2009). Similar to LSUN,
We downsample each image to size 32× 32 to construct TinyImageNet (resize).

A.4 FEW-SHOT LEARNING

Datasets and network architectures. To verify the effectiveness of classAug for few-shot learning
task, we build on the ProtoNet (Snell et al., 2017) and the Ridge Regression Differentiable Discrim-
inator (R2D2) (Bertinetto et al., 2018) methods, and evaluate on FC100 (Oreshkin et al., 2018) and
CIFAR-FS (Bertinetto et al., 2018) datasets.

(1) FC100 is derived from CIFAR-100, and the 100 classes are further grouped into 20 superclasses.
The train split contains 60 classes from 12 superclasses, the validation and test contain 20 classes
from 5 superclasses each.

(2) CIFAR-FS is randomly sampled from CIFAR-100, and divided into training 64 classes, 16
validation classes and 20 test classes, espectively.

Implementation details. Following Mishra et al. (2018); Oreshkin et al. (2018), we employ ResNet-
12 as the backbone feature extractor. We set both training way and shot to 5 for all methods and
datasets. Specifically, for each task, we firstly sample 3 classes uniformly and 5 training samples
per class, then classAug is applied to generate additional 2 classes with 5 training samples per class.
Moreover, classAug is also applied to query set during training, and each class contains 6 query
examples. During testing, we use 15 query images per task for 5-shot, 3-shot and 1-shot. In meta-
learning stage, the model was trained for 70 epochs. In order to further boosting the performance,
we save the model at the end of each epoch and use the average prediction of saved models as final
results during testing.
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