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ABSTRACT

Temporal domain generalization is a promising yet extremely challenging area
where the goal is to learn models under temporally changing data distributions
and generalize to unseen data distributions following the trends of the change.
The advancement of this area is challenged by: 1) characterizing data distribution
drift and its impacts on models, 2) expressiveness in tracking the model dynamics,
and 3) theoretical guarantee on the performance. To address them, we propose
a Temporal Domain Generalization with Drift-Aware Dynamic Neural Network
(DRAIN) framework. Specifically, we formulate the problem into a Bayesian
framework that jointly models the relation between data and model dynamics.
We then build a recurrent graph generation scenario to characterize the dynamic
graph-structured neural networks learned across different time points. It captures
the temporal drift of model parameters and data distributions and can predict mod-
els in the future without the presence of future data. In addition, we explore the-
oretical guarantees of the model performance under the challenging temporal DG
setting and provide theoretical analysis, including uncertainty and generalization
error. Finally, extensive experiments on several real-world benchmarks with tem-
poral drift demonstrate the proposed method’s effectiveness and efficiency.

1 INTRODUCTION

In machine learning, researchers often assume that training and test data follow the same distribu-
tion for the trained model to work on test data with some generalizability. However, in reality, this
assumption usually cannot be satisfied, and when we cannot make sure the trained model is always
applied in the same domain where it was trained. This motivates Domain Adaptation (DA) which
builds the bridge between source and target domains by characterizing the transformation between
the data from these domains (Ben-David et al., 2010; Ganin et al., 2016; Tzeng et al., 2017). How-
ever, in more challenging situations when target domain data is unavailable (e.g., no data from an
unknown area, no data from the future, etc.), we need a more realistic scenario named Domain
Generalization (DG) (Shankar et al., 2018; Arjovsky et al., 2019; Dou et al., 2019).

Most existing works in DG focus on generalization among domains with categorical indices, such as
generalizing the trained model from one dataset (e.g., MNIST (LeCun et al., 1998)) to another (e.g.,
SVHN (Netzer et al., 2011)), from one task (e.g., image classification (Krizhevsky et al., 2012)) to
another (e.g., image segmentation (Lin et al., 2014)), etc. However, in many real-world applications,
the “boundary” among different domains is unavailable and difficult to detect, leading to a concept
drift across the domains. For example, when a bank leverages a model to predict whether a person
will be a “defaulted borrower”, features like “annual incoming”, “profession type”, and “marital
status” are considered. However, due to the temporal change of the society, how these feature
values indicate the prediction output should change accordingly following some trends that could
be predicted somehow in a range of time. Figure 1 shows another example, seasonal flu prediction
via Twitter data which evolves each year in many aspects. For example, monthly active users are
increasing, new friendships are formed, the age distribution is shifting under some trends, etc. Such
temporal change in data distribution gradually outdated the models. Correspondingly, suppose there
was an ideal, always update-to-date model, then the model parameters should gradually change
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Figure 1: An illustrative example of temporal domain generalization. Consider training a model
for some classification tasks based on the annual Twitter dataset such that the trained model can
generalize to the future domains (e.g., 2023). The temporal drift of data distribution can influence
the prediction model such as the rotation of the decision boundary in this case.

correspondingly to counter the trend of data distribution shifting across time. It can also “predict”
what the model parameters should look like in an arbitrary (not too far) future time point. This
requires the power of temporal domain generalization.

However, as an extension of traditional DG, temporal DG is extremely challenging yet promising.
Existing DG methods that treat the domain indices as a categorical variable may not be suitable
for temporal DG as they require the domain boundary as apriori to learn the mapping from source
to target domains (Muandet et al., 2013; Motiian et al., 2017; Balaji et al., 2018; Arjovsky et al.,
2019). Until now, temporal domain indices have been well explored only in DA (Hoffman et al.,
2014; Ortiz-Jimenez et al., 2019; Wang et al., 2020) but not DG. There are very few existing works
in temporal DG due to its big challenges. One relevant work is Sequential Learning Domain Gen-
eralization (S-MLDG) (Li et al., 2020) that proposed a DG framework over sequential domains via
meta-learning (Finn et al., 2017). S-MLDG meta-trains the target model on all possible permutations
of source domains, with one source domain left for meta-test. However, S-MLDG in fact still treats
domain index as a categorical variable, and the method was only tested on categorical DG dataset. A
more recent paper called Gradient Interpolation (GI) (Nasery et al., 2021) proposes a temporal DG
algorithm to encourage a model to learn functions that can extrapolate to the near future by supervis-
ing the first-order Taylor expansion of the learned function. However, GI has very limited power in
characterizing model dynamics because it can only learn how the activation function changes along
time while making all the remaining parameters fixed across time.

The advancement of temporal domain generalization is challenged by several critical bottlenecks,
including 1) Difficulty in characterizing the data distribution drift and its influences on models.
Modeling the temporally evolving distributions requires making the model time-sensitive. Intuitive
ways include feeding the time as an input feature to the model, which is well deemed simple yet
problematic as it discards the other features’ dependency on time and dependency on other con-
founding factors changed along time (Wang et al., 2020). Another possible way is to make the
model parameters a function of time. However, these ways cannot generalize the model to future
data as long as the whole model’s dynamics and data dynamics are not holistically modeled. 2)
Lack of expressiveness in tracking the model dynamics. Nowadays, complex tasks have wit-
nessed the success of big complex models (e.g., large CNNs (Dosovitskiy et al., 2020)), where the
neurons and model parameters are connected as a complex graph structure. However, they also sig-
nificantly challenge tracking their model dynamics in temporal DG. An expressive model dynamics
characterization and prediction requires mapping data dynamics to model dynamics and hence the
graph dynamics of model parameters across time. This is a highly open problem, especially for the
temporal DG area. 3) Difficulty in theoretical guarantee on the performance. While there are
fruitful theoretical analyses on machine learning problems under the independent and identically
distributed assumptions (He & Tao, 2020), similar analyses meet substantial hurdles to be extended
to out-of-distribution (OOD) problem due to the distribution drift over temporally evolving domains.
Therefore, it is essential to enhance the theoretical analyses on the model capacity and theoretical
relation among different temporal domain generalization models.

To address all the above challenges, we propose a Temporal Domain Generalization with DRift-
Aware dynamIc neural Networks (DRAIN) framework that solves all challenges above simultane-
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ously. Specifically, we propose a generic framework to formulate temporal domain generalization
by a Bayesian treatment that jointly models the relation between data and model dynamics. To in-
stantiate the Bayesian framework, a recurrent graph generation scenario is established to encode and
decode the dynamic graph-structured neural networks learned across different timestamps. Such a
scenario can achieve a fully time-sensitive model and can be trained in an end-to-end manner. It
captures the temporal drift of model parameters and data distributions, and can predict the models
in the future without the presence of future data.

Our contributions include: 1) We develop a novel and adaptive temporal domain generalization
framework that can be trained in an end-to-end manner. 2) We innovatively treat the model as a
dynamic graph and leverage graph generation techniques to achieve a fully time-sensitive model.
3) We propose to use the sequential model to learn the temporal drift adaptively and leverage the
learned sequential pattern to predict the model status on the future domain. 4) We provide theoretical
analysis on both uncertainty quantification and generalization error of the proposed method. 5) We
demonstrate our model’s efficacy and superiority with extensive experiments.

2 RELATED WORK

Continuous Domain Adaptation. Domain Adaptation (DA) has received great attention from re-
searchers in the past decade (Ben-David et al., 2010; Ganin et al., 2016; Tzeng et al., 2017) and
readers may refer to (Wang & Deng, 2018) for a comprehensive survey. Under the big umbrella
of DA, continuous domain adaptation considers the problem of adapting to target domains where
the domain index is a continuous variable (temporal DA is a special case when the domain index
is 1D). Approaches to tackling such problems can be broadly classified into three categories: (1)
biasing the training loss towards future data via transportation of past data (Hoffman et al., 2014;
Ortiz-Jimenez et al., 2019), (2) using time-sensitive network parameters and explicitly controlling
their evolution along time (Kumagai & Iwata, 2016; 2017; Mancini et al., 2019), (3) learning repre-
sentations that are time-invariant using adversarial methods (Wang et al., 2020). The first category
augments the training data, the second category reparameterizes the model, and the third category
redesigns the training objective. However, data may not be available for the target domain, or it may
not be possible to adapt the base model, thus requiring Domain Generalization.

Domain Generalization (DG). A diversity of DG methods have been proposed in recent
years (Muandet et al., 2013; Motiian et al., 2017; Li et al., 2017a; Balaji et al., 2018; Dou et al.,
2019; Nasery et al., 2021; Yu et al., 2022). According to (Wang et al., 2021), existing DG methods
can be categorized into the following three groups, namely: (1) Data manipulation: This category of
methods focuses on manipulating the inputs to assist in learning general representations. There are
two kinds of popular techniques along this line: a). Data augmentation (Tobin et al., 2017; Tremblay
et al., 2018), which is mainly based on augmentation, randomization, and transformation of input
data; b). Data generation (Liu et al., 2018; Qiao et al., 2020), which generates diverse samples to help
generalization. (2) Representation learning: This category of methods is the most popular in do-
main generalization. There are two representative techniques: a). Domain-invariant representation
learning (Ganin et al., 2016; Gong et al., 2019), which performs kernel, adversarial training, explic-
itly features alignment between domains, or invariant risk minimization to learn domain-invariant
representations; b). Feature disentanglement (Li et al., 2017b), which tries to disentangle the fea-
tures into domain-shared or domain-specific parts for better generalization. (3) Learning strategy:
This category of methods focuses on exploiting the general learning strategy to promote the gener-
alization capability, e.g, ensemble learning (Mancini et al., 2018), meta-learning (Dou et al., 2019),
gradient operation (Huang et al., 2020), etc.

Existing works above consider generalization across categorical domains, while in this paper, we
assume the domain index set is across time (namely, temporal), and the domain shifts smoothly
over time. Unfortunately, there is only very little work under this setting. The first work called
Sequential Learning Domain Generalization (S-MLDG) (Li et al., 2020) proposed a DG framework
over sequential domains based on the idea of meta-learning. A more recent work called Gradient
Interpolation (GI) (Nasery et al., 2021) proposes a temporal DG algorithm to encourage a model
to learn functions that can extrapolate well to the near future by supervising the first-order Taylor
expansion of the learned function. However, neither work can adaptively learn the temporal drift
across the domains while keeping the strong expressiveness of the learned model.
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Figure 2: A high-level overview of our DRAIN framework. Best viewed in color.

3 METHODOLOGY

In this section, we first provide the problem formulation of temporal domain generalization and then
introduce our proposed framework, followed by our theoretical analyses.

3.1 PROBLEM FORMULATION

Temporal Domain Generalization. We consider prediction tasks where the data distribution
evolves with time. During training, we are given T observed source domains D1,D2, · · · ,DT sam-
pled from distributions on T arbitrary time points t1 ≤ t2 ≤ · · · ≤ tT , with each Ds =

{
(x

(s)
i , y

(s)
i ) ∈

Xs×Ys
}Ns

i=1
, s = 1, 2, · · · , T where x

(s)
i , y(s)i and Ns denotes the input feature, label and sample size

at timestamp ts, respectively, and Xs, Ys denotes the input feature space and label space at times-
tamp ts, respectively. The trained model will only be tested on some target domain in the future, i.e.,
DT+1 where tT+1 ≥ tT . Our setting further assumes the existence of concept drift across different
domains, i.e., the domain distribution is changing across time by following some patterns.

Our goal is to build a model that proactively captures the concept drift. Given labeled data from
the source domains D1,D2, · · · ,DT , we learn the mapping function gωs : Xs → Ys on each domain
Ds, s = 1, 2, · · · , T where ωs denotes the function parameters at timestamp ts, respectively, and
then predict the dynamics across the parameters ω1,ω2, · · · ,ωT . Finally, we predict the parameters
ωT+1 for the mapping function gωT+1 : XT+1 → YT+1 on the unseen future domain. As shown in
Figure 1, due to the temporal drift in data distribution, e.g. the input features such as Twitter user
age distribution and number of tweets increase each year, the prediction model is expected to evolve
accordingly, e.g. the magnitude of model parameter weights will decrease annually. Despite the
necessity, handling the above problem is an open research area due to several existing challenges: 1)
Difficulty in characterizing data distribution drift as well as how it influences the model. 2) Lack of
expressiveness in automatically capturing the dynamics of how neural network evolves across time.
3) Theoretical guarantee on model’s performance (e.g., generalization error, uncertainty) on future
domains is hard to obtain due to the unknown and (potentially) complicated concept drift.

3.2 PROPOSED METHOD

In this section, we introduce how we address the challenges mentioned above. For the first chal-
lenge, we build a systematic Bayesian probability framework to represent the concept drift over the
domains, which instantly differentiates our work from all existing methods in DG. For the second
challenge, we propose modeling a neural network with changing parameters as a dynamic graph and
achieving a temporal DG framework that can be trained end-to-end by graph generation techniques.
We further improve the proposed method’s generalization ability by introducing a skip connection
module over different domains. Finally, to handle the last challenge, we explore theoretical guar-
antees of model performance under the challenging temporal DG setting and provide theoretical
analyses of our proposed method, such as uncertainty quantification and generalization error.

3.2.1 A PROBABILISTIC VIEW OF CONCEPT DRIFT IN TEMPORAL DOMAIN GENERALIZATION

To perform domain generalization over temporally indexed domains, we need to capture the concept
drift within a given time interval. From a probabilistic point of view, for each domain Ds, s =
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1, 2, · · · , T , we can learn a neural network gωs by maximizing the conditional probability Pr(ωs|Ds),
where ωs denotes the status of model parameters at timestamp ts. Due to the evolving distribution
of Ds, the conditional probability Pr(ωs|Ds) will change over time accordingly. Our ultimate goal
is to predict ωT+1 given all training data D1,D2, · · · ,DT (D1:T for short), i.e., Pr(ωT+1|D1:T ). By
the Law of total probability, we have

Pr
(
ωT+1

∣∣ D1:T

)
=

∫
Ω
Pr

(
ωT+1

∣∣ ω1:T ,D1:T

)︸ ︷︷ ︸
inference

·Pr
(
ω1:T

∣∣ D1:T

)︸ ︷︷ ︸
training

dω1:T , (1)

where Ω is the space for ω1:T . The first term in the integral represents the inference phase, i.e.,
how we predict the status of the target neural network in the future (namely, ωT+1) given all history
statuses, while the second term denotes the training phase, i.e., how we leverage all source domains’
training data D1:T to obtain the status of the neural network on each source domain, namely ω1:T .
By the chain rule of probability, we can further decompose the training phase as follows:

Pr
(
ω1:T

∣∣ D1:T

)
=

∏T

s=1
Pr

(
ωs

∣∣ ω1:s−1,D1:T

)
= Pr

(
ω1

∣∣ D1
)
· Pr

(
ω2

∣∣ ω1,D1:2
)
· · ·Pr

(
ωT

∣∣ ω1:T−1,D1:T

)
.

(2)

Here we assume for each time point ts, the model parameter ωs only depends on the current and
previous domains (namely, {Di : i ≤ s}), and there is no access to future data (even unlabeled).
Now we can break down the whole training process into T −1 steps, where each step corresponds to
learning the model parameter on the new domain conditional on parameter statuses from the history
domains and training data, i.e., Pr

(
ωs+1

∣∣ ω1:s,D1:s,Ds+1
)
, ∀ s < T .

3.2.2 NEURAL NETWORK WITH DYNAMIC PARAMETERS

Since the data distributions change temporally, the parameter ωs in gωs needs to be updated accord-
ingly to address the temporal drift across the domains. In this work, we consider leveraging dynamic
graphs to model the temporally evolving neural networks in order to retain maximal expressiveness.

Intuitively, a neural network gω can be represented as an edge-weighted graph G = (V,E, ψ), where
each node v ∈ V represents a neuron of gω while each edge e ∈ E corresponds to a connection
between two neurons in gω . Moreover, given a connection e between neuron u and v, i.e., e =
(u, v) ∈ E, function ψ : E → R denotes the weight parameter between these two neurons, i.e.,
ψ(u, v) = wu,v , ∀ (u, v) ∈ E. Essentially, ω = ψ(E) = {wu,v : (u, v) ∈ E} is a set of parameter
values indexed by all edges in E and ω represents the entire set of parameters for neural network g.
Notice that we give a general definition of gω so that both shallow models (namely, linear model)
and deep neural networks (e.g., MLP, CNN, RNN, GNN) can be treated as special cases here. We
aim to characterize the potential drift across domains by optimizing and updating the graph structure
(i.e., edge weight) of gω . You et al. (2020) have proven that optimizing the graph structure of the
neural network could have a smaller search space and a more smooth optimization procedure than
exhaustively searching over all possible connectivity patterns.

We consider the case where the architecture or topology of neural network gω is given, i.e., V and
E are fixed, while the parameter ω is changing constantly w.r.t time point ts. In this sense, we
can write ωs = ψ(E|s) where ψ(·|s) (abbrev. ψs) depends only on time point ts. Now the triplet
G = (V,E, ψs) defines a dynamic graph with evolving edge weights.

3.2.3 END-TO-END LEARNING OF CONCEPT DRIFT

Given history statuses {ω1:s} of the neural network learned from {D1:s}, we aim at generalizing and
extrapolating ωs+1 so that it produces good performance on the new domain Ds+1 in an end-to-end
manner. In fact, by viewing the neural networks {ω1:s} as dynamically evolving graphs, a natural
choice is to characterize the latent graph distribution of {ω1:s} by learning from its evolving trend.
Consequently, ω’s can be directly sampled from the distribution for the prediction in future domains.

We characterize the latent distribution of {ω1:s} as a sequential learning process based on a re-
current architecture, and each unit fθ in the recurrent model is parameterized by θ to generate ωs

by accounting for previous {ωi : i < s}. Specifically, at each recurrent block (i.e., time step) ts,
fθ produces two outputs (ms, hs), where ms is the current memory state and hs is a latent proba-
bilistic distribution (i.e., hidden output of fθ) denoting the information carried from previous time
steps. The latent probabilistic distribution ht allows us to generate the dynamic graph ωs by a de-
coding function Fξ(·). Intuitively, different from existing works that train and regularize a neural
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network on single domain (Nasery et al., 2021), here we focus on directly searching for distribu-
tion of networks with “good architectures”. Lastly, the sampled ωs is encoded by a graph encoding
function Gη(·), which then serves as the input of next recurrent block. Such a recurrent model is
trained on a single domain Ds to generate ωs for prediction by minimizing the empirical loss, i.e.,
minθ,ξ,η

∑Ns
i=1 ℓ

(
gωs(x

(s)
i ), y

(s)
i

)
, where ℓ(·, ·) can be cross-entropy for classification or MSE for re-

gression. The optimal ωs on domain Ds will then be fed into the next domain Ds+1 along with the
memory state ms as input to guide the generation of ωs+1 until the entire training phase is done.
For the inference phase, we feed the optimal parameters from the last training domain, namely ωT ,
into the encoding function and leverage the recurrent block, together with the memory state mT to
predict the latent vector on the future domain DT+1, followed by the decoding function to decode
the latent vector and generate the optimal parameters ωT+1.

3.2.4 LESS FORGETTING AND BETTER GENERALIZATION

During the training of recurrent models, it is also likely to encounter the performance degradation
problem. Such a problem can be severe in temporal DG since a more complicated concept corre-
lation exists between each domain. In addition, if the training procedure on each domain Ds takes
a large number of iterations to converge, we may also observe the forgetting phenomenon (i.e., the
recurrent model fθ will gradually focus on the current training domain and have less generalization
capability for future domains). To alleviate such a phenomenon, we leverage a straightforward tech-
nique - skip connection to bridge the training on Ds with previous domains {D1:s−1}. Specifically,

Φ
(
ωs,

{
ωs−τ :s−1

})
:= ωs + λ ·

∑s−1

i=s−τ
ωi, (3)

where λ is regularization coefficient and τ denotes the size of the sliding window. The skip connec-
tion could enforce the generated network parameters ωs to contain part of previous network’s infor-
mation, and the implementation of the fixed-sized sliding window can better alleviate the potential
drawback of the computational cost. We summarize the overall generative process in Appendix A.2.

3.3 THEORETICAL ANALYSES

In this section, we provide a theoretical analysis of our proposed framework’s performance in the
target domain. Our analyses include uncertainty quantification and generalization error. Uncertainty
characterizes the dispersion or error of an estimate due to the noise in measurements and the finite
size of data sets, and smaller uncertainty means less margin of error over the model predictions. On
the other hand, generalization error measures how accurate the model’s prediction is on unseen data.
Our analyses show that our proposed DRAIN achieves both better prediction accuracy as well as
smaller margin of error on target domain compared with online and offline DG baselines.

First, we introduce two DG methods, namely online baseline and offline baseline as defined below:
Definition 1. Given timestamp ts+1 and domains D1,D2, · · · ,Ds+1, and model parameter state
from previous timestamp, namely ωs. Define online model Mon and offline model Moff as ωs+1 =
argmaxωs+1

Pr(ωs+1|ωs,Ds+1) and ωs+1 = argmaxωs+1
Pr(ωs+1|D1:s+1), respectively.

Offline method Moff is trained using ERM over all source domains, while online method Mon
considers one-step finetuning over the model parameter on each new domain’s dataset. Both Moff
and Mon are time-oblivious, i.e., unaware of the concept drift over time.
Assumption 1. Consider a parameterized function qθ(·) to approximate P (ωt+1|ωt), which is the
unknown ground-truth concept drift of the model parameter distribution. It is assumed that the prior
over qθ follows a normal distribution with: E[qθ0(ω)] = ω, Var(qθ0(ω)) = σ2θ0 , ∀ ω ∈ Ω.
Definition 2 (Predictive Distribution). Given training sample D1,D2, · · · ,DT , and input feature
from future domain, namely xT+1, the predictive distribution can be defined as

Pr
(
ŷ
∣∣ xT+1,D1:T

)
=

∫
Pr

(
ŷ
∣∣ xT+1, ωT+1

)
Pr

(
ωT+1

∣∣ D1:T

)
dωT+1. (4)

Our first theorem below shows that by capturing the concept drift over the sequential domains, our
proposed method always achieves the smallest uncertainty in prediction on the future domain.
Theorem 1 (Uncertainty Quantification). Given training domains D1,D2, · · · ,DT where Var(Di)
is the same, we have the following inequality over each method’s predictive uncertainty, i.e., the
variance of predictive distribution as defined in Eq. 4: Var(Mours) < Var(Mon) ≤ Var(Moff).
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Table 1: Performance comparison of all methods in terms of misclassification error (in %) for classi-
fication tasks and mean absolute error (MAE) for regression tasks (both smaller the better.) Results
of comparison methods on all datasets except ”Appliance” are reported from Nasery et al. (2021).
”-” denotes that the method could not converge on the specific dataset.

Model Classification (in %) Regression
2-Moons Rot-MNIST ONP Shuttle Elec2 House Appliance

Offline 22.4 ± 4.6 18.6 ± 4.0 33.8 ± 0.6 0.77 ± 0.1 23.0 ± 3.1 11.0 ± 0.36 10.2 ± 1.1
LastDomain 14.9 ± 0.9 17.2 ± 3.1 36.0 ± 0.2 0.91 ± 0.18 25.8 ± 0.6 10.3 ± 0.16 9.1 ± 0.7
IncFinetune 16.7 ± 3.4 10.1 ± 0.8 34.0 ± 0.3 0.83 ± 0.07 27.3 ± 4.2 9.7 ± 0.01 8.9 ± 0.5

CDOT 9.3 ± 1.0 14.2 ± 1.0 34.1 ± 0.0 0.94 ± 0.17 17.8 ± 0.6 - -
CIDA 10.8 ± 1.6 9.3 ± 0.7 34.7 ± 0.6 - 14.1 ± 0.2 9.7 ± 0.06 8.7 ± 0.2

GI 3.5 ± 1.4 7.7 ± 1.3 36.4 ± 0.8 0.29 ± 0.05 16.9 ± 0.7 9.6 ± 0.02 8.2 ± 0.6
DRAIN 3.2 ± 1.2 7.5 ± 1.1 38.3 ± 1.2 0.26 ± 0.05 12.7 ± 0.8 9.3 ± 0.14 6.4 ± 0.4

Our second theorem shows that, besides uncertainty, our proposed method can also achieves smallest
generalization error thanks to learning the concept drift.
Definition 3. Given predictive distribution in Eq. 4, as well as ground-truth label yT+1 from the
future domain, define the predictive or generalization error as err := ℓ(E[P (ŷ|xT+1,D1:T )], yT+1).
Theorem 2 (Generalization Error). Assume gω(·) has Lipschitz constant with upper bound Lupper

and lower bound Llower w.r.t ω. We have the following inequality over each method’s predictive
error defined above: err(Mours) < err(Mon) < err(Moff).

Complexity Analyses. In our implementation, the encoding and decoding functions are instantiated
as MLPs. The total number of parameters of the encoding and decoding functions is O(Nd + C),
which is linear in N . Here N is the number of parameters in predictive models (namely ω), d is the
width (i.e., number of neurons) of the last hidden layer of the encoding and decoding functions, and
C denotes the number of parameters for all the layers before the last for the encoding and decoding
functions. Additionally, in many situations, the first few layers of representation learning could be
shared. Hence, we do not need to generate all the parameters in ω, but just the last few layers.

4 EXPERIMENT

In this section, we present the performance of DRAIN against other state-of-the-art approaches
with both quantitative and qualitative analysis. The experiments in this paper were performed on a
64-bit machine with 4-core Intel Xeon W-2123 @ 3.60GHz, 32GB memory and NVIDIA Quadro
RTX 5000. Additional experiment settings and results (e.g., hyperparameter setting and scalability
analysis) are demonstrated in the appendix. 1

4.1 EXPERIMENT SETTING

Datasets. We compare with the following classification datasets: Rotated Moons (2-Moons), Ro-
tated MNIST (Rot-MNIST), Online News Popularity (ONP), Electrical Demand (Elec2), and Shut-
tle; and the following regression datasets: House prices dataset (House), Appliances energy predic-
tion dataset (Appliance). The first two datasets are synthetic, where the rotation angle is used as a
proxy for time. The remaining datasets are real-world datasets with temporally evolving character-
istics. Dataset details can be found at Appendix A.1.1.

Comparison Methods. We adopt three sets of comparison methods: practical baselines that do
not consider the concept drift, including 1). Offline that treats all source domains as a single domain,
2). LastDomain that only employs the last training domain, and 3). IncFinetune that sequentially
trains on each training domain. Continuous domain adaptation methods that focus only on DA,
including 1). CDOT (Ortiz-Jimenez et al., 2019) that transports most recent labeled examples to the
future, and 2). CIDA (Wang et al., 2020) that specifically tackles the continuous DA problem; and
one temporal domain generalization method: GI (Nasery et al., 2021).

All experiments are repeated 10 times for each method, and we report the average results and the
standard deviation in the following quantitative analysis. More detailed description of each compar-
ison method and the parameter setting can be found in Appendix A.1.2 and A.1.3, respectively.

1Our open-source code is available at https://github.com/BaiTheBest/DRAIN.
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Figure 3: Visualization of the decision boundary of DRAIN (blue dots and red stars represent
different data classes). As the distribution of data points is consistently changing, as shown in Figure
3a - 3c, DRAIN can effectively characterize such a temporal drift and predict accurate decision
boundaries on the unseen testing domain in Figure 3d.
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(e) CIDA
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Figure 4: Visualization of decision boundary (blue dots and red stars represent different data
classes), where the right subfigure of comparison methods Figure 4a - 4f demonstrate the decision
boundary predicted for the test domain DT+1, the left subfigure in Figure 4a shows the decision
boundary learned from the all data points in the concatenated training domain ([D1, · · · ,DT ]), the
left subfigure in Figure 4b shows the decision boundary learned from all samples in the last training
domain DT , and the left subfigures in Figure 4c - 4f show the decision boundary learned on D4.

4.2 QUANTITATIVE ANALYSIS

We first illustrate the performance of our proposed method against comparison methods. The ex-
periments are conducted in both classification and regression tasks with the domain generalization
setting, i.e., models are trained on the training domains and deployed on the unseen testing domain.

As can be seen from Table 1, DRAIN consistently achieves competitive results across most datasets.
Specifically, DRAIN excels the second-best approaches on Elec2 (CIDA), House (GI) and Appliance
(GI) by a great margin. The only exception is the ONP dataset, where the Offline method achieves
the best result and all state-of-the-art methods cannot generalize well on unseen testing domains
since the ONP dataset does not exhibit a strong concept drift. Additionally, all time-oblivious base-
lines perform rather unsatisfactorily since they are not capable of handling the concept drift of the
data distribution. Both CDOT and CIDA can generate better results than time-oblivious baselines,
yet their generalization ability on the unseen domains is still limited as the maintained time-invariant
representation in both methods cannot address the concept drift without any data in the testing do-
main. As the only method that addresses the temporal domain generalization problem, GI imposes a
gradient regularization with a non-parametric activation function to handle the concept drift, which
relies too much on the task-specific heuristic. In contrast, DRAIN proposes to sequentially model
each domain in an end-to-end manner, which could address the concept drift more inherently.
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4.3 QUALITATIVE ANALYSIS

We compare different methods qualitatively by visualizing the decision boundary on the 2-Moons
dataset. As shown in Figure 3a - 3c, we demonstrate the decision boundary predicted by DRAIN at
D2, D4, D6 training domains, and the final predicted decision boundary on the testing domain D9

(Figure 3d). As can be seen, DRAIN can successfully characterize the concept drift by sequentially
modeling the {DT }, and the learned decision boundary could rotate correctly along time.

We further visualize the decision boundary learned by other comparison methods in Figure 4a - 4f.
Firstly, the left subfigure in Figure 4a shows the decision boundary learned by the Offline method on
the concatenated training domains {D1:T }, and the learned decision boundary overfits the training
data and shows poor performance when generalizing on the unseen testing domain (the right sub-
figure of 4a). Furthermore, as the current state-of-the-art continuous domain adaptation methods,
CDOT transports the most recent labeled data points in DT to the future, which makes the learned
decision boundary almost temporal-invariant (Figure 4d) and cannot generalize well in the scenario
of domain generalization. CIDA utilizes the adversarial training technique to solve the domain
adaptation, yet the predicted decision boundary in Figure 4e is less stable than other state-of-the-art
methods due to its model complexity. Lastly, even though GI is the only method proposed to tackle
the temporal domain generalization problem, the produced decision boundaries, as shown in both
the training domain and testing domain (Figure 4f), are still less accurate than our proposed method,
since they heavily utilize heuristics to regularize the gradient.

4.4 SENSITIVITY ANALYSIS

Figure 5: Sensitivity analysis on the number of layers
of the generated neural network by DRAIN.

We conduct sensitivity analysis on the depth
of the neural network gωs for DRAIN. As
shown in Figure 5, the optimal number of
hidden layers for gωs is 2 and 1 on 2-Moons
and Electric dataset, respectively. The curve
on both datasets has an inverse ”U” shape,
meaning that too few layers may limit the
general expressiveness of our model, while
too many layers could potentially hurt the
generalization ability due to overfitting.

4.5 ABLATION STUDY

Table 2: Ablation study. Comparison of perfor-
mance between our method and two alternatives
across two datasets for classification tasks and one
datasets for regression tasks.

Ablation 2-Moons Rot-MNIST House
✗ RNN 22.4 ± 4.6 19.5 ± 3.4 11.0 ± 0.36
✗ Skip.C 7.1 ± 1.3 10.3 ± 1.7 9.7 ± 0.13
DRAIN 3.2 ± 1.2 7.5 ± 1.1 9.3 ± 0.14

We further conduct an ablation study on three
datasets to evaluate the effect of different com-
ponents in DRAIN, and the results are exhib-
ited in Table 2. Specifically, we remove the se-
quential learning model in DRAIN, and the re-
sulted ablated model ✗ RNN corresponds to the
offline baseline model. We also independently
remove the skip connection module to let the
sequential learning model uniformly acquire in-
formation from all previous domains, and the
resulting model is named ✗ Skip.C.

As shown in the table, yet each component can effectively contribute to the overall model perfor-
mance, modeling the temporal correlation between all domains by a sequential model can provide a
rather larger performance gain. In addition, removing the skip connection in the sequential learning
model would make DRAIN hard to capture the long-range temporal dependency among domains
since long-range domain information could potentially be forgotten during the model learning.

5 CONCLUSION

We tackle the problem of temporal domain generalization by proposing a dynamic neural network
framework. We build a Bayesian framework to model the concept drift and treat a neural network
as a dynamic graph to capture the evolving pattern. We provide theoretical analyses of our proposed
method, such as uncertainty and generalization error, and extensive empirical results to demonstrate
the efficacy and efficiency of our method compared with state-of-the-art DA and DG methods.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

A.1.1 DATASET DETAILS

We expand upon the datasets used for our experiments in this section. We highlighted the sentence
that describes the domain drift within each dataset.

• Rotated 2 Moons: This is a variant of the 2-entangled moons dataset, with a lower moon and an
upper moon labeled 0 and 1 respectively. Each moon consists of 100 instances, and 10 domains are
obtained by sampling 200 data points from the 2-Moons distribution, and rotating them counter-
clockwise in units of 18◦. Domains 0 to 8 (both inclusive) are our training domains, and domain
9 is for testing. Each domain is obtained by rotating the moons counter-clockwise in units of 18◦,
hence the concept drift means the rotation of the moon-shape clusters.

• Rotated MNIST: This is an adaptation of the popular MNIST digit dataset Deng (2012), where
the task is to classify a digit from 0 to 9 given an image of the digit. We generate 5 domains by
rotating the images in steps of 15 degrees. To generate the i-th domain, we sample 1,000 images
from the MNIST dataset and rotate them counter-clockwise by 15× i degrees. We take the first
four domains as train domains and the fifth domain as test. Similar to 2-Moons, each domain here
is generated by rotating the images of digits by 15◦, hence the concept drift means the rotation of
the images.

• Online News Popularity: This dataset Fernandes et al. (2015) summarizes a heterogeneous set
of features about articles published by Mashable in a period of two years. The goal is to predict
the number of shares in social networks (popularity). We split the dataset by time into 6 domains
and use the first 5 for training. The concept drift is reflected in the change of time, but previous
works have proven Nasery et al. (2021) the concept drift is not strong.

• Shuttle: This dataset provides about 58,000 data points for space shuttles in flight. The task is
multiclass classification with a heavy class imbalance. The dataset was divided into 8 domains
based on the time points associated with points, with times between 30-70 being the train domains
and 70 -80 being the test domain.

• Electrical Demand This contains information about the demand of electricity in a particular
province. The task is, again binary classification, to predict if the demand of electricity in each
period (of 30 mins) was higher or lower than the average demand over the last day. We consider
two weeks to be one time domain, and train on 29 domains while testing on domain 30. Each
domain is generated by considering the demand of electricity within certain two weeks, so the
domain drift can be regarded as how the electricity demand is changing seasonally.

• House Prices Dataset: This dataset has housing price data from 2013-2019. This is a regression
task to predict the price of a house given the features. We treat each year as a separate domain, but
also give information about the exact date of purchase to the models. We take data from the year
2019 to be test data and prior data as training. Similar to Elec2, the concept drift in this dataset
is how the housing price changed from 2013-2019 for a certain region.

• Appliances Energy Prediction: This dataset Candanedo et al. (2017) is used to create regression
models of appliances energy use in a low energy building. The data set is at 10 min for about 4.5
months in 2016, and we treat each half month as a single domain, resulting in 9 domains in total.
The first 8 domains are used for training and the last one is for testing. Similar to Elec2, the drift
for this dataset corresponds to how the appliances energy usage changes in a low energy building
over about 4.5 months in 2016.

A.1.2 DETAILS OF COMPARISON METHODS

• Practical Baseline. 1). Offline: this is a time-oblivious model that is trained using ERM on all the
source domains. 2). LastDomain: this is a time-oblivious model that is trained using ERM on the
last source domains. 3). IncFinetune: we bias the training towards more recent data by applying
the Baseline method described above on the first time point and then, fine-tuning with a reduced
learning rate on the subsequent time points in sequential manner. This baseline corresponds to the
online model we defined in Definition 1.
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• Continuous Domain Adaptation Methods. 1). CDOT: this model transports most recent labeled
examples DT to the future using a learned coupling from past data, and trains a classifier on them..
2). CIDA: this method is representative of typical domain erasure methods applied to continuous
domain adaptation problems. 3). Adagraph: This method makes the batch norm parameters time-
sensitive and smooths them using a given kernel.

• Temporal Domain Generalization Method. 1). GI: this method proposes a training algorithm to
encourage a model to learn functions which can extrapolate well to the near future by supervising
the first order Taylor expansion of the learnt function.

A.1.3 PARAMETER SETTING

We use Adam optimizer for all our experiments, and the learning rate for all datasets are uniformly
set to be 1e− 4. All experiments are conducted on a 64-bit machine with 4-core Intel Xeon W-2123
@ 3.60GHz, 32GB memory and NVIDIA Quadro RTX 5000. We set hyperparameters for each
comparison method with respect to the recommendation in their original paper, and we specify the
architecture as well as other details for each dataset’s experiments as follows.

• 2-Moons. The number of layers in the LSTM is set to be 10, and the network architecture of gωt

consists of 2 hidden layers, with a dimension of 50 each. We use ReLU layer after each hidden
layer and a Sigmoid layer after the output layer. The learning rate is set to be 1e− 4.

• Rot-MNIST. The number of layers in the LSTM is set to be 10, and the network architecture
of gωt consists of 2 convolution layers with kernel shape 3 × 3, and each convolution layer is
followed by a max pooling layer with kernel size 2 and stride = 2. The latent representation is
then transformed by two linear layers with dimensions 256 and 10. We use ReLU layer after each
hidden layer and a Sigmoid layer after the output layer. The learning rate is set to be 1e− 3.

• ONP. The number of layers in the LSTM is set to be 10, and the network architecture of gωt

consists of 2 hidden layers with bias terms, and the dimensions of each layer are 20. We use
ReLU layer after each hidden layer and a Sigmoid layer after the output layer. The learning rate
is set to be 1e− 4.

• Shuttle. The number of layers in the LSTM is set to be 5, and the network architecture of gωt

consists of 3 hidden layers with bias terms, and the dimensions of each layer are 128. We use
ReLU layer after each hidden layer and a Sigmoid layer after the output layer. The learning rate
is set to be 5e− 5.

• Elec2. The number of layers in the LSTM is set to be 10, and the network architecture of gωt

consists of 2 hidden layers with bias terms, and the dimensions of each layer are 128. We use
ReLU layer after each hidden layer and a Sigmoid layer after the output layer. The learning rate
is set to be 5e− 5.

• House. The number of layers in the LSTM is set to be 10, and the network architecture of gωt

consists of 2 hidden layers with bias terms, and the dimensions of each layer are 128. We use
ReLU layer after each hidden layer and no activation layer after the output layer. The learning rate
is set to be 1e− 5.

• Appliance. The number of layers in the LSTM is set to be 10, and the network architecture of
gωt consists of 2 hidden layers with bias terms, and the dimensions of each layer are 128. We use
ReLU layer after each hidden layer and no activation layer after the output layer. The learning rate
is set to be 1e− 5.

A.1.4 TRAINING TIME ANALYSIS

Table 3: Comparison of training time (seconds) between our method and two baselines across two
datasets for classification tasks and one datasets for regression tasks.

Model 2-Moons Elec2 Appliance
CIDA 45.2 ± 0.87 154.3 ± 2.1 287.5 ± 2.6
GI 19.3 ± 0.43 136.4 ± 1.9 189.3 ± 2.1
DRAIN (ours) 15.4 ± 0.37 99.2 ± 1.3 170.3 ± 1.8
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We further conduct the model scalability analysis by comparing the running time of our proposed
method with two other state-of-the-art baselines: GI and CIDA on three datasets (i.e., 2-Moons,
Elec2, and Appliance). As shown in Table 3, our proposed method can generally achieve the shortest
training time among the three methods. However, we notice that GI is relatively slower in the total
running time due to the model pretraining and finetuning step, and the low efficiency in CIDA is
due to the expensive computation cost for training GAN. Compared to these approaches, DRAIN
only consists of one sequential learning model to address the data distribution drift in the end-to-end
manner, which could achieve generally better performance while attaining its efficiency.

A.1.5 SCALABILITY OF NUMBER OF DOMAINS

The time complexity of our framework with respect to the number of domains is linear (equivalent
to the complexity of the recurrent neural network with respect to the input sequence length). The
number of domains can only affect the total training time since we need to iteratively feed in a new
domain to train the proposed recurrent model.

We conduct the following experiment to support our argument. We create synthetic datasets with
10, 100, and 1000 domains, each of which has two labels with 10 training instances. We follow
the parameter setting in the 2-Moons dataset (the exact parameter setting can be found in Appendix
A.3), and their runtime is demonstrated in the following table.

Table 4: Scalability of DRAIN for number of training domains.

Number of domains Running time
10 2.66

100 28.51
1000 292.49

A.1.6 IMPORTANT REMARKS

In this section, we provide some important remarks over the proposed DRAIN framework.

• Graph generation can handle large graphs and there are a number of existing works that
can handle large graphs. Our model is a general framework that can choose different graph
generation methods as needed.

• Neural networks are networks (i.e., graphs) of neurons, which have gained lots of research
interest in recent years. Recent research (e.g., (You et al., 2020)) have found that the per-
formance of neural network architectures is highly correlated with certain graph charac-
teristics. In this work, we aim at characterizing the potential drift across the domains by
optimizing and updating the graph structure of the neural network because optimizing the
graph structure of a neural network has been proven to have a smaller search space and a
more smooth optimization procedure than exhaustively searching over all possible connec-
tivity patterns. Last but not least, our approach allows the entire neural network/model to
change across time, which in turn maximizes our model’s expressiveness.

A.1.7 ENLARGED DECISION BOUNDARY FIGURES OF GI AND DRAIN

2 1 0 1

class A
class B

(a) GI

2 1 0 1

class A
class B

(b) DRAIN

Figure 6: Comparison of the decision boundary on the future domain of 2-Moons dataset between
the state-of-the-art model - GI and the proposed model - DRAIN.

15



Published as a conference paper at ICLR 2023

Figure 6 is a direct comparison of decision boundaries predicted by the state-of-the-art method GI
(Figure 6a) and the proposed method DRAIN (Figure 6b). As can be seen from the figure, the
decision boundary predicted by DRAIN can consistently classify two classes with a few exceptions.
the decision boundary predicted by GI has less confidence (i.e., wider band) in predicting middle
points, and a few errors are also made in predicting points on the right side.

A.2 OVERALL GENERATION PROCESS

We summarize the detailed forward propagation of DRAIN as below:

a1 = 0, m1 = G0(z), z ∼ N (0, 1)

a1 = Gη(ω1), ω1 ∼ Fξ(h1), (m1, h1) = fθ(m0, a0)

· · ·
a1 = Gη(ω1), ω1 ∼ Go(h1), (m1, h1) = fθ(m1, a1)

a2 = Gη(ω2), ω2 = Φ(ω2, {ω1}), ω2 = Fξ(h1), (m2, h2) = fθ(m1, a1)

· · ·
a2 = Gη(ω2), ω2 = Φ(ω2, {ω1}), ω2 = Fξ(h1), (m2, h2) = fθ(m2, a2)

· · ·
at = Gη(ω2), ωt = Φ(ωt, {ωt−τ :t−1}), ω2 = Fξ(h1), (mt, ht) = fθ(mt, at),

where each ai denotes the input of fθ. In this work, we utilize LSTM as the recurrent architecture,
and fθ becomes a single LSTM unit. To initialize the whole generative process, we take a random
noise z as input for the first domain D1, which is drawn from a standard Gaussian distribution. The
initial memory state m1 is also transformed from z by an initial encoding function G0(·).

A.3 THEORY PROOF

In this section, we provide the formal proof for Theorem 1 and Theorem 2 in our main context.

A.3.1 PROOF FOR THEOREM 1

Proof. By definition of the predictive distribution,

P (ŷ|xT+1,D1:T ) =

∫
P (ŷ|xT+1, ωT+1)P (ωT+1|D1:T )dωT+1

=

∫
P (ŷ|xT+1, ωT+1)P (ωT+1|ω1:T )P (ω1:T |D1:T )dω1:T+1

(5)

Our goal is to prove that the variance of this predictive distribution for our proposed method, online
baseline and offline baseline follows the inequality as in Theorem1.

Ours v.s. Online Baseline

Here we prove that Var(Mours) < Var(Mon).

Notice that the first term on the right hand side of Eq. 5, namely P (ŷ|xT+1, ωT+1), corresponds to
deployment of the model with parameter ωT+1 on the future domain DT+1, hence the variance of
P (ŷ|xT+1, ωT+1) only depends on the noise or randomness coming from xT+1 as long as ωT+1

is given. In other words, the uncertainty coming from P (ŷ|xT+1, ωT+1) can be cancelled for both
methods since we are considering the same set of domains. Now the problem reduces to prove that
the variance of the second and third terms on the right hand side of Eq. 5 for our model is smaller
than those for the online baseline.

Notice that

P (ω1:T |D1:T )

=

∫
Θ
P (ω1|D1) · P (ω2|ω1,D2, θ0) · P (θ1|ω1, ω2, θ0) · P (ω3|ω2,D3, θ1) · P (θ2|ω2, ω3, θ1)

· · ·P (ωT |ωT−1,DT , θT−2) · P (θT−1|ωT−1, ωT , θT−2)dθ0:T−1,

(6)

where θ is the parameter of the parameterized function to approximate the ground-truth drift of ω, as
defined in Assumption 1. For example, P (ω1|D1) denotes that we train the model on the very first
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domain and P (ω2|ω1,D2, θ0) denotes that we continue to train the model on the second domain but
with initialization of ω2 as qθ0(ω1) where ω1 is learned from the previous domain and qθ0 is trying
to capture the conditional probability or drift between ω2 and ω1, i.e., P (ω2|ω1). In our Bayesian
framework, we treat qθ as a learnable function (e.g., LSTM unit in our proposed method) and we
use subscript of θ to differentiate the status of θ after the training on each domain. In other words,
qθ will be updated after the training on each domain (at least for our method). Notice that θ0 always
denotes the parameter initialization as in Assumption 1.

By Bayes’ rule, we have:
P (ωt+1|ωt,Dt+1, θt−1) ∝ P (qθt−1

(ωt))︸ ︷︷ ︸
prior on ωt+1

·P (Dt+1|ωt+1)︸ ︷︷ ︸
likelihood

, (7)

where P (qθt−1
(ωt)) can be regarded as the prior of ωt+1 because as we mentioned qθt−1

denotes the
initialization of ωt+1 before we train the model on domain Dt+1, and P (Dt+1|ωt+1) corresponds to
the likelihood of training ωt+1 on Dt+1. In addition,

P (θt|ωt, ωt+1, θt−1) ∝P (θt−1) · P (ωt, ωt+1|θt)
∝P (θt−2) · P (ωt−1, ωt|θt−1) · P (ωt, ωt+1|θt)
· · ·

∝ P (θ0)︸ ︷︷ ︸
prior on θ

·
t∏

i=1

P (ωi, ωi+1|θi)︸ ︷︷ ︸
likelihood

,

(8)

for any t = 1, 2, 3, · · · , T − 1. In the equation above, this time the prior is over parameter θ and ωi,
ωi+1 can be regarded as the ”training data” for θi.

For the online baseline, since it only keeps one-step finetuning of the model and does not learn how
ωt evolves, the θt for the online baseline is always equal to the prior, i.e. θt = θ0. In other words,
P (qθt−1

(ωt)) = P (qθ0(ωt)) and P (θt|ωt, ωt+1, θt−1) = P (θ0), ∀ t for the online baseline.

Since we follow the standard routine and assume all distributions are Gaussian, by Bayesian Theo-
rem, we know that the posterior distribution always has variance smaller than the prior distribution
under the expectation, i.e.,

E
[
V ar(θt|ωt, ωt+1, θt−1)

]
< V ar(θ0), (9)

which proves that our method has smaller variance in terms of Eq. 8. On the other hand, since the
second term on the right hand side of Eq. 7 is the same for both methods, and for the first term
P (qθt−1

(ωt)), by our Assumption 1 we know that for baseline Pr(qθt−1
(ωt)) = Pr(qθ0(ωt)) so the

variance is basically σθ0 . For our method, after each training step across a new domain our θ will get
updated and achieve smaller variance (because of posterior variance of Gaussian) so we also prove
that our method has smaller variance in terms of Eq. 7. Two parts combined prove that our method
has smaller variance in the third term of Eq. 5, namely P (ω1:T |D1:T ).

The last step is to compare the variance from the second term in Eq. 5, namely P (ωT+1|ω1:T ). For
online baseline, basically it uses the parameter from the last training domain, i.e., ωT as the final
model on the future domain, i.e., P (ωT+1|ω1:T ) = P (qθ0(ωT )).

On the other hand, for our method we have P (ωT+1|ω1:T ) = P (qθT−1
(ωT )) which has smaller

variance due to the posterior variance of Gaussian.

All together we finish the proof for Var(Mours) < Var(Mon).

Online Baseline v.s. Offline Baseline

This case is simpler to prove. Again, the first term on the right hand side of Eq 5, namely
P (ŷ|xT+1, ωT+1) can be cancelled in this case. Moreover, the second term, namely P (ωT+1|ω1:T )
has the same variance for both baselines, i.e., V ar(P (ωT+1|ω1:T )) = V ar(P (qθ0(ωT ))) = σθ0 . This
makes sense since two baselines do not learn the drift and the uncertainty in predicting ωT+1 based
on ωT is always the same as the prior distribution of θ0.

Hence, it suffices to compare the uncertainty of the last term of Eq. 5, namely P (ω1:T |D1:T ). Recall
Mon : ωt+1 = argmaxωt+1

P (ωt+1|ωt,Dt+1)

Moff : ωt+1 = argmaxωt+1
P (ωt+1|D1:t+1)

(10)
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For offline baseline, we are using all dataset so far, namely D1:t+1 to train the model while the
online baseline only uses Dt+1. Since we are considering domain generalization with temporal
concept drift, i.e., for each i ̸= j we have Di ̸= Dj (otherwise we merge them), the randomness of⋃t+1

i=1 Di is at least as large as that of Dt+1 alone, i.e., Var(
⋃t+1

i=1 Di) ≥ Var(Dt+1).

To prove this, let’s consider the case of two domains D1 and D2 without loss of generality. Also,
assume the sample size for both domains are equal. By definition of variance, we have

Var(D1) =

∑n
i=1(x1,i − µ1)

2

n
, Var(D2) =

∑n
i=1(x2,i − µ2)

2

n
, (11)

while

Var(D1 ∪ D2) =

∑n
i=1(x1,i −

µ1+µ2
2 )2 +

∑n
i=1(x2,i −

µ1+µ2
2 )2

2n
, (12)

where µ1 and µ2 is the sample mean for each domain, respectively and n denotes the sample size.
Hence,

Var(D1 ∪ D2)−
1

2

(
Var(D1) + Var(D2)

)
=

∑n
i=1(x1,i −

µ1+µ2
2 )2 +

∑n
i=1(x2,i −

µ1+µ2
2 )2

2n
−

∑n
i=1(x1,i − µ1)

2 +
∑n

i=1(x2,i − µ2)
2

2n

∝
n∑

i=1

(x1,i −
µ1 + µ2

2
)2 +

n∑
i=1

(x2,i −
µ1 + µ2

2
)2 −

( n∑
i=1

(x1,i − µ1)
2 +

n∑
i=1

(x2,i − µ2)
2
)

=

n∑
i=1

(
(x1,i −

µ1 + µ2
2

)2 + (x2,i −
µ1 + µ2

2
)2 −

[
(x1,i − µ1)

2 + (x2,i − µ2)
2
])

=

n∑
i=1

(
− (µ1 + µ2)x1,i − (µ1 + µ2)x2,i + 2µ1x1,i + 2µ2x2,i +

1

2
(µ1 + µ2)

2 − µ21 − µ22

)

=

n∑
i=1

(
(µ1 − µ2)x1,i − (µ1 − µ2)x2,i −

1

2
(µ1 − µ2)

2
)

=

n∑
i=1

(
(µ1 − µ2)(x1,i − x2,i)−

1

2
(µ1 − µ2)

2
)

=

n∑
i=1

(
(µ1 − µ2)

2 − 1

2
(µ1 − µ2)

2
)

=

n∑
i=1

(µ1 − µ2)
2

2
≥ 0,

(13)

where the equation from the third last row to the second last row is under expectation as E
[
(x1,i −

x2,i)
]
= µ1 − µ2. Since we assume Var(D1) = Var(D2), we finish the proof that Var(D1 ∪ D2) ≥

Var(D2). One can generalize this conclusion onto three or more domains.

Finally, combining Var(
⋃t+1

i=1 Di) is at least as large as that of Var(Dt+1) with Bayes’ rule, one can
finish the proof.

A.3.2 PROOF OF THEOREM 2

Proof. We finish our proof in two steps. First we prove that the generalization error of our method
is smaller than that of the online baseline.

By definition, we know that

err := ℓ
(
E
[
P (ŷT+1|xT+1,D1:T )

]
, yT+1

)
= ℓ

(
gωT+1(xT+1), yT+1

)
, (14)

where gω denotes the target neural network with parameter ω, and ωT+1 denotes the parameter status
on the (T + 1)-th domain (i.e., future domain).
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For online baseline, since it does not consider the temporal information, the parameters on the future
domain will be the same as the parameters after the training on the last source domain, i.e, for online
baseline we have ωT+1 = ωT .

For our method, we have ωT+1 = qθT (ωT ), where qθ is the recurrent structure and θT denotes the
parameter status of the recurrent structure after training on the first T domains. In other words, our
method utilizes the recurrent structure to generate the model parameters on the next domain. Now it
suffices to show that

ℓ
(
gωT+1(xT+1), yT+1

)
< ℓ

(
gωT (xT+1), yT+1

)
, (15)

where ωT+1 = qθT (ωT ). Here, the LHS and RHS above corresponds to the generalization error of
our method and the online baseline, respectively.

Recall that qθ represents the LSTM unit in our case, and we train the LSTM unit to approximate the
transition probability P (ωt+1|ωt), i.e., how neural network g’s parameter distribution changes over
time. From a probabilistic point of view, during training of the LSTM unit qθ, we basically minimize
the empirical loss which is equivalent to

min
θ
DKL

(
qθ
∥∥P (ωt+1|ωt)

)
, t = 1, 2, · · · , T − 1. (16)

As mentioned in Assumption 1, we denote θ0 as the initialization of qθ. On the other hand, after
T − 1 times of training over the LSTM unit on the T source domains, θ will converge to an optima
denoted as θ∗. Hence, the model parameter ωT+1 generated by the converged LSTM unit for sure
will be closer to the ground truth than that generated by the random initialized LSTM unit, i.e.,∥∥qθT (ωT )− qθ∗(ωT )

∥∥ < ∥∥qθ0(ωT )− qθ∗(ωT )
∥∥. (17)

By Lipschitz continuity of gω over the parameter ω, we have
Llower ·

∥∥ω − ω′∥∥ < ∥∥gω(x)− gω′(x)
∥∥ < Lupper ·

∥∥ω − ω′∥∥, ∀ x ∈ X , (18)
where X is defined as the input space of neural network gω . Bubeck et al. (2021) proved that the
Lipschitz constant actually can have a lower bound for a neural network.

Denote ω∗ = qθ∗(ωT ), i.e., the optimal parameter for the target neural network g on the future
domain. Then, it directly follows Eq. 18 that∥∥gωT (x)− gω∗(x)

∥∥ > Llower ·
∥∥ωT − ω∗∥∥,∥∥gωT+1(x)− gω∗(x)

∥∥ < Lupper ·
∥∥ωT+1 − ω∗∥∥. (19)

Denote r = ∥ωT − ω∗∥/∥ωT+1 − ω∗∥. Since neural network gω is a continuous function of ω,
there always exists a constant δ > 0 such that, within the sphere centering at ω∗ with radius δ,
namely S(ω∗, δ), the local lower and upper bound for the Lipschitz constant of gω could satisfy
Lupper/Llower < r. The reason behind this is, as δ approaches 0, due to the continuity of gω , the
upper bound and lower bound of Lipschitz constant within S(ω∗, δ) will become closer and finally
identical, i.e., limδ→0+ Lupper/Llower = 1. On the other hand, by Eq. 17 we know that r is always
greater than 1, so it is always possible to find a δ to satisfy the above condition. As a result,

Lupper

Llower
· ∥ωT+1 − ω∗∥

∥ωT − ω∗∥ < 1 ⇐⇒ Lupper ·
∥∥ωT+1 − ω∗∥∥ < Llower ·

∥∥ωT − ω∗∥∥. (20)

Hence,
∥∥gωT+1(x) − gω∗(x)

∥∥ <
∥∥gωT (x) − gω∗(x)

∥∥. Since gω∗(x) is the optimal neural network
on the future domain, gω∗(xT+1) should achieve the lowest loss as defined in Eq. 15. Combined
everything above together finishes the first step of our proof.

The second step of our proof is for the comparison between two baselines. We consider the case
where the drift of ωt is monotonic but our proof can be generalized to other cases easily.

As can be shown,
Online baseline: E[P (ωT+1|ω1:T )] = E[qθ0(ωT )] = ωT ,

Offline baseline: E[P (ωT+1|ω1:T )] = E[qθ0(ω̄)] = E[P (ω|D1:T )].
(21)

If we denote a distance function over the domains, as d, we assume that d(Dt+1,DT+1) <
d(Dt,DT+1). By the monotonic assumption, the distribution of each D1:T is changing along a
certain direction. Hence, among them DT has the distribution most close to that of DT+1. In other
words, the online baseline finetunes the model so its ωT is leaning towards the last domain while the
offline baseline is using the averaged domains to train the model, which finishes the proof.
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