MoCapAct: A Multi-Task Dataset for
Simulated Humanoid Control

Nolan Wagener*!  Andrey Kolobov?  Felipe Vieira Frujeri>
Ricky Loynd?> Ching-An Cheng? Matthew Hausknecht*>
nstitute for Robotics and Intelligent Machines, Georgia Institute of Technology
2Microsoft Research

Abstract

Simulated humanoids are an appealing research domain due to their physical
capabilities. Nonetheless, they are also challenging to control, as a policy must
drive an unstable, discontinuous, and high-dimensional physical system. One
widely studied approach is to utilize motion capture (MoCap) data to teach the
humanoid agent low-level skills (e.g., standing, walking, and running) that can then
be re-used to synthesize high-level behaviors. However, even with MoCap data,
controlling simulated humanoids remains very hard, as MoCap data offers only
kinematic information. Finding physical control inputs to realize the demonstrated
motions requires computationally intensive methods like reinforcement learning.
Thus, despite the publicly available MoCap data, its utility has been limited to
institutions with large-scale compute. In this work, we dramatically lower the
barrier for productive research on this topic by training and releasing high-quality
agents that can track over three hours of MoCap data for a simulated humanoid
in the dm_control physics-based environment. We release MoCapAct (Motion
Capture with Actions), a dataset of these expert agents and their rollouts, which
contain proprioceptive observations and actions. We demonstrate the utility of
MoCapAct by using it to train a single hierarchical policy capable of tracking
the entire MoCap dataset within dm_control and show the learned low-level
component can be re-used to efficiently learn downstream high-level tasks. Finally,
we use MoCapAct to train an autoregressive GPT model and show that it can
control a simulated humanoid to perform natural motion completion given a motion
prompt. Videos of the results and links to the code and dataset are available at the
project website.

1 Introduction

The wide range of human physical capabilities makes simulated humanoids a compelling platform
for studying motor intelligence. Learning and utilization of motor skills is a prominent research
topic in machine learning, with advances ranging from emergence of learned locomotion skills in
traversing an obstacle course [Heess et al., 2017] to the picking up and carrying of objects to desired
locations [Merel et al., 2020, Peng et al., 2019a] to team coordination in simulated soccer [Liu et al.,
2022]. Producing natural and physically plausible human motion animation [Harvey et al., 2020,
Kania et al., 2021, Yuan and Kitani, 2020] is an active research topic in the game and movie industries.
However, while physical simulation of human capabilities is a useful research domain, it is also very
challenging from a control perspective. A controller must contend with an unstable, discontinuous,
and high-dimensional system that requires a high degree of coordination to execute a desired motion.

*Correspondence to nolan.wagener@gatech.edu and matthew. hausknecht@gmail. com

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.


https://microsoft.github.io/MoCapAct
mailto:nolan.wagener@gatech.edu
mailto:matthew.hausknecht@gmail.com

MoCapAct Dataset

CMU MoCap
Clip Snippets

Distillation 7"'
Multi-Clip Policy
Supervised Learning
|:> 7T
GPT

Figure 1: The MoCapAct Dataset includes expert policies that are trained to track individual clips.
A dataset of noise-injected rollouts (containing observations and actions) is then collected from each
expert. These rollouts can subsequently be used to, for instance, train a multi-clip or GPT policy.

Tabula rasa learning of complex humanoid behaviors (e.g., navigating through an obstacle field) is ex-
tremely difficult for all known learning approaches. In light of this challenge, motion capture (MoCap)
data has become an increasingly common aid in humanoid control research [Merel et al., 2017, Peng
et al., 2018]. MoCap trajectories contain kinematic information about motion: they are sequences
of configurations and poses that the human body assumes throughout the motion in question. This
data can alleviate the difficulty of training sophisticated control policies by enabling a simulated
humanoid to learn low-level motor skills from MoCap demonstrations. The low-level skills can
then be re-used for learning advanced, higher-level motions. Datasets such as CMU MoCap [CMU,
2003], Human3.6M [lonescu et al., 2013], and LaFAN1 [Harvey et al., 2020] offer hours of recorded
human motion, ranging from simple locomotion demonstrations to interactions with other humans
and objects.

However, since MoCap data only offers kinematic information, utilizing it in a physics simulator
requires recovering the actions (e.g., joint torques) that induce the sequence of kinematic poses in
a given MoCap trajectory (i.e., track the trajectory). While easier than tabula rasa learning of a
high-level task, finding an action sequence that makes a humanoid track a MoCap sequence is still
non-trivial. For instance, this problem has been tackled with reinforcement learning [Chentanez et al.,
2018, Merel et al., 2019b, Peng et al., 2018] and adversarial learning [Merel et al., 2017, Wang et al.,
2017]. The computational burden of finding these actions scales with the amount of MoCap data, and
training agents to recreate hours of MoCap data requires significant compute. As a result, despite the
broad availability of MoCap datasets, their utility—and their potential for enabling research progress
on learning-based humanoid control—has been limited to institutions with large compute budgets.

To remove this obstacle and facilitate the use of MoCap data in humanoid control research, we
introduce MoCapAct (Motion Capture with Actions, Fig. 1), a dataset of high-quality MoCap-
tracking policies for a MuJoCo-based [Todorov et al., 2012] simulated humanoid as well as a
collection of rollouts from these expert policies. The policies from MoCapAct can track 3.5 hours
of recorded motion from CMU MoCap [CMU, 2003], one of the largest publicly available MoCap
datasets. We analyze the expert policies of MoCapAct and, to illustrate MoCapAct’s usefulness for
learning diverse motions, use the expert rollouts to train a single hierarchical policy which is capable
of tracking all of the considered MoCap clips. We then re-use the low-level component of the policy
to efficiently learn downstream tasks via reinforcement learning. Finally, we use the dataset for
generative motion completion by training a GPT network [Karpathy, 2020] to produce a motion in
the MuJoCo simulator given a motion prompt.



Figure 2: The humanoid displaying a variety of motions from the CMU MoCap dataset.

2 Related Work

MoCap Data Of the existing datasets featuring motion capture of humans, the largest and most
cited are CMU MoCap [CMU, 2003] and Human3.6M [lonescu et al., 2013]. These datasets feature
tens of hours of human motion capture arranged as a collection of clips recorded at 30-120Hz. They
demonstrate a wide range of motions, including locomotion (e.g., walking, running, jumping, and
turning), physical activities (e.g., dancing, boxing, and gymnastics), and interactions with other
humans and objects.

MoCap Tracking via Reinforcement Learning To make use of MoCap data for downstream tasks,
much of prior work first learns individual clip-tracking policies. Peng et al. [2018] and Merel et al.
[2019a,b, 2020] use reinforcement learning (RL) to learn the clip-tracking policies, whereas Merel
et al. [2017] use adversarial imitation learning. Upon learning the tracking policies, there are a variety
of ways to utilize them. Peng et al. [2018] and Merel et al. [2017, 2019a] learn a skill-selecting policy
to dynamically choose a clip-tracking policy to achieve new tasks. Merel et al. [2019b, 2020] instead
opt for a distillation approach, whereby they collect rollouts from the clip-tracking policies and then
train a hierarchical multi-clip policy via supervised learning on the rollouts. The low-level policy is
then re-used to aid in learning new high-level tasks.

Alternatively, large-scale RL may be used to learn a single policy that covers the MoCap dataset.
Hasenclever et al. [2020] use a distributed RL setup for the MuJoCo simulator [Todorov et al., 2012],
while Peng et al. [2022] use the GPU-based Isaac simulator [Makoviychuk et al., 2021] to perform
RL on a single machine.

While some prior work has released source code to train individual clip-tracking policies [Peng et al.,
2018, Yuan and Kitani, 2020], their included catalog of policies is small, and the resources needed
to train per-clip policies scale linearly with the number of MoCap clips. In the process of our work,
we found that we needed about 50 years of wall-clock time to train the policies to track our MoCap
corpus using a similar approach to Peng et al. [2018].

Motion Completion Outside of the constraints of a physics simulator, learning natural completions
of MoCap trajectories (i.e., producing a trajectory given a prompt trajectory) is the subject of many
research papers [Mourot et al., 2022], typically motivated by the challenging and labor-intensive
process of creating realistic animations for video games and films. Prior work [Aksan et al., 2021,
Harvey et al., 2020, Kania et al., 2021, Mao et al., 2019, Tevet et al., 2022, Wang et al., 2019] typically
trains a model to replicate the kinematic motion found in a MoCap dataset, which is then evaluated
according to how well the model can predict or synthesize motions given some initial prompt on
held-out trajectories.

The more difficult task of performing motion completion within a physics simulator is not widely
studied. Yuan and Kitani [2020] jointly learn a kinematic policy and a tracking policy, where the
kinematic policy predicts future kinematic poses given a recent history of observations and the
tracking policy outputs a low-level action to track the predicted poses.

3 The dm_control Humanoid Environment

Our simulated humanoid of interest is the “CMU Humanoid” (Fig. 2) from the dm_control pack-
age [Tunyasuvunakool et al., 2020], which contains 56 joints and is designed to be similar to an
average human body. The humanoid contains a rich and customizable observation space, from


https://github.com/deepmind/dm_control
https://github.com/deepmind/dm_control

proprioceptive observations like joint positions and velocities, actuator states, and touch sensor
measurements to high-dimensional observations like images from an egocentric camera. The action a
is the desired joint angles of the humanoid, which are then converted to joint torques via some
pre-defined PD controllers. The humanoid operates in the MuJoCo simulator [Todorov et al., 2012].

The dm_control package contains a variety of tools for the humanoid. The package comes with pre-
defined tasks like navigation through an obstacle field [Heess et al., 2017], maze navigation [Merel
et al., 2019a], and soccer [Liu et al., 2022], and a user may create custom tasks with the pack-
age’s APIL. The dm_control package also integrates 3.5 hours of motion sequences from the CMU
Motion Capture Dataset [CMU, 2003], including clips of locomotion (standing, walking, turning,
running, jumping, etc.), acrobatics, and arm movements. Each clip C' is a reference state se-
quence (35,5¢,..., :§%C _ 1), where T¢ is the clip length and each 5§ contains kinematic information
like joint angles, joint velocities, and humanoid pose.

As discussed in Section 2, training a control policy to work on all of the included clips requires
large-scale solutions. For example, Hasenclever et al. [2020] rely on a distributed RL approach that
uses about ten billion environment interactions collected by 4000 parallel actor processes running for
multiple days. To our knowledge, there are no agents publicly available that can track all the MoCap
data within dm_control. We address this gap by releasing a dataset of high-quality experts and their
rollouts for the “CMU Humanoid” in the dm_control package.

4 MoCapAct Dataset

The MoCapAct dataset (Fig. 1) consists of:

* experts each trained to track an individual snippet from the MoCap dataset (Section 4.1) and

» HDFS5 files containing rollouts from the aforementioned experts (Section 4.2).

We include documentation of the MoCapAct dataset in Appendix A.

4.1 Clip Snippet Experts

Our expert training scheme largely follows that of Merel et al. [2019a,b] and Peng et al. [2018], which
We now summarize.

Training We split each clip in the MoCap dataset into 4-6 second snippets with 1-second overlaps.
With 836 clips in the MoCap dataset, this clip splitting results in 2589 snippets. For each clip
snippet ¢, we train a time-indexed Gaussian policy 7.(a|s, t) to track the snippet. We use the same
clip-tracking reward function r.(s, t) as Hasenclever et al. [2020], which encourages matching the
MoCap clip’s joint angles and velocities, positions of various body parts, and joint orientations. This
reward function lies in the interval [0, 1.4]. To speed up training, we use the same early episode
termination condition as Hasenclever et al. [2020], which activates if the humanoid deviates too
far from the snippet. To help exploration, the initial state of an episode is generated by randomly
sampling a time step from the given snippet. The Gaussian policy 7. uses a mean parameterized by a
neural network as well as a fixed standard deviation of 0.1 for each action to induce robustness and
to prepare for the noisy rollouts (Section 4.2). We use the Stable-Baselines3 [Raffin et al., 2021]
implementation of PPO [Schulman et al., 2017] to train the experts. Our training took about 50 years
of wall-clock time. We give hyperparameters and training details in Appendix B.1.

Results To account for the snippets having different lengths and for the episode initialization
scheme used in training, we report our evaluations in a length-normalized fashion.' For a snippet ¢
(with length T.) and some policy m, recall that we initialize the humanoid at some randomly chosen
time step to from c and then generate the trajectory 7 by rolling out 7 from ¢ until either the end of
the snippet or early termination. Let R(7) and L(7) denote the accumulated reward and the length
of the trajectory 7, respectively. We define the normalized episode reward and normalized episode

length of 7 as £ and TL (ft)o , respectively. One consequence of this definition is that trajectories

T.—to
that are terminated early in a snippet yield smaller normalized episode rewards and lengths. Next, we

'We point out that PPO uses the original unnormalized reward for policy optimization.


http://mocap.cs.cmu.edu/
http://mocap.cs.cmu.edu/

Table 1: Snippet expert results on the MoCap snippets within dm_control. We disable the Gaussian
noise for . when computing these results.
‘ Mean ‘ Standard deviation ‘ Median ‘ Minimum ‘ Maximum

Average normalized episode reward ‘ 0.816‘ 0.153 ‘ 0.777 ‘ 0.217 ‘ 1.233

Average normalized episode length | 0.997 0.022 1.000 0.424 1.000
g 400 g 2000
k) s
] 5]
2300 2 1500
@ @
& 3
© 200 2 1000
o o
g g,
E 100 I II g 500
=z =z
0 _-I IIIII Il 0 e e e e |
0.2 0.4 1.0 0.980 0.985 0.990 0.995 1.000
Average normallzed eplsode reward R (w.) Average normalized episode length L.(r.)

Figure 3: Clip expert results on the MoCap snippets within dm_control.

define the average normalized episode reward and average normalized episode length of policy 7 on

snippet c as ]:Zc(ﬂ) = EtgncBranito {zfj(:t)o} and IA/C(W) = EtgncBranito {TLC(_TEO } , respectively. For
example, if ™ always successfully tracks some MoCap snippet from any %, to the end of the snippet,
« has an average normalized episode length of 1 on snippet c.

Overall, the clip experts reliably track the overwhelming majority of the MoCap snippets (Table 1 and
Fig. 3). Averaged over all the snippets, the experts have a per-joint mean angle error of 0.062 radians.
We find that 80% of the trained experts have an average normalized episode length of at least 0.999.
We also observe there is a bimodal structure to the reward distribution in Fig. 3, which is due to many
clips having artifacts like jittery limbs and extremities clipping through the ground. These artifacts
limit the extent to which the humanoid can track the clip. Among the handful of experts with very low
reward (between 0.2 and 0.5), we find that the corresponding clips are erroneously sped up, making
them impossible to track in the simulator.

The experts produce motion that is generally indistinguishable from the MoCap reference (Fig. 4),
from simple walking behaviors seen in the top row to highly coordinated motions like the cartwheel
in the middle row. On some clips, the expert deviates from the clip because the demonstrated motion

Figure 4: Visualizations of clip experts. The top two rows show episodes (first: walking, sec-
ond: cartwheel) where the expert (bronze humanoid) closely tracks the corresponding MoCap clip
(grey humanoid). The bottom row shows a clip where the expert and MoCap clip differ in behavior.
The MoCap clip demonstrates a 360-degree jump, whereas the expert jumps without spinning.



;,\ at—31 a1 Qg
/Z“ s T . T
TGPT

v 1

L

nge
]

A\ 4

Tq >t \ i {
T L L
St—31 St—1 St
(a) Multi-clip tracking policy. (b) GPT policy.

Figure 5: Policies used in the applications.

is too highly dynamic, such as the 360-degree jump in the bottom row. Instead, the expert typically
learns some other behavior that keeps the episode from terminating early, which in this case is
jumping without spinning. We also point out that, in these failure modes, the humanoid still tracks
some portions of the reference, such as hand positions and orientations. Yuan and Kitani [2020]
rectify similar tracking issues by augmenting the action space with external forces on certain parts of
the humanoid body, but we do not explore this avenue since the issue only affects a small number of
clips. We encourage the reader to visit the project website to see videos of the clip experts.

4.2 Expert Rollouts

Following Merel et al. [2019b], we roll out the experts on their respective snippets and collect data
from the rollouts into a dataset D. In order to obtain a broad state coverage from the experts, we
repeatedly roll out the stochastic experts (i.e., with Gaussian noise injected into the actions) starting
from different initial states. This injected noise helps the dataset cover states that a policy learned
by imitating the dataset would visit, therefore mitigating the distribution shift issue for the learned
policy [Laskey et al., 2017, Merel et al., 2019b].

For each «clip snippet ¢, we denote the corresponding expert policy as
me(als,t) = N(a; pue(s,t),0.121), where p.(s,t) is the mean of the expert’s action distribu-
tion. We initialize the humanoid at some point in the snippet c (half of the time at the beginning
of the snippet and otherwise at some random point in the snippet). We then roll out 7. until either
the end of the snippet or early termination using the scheme from Section 4.1. At every time step ¢
in the rollout, we log the humanoid state s;, the target reference poses s°f = (5¢ 10 8705)
from the next five steps of the MoCap snippet, the expert’s sampled action a;, the expert’s mean
action @; = fic(s;,1), the observed snippet reward 7.(s, ), the estimated value V™ (s,), and the

estimated advantage A™ (s,, a;) into HDFS files.

We release two versions of the rollout dataset:

* a “large” 600-gigabyte collection at 200 rollouts per snippet with a total of 67 million
environment transitions (corresponding to 620 hours in the simulator) and

* a “small” 50-gigabyte collection at 20 rollouts per snippet with a total of 5.5 million
environment transitions (corresponding to 51 hours in the simulator).

In our application of MoCapAct (Section 5), we use the “large” version of the dataset. We do observe,
though, that the multi-clip policy results (Section 5.1) are similar when using either dataset.

5 Applications

We train two policies (Fig. 5) using our dataset:

1. A hierarchical policy which can track all the MoCap snippets and be re-used for learning
new high-level tasks (Section 5.1).

2. An autoregressive GPT model which generates motion from a given prompt (Section 5.2).


https://microsoft.github.io/MoCapAct

5.1 Multi-Clip Tracking Policy

We first show the MoCapAct dataset can reproduce the results in Merel et al. [2019b] by learning a sin-
gle policy that tracks the entire MoCap dataset within dm_control. Our policy architecture (Fig. 5a)
follows the same encoder-decoder scheme as Merel et al. [2019b], who introduce a “motor inten-
tion” z; which acts as a low-dimensional embedding of the MoCap reference s:°!. The intention 2
is then decoded into an action a;. In other words, the policy 7 is factored into an encoder 7, and
a decoder mqe.. The encoder mopc(2¢|s¢, 3§°f, z¢—1) compresses the MoCap reference sﬁCf into an
intention z; and may use the current humanoid state s; and previous intention z;_; in predicting
the current intention. Furthermore, the encoder outputs an intention which is stochastic, which
models ambiguity in the MoCap reference and allows for the high-level behavior to be specified more
coarsely. The decoder 7gec(a¢|st, 2¢) translates the sampled intention z; into an action a; with the
aid of the state s; as an additional input.

5.1.1 Training

In our implementation, the encoder outputs the mean and diagonal covariance of a Gaussian dis-
tribution over a 60-dimensional motor intention z;. The decoder outputs the mean of a Gaussian
distribution over actions with a standard deviation of 0.1 for each action. In training, we maximize a
variant of the multi-step imitation learning objective from Merel et al. [2019b]:

T
By st aym0)~D, {Z [wc(st, ar) 1og Taec (@] se, 26) — BKL(Tenc(2e|st, 51", 2e-1) | p(zzlz,s_1))]] ,

20:T~Tenc [ t=1

where T is the sequence length, w, is a clip-dependent data-weighting function, p(z;|z;—1) is an
autoregressive prior, and [ is a hyperparameter.

The weighting function w, allows for some data points to be considered more heavily, which may be
useful given the spectrum of expert performance. Letting A be a hyperparameter, we consider the
following four weighting schemes:

* Behavioral cloning (BC): w,(s,a) = 1. This scheme is commonly used in imitation learning
and treats every data point equally.

« Clip-weighted regression (CWR): w, (s, a) = exp(R.(m.)/)). This scheme upweights data
from snippets where the experts have higher average normalized rewards.

« Advantage-weighted regression (AWR) [Peng et al., 2019b]: w.(s, a) = exp(A™ (s, a)/\).
This scheme upweights actions that perform better than the expert’s average return.

* Reward-weighted regression (RWR) [Peters and Schaal, 2007]:
we(s,a) = exp(Q7(s,a)/\), where Q™ (s,a) = V7™ (s) + A™(s,a). This scheme up-
weights state-actions which have higher returns, which typically happens with good experts
at earlier time steps in the corresponding snippet.

The KL divergence term encourages the decoder to follow a simple random walk. In this case,
the prior has the form p(z¢|z:—1) = N(zt; azi—1,0%I), where a € [0, 1] is a hyperparameter
and 0 = +/1 — 2. This prior in turn encourages the marginals to be a spherical Gaussian, i.e.,
p(zt) = N (20, I). Furthermore, the regularization introduces a bottleneck [Alemi et al., 2017]
that limits the information the intention z; can provide about the state s; and MoCap reference si°f.
This forces the encoder to only encode high-level information about the reference (e.g., direction of

motion of leg) while excluding fine-grained details (e.g., precise velocity of each joint in leg).

In our experiments, we found that the training takes about three hours on a single-GPU machine.
More training details are available in Appendix B.2.

Results All four regression approaches yield broadly good results (Table 2), achieving 80% to
84% of the experts’ performance on the MoCap dataset (cf. Table 1). We also see that every
weighted regression scheme gives some improvement over the unweighted approach. AWR only
gives 1% improvement over BC, likely because the experts are already near-optimal and the dataset
lacks sufficient state-action coverage to reliably contain advantageous actions. CWR gives a 3%
improvement over BC, which arises from the objective placing more emphasis on data coming from
high-reward clips. Finally, RWR gives a 5% improvement over BC, which comes from increased



Table 2: Multi-clip results on the MoCap snippets, showing the mean and standard deviation over
three seeds. For evaluation, we disable the Gaussian noise for m4e. but keep the stochasticity for mep.
|  CWR |  AWR | RWR

Avg. normalized episode reward H 0. 654 i 0.005 ‘ 0.671 £+ 0.003 ‘ 0.661 & 0.003 ‘ 0.688 £+ 0.002

Avg. normalized episode length || 0.855+0.004 | 0.858 +0.003 | 0.861 +0.001 | 0.868 = 0.002
2.0 Training set 5 Training set
e Validation set "7 mmm Validation set
215 215
2 2
- III II I g I I
0.5 0.5
. miliiiiah. ol
Average normahzed eplsode reward R,( Performance rat|o Re( /R Te)
(a) Multi-clip policy’s performance on training and (b) Performance of multi-clip policy relative to
validation sets. expert policies.

Figure 6: Performance of RWR-trained multi-clip policy.

weight on earlier time steps in high-reward clips. This is a sensible weighting scheme since executing
a skill requires taking correct actions at earlier time steps before completing the skill at later time steps.
As a point of comparison to prior work, the RWR-trained policy achieves an average reward-per-step
(i.e., E[R(7)/L(7)]) of 0.67 on the “Locomotion” subset of the MoCap data, which is 96% of the
reward-per-step achieved by the large-scale RL approach of Hasenclever et al. [2020]. We also find
that the RWR-trained policy has a per-joint mean angle error of 0.085 radians.

To assess the generalization of the multi-clip policy, we train the policy using RWR on a subset of
MoCapAct covering 90% of the MoCap clips. We treat the remaining 10% of the clips as a validation
set when evaluating the multi-clip policy. We find that the multi-clip policy performs similarly on the
training set and validation set clips (Fig. 6a), with the validation set performance even being slightly
higher than the training set performance (mean of 0.699 vs. 0.674). This is likely because the clips in
the validation set are slightly easier.

To account for the reward scale of the clips, we also report the multi-clip policy’s performance relative
to the clip experts (Fig. 6b). Again, the training set and validation set relative performances are very
similar, though now the multi-clip policy has a small relative performance drop in the validation set
(mean of 0.797 vs. 0.815). We also observe that the multi-clip policy outperforms the clip experts on
13% of the MoCap snippets.

We encourage the reader to visit the project website to see videos of the multi-clip policy.

5.1.2 Re-Use for Reinforcement Learning

We re-use the decoder 7qe. from an RWR-trained multi-clip policy for reinforcement learning to
constrain the behaviors of the humanoid and speed up learning. In particular, we study two tasks that
require adept locomotion skills:

1. A sparse-reward go-to-target task where the agent receives a non-zero reward only if the
humanoid is sufficiently close to the target. The target relocates once the humanoid stands
on it for a few time steps.

2. A velocity control task where shaped rewards encourage the humanoid to go at a given speed
in a given direction. The desired speed and direction change randomly every few seconds.

We treat 7qe. as part of the environment and the motor intention z as the action. We thus learn a new
high-level policy 7.5k (2]s) that steers the low-level policy to maximize the task reward.

Given the tasks are locomotion-driven, we also consider a more specialized decoder with a 20-
dimensional intention which is trained solely on locomotion clips from MoCapAct (called the
“Locomotion” subset) to see if further restricting the learned skills offers any more speedup. As a
baseline, we also perform RL without a low-level policy.


https://microsoft.github.io/MoCapAct

Table 3: Returns for the transfer tasks, showing the mean and standard deviation over five seeds.

General low-level policy | Locomotion low-level policy | No low-level policy
Go-to-target 96.3 £ 2.8 66.1 £ 32.8 75+1.1
Velocity control 1074 £ 55 884 £ 81 1157 £ 89
Go-to-target task Velocity control task
100
£ £ 1000
© ©
g 8
3 25 ! S
w i)
O~ = 0
0.00 025 050 075 1.00 1.25 1.50 0.00 025 050 075 1.00 1.25 1.50
Time steps x10° Time steps x10%
—— General low-level policy =~ —— Locomotion low-level policy No low-level policy

Figure 7: Training curves for transfer tasks. All experiments use five seeds.

We find that re-using a low-level policy drastically speeds up learning and usually produces higher
returns (Table 3 and Fig. 7). For the go-to-target task, the locomotion-based low-level policy induces
faster training than the more general low-level policy, though it does converge to lesser performance
and on one out of five seeds converges to a very low reward. This performance gap is likely a
combination of the lower dimensionality of the locomotion policy restricting the degree of control by
the high-level policy and the “Locomotion” subset excluding some useful behaviors, a result also
found by Hasenclever et al. [2020]. The baseline without the low-level policy fails to learn the task.
For the velocity control task, the locomotion-based policy induces slightly faster learning than the
general policy but again results in lower reward. The baseline without the low-level policy learns the
task more slowly, though it does achieve high reward eventually.

In both tasks, we find that including a pretrained low-level policy produces much more realistic gaits.
The humanoid efficiently runs from target to target in the go-to-target task and smoothly changes
speeds and direction of motion in the velocity control task. On the other hand, the baseline approach
produces incredibly unusual motions. In the go-to-target task, the humanoid convulses and contorts
itself towards the first target before falling to the ground. In the velocity control task, the humanoid
rapidly taps the feet to propel the body at the desired velocity. We encourage the reader to visit the
project website to see videos of the RL results.

5.2 Motion Completion with GPT

We also train a GPT model [Radford et al., 2019] based on the minGPT implementation [Karpathy,
2020] to generate motion. Starting with a motion prompt (sequence of humanoid observations
generated by a clip expert), the GPT policy (Fig. 5b) autoregressively predicts actions from the context
of recent humanoid observations. We train the GPT by sampling 32-step sequences (corresponding to
1 second of motion) of humanoid observations s(;_31).; and expert’s mean actions a(;_s1).; from the
MoCapAct dataset D and performing supervised learning using the mean squared error loss on the
predicted action sequence.

To roll out the policy, we provide the GPT policy with a 32-step prompt from a clip expert and let
GPT roll out thereafter. The episode either terminates after 500 steps (about 15 seconds) or if a body
part other than the feet touches the ground (e.g., humanoid falling over). On many clip snippets, the
GPT model is able to control the humanoid for several seconds past the end of the prompt (Table 4
and Fig. 8a), with similar lengths on the training set and a held-out validation set of prompts. We also
observe that on many clips the GPT can control the humanoid for several times longer than the length
of the corresponding clip snippet (Table 4 and Fig. 8b).

To visualize the rollouts, we perform principal component analysis (PCA) on action sequences
of length 32 applied by GPT and the snippet expert used to generate the motion prompt (Fig. 9).
Qualitatively, we find that GPT usually repeats motions demonstrated in locomotion prompts, such as
the running motion corresponding to Fig. 9a. Occasionally, GPT will produce a different motion than


https://microsoft.github.io/MoCapAct

Table 4: Motion completion statistics on the MoCap snippets.
| Mean | Standard deviation | Median | Minimum | Maximum
Episode length (seconds) | 5.47 ‘ 3.47 ‘ 4.38 ‘ 0.23 ‘ 15.00

Relative episode length | 1.15 0.94 0.87 0.05 7.63
0.8
} Training set Training set
015 Validation set 0.6 B Validation set
Z Z
g 0.10 B g 0.4
(=} a
0.05 III+* ] 0.2 I I
000l II Han=nEs 00 II-,,,
) 0.0 2.5 5.0 75 10.0 12.5 15.0 : 0 1 2 3 4 5 6 7
Episode length (seconds) Ratio of GPT episode length to snippet length
(a) Absolute episode lengths of GPT. (b) Relative episode lengths of GPT.
Figure 8: Episode lengths of GPT on MoCap snippets.
Expert Expert Expert
— GPT — GPT —— GPT
(a) Locomotion clip where (b) Locomotion clip where (c) Non-locomotion clip
behaviors align. behaviors differ. where behaviors differ.

Figure 9: PCA projections of action sequences of length 32 from experts and GPT.

the underlying clip, usually due to ambiguity in the prompt. For example, in Fig. 9b, GPT has the
humanoid repeatedly step backwards, whereas the expert takes repeated side steps. In Fig. 9c, the
GPT policy performs an entirely different arm-waving motion than that of the expert. We encourage
the reader to visit the project website to see videos of GPT motion completion.

6 Discussion

We presented a dataset of high-quality MoCap-tracking policies and their rollouts for the dm_control
humanoid environment. From these rollouts, we trained multi-clip tracking policies that can be
re-used for new high-level tasks and GPT policies which can generate humanoid motion when given
a prompt. We have open sourced our dataset, models, and code under permissive licenses.

We do point out that our models and data are only applicable to the dm_control environment, which
uses MuJoCo as the backend simulator. We also point out that all considered clips only occur on
flat ground and do not include any human or object interaction. Though this seems to limit the
environments and tasks where this dataset is applicable, the dm_control package [Tunyasuvunakool
et al., 2020] has tools to change the terrain, add more MoCap clips, and add objects (e.g., balls) to
the environment. Indeed, prior work has used custom clips which include extra objects [Merel et al.,
2020, Liu et al., 2022]. While the dataset and domain may raise concerns on automation, we believe
the considered simulated domain is limited enough to not be of ethical import.

This work significantly lowers the barrier of entry for simulated humanoid control, which promises to
be a rich field for studying multi-task learning and motor intelligence. In addition to the showcases
presented, we believe this dataset can be used in training other policy architectures like decision and
trajectory transformers [Chen et al., 2021, Janner et al., 2021] or in setups like offline reinforcement
learning [Fu et al., 2020, Levine et al., 2020] as the dataset allows research groups to bypass the time-
and energy-consuming process of learning low-level motor skills from MoCap data.

10


https://microsoft.github.io/MoCapAct

Acknowledgments and Disclosure of Funding

We thank Leonard Hasenclever for providing helpful information used in DeepMind’s prior work on
humanoid control. We also thank Byron Boots for suggesting to use PCA projections for visualization.
Finally, we thank the reviewers for their invaluable feedback.

The data used in this project was obtained from mocap.cs.cmu.edu. The database was created with
funding from NSF EIA-0196217.

References

E. Aksan, M. Kaufmann, P. Cao, and O. Hilliges. A Spatio-Temporal Transformer for 3D Human
Motion Prediction. In 2021 International Conference on 3D Vision (3DV), pages 565-574. IEEE,
2021. 3

A. A. Alemi, . Fischer, J. V. Dillon, and K. Murphy. Deep Variational Information Bottleneck. In
International Conference on Learning Representations, 2017. 7

L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and I. Mordatch.
Decision Transformer: Reinforcement Learning via Sequence Modeling. Advances in Neural
Information Processing Systems, 34,2021. 10

N. Chentanez, M. Miiller, M. Macklin, V. Makoviychuk, and S. Jeschke. Physics-Based Motion Cap-
ture Imitation With Deep Reinforcement Learning. In Proceedings of the 11th Annual International
Conference on Motion, Interaction, and Games, pages 1-10, 2018. 2

CMU. Carnegie Mellon University Graphics Lab Motion Capture Database.
http://mocap.cs.cmu.edu, 2003. 2, 3,4, 14

J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4RL: Datasets for Deep Data-Driven
Reinforcement Learning. arXiv preprint arXiv:2004.07219, 2020. 10

F. G. Harvey, M. Yurick, D. Nowrouzezahrai, and C. Pal. Robust Motion In-Betweening. ACM
Transactions on Graphics (TOG), 39(4):60-1, 2020. 1,2, 3

L. Hasenclever, F. Pardo, R. Hadsell, N. Heess, and J. Merel. CoMic: Complementary Task Learning
& Mimicry for Reusable Skills. In International Conference on Machine Learning, pages 4105—
4115. PMLR, 2020. 3,4, 8,9

N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang, S. M. A.
Eslami, M. Riedmiller, and D. Silver. Emergence of Locomotion Behaviours in Rich Environments.
arXiv preprint arXiv:1707.02286, 2017. 1, 4

C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Human3.6M: Large Scale Datasets and
Predictive Methods for 3D Human Sensing in Natural Environments. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 36(7):1325-1339, 2013. 2, 3

M. Janner, Q. Li, and S. Levine. Offline Reinforcement Learning as One Big Sequence Modeling
Problem. Advances in Neural Information Processing Systems, 34, 2021. 10

K. Kania, M. Kowalski, and T. Trzcinski. TrajeVAE: Controllable Human Motion Generation from
Trajectories. arXiv preprint arXiv:2104.00351, 2021. 1, 3

A. Karpathy. minGPT. https://github.com/karpathy/minGPT, 2020. 2, 9

M. Laskey, J. Lee, R. Fox, A. Dragan, and K. Goldberg. DART: Noise Injection for Robust Imitation
Learning. In Conference on Robot Learning, pages 143—-156. PMLR, 2017. 6

S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline Reinforcement Learning: Tutorial, Review, and
Perspectives on Open Problems. arXiv preprint arXiv:2005.01643, 2020. 10

11


mocap.cs.cmu.edu
http://mocap.cs.cmu.edu
https://github.com/karpathy/minGPT

S. Liu, G. Lever, Z. Wang, J. Merel, S. M. A. Eslami, D. Hennes, W. M. Czarnecki, Y. Tassa,
S. Omidshafiei, A. Abdolmaleki, N. Y. Siegel, L. Hasenclever, L. Marris, S. Tunyasuvunakool,
H. F. Song, M. Wulfmeier, P. Muller, T. Haarnoja, B. D. Tracey, K. Tuyls, T. Graepel, and N. Heess.
From Motor Control to Team Play in Simulated Humanoid Football. Science Robotics, 7(69), 2022.
1,4, 10

V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State. Isaac Gym: High Performance GPU-Based Physics Simulation
For Robot Learning. In Neural Information Processing Systems Datasets and Benchmarks Track,
2021. 3

W. Mao, M. Liu, M. Salzmann, and H. Li. Learning Trajectory Dependencies for Human Motion
Prediction. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
9489-9497, 2019. 3

J. Merel, Y. Tassa, D. TB, S. Srinivasan, J. Lemmon, Z. Wang, G. Wayne, and N. Heess. Learning
Human Behaviors from Motion Capture by Adversarial Imitation. arXiv preprint arXiv:1707.02201,
2017. 2,3

J. Merel, A. Ahuja, V. Pham, S. Tunyasuvunakool, S. Liu, D. Tirumala, N. Heess, and G. Wayne.
Hierarchical Visuomotor Control of Humanoids. In International Conference on Learning Repre-
sentations, 2019a. 3, 4

J. Merel, L. Hasenclever, A. Galashov, A. Ahuja, V. Pham, G. Wayne, Y. W. Teh, and N. Heess.
Neural Probabilistic Motor Primitives for Humanoid Control. In International Conference on
Learning Representations, 2019b. 2, 3,4, 6,7

J. Merel, S. Tunyasuvunakool, A. Ahuja, Y. Tassa, L. Hasenclever, V. Pham, T. Erez, G. Wayne, and
N. Heess. Catch & Carry: Reusable Neural Controllers for Vision-Guided Whole-Body Tasks.
ACM Transactions on Graphics (TOG), 39(4):39-1, 2020. 1, 3, 10

L. Mourot, L. Hoyet, F. Le Clerc, F. Schnitzler, and P. Hellier. A Survey on Deep Learning for
Skeleton-Based Human Animation. In Computer Graphics Forum, volume 41, pages 122—157.
Wiley Online Library, 2022. 3

X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne. DeepMimic: Example-Guided Deep
Reinforcement Learning of Physics-Based Character Skills. ACM Transactions on Graphics (TOG),
37(4):1-14, 2018. 2,3, 4

X. B. Peng, M. Chang, G. Zhang, P. Abbeel, and S. Levine. MCP: Learning Composable Hierarchical
Control with Multiplicative Compositional Policies. Advances in Neural Information Processing
Systems, 32, 2019a. 1

X. B. Peng, A. Kumar, G. Zhang, and S. Levine. Advantage-Weighted Regression: Simple and
Scalable Off-Policy Reinforcement Learning. arXiv preprint arXiv:1910.00177,2019b. 7

X. B. Peng, Y. Guo, L. Halper, S. Levine, and S. Fidler. ASE: Large-Scale Reusable Adversarial Skill
Embeddings for Physically Simulated Characters. ACM Transactions On Graphics (TOG), 41(4):
1-17,2022. 3

J. Peters and S. Schaal. Reinforcement Learning by Reward-Weighted Regression for Operational
Space Control. In Proceedings of the 24th International Conference on Machine Learning, pages
745-750, 2007. 7

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language Models Are Unsuper-
vised Multitask Learners. OpenAl Blog, 1(8):9, 2019. 9

A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-Baselines3:
Reliable Reinforcement Learning Implementations. Journal of Machine Learning Research, 2021.
4

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization
Algorithms. arXiv preprint arXiv:1707.06347,2017. 4

12



G. Tevet, B. Gordon, A. Hertz, A. H. Bermano, and D. Cohen-Or. MotionCLIP: Exposing Human
Motion Generation to CLIP Space. In European Conference on Computer Vision. Springer, 2022.
3

E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A Physics Engine for Model-Based Control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026-5033. IEEE,
2012. 2, 3,4

S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez, T. Lillicrap, N. Heess,
and Y. Tassa. dm_control: Software and Tasks for Continuous Control. Software Impacts, 6:
100022, 2020. 3, 10

B. Wang, E. Adeli, H.-k. Chiu, D.-A. Huang, and J. C. Niebles. Imitation Learning for Human Pose
Prediction. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
7124-7133,2019. 3

Z. Wang, J. S. Merel, S. E. Reed, N. de Freitas, G. Wayne, and N. Heess. Robust Imitation of Diverse
Behaviors. Advances in Neural Information Processing Systems, 30, 2017. 2

Y. Yuan and K. Kitani. Residual Force Control for Agile Human Behavior Imitation and Extended
Motion Synthesis. Advances in Neural Information Processing Systems, 33:21763-21774, 2020.
1,3,6

13



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A |
3. If you ran experiments (e.g., for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Appendix B

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Sections 4.1, 5.1.1, 5.1.2, and 5.2

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes] Appendix B
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] Sections 3, 4.1,
and 5.2

(b) Did you mention the license of the assets? [Yes] Section 6

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you're
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A |

While we do use human MoCap data, the data was previously collected and released by the
CMU Graphics Lab [CMU, 2003].

14



	Introduction
	Related Work
	The dm`control Humanoid Environment
	MoCapAct Dataset
	Clip Snippet Experts
	Expert Rollouts

	Applications
	Multi-Clip Tracking Policy
	Training
	Re-Use for Reinforcement Learning

	Motion Completion with GPT

	Discussion

