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Abstract

There is increasing realization in neuroscience that information is represented in the1

brain, e.g., neocortex, hippocampus, in the form sparse distributed codes (SDCs), a2

kind of cell assembly. Two essential questions are: a) how are such codes formed3

on the basis of single trials, and how is similarity preserved during learning, i.e.,4

how do more similar inputs get mapped to more similar SDCs. I describe a novel5

Modular Sparse Distributed Code (MSDC) that provides simple, neurally plausible6

answers to both questions. An MSDC coding field (CF) consists of Q WTA7

competitive modules (CMs), each comprised ofK binary units (analogs of principal8

cells). The modular nature of the CF makes possible a single-trial, unsupervised9

learning algorithm that approximately preserves similarity and crucially, runs in10

fixed time, i.e., the number of steps needed to store an item remains constant as11

the number of stored items grows. Further, once items are stored as MSDCs in12

superposition and such that their intersection structure reflects input similarity,13

both fixed time best-match retrieval and fixed time belief update (updating the14

probabilities of all stored items) also become possible. The algorithm’s core15

principle is simply to add noise into the process of choosing a code, i.e., choosing16

a winner in each CM, which is proportional to the novelty of the input. This17

causes the expected intersection of the code for an input, X, with the code of each18

previously stored input, Y, to be proportional to the similarity of X and Y. Results19

demonstrating these capabilities for spatial patterns are given in the appendix.20

1 Introduction21

Perhaps the simplest statement of the fundamental question of neuroscience is: how is information22

represented and processed in the brain, or what is the neural code? For most of the history of23

neuroscience, thinking about this question has been dominated by the “Neuron Doctrine” that says24

that the individual (principal) neuron is the atomic functional unit of meaning, e.g., that individual25

V1 simple cells represent edges of specific orientation and spatial frequency. This is partially26

due to the extreme difficulty of observing the simultaenous, ms-scale dynamics of all neurons in27

large populations, e.g., all principal cells in the L2 volume of a cortical macrocolumn. However,28

with improving experimental methods, e.g., larger electrode arrays, calcium imaging [26], there is29

increasing evidence that the “Cell Assembly” (CA) [9], a set of co-active neurons, is the atomic30

functional unit of representation and thus of cognition [29, 11]. If so, we have at least two key31

questions. First, how might a CA be assigned to represent an input based on a single trial, as32

occurs in the formation of an episodic memory? Second, how might similarity relations in the input33

space be preserved in CA space, as is necessary in order to explain similarity-based responding /34

generalization?35
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I describe a novel CA concept, Modular Sparse Distributed Coding (MSDC), which provides simple,36

neurally plausible, answers to both questions. In particular, MSDC admits a single-trial, unsupervised37

learning method (algorithm) which approximately preserves similarity—specifically, maps more38

similar inputs to more highly intersecting MSDCs—and crucially, runs in fixed time. “Fixed time”39

means that the number of steps needed to store (learn) a new item remains constant as the number40

of items stored in an MSDC coding field (CF) increases. Further, since the MSDCs of all items are41

stored in superposition and such that their intersection structure reflects the input space’s similarity42

structure, best-match (nearest-neighbor) retrieval and in fact, updating of the explicit probabilities of43

all stored items (i.e., “belief update” [17]), are also both fixed time operations.44

There are three essential keys to the learning algorithm. 1) The CF has a modular structure: an MSDC45

CF consists of Q WTA Competitive Modules (CMs), each comprised of K binary units (as in Fig. 1).46

Thus, all codes stored in the CF or that ever become active in the CF are of size Q, one winner per CM.47

This modular CF structure distinguishes MSDC from numerous prior, “flat CF” sparse distributed48

representation (SDR) models, e.g., [28, 12, 16, 19]. 2) The modular organization admits an extremely49

efficient way to compute the familiarity (G, defined shortly), a generalized similarity measure that50

is sensitive not just to pairwise, but to all higher-order, similarities present in the inputs, without51

requiring explicit comparison of a new input to stored inputs. 3) A novel, normative use of noise52

(randomness) in the learning process, i.e., in choosing winners in the CMs. Specifically, an amount53

of noise inversely proportional to G (directly proportional to novelty) is injected into the process of54

choosing winners in the Q CMs. Broadly: a) to the extent an input is novel, it will be assigned to55

a code having low average intersection (high Hamming distance) with the previously stored codes,56

which tends to increase storage capacity; and b) to the extent it is familiar, it will be assigned to a57

code having higher intersection with the codes of similar previously stored inputs, which embeds58

the similarity structure over the inputs. The tradeoff between capacity maximization and embedding59

statistical structure is an area of active research [4, 14].60

In this paper, I describe the MSDC coding format (Fig. 1), semi-quantitatively describe how the61

learning algorithm works (Figs. 2 and 3), then formally state a simple instance of the algorithm (Fig.62

4), which shows that it runs in fixed time. The appendix includes results of simulations demonstrating63

the approximate preservation of similarity for the case of spatial inputs, and implicitly, fixed-time64

best-match retrieval and fixed-time belief update. This algorithm and model has been generalized to65

the spatiotemporal pattern (sequence) case [20, 23]: results for that case can be found in [22].66

2 Modular Sparse Distributed Codes67

Fig. 1b shows a simple model instance with an 8x8 binary pixel input, or receptive field (RF), e.g.,68

from a small patch of lateral geniculate nucleus, which is fully (all-to-all) connected to an MSDC CF69

(black hexagon) via a binary weight matrix (blue lines). The CF is a set of Q=7 WTA Competitive70

Modules (CMs) (red dashed ellipses), each comprised of K=7 binary units. All weights are initially71

zero. Fig. 1a shows an alternate, linear view of the CF (which is used for clarity in later figures). Fig.72

1c shows an input pattern, A, seven active pixels approximating an oriented edge feature, a code,73

φ(A), that has been activated to represent A, and the 49 binary weights that would be increased from74

0 to 1 to form the learned association (mapping) from A to φ(A). Note: there are KQ possible codes.75

Together, Figs. 2 and 3 describe a single-trial, fixed-time, unsupervised learning algorithm, made76

possible by MSDC, which approximately preserves similarity. A simple version of the algorithm,77

called the code selection algorithm (CSA), is then formally stated in Fig. 4. Fig. 2a shows the four78

inputs, A-D, that we will use to explain the principle for preserving similarity from an input space to79

the code space. Fig 2b shows the details of the learning trial for A. The model (a different instance80

than the one in Fig. 1), with A presenting as input, is shown at the bottom. The CF (gray hexagon) has81

Q=5 CMs, each with K=3 binary units. Since this is the first input, all weights are zero (gray lines).82

Thus, the bottom-up signals arriving from the five active input units yield raw input summation (u) of83

zero for the 15 CF units (u charts). Note that we assume that all inputs have the same number, S=5,84

of active units. Thus, we can convert the raw u values to normalized U values in [0,1] by dividing by85

S (U charts). The final step is to convert the U distribution in each CM into a probability distribution86

(ρ) from which a winner will be chosen. In this case, it is hopefully intuitive that the uniform U87

distributions should be converted into uniform ρ distributions (ρ charts). Thus, the code chosen,88

φ(A), is completely random. Nevertheless, once φ(A) is chosen, the mapping from A to φ(A) is89

embedded at full strength, i.e., the 25 weights from the active inputs to the Q=5 winners are increased90
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Figure 1: (a) Linear view of an MSDC coding field (CF) comprised of Q=7 WTA competitive
modules (CMs) (red dashed boxes), each comprised of K=7 binary units. (b) A small model instance
with an 8x8 binary pixel input, i.e., receptive field (RF), fully connected to the CF (black hexagon).
(c) Example of learned association from an input, A, to its code, φ(A).

Figure 2: (a) Four sample inputs where B-D have decreasing similarity with A. (b) The learning trial
for A. All weights are initially 0 (gray), thus u=U=0 for all units, which causes (see algorithm in
Fig. 4) the win probability (ρ) of all units to be equal, i.e., uniform distribution, in each CM, thus a
maximally random choice of winners as A’s code, φ(A) (black units). (c) The 25 increased (from 0
to 1) weights (black lines) that constitute the mapping from A to φ(A).

from 0 to 1 (black lines in Fig. 2c). Thus, a strong memory trace can be immediately formed via the91

simultaneous increase of numerous weak (in an absolute sense) thalamocortical synapses, consistent92

with [2].93

Input A having been stored (Fig. 2), Fig. 3 considers four hypothetical next inputs to illustrate94

the similarity preservation mechanism. Fig. 3a shows what happens if A is presented again and95

Figs. 3b-d show what happens for three inputs B-D progressively less similar to A. If A presents96

again, then due to the learning that occurred on A’s learning trial, the five units that won (by chance)97

in that learning trial will have u=5 and thus U=1. All other units will have u=U=0. Again, it is98

hopefully intuitive in this case, that the U distributions should be converted into extremely peaked99

ρ distributions favoring the winners for φ(A). That is, in this case, which is in fact a retrieval trial,100

we want the model to be extremely likely to reactivate φ(A). Fig. 3a shows such highly peaked101

ρ distributions and a statistically plausible draw where the same winner as in the learning trial is102

chosen in all Q=5 CMs. Fig. 3b shows the case of presenting an input B that is very similar to A (4103

out of 5 features in common, red indicates non-intersecting input unit). Due to the prior learning,104

this leads to u=4 and U=0.8 for the five units of φ(A) and u=U=0 for all other units. In this case,105

we would like the model to pick a code, φ(B), for B that has high, but not total, intersection with106
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Figure 3: a) Illustration of the principle by which similarity is approximately preserved. Given
that codes are MSDCs, all of size Q, all that needs to be done in order to ensure approximate
similarity preservation is to make the probability distributions in the CMs increasingly noisy (flatter)
in proportion to the novelty of the input.

φ(A). Clearly, we can achieve this by converting the U distributions into slightly flatter, i.e., slightly107

noisier, ρ distributions, than those in Fig. 3a. Fig. 3b shows slightly flatter ρ distributions and a108

statistically plausible outcome where the most-favored unit in each CM (i.e., the winner for A) wins109

in four of the five CMs (red unit is not in intersection with φ(A)). Figs 3c and 3d then just complete110

the explanation by showing two progressively less similar (to A) inputs, which lead to progressively111

flatter ρ distributions and ultimately codes with lower intersections with φ(A). The u, U, and µ112

distributions are identically shaped across all CMs in each panel of Fig. 3 because each assumes that113

only one input, A, has been stored. As a succession of inputs are stored, the distributions will begin114

to differ across the CMs, due to the history of probabilistic choices (as can be seen in the appendix).115

Having described the similarity preservation principle, i.e., adding noise proportional to input novelty116

into the code selection process, Fig. 4 formally states a simple version of the learning algorithm.117

Steps 1 and 2 have already been explained. Steps 3 and 4 together specify the computation of the118

familiarity, G, of an input, which is used to control the amount of noise added. G is a generalized119

similarity measure and thus an inverse novelty measure. Step 3 computes the maximum U value in120

each CM and Step 4 computes their average, G, over the Q CMs. Steps 5 and 6 specify the nonlinear,121

specifically, sigmoidal, transform that will be applied from the U values to relative probabilities of122

winning (within each CM) (µ), which are then normalized to total probabilities (ρ). The main idea is123

as follows. If G is close to 1, indicating the input, X, is highly similar to at least one stored input, Y,124

then we want to cause the units of φ(Y ) to be highly favored to win again in their respective CMs.125

Thus, we put the U values through a nonlinear transform that amplifies the differences between high126

and low U values. On the other hand, if G is near 0, indicating X is not similiar to any previously127

stored input, then we want to diminish the differences between high and low U values, i.e., squash128

them together. Thus, we set the numerator, η, in Equation 6, to low value, which flattens the resulting129

ρ distribution. When G=0, η = 0, and all units in the CM are equally likely to win. In work thus far,130

the U -to-µ transform (Step 6) has been modeled as sigmoidal. The motivation is that this will better131

model the phenomenon of categorical perception. However, a wider range of functions, including132

purely linear, would yield similarity preservation and should be investigated in future research.133

Crucially, the learning algorithm has a fixed number of steps. That is, it iterates only over quantities134

that are fixed for the life of the model, i.e., the units and the weights, with only a single iteration135

occurring in any of the steps that involve iteration. In particular, there is no explicit iteration over136

stored inputs. This is an associative memory model, in a similar spirit to those of [28, 12], but with137

the added simple mechanism for statistically ensuring more similar inputs are assigned to more highly138

intersecting MSDCs.139
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Figure 4: Simple version of the learning algorithm sketched in Figs. 2 and 3.

3 Discussion140

The work described herein has several novel components: 1) the modularity of sparse coding field;141

2) the efficient means of computing familiarity (G); and 3) the normative use of noise to efficiently142

achieve approximate similarity preservation. Regarding (1), there is substantial evidence for the143

existence of mesoscale, i.e., macrocolumnar, coding fields in cortex, but we are as yet, a long way144

from definitively observing the formation (during learning) and reactivation/deactivation (during145

cognition/inference) of cell assemblies in such coding fields. Given that the model does learning146

and best-match retrieval, it can be viewed as accomplishing a form of locality sensitive hashing147

(LSH) [10], in fact, adaptive LSH (reviewed in [27]). Interestingly, recent work has proposed that148

the fly olfactory system performs a form of LSH [5, 6], and in fact, includes a novelty (i.e., inverse149

familiarity) computation, putatively performed by a mushroom body output neuron, that is quite150

similar to our model’s G computation. However, the Dasgupta et al model is not adaptive and thus,151

does not use novelty to influence the learning process. Finally, I emphasize the importance of the152

normative view of noise in our model. There has been much discussion of the nature, causes, and153

uses, of correlations and noise in cortical activity; see ([3, 13, 25]) for reviews. Most investigations154

of neural correlation and noise, especially in the context of probabilistic population coding models155

[30, 18, 8], assume a priori: a) fundamentally noisy neurons, and b) tuning functions (TFs) of some156

general form, e.g., unimodal, bell-shaped, and then describe how noise/correlation affects the coding157

accuracy of populations of cells having such TFs ([1, 15, 7, 24]). Specifically, these treatments158

measure correlation in terms of either mean spiking rates (“signal correlation”) or spikes themselves159

(“noise correlations”). However, as noted above, our model makes neither assumption. Rather, in our160

model, noise (randomness) is actively injected—implemented via the G-dependent modulation of161

the neuronal transfer function—during learning to achieve the goal of similarity preservation. Thus,162

the pattern of correlations amongst units (neurons) simply emerges as a side effect of cells being163

selected to participate in MSDCs. How such a familiarity-contingent noise functionality might be164

implemented neurally remains an open question. It is most likely subserved by one or more of the165

brain’s neuromodulatory systems, e.g., NE, ACh, and some preliminary ideas were sketched in [21].166
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4 Appendix231

In this appendix, I present results of a small-scale simulation demonstrating approximate similarity232

preservation for spatial inputs. In these experiments, the model has a 12x12 binary pixel input level233

(i.e., receptive field, RF) that is fully connected to the CF, which consists of Q=24 WTA competitive234

modules (CMs), each comprised of K=8 binary units. Fig. 5a shows six inputs, I1 to I6, all with235

the same number of active pixels, S=12, which have been previously stored in the model instance236

depicted in Fig. 3b. For simplicity of exposition, these six inputs have zero pixel-wise overlap with237

each other. The second row of Fig. 3a shows a novel test stimulus, I7, also with S=12 active pixels,238

which has been designed to have progressively smaller pixel overlaps with and its varying overlaps239

(yellow pixels) from I1 to I6. Given that all inputs are constrained to have exactly 12 active pixels,240

we can measure input similarity simply as size of pixel intersection divided by 12 (shown as decimals241

under inputs), e.g., sim(Ix, Iy) = |Ix ∩ Iy|/12.242

Fig. 5b shows the code, φ(I7), activated in response to I7, which by construction is most similar to243

I1. Black coding cells are cells that also won for I1, red indicates active cells that did not win for244

I1, and green indicates inactive cells that did win for I1. The red and green cells in a given CM can245

be viewed as a substitution errors. The intention of the red color for coding cells is that if this is a246

retrieval trial in which the model is being asked to return the closest matching stored input, I1, then247

the red cells can be considered errors. Note however that these are sub-symbolic scale errors, not248

errors at the scale of whole inputs (hypotheses, symbols), as whole inputs are collectively represented249

by the entire SDR code (i.e., be an entire “cell assembly”). In this example appropriate threshold250

settings in downstream/decoding units, would allow the model as a whole return the correct answer251

given that 18 out of 24 cells of ’s code, φ(I1), are activated, similar to thresholding schemes in other252

associative memory models (Marr 1969, Willshaw, Buneman et al. 1969). Note however that if this253

was a learning trial, then the red cells would not be considered errors: this would simply be a new254

code, φ(I7), being assigned to represent a novel input, I7, and in a way that respects similarity in the255

input space.256

Fig. 5d shows the main message of the figure, and of the paper. The active fractions of the codes,257

φ(I1) to φ(I6), representing the six stored inputs, I1 to I6, are highly rank-correlated with the258

pixel-wise similarities of these inputs to I7. Thus, the blue bar in Fig. 5d represents the fact that259

the code, φ(I1), for the best matching stored input, I1, has the highest active code fraction, 75% (18260

out 24, the black cells in Fig. 5b) of the cells of φ(I1) are active in φ(I7). The cyan bar for the next261

closest matching stored input, I2, indicates that 12 out of 24 of the cells of φ(I2) (code note shown)262
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are active in φ(I7). In general, many of these 12 may be common to the 18 cells in {φ(I7) ∩ φ(I1)}.263

And so on for the other stored hypotheses. The actual codes, φ(I1) to φ(I6), are not shown; only the264

intersection sizes with φ(I7) matter and those are indicated along right margin of chart in Fig. 3d.265

We note that even the code for I6, which has zero intersection with I7 has two cells in common with266

φ(I7). In general, the expected code intersection for the zero input intersection condition is not zero,267

but chance, since in that case, the winners are chosen from the uniform distribution in each CM: thus,268

the expected intersection in that case is just Q/K.269

As noted earlier, we assume that the similarity of a stored input, IY , to the current input, IX , can be270

taken as a measure of IX ’s probability/likelihood. And, since all codes are of size Q, we can divide271

code intersection size by Q, yielding a normalized likelihood, e.g., L(I1) = |φ(I1) ∩ φ(Iy)|/Q, as272

suggested in Fig. 5d. We also assume that I1 to I6 each occurred exactly once during training and273

thus, that the prior over hypotheses is flat. In this case the posterior and likelihood are proportional to274

each other, thus, the likelihoods in Fig. 5d can also be viewed as unnormalized posterior probabilities275

of the hypotheses corresponding to the six stored codes.276

We acknowledge that the likelihoods in Fig. 5d may seem high. After all, I7 has less than half its277

pixels in common with I1, etc. Given these particular input patters, is it really reasonable to consider278

I1 to have such high likelihood? Bear in mind that our example assumes that the only experience this279

model has of the world are single instances of the six inputs shown. We assume no prior knowledge of280

any underlying statistical structure generating the inputs. Thus, it is really only the relative values that281

matter and we could pick other parameters, notably in CSA Steps 5 and 6 of the learning algorithm,282

which would result in a much less expansive sigmoid nonlinearity, which would result in lower283

expected intersections of φ(I7) with the learned codes, and thus lower likelihoods. The main point is284

simply that the expected code intersections correlate with input similarity, and thus, with likelihood.285

Fig. 5c shows the second key message: the likelihood-correlated pattern of activation levels of the286

codes (hypotheses) apparent in Fig. 5d is achieved via independent soft max choices in each of the Q287

CMs. Fig. 5c shows, for all 196 units in the CF, the traces of the relevant variables used to determine288

φ(I7). As for Fig. 3, the raw input summation from active pixels is indicated in the u charts. Note289

that while all weights are effectively binary, “1” is represented with 127 and “0” with 0. Hence, the290

maximum u value possible in any cell when I7 is presented is 12x127=1524. The normalized input291

summations are given in the U charts. As stated in Fig. 4, a cell’s U value represents the total local292

evidence that it should be activated. However, rather than simply picking the max U cell in each CM293

as winner (i.e., hard max), which would amount to executing only steps 1-3 of the learning algorithm,294

the remaining CSA steps, 4-8, are executed, in which the U distributions are transformed as described295

in Fig. 4 and winners are chosen via soft max in each CM. The final winner choices, chosen from296

the ρ distributions are shown in the row of triangles just below CM indexes. Thus, an extremely297

cheap-to-compute (ie., Step 4) global function of the whole CF, G, is used to influence the local298

decision process in each CM. We repeat for emphasis that no part of the algorithm explicitly operates299

on, i.e., iterates over, stored hypotheses; indeed, there are no explicit (localist) representations of300

stored hypotheses on which to operate; all items are stored in sparse superposition.301

Fig. 6 shows that different inputs yield different likelihood distributions that correlate approximately302

with similarity. Input I8 (Fig. 6a) has highest intersection with I2 and a different pattern of303

intersections with the other learned inputs as well (refer to Fig. 5a). Fig. 6c shows that the codes304

of the stored inputs become active in approximate proportion to their similarities with I8, i.e., their305

likelihoods are simultaneously physically represented by the fractions of their codes which are active.306

The G value in this case, 0.65, yields, via steps 5 and 6, the U -to-µ transform shown in Fig. 6b,307

which is applied in all CMs. Its range is [1,300] and given the particular U distributions shown in308

Fig. 6d, the cell with the max U in each CM ends up being greatly favored over other lower-U cells.309

The red box shows the U distribution for CM 9. The second row of the abscissa in Fig. 6b gives the310

within-CM indexes of the cells having the corresponding (red) values immediately above (shown for311

only four cells). Thus, cell 3 has U=0.74 which maps to approximately µ =250 whereas its closest312

competitors, cells 4 and 6 (gray bars in red box) have U=0.19 which maps to µ =1. Similar statistical313

conditions exist in most of the other CMs. However, in three of them, CMs 0, 10, and 14, there are314

two cells tied for max U . In two, CMs 10 and 14, the cell that is not contained in I2‘s code, φ(I2),315

wins (red triangle and bars), and in CM 0, the cell that is in φ(I2) does win (black triangle and bars).316

Overall, presentation of I8 activates a code φ(I8) that has 21 out of 24 cells in common with φ(I2)317

manifesting the high likelihood estimate for I2.318
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Figure 5: In response to an input, the codes for learned (stored) inputs, i.e., hypotheses, are activated
with strength that is correlated with the similarity (pixel overlap) of the current input and the learned
input. Test input I7 is most similar to learned input I1, shown by the intersections (red pixels) in panel
a. Thus, the code with the largest fraction of active cells is φ(I1) (18/24=75%) (blue bar in panel d).
The other codes are active in rough proportion to the similarities of I7 and their associated inputs
(cyan bars). (c) Raw (u) and normalized (U ) input summations to all cells in all CMs. The U values
are transformed to unnormalized win probabilities (µ) in each CM via a sigmoid transform whose
properties, e.g., max value of 255.13, depend onG and other parameters. The µ values are normalized
to true probabilities (ρ) and one winner is chosen in each CM (indicated in row of triangles: black:
winner for I7 that also won for I1; red: winner for I7 that did not win I1: green: winner for I1 that
did not win for I7. (e, f) Details for CMs, 7 and 15. Values in second row of U axis are indexes
of cells having the U values above them. Some CMs have a single cell with much higher U and
ultimately ρ value than the rest (e.g., CM 15), some others have two cells that are tied for the max
(e.g., CMs 3, 19, 22).
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Figure 6: Details of presenting two further novel inputs, (panels a-d) and (panels e-h). In both cases,
the resulting likelihood distributions correlate closely with the input overlap patterns. Panels b and f
show details of one example CM (indicated by red boxes in panels d and h) for each input

.

To finish our demonstration of approximate similarity preservation, Fig. 6e shows presentation of319

another input, I9, having half its pixels in common with I3 and the other half with I6. Fig. 6g shows320

that the codes for I3 andI6 have both become approximately equally (with some statistical variance)321

active and are both more active than any of the other codes. Thus, the model is representing that these322

two hypotheses (stored items) are the most likely and approximately equally likely. The exact bar323

heights fluctuate somewhat across repeated trials, e.g., sometimes I3 has higher likelihood than I6,324

but the general shape of the distribution is preserved. The fact that one of the two bars is blue, the325

other cyan, just reflects the approximate nature of the retrieval process. The remaining hypotheses’326

likelihoods also approximately correlate with their pixelwise intersections with I9. The qualitative327

difference between presenting I8 and I9 is readily seen by comparing the U rows of Fig. 6d and 6h328

and seeing that for the latter, a tied max U condition exists in almost all the CMs, reflecting the equal329

similarity of I9 with I3 and I6. In approximately half of these CMs, the cell that wins intersects with330

φ(I3) and in the other half, the winner intersects with φ(I6). In Fig. 6h, the three CMs in which there331

is a single black bar, CMs 1, 7, and 12, indicates that the codes, φ(I3) and φ(I6), intersect in those332

CMs.333
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