R4: NESTED REASONING-RETRIEVAL FOR REWARD MODELING IN ROLE-PLAYING AGENTS

Anonymous authors

000

001

002003004

006

008 009

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

031

033

034

037

038

040

041 042

043

044

046 047

048

051

052

Paper under double-blind review

ABSTRACT

Role-playing dialogue presents unique challenges for large language models (LLMs): beyond producing coherent text, models must sustain character persona, integrate contextual knowledge, and convey emotional nuance. Despite strong reasoning abilities, current LLMs often generate dialogue that is literal, stylistically bland, and misaligned with character-specific traits. Existing approaches such as retrieval-augmented generation (RAG) or reinforcement learning (RL) with scalar rewards are insufficient, as they cannot capture nuanced preferences or adapt reliably to diverse character contexts. In this work, we introduce R4, a unified framework that equips both the reward model and the role-playing agent with reasoning and retrieval capabilities. Our reward model reformulates evaluation as structured reasoning: it integrates multi-step deliberation and retrieved knowledge to assess responses along multiple dimensions. This reward supervision is then used within reinforcement learning to train a dialogue agent with the same dual capabilities, enabling contextually grounded and persona-consistent generation. Experiments demonstrate that R4 substantially improves dialogue quality, particularly in persona fidelity, narrative coherence, and emotional expressiveness. Analysis of training dynamics and case studies further shows that R4 agents employ retrieval more effectively, engage in retrieval-informed self-reflection, and achieve emergent role-playing behaviors unattainable by prior methods.

1 Introduction

Large language models (LLMs), such as DeepSeek-R1 (DeepSeek-AI et al., 2025) and OpenAI's o series (OpenAI, 2024), have demonstrated remarkable reasoning capabilities across diverse tasks, including multi-hop question answering, code generation, and mathematical problem-solving. However, this reasoning prowess does not readily translate to open-domain dialogue, particularly in role-playing scenarios that require embodying established characters from rich narrative sources like novels. In this context, success is not defined by factual accuracy alone, but by a nuanced fusion of character coherence, factual consistency, and emotional engagement (Feng et al., 2025). Responses generated by reasoning models are often overly literal, stylistically flat, and insufficiently grounded in the speaker's persona, undermining the potential for immersive interaction.

The challenge lies in a fundamental misalignment between the objectives of conventional LLMs and the demands of authentic role-playing. Specifically: (1) reasoning-oriented models favors correctness, which leads to formulaic and rigid dialogue, sacrificing the expressiveness vital for role-playing, and (2) the absence of role-specific knowledge—such as backstory, relationships, and evolving motivations—undermines narrative continuity and realism.

Retrieval Augmented Generation (RAG) has emerged as a promising approach for incorporating external knowledge into LLM outputs. While beneficial in knowledge-centric tasks, standard one-shot RAG approaches prove inadequate for role-playing dialogue due to static query formulation and inability to adapt to evolving conversational contexts. Advanced retrieval systems, such as DeepResearcher (Zheng et al., 2025) and WebThinker (Li et al., 2025b), offer more sophisticated retrieval dynamics but rely heavily on handcrafted prompts and rule-based orchestration, making them brittle and computationally expensive. Recent iterative search frameworks like ReSearch (Chen et al., 2025a) and Search-R1 (Jin et al., 2025) integrate retrieval more seamlessly through reinforcement

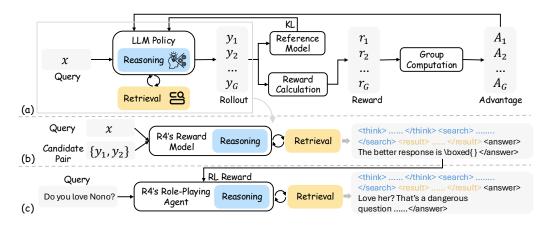


Figure 1: Architecture of R4 framework. (a) Training pipeline. (b-c) Reward model performs structured reasoning over response pairs and assigns comparative rewards to guide advantage estimation and policy updates. Both the agent and reward model integrate reasoning and retrieval throughout.

learning, yet still underperform in role-playing contexts where success depends not only on factual grounding but also on persona alignment and emotional authenticity.

A key challenge in applying reinforcement learning to role-playing dialogue is constructing reliable, multi-dimensional reward signals that capture the subjective and multifaceted nature of character portrayal. Unlike structured tasks such as code generation or mathematical reasoning—where correctness is objectively measurable—role playing dialogue quality encompasses persona consistency, emotional appropriateness, narrative coherence, and stylistic authenticity. As noted by (Tu et al., 2024), evaluating candidate responses requires interpreting user intent, identifying appropriate evaluation criteria, and reasoning over implicit character motivations and narrative cues. This complexity necessitates reward models capable of structured reasoning grounded in character-specific knowledge.

However, current reward modeling approaches fall short. Our systematic analysis across diverse characters and evaluation contexts reveals two fundamental biases: (1) **role bias**: evaluation consistency varies dramatically based on character familiarity, with well-known characters receiving more stable assessments while lesser-known characters suffer from inconsistent scoring; and (2) **reference bias**: the availability of character-specific contextual information significantly impacts evaluation quality, with models producing more accurate and consistent judgments when provided with relevant background knowledge. These findings reveal a critical gap: existing reward models evaluate responses in isolation, without the contextual reasoning and character-specific grounding essential for reliable supervision in role-playing scenarios. Consequently, reward models, like dialogue agents themselves, need to integrate reasoning and retrieval to generate credible supervision signals.

To address these challenges, we propose $\mathbf{R4}$, a unified framework that endows both the $\underline{\mathbf{R}}$ eward model and the $\underline{\mathbf{R}}$ ole-playing dialogue agent with the ability to $\underline{\mathbf{R}}$ eason and $\underline{\mathbf{R}}$ etrieve. Our approach consists of three core components: (1) a **character-specific knowledge construction** pipeline that systematically extracts and organizes persona-relevant information from narrative sources, particularly focusing on literary characters from novels; (2) a **reasoning-augmented reward model** that performs structured multi-dimensional evaluation through reasoning chains grounded in retrieved character context; and (3) a **role-playing agent** that integrates the same dual capabilities to generate contextually appropriate and character-consistent responses. The main contributions of this work are:

- We reformulate reward modeling as a structured reasoning task, introducing a novel reward model
 architecture that integrates multi-dimensional evaluation through reasoning chains and retrieved
 knowledge, systematically addressing role bias and reference bias in existing approaches.
- We propose an end-to-end training framework that unifies reasoning and retrieval across reward
 modeling and response generation, enabling more reliable supervision and higher-quality dialogue
 tailored to literary character role-playing.
- We show across model scales that our approach consistently enhances character fidelity, emotional
 expressiveness, and overall dialogue quality over existing methods.

2 METHODOLOGY: R4

Existing methods often treat reward modeling and response generation as disjoint components, limiting their ability to reason contextually and adapt to character-specific knowledge. In contrast, our proposed R4 framework tightly integrates reasoning and retrieval mechanisms across both the reward model and the dialogue agent. In what follows, we describe the full design of R4.

2.1 Character-Specific Knowledge Construction

To enable effective retrieval-augmented reasoning for role-playing dialogue, we develop a comprehensive knowledge construction pipeline that systematically extracts, organizes, and maintains character-specific contextual information from narrative sources. This knowledge repository serves as foundational external memory accessed by both reward model and dialogue agent throughout training and inference, ensuring consistent character grounding across all system components.

Narrative Segmentation and Analysis. Our pipeline begins by processing narrative texts through an LLM-based segmentation strategy that partitions content into semantically coherent and plot-relevant units, inspired by (Duarte et al., 2024). For each identified segment, we employ structured prompting to generate comprehensive character-centric representations that capture multiple dimensions of character information: (1) **persona traits** including personality characteristics, behavioral patterns, and distinctive mannerisms; (2) **emotional states** reflecting both explicit emotional expressions and latent psychological conditions; (3) **contextual knowledge** encompassing character backgrounds, relationships, and domain-specific expertise; and (4) **narrative goals** representing both short-term objectives and long-term character arcs within the story context.

Knowledge Organization and Indexing. The extracted character information is structured into a hierarchical knowledge organization that supports efficient retrieval during reasoning processes. Each knowledge entry is associated with multiple indexing keys, including character identifiers, emotional contexts, relationship dynamics, and narrative situations. This multi-faceted indexing enables precise retrieval of relevant information based on conversational context and character interaction patterns. Additionally, we implement semantic clustering to group related knowledge entries, facilitating multi-hop reasoning scenarios where the model needs to connect disparate pieces of character information.

Dynamic Knowledge Expansion and Validation. To enhance coverage and adapt to behaviors observed during model training, we implement a dynamic expansion mechanism that continuously enriches the knowledge base. During both reward model and dialogue agent training, we collect retrieval queries generated by the models and use them to identify knowledge gaps. These queries are then processed through automated synthesis using advanced language models (e.g., GPT-4o) and human-authored annotations for critical aspects requiring nuanced understanding. To ensure reliability, we employ automated consistency checks and periodic expert reviews to maintain knowledge quality and coherence across different narrative contexts.

Implementation details are provided in Appendix B. This character-specific knowledge construction pipeline forms the backbone of the R4 framework, providing both the reward model and dialogue agent with access to rich, contextually relevant information necessary for generating authentic and engaging role-playing interactions.

2.2 REWARD MODEL

We now introduce the reasoning- and retrieval-augmented reward model in R4, designed to address fundamental limitations in conventional reward modeling approaches for role-playing dialogue.

Biases in Existing Reward Models. Current reward modeling approaches fall into two main paradigms. **Scalar-based reward models** (ScalarRM) (Liu et al., 2024a) formulate evaluation as binary or ordinal classification tasks, offering computational efficiency but providing opaque reward signals with no interpretable reasoning process. **Generative-based reward models** (GenRM) (Zhang et al., 2025) leverage the full language modeling capacity to produce free-form explanations or preference judgments, enabling more flexible feedback but often lacking grounding in external context and struggling with consistency in subjective domains like character dialogue. To understand

the limitations in role-playing contexts, we conduct systematic analysis of representative approaches from both paradigms: CharacterRM (Tu et al., 2024) as a scalar-based method and instruction-following models as generative-based approaches (detailed in Appendix C). Our analysis reveals two critical biases that compromise supervision reliability in role-playing tasks (Figure 2).

- Role Bias. Evaluation reliability is highly sensitive to character familiarity. As shown in Figure 2(a), main characters achieve both higher human consistency scores (e.g., 0.87 vs. 0.61 under CharacterRM) and markedly lower stability variance (2.1 vs. 14.0) compared to minor characters. This indicates that reward models benefit from abundant pretraining priors when judging well-known or prototypical roles, producing more confident and human-aligned evaluations. In contrast, lesser-known characters lack such priors, leading to unstable assessments where identical responses may receive conflicting scores, with evaluators often misattributing intentions or emotional tone. This instability undermines the reliability of reward signals and systematically disadvantages characters outside the model's training distribution.
- Reference Bias. Evaluation outcomes are disproportionately shaped by the presence of explicit reference material. As shown in Figure 2(b), providing character-specific grounding (e.g., persona descriptions, narrative summaries, role guidelines) yields consistently higher human consistency scores (0.79 vs. 0.70 under CharacterRM; 0.59 vs. 0.40 under Reasoning) and significantly lower stability variance (4.1–5.7 vs. up to 16.9). With such scaffolding, evaluators anchor judgments in concrete context, improving alignment with human expectations. Without reference, however, reward models frequently hallucinate motivations, overlook subtle traits, or fall back on generic heuristics, leading to inconsistency and drift. This dependency highlights a critical limitation: conventional reward paradigms fail to robustly internalize character identity, rendering supervision brittle in open-ended or reference-scarce scenarios.

These observations reveal that existing reward models evaluate responses in isolation, without contextual reasoning over character intent or narrative background. Consequently, they fail to capture the multi-dimensional criteria essential for role-playing dialogue, including persona fidelity, emotional appropriateness, and narrative coherence.

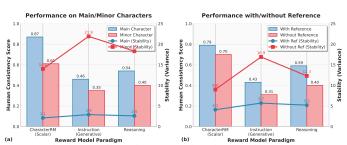


Figure 2: Biases in conventional reward models.

Reward Modeling as Structured Reasoning. To address these limitations, we reformulate reward modeling as a reasoning task that integrates multi-step deliberation with character-specific knowledge retrieval. Given a dialogue prompt and two candidate responses, our reward model must not only determine preference but also generate a structured reasoning chain that systematically evaluates responses across multiple quality dimensions. The model accesses retrieved character-specific information from our character-specific knowledge base, enabling deliberative, context-aware comparison analogous to human annotators reasoning over character intent and emotional appropriateness. Moreover, rather than relying on holistic impressions, we guide the model to consider specific aspects of role-playing dialogue quality, including conversational competence (fluency, coherence, consistency), character alignment (knowledge exposure, knowledge accuracy, hallucination, persona fidelity), and expressive quality (emotional authenticity, engagement, stylistic diversity). This systematic consideration ensures comprehensive evaluation while maintaining the flexibility of reasoning-based approaches. The model conducts multi-turn reasoning, retrieving relevant character knowledge as needed, and synthesizes evidence across dimensions to reach well-grounded preference decisions.

Training Objective and Reward Function. Inspired by recent advances in reasoning model training (DeepSeek-AI et al., 2025), we apply reinforcement learning to directly optimize the reward model for high-quality comparative analysis, without requiring supervised reasoning traces. We guide learning through a rule-based reward function that integrates three complementary components:

• **Format Reward**. Ensures adherence to structured reasoning format, validating proper use of reasoning tags, retrieval operations, and conclusive preference statements.

- **Answer Reward**. Measures the correctness of predicted preference against ground-truth label using accuracy.
- Consistency Reward. Encourages alignment between reasoning and final decisions. Without such supervision, models may produce conclusions inconsistent with their reasoning chains. We train an auxiliary verifier to evaluate reasoning-decision alignment, ensuring that preference choices are well-supported by generated analysis.

While consistency is valuable, integrating it as an independent additive reward introduces a new risk: responses with incorrect answers but strong internal consistency may still receive high total reward. To prevent over-emphasis on consistency, we apply a gated multiplicative formulation where consistency only enhances reward for correct answers:

$$r_{\rm rm} = r_{\rm ans} + \lambda_{\rm fmt_1} r_{\rm fmt} + \lambda_{\rm cons} (r_{\rm ans} \cdot r_{\rm cons}) - \mu (1 - r_{\rm ans}) \tag{1}$$

where $r_{\rm ans} \in \{0,1\}$ denotes answer accuracy, $r_{\rm fmt} \in \{0,1\}$ format compliance (single boxed conclusion with required tags), and $r_{\rm cons} \in [0,1]$ the consistency score from an auxiliary verifier. We set $\lambda_{\rm fmt_1} = \lambda_{\rm cons} = 0.1$, and apply a mild penalty $\mu = 0.05$ when the answer is incorrect..

Training with GRPO. We adopt the Guided Reward Policy Optimization (GRPO) framework (Shao et al., 2024) to train the reward model, combining hard preference labels with soft supervision from auxiliary reward components. Given an old policy $\pi_{\theta_{\text{old}}}$ and a reference policy $\pi_{\theta_{\text{ref}}}$, GRPO optimizes policy π_{θ} using groups of G rollouts $\{y_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|x)$ for each input $x \sim \mathcal{D}$ by maximizing:

$$\mathcal{J}(\theta) = \frac{1}{G} \sum_{i=1}^{G} \left[\min \left(\rho_i A_i, \operatorname{clip}(\rho_i, 1 - \epsilon, 1 + \epsilon) A_i \right) - \beta \, \mathbb{D}_{KL}(\pi_\theta \parallel \pi_{\theta_{ref}}) \right] \tag{2}$$

where $\rho_i = \frac{\pi_\theta(y_i|x)}{\pi_{\theta_{\text{old}}}(y_i|x)}$ and $A_i = \frac{r_i - \mu_r}{\sigma_r}$ represents normalized advantages, with μ_r , σ_r the mean and standard deviation of $\{r_j\}_{j=1}^G$. The KL penalty \mathbb{D}_{KL} controls deviation from the reference model. To support retrieval-augmented reasoning, we extend the rollout format to include explicit search operations. During generation, the model issues search queries between <search> and </search> tags, with retrieved content inserted between <result> and </result> tags, enabling dynamic knowledge access throughout the reasoning process. Since retrieval results are externally generated, we mask them during gradient computation, ensuring unbiased credit assignment and preventing overfitting to retrieved content.

Training Data Construction. We construct a comprehensive reward training dataset that supports reasoning-based evaluation across diverse role-playing scenarios. Our dataset combines multiple sources to ensure broad coverage of character types, dialogue contexts, and evaluation challenges:

- Model-generated data (10K): We sample prompts from ChatHaruhi (Li et al., 2023) and collect responses from 12 diverse dialogue models, including Qwen2.5 series, LLaMA3 series, GPT-40, and CharacterGLM-6B (Zhou et al., 2024a). For each prompt, we randomly pair response and determine preference through committee voting using GPT-40, Qwen2.5-72B-Instruct, and CharacterRM. Response pairs with low inter-model agreement are submitted for human annotation to ensure reliability.
- Filtered public data (4K): We augment the dataset with carefully filtered samples from CharacterEval (Tu et al., 2024), retaining only examples with well-defined prompts and reliable preference annotations matching our reasoning-based evaluation framework.
- Human-annotated data (2K). We manually annotate challenging response pairs exhibiting persona misalignment, knowledge hallucination, and emotional inconsistency, with 1K samples for training and 1K reserved for evaluation. These examples particularly benefit from reasoning-based analysis, as they require nuanced understanding of character context and narrative coherence.

To mitigate role bias, we ensure balanced character representation across the dataset, covering both well-known and lesser-known characters from diverse narrative sources. This yields a comprehensive corpus of 15K preference-labeled instances that challenges the reward model to develop robust reasoning capabilities across varied role-playing contexts. On the held-out evaluation set (1K), our trained reward model achieves 87% agreement with human preferences, demonstrating reliable capture of nuanced judgments through structured reasoning processes.

2.3 ROLE-PLAYING AGENT

A central challenge in developing role-playing dialogue agents lies in acquiring high-quality supervision that captures the nuanced requirements of character portrayal. Traditional approaches rely on manually curated dialogue datasets reflecting consistent character behavior, but constructing such supervised data is labor-intensive and difficult to scale across diverse literary characters with complex narrative contexts.

Reinforcement Learning Framework. We adopt a reinforcement learning paradigm that circumvents the need for supervised dialogue pairs by leveraging our reasoning-augmented reward model. Instead of learning from fixed examples, the agent receives preference-based feedback reflecting character alignment, narrative coherence, and emotional authenticity. This approach requires only character profiles and user queries, allowing the model to explore response strategies while developing the same reasoning and retrieval capabilities embedded in the reward model.

Reward and Training. We adapt the trained pairwise reward model to GRPO training through a scoring transformation that preserves reasoning-based evaluation quality. For each prompt, we sample candidate responses $y_1, ..., y_G$ and compute pairwise comparisons using the reward model's structured reasoning. Each response receives a relative preference score:

$$r_{\text{prefer}_i} = \frac{1}{G - 1} \sum_{j \neq i} \mathbb{I} \left[\text{RM}(x, y_i, y_j) = y_i \right]$$
(3)

where $RM(x, y_i, y_j)$ denotes the reward model's preferred response for prompt x between y_i and y_j . These scores are then normalized to obtain advantages used in the GRPO objective. The final reward for response y_i combines preference scores with format compliance ($\lambda_{fmt_2} = 0.1$):

$$r_{\text{agent}} = r_{\text{prefer}} + \lambda_{\text{fmt}_2} \cdot r_{\text{fmt}} \tag{4}$$

Throughout training, the role-playing agent has access to the same knowledge base as the reward model and is explicitly guided to reason over this context during response generation. The agent learns to formulate contextual queries, retrieve relevant character information, and integrate knowledge through multi-step reasoning processes. This creates a mutually reinforcing dynamic where improved reasoning enhances retrieval effectiveness, and better retrieval enables more sophisticated character understanding. As training progresses, the agent develops increasingly sophisticated reasoning patterns, conducting multi-hop reasoning across character traits, emotional states, and narrative contexts. The model learns to engage in self-reflective reasoning, adjusting response strategies based on retrieved information in ways that mirror authentic character portrayal processes.

Training Data Construction. We construct a diverse prompt collection spanning multiple character types and interaction scenarios. Our dataset includes 10K high-quality queries from five novels covering 20 distinct characters in ChatHaruhi and CharacterEval, with balanced representation across character archetypes. Additionally, we manually construct 1K focused prompts targeting three *Dragon Raja* characters to capture nuanced emotional dynamics and complex narrative situations requiring deep character understanding.

3 Experiments

Datasets & Evaluation Metrics. We conduct end-to-end evaluation of the final role-playing agent using CharacterEval (Tu et al., 2024) across 12 metrics in three categories: (1) **Conversational Ability** evaluates general dialogue competence through three core metrics: *Fluency (Flu.)* measures grammatical correctness and natural language flow; *Coherency (Coh.)* assesses topical relevance and logical connection to user prompts; and *Consistency (Cons.)* evaluates internal logical coherence across dialogue turns. (2) **Character Consistency** measures alignment with character identity across two complementary levels. Knowledge-based metrics include *Knowledge Exposure (KE)*, assessing appropriate demonstration of character-relevant information; *Knowledge Accuracy (KA)*, measuring factual alignment with the character backgrounds; and *Knowledge Hallucination (KH)*, evaluating the model's ability to avoid fabricating contradictory information. The persona-based metrics comprise

Persona Behavior (PB), capturing alignment in actions, decision-making patterns, and behavioral consistency; and Persona Utterance (PU), assessing stylistic consistency in speech patterns and linguistic mannerisms. (3) Role-Playing Attractiveness reflects the expressive and emotional qualities essential for engaging character interactions, including Human-Likeness (HL), measuring natural and believable character portrayal; Communication Skills (CS), assessing interactive engagement and social competence; Expression Diversity (ED), evaluating varied and dynamic communication styles; and Empathy (Emp.), measuring appropriate emotional responses and empathetic engagement with users. To capture nuanced quality differences, we scale all ratings from the original 5-point scale to a 100-point scale, enabling more precise performance differentiation across models.

Base LLMs & Baseline Methods. We compare R4 with three groups of baselines to ensure thorough evaluation: (1) Instruction models: representing general-purpose conversational AI, including GPT-4 Turbo, Llama-3.1/3.3 series, and Qwen2.5 series. (2) Reasoning models: optimized for multi-step reasoning and complex problem-solving, including OpenAI o1-mini, QwQ-32B-Preview, DeepSeek-R1, and DeepSeek-R1-Distill variants across different model scales (Llama-8B/70B, Qwen-7B/32B). These models test whether general reasoning capabilities translate effectively to role-playing scenarios. (3) Specialized role-playing models: trained specifically on character-focused dialogue data, including CharacterGLM-6B, Xingchen¹, MiniMax, and BC-NPC-Turbo (Tu et al., 2024). These models represent current best practices in dedicated role-playing system development. These baselines establish performance expectations for general-purpose LLMs in role-playing contexts. To ensure fair comparison, all baseline models are built on the same RAG infrastructure, retrieving from an identical curated, character-specific knowledge base with consistent prompts, retrieval policies, and top-k settings.

Implementation Details. For the knowledge generation pipeline, we use gpt-4o-2024-05-13 to perform all related steps, including narrative segmentation based on plot structure and the generation of character-specific knowledge such as persona attributes, internal states, and inferred goals. The reward model is built upon Qwen2.5-32B-Instruct and trained for 2 epochs on our constructed dataset. Similarly, the role-playing agents is based on Qwen2.5-7B/32B-Instruct and also trained for 2 epochs. We initialize from instruction-tuned models rather than base models to ensure more stable reinforcement learning and better final performance—consistent with findings reported in prior work such as ReSearch. The reinforcement learning framework is implemented using Verl Sheng et al. (2025) and ReSearch Chen et al. (2025a). Both the reward model and the role-playing agent share the same retrieval backend. We use multilingual-e5-large Wang et al. (2024a) as the retriever, with indexing and embedding handled by FlashRAG Jin et al. (2024a). Both models query the top-3 retrieved documents per prompt during training and inference. For baseline models comparisons, we directly adopt the implementations and services provided by FlashRAG. All training experiments are conducted on 64 NVIDIA H100 GPUs. Additional training configurations and hyperparameters are provided in Appendix D.

3.1 MAIN RESULTS

Table 1 presents comprehensive performance comparisons between R4 and all baseline models.

Effectiveness of R4. On character consistency metrics, R4-32B-Instruct achieves the highest overall performance (64.64 average), significantly outperforming the best baseline (BC-NPC-Turbo at 55.28). Notable improvements include Knowledge Accuracy (+9.52 over the best baseline), Knowledge Hallucination (+2.34), and particularly striking gains in Persona Behavior (+9.8), demonstrating the framework's superior ability to align responses with character-specific behavioral patterns. These substantial improvements validate the effectiveness of reasoning-augmented reward modeling in capturing both factual accuracy and nuanced character portrayal requirements. In conversational ability, R4 models achieve competitive performance with the strongest baselines while maintaining high scores across all dimensions. R4-32B-Instruct matches or exceeds top performers in Coherency (82.30 vs. 78.64 for MiniMax) and Consistency (80.30 vs. 78.32 for BC-NPC-Turbo), while maintaining high Fluency scores (74.10). This demonstrates that reasoning-augmented training enhances character-specific capabilities without compromising fundamental conversational competence. Most remarkably, R4 shows exceptional performance in role-playing attractiveness, where R4-32B-Instruct

¹https://xingchen.aliyun.com/xingchen

Table 1: Detailed evaluation results. The best performances are highlighted in **bold**.

Model	Conversational Ability			Character Consistency				Role-playing Attractiveness							
	Flu.↑	Coh.↑	Cons.↑	Avg.↑	KE↑	KA↑	KH↑	PB↑	PU↑	Avg.↑	HL↑	CS↑	ED↑	Emp.↑	Avg.↑
Instruct Model															
GPT-4 Turbo	60.60	65.80	58.00	61.47	38.20	58.40	51.00	27.80	49.60	45.00	55.60	53.60	27.20	58.80	48.80
Llama-3.1-8B-Instruct	65.60	71.00	66.20	67.60	42.40	58.80	54.60	52.20	55.40	52.68	63.60	58.80	43.60	60.40	56.60
Llama-3.3-70B-Instruct	68.00	74.00	68.60	70.20	41.20	62.40	57.40	40.80	58.40	52.04	66.20	59.80	37.00	63.20	56.55
Qwen2.5-7B-Instruct	66.80	72.00	65.40	68.07	40.60	59.60	55.60	33.40	54.80	48.80	62.20	59.60	32.00	62.80	54.15
Qwen2.5-32B-Instruct	67.80	75.20	69.20	70.73	44.20	62.00	58.80	44.00	58.00	53.40	66.00	63.00	38.60	64.20	57.95
Reasoning Model															
o1-mini	68.80	72.20	57.40	66.13	38.80	49.00	56.20	25.80	50.80	44.12	64.20	48.40	23.80	59.60	49.00
QwQ-32B-Preview	66.00	72.20	66.20	68.13	41.80	61.60	57.00	32.80	55.20	49.68	63.00	58.80	30.60	62.80	53.80
Deepseek-R1	45.80	63.80	60.40	56.67	41.60	47.60	42.20	25.40	42.40	39.84	53.80	46.20	24.00	64.20	47.05
DeepSeek-R1-Distill-Llama-8B	55.40	61.60	53.60	56.87	37.60	53.00	47.00	32.60	47.20	43.48	53.60	48.00	29.80	52.20	45.90
DeepSeek-R1-Distill-Llama-70B	62.00	69.40	62.40	64.60	39.80	59.20	53.60	28.60	52.40	46.72	59.80	55.80	28.00	59.40	50.75
DeepSeek-R1-Distill-Qwen-7B	60.80	63.00	63.80	62.53	38.50	54.60	51.40	20.00	53.60	43.62	49.00	54.00	25.20	63.00	47.80
DeepSeek-R1-Distill-Qwen-32B	64.60	71.00	65.00	66.87	40.20	61.20	55.60	26.20	54.20	47.48	61.80	56.60	26.60	61.60	51.65
Specialized model															
CharacterGLM-6B	68.28	74.34	74.74	72.45	32.80	56.38	54.76	46.02	59.38	49.87	74.76	45.30	39.32	56.24	53.91
Xingchen	67.56	76.14	75.08	72.93	32.72	55.36	54.86	55.44	61.10	51.90	75.14	45.44	42.00	55.98	54.64
MiniMax	72.18	78.64	76.22	75.68	36.70	58.20	58.88	55.48	62.50	54.35	75.36	53.44	43.00	60.34	58.04
BC-NPC-Turbo	71.56	77.96	78.32	75.95	36.04	59.28	59.86	58.20	63.02	55.28	76.72	52.86	46.72	59.42	58.93
Ours															
R4-7B-Instruct	70.20	78.00	79.08	75.76	43.20	62.40	59.60	50.50	63.00	55.74	78.00	55.20	44.80	65.80	60.95
R4-32B-Instruct	74.10	82.30	80.30	78.90	48.00	68.80	62.20	68.00	76.20	64.64	77.00	63.10	50.00	69.60	64.93

achieves the highest overall score (64.93 vs. 58.93 for the best baseline). Particularly notable are improvements in Human-Likeness (+0.28), Communication Skills (+0.10), Expression Diversity (+3.28), and Empathy (+5.40). These gains indicate R4's superior capacity for generating emotionally rich, socially engaging responses that create more immersive role-playing experiences.

Scale Sensitivity of R4. The cross-model comparison reveals fundamental limitations in existing approaches while confirming R4's framework advantages. Specialized role-playing models (BC-NPC-Turbo) achieve strong attractiveness scores but exhibit weaker character consistency, indicating supervised dialogue training alone cannot capture complex character reasoning requirements. Reasoning models show moderate knowledge-based performance but consistently underperform in persona alignment (avg. 49.68 vs. R4's 64.64), confirming general reasoning capabilities do not transfer effectively to character portrayal. Instruction models demonstrate the most balanced performance among baselines but still fall short across all categories. Notably, model scale amplifies these architectural differences: while baseline performance improvements from scale are modest (e.g., Qwen2.5-7B to 32B: 48.80 vs. 53.40 in character consistency), R4 shows substantial scale benefits (55.74 to 64.64), indicating that the reasoning-retrieval framework becomes increasingly effective with larger parameter counts. This scale sensitivity suggests that R4's unified approach requires sufficient model capacity to fully realize its integration benefits, distinguishing it from simpler supervised or scalar reward approaches.

Human Evaluation. Our human evaluation with three annotators ranking 500 dialogue instances confirms that automatic metrics capture meaningful quality differences (Table 2). R4 achieves first rank in 68.2% of cases compared to GPT-4o's 21.6% and CharacterGLM-6B's

Table 2: Human evaluation results.

Model	Rank 1↑	Rank 2	Rank 3↓	Mean Rank↑
R4-32B-Instruct	68.2 %	22.7 %	9.1 %	1.42
GPT-4o-2024-05-13	21.6%	48.4 %	30.0 %	1.94
CharacterGLM-6B	10.2 %	28.9%	60.9 %	2.64

10.2%, with statistical significance (p < 0.01). Crucially, annotator feedback indicates that R4's advantages stem primarily from superior persona fidelity and narrative coherence—precisely the dimensions our reasoning-augmented approach was designed to address. This alignment between automatic metrics and human judgment validates both our evaluation framework and the practical relevance of our improvements.

Training Dynamics. Figure 3 reveals R4's learning process. The consistent reward improvement across training and validation sets demonstrates stable learning dynamics and effective alignment with multi-dimensional character portrayal objectives. The steady increase in response length without corresponding quality degradation suggests that R4 develops genuine expressiveness rather than mere verbosity. Similarly, the evolution of retrieval operations (initial increase followed by efficiency gains) indicates that the model learns to formulate more effective queries over time rather than simply retrieving more information.

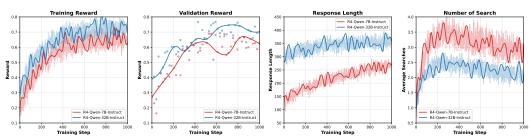


Figure 3: Training dynamics of R4, including training/validation reward, response length, and search count over time.

3.2 ABLATION STUDY

To validate each component's contribution, we conduct ablation studies examining both architectural choices and reward modeling approaches.

Q1: Which Matters More: Reward Quality or Agent Capability? Table 3 highlights a fundamental asymmetry in the contributions of reasoning and retrieval to role-playing dialogue quality. Our findings show that *reward model capabilities establish the foundation, while agent capabilities set the upper bound*. Removing reasoning from the reward model (R4-RM w/o Reasoning) leads to a collapse in performance (49.87), nearly identical to the catastrophic failure of removing reasoning entirely (48.23). In contrast, removing reasoning only from the agent (R4-Agent w/o Reasoning) retains substantially higher performance (56.94),

Table 3: Ablation Study.

Model Variant	Conv. Ability	Character Consistency	Role-Playing Attractiveness	RM Accuracy	
Framework Components					
R4 (Full)	78.90	64.64	64.93	87.00	
R4-all w/o Reasoning	72.15	48.23	52.84	74.20	
R4-all w/o Retrieval	74.82	51.67	55.19	76.80	
R4-all w/ GenericRetrieval	71.94	47.95	52.33	75.10	
R4-RM w/o Retrieval	75.23	58.31	59.84	82.40	
R4-RM w/o Reasoning	70.85	49.87	53.76	76.30	
R4-Agent w/o Retrieval	73.67	55.47	57.92	87.00	
R4-Agent w/o Reasoning	76.12	56.94	60.18	87.00	
Reward Function Compor	ients				
R4-RM w/o Consistency	77.45	59.83	61.27	81.30	
R4-RM w/o Format	78.12	62.41	63.58	84.60	
Alternative Reward Mode	ı				
ScalarRM+Agent	68.34	43.89	48.72	69.80	
GenRM+Agent	69.87	45.34	50.16	71.40	
CharacterRM+Agent	70.52	46.87	51.93	72.90	

despite operating under the same reward supervision (87% RM accuracy).

This asymmetry yields a key insight for role-playing system design: *supervision quality fundamentally constrains what agents can achieve, regardless of their architectural sophistication*. Even under perfect reward signals, agents without reasoning plateau at 56.94; conversely, agents with reasoning but weaker supervision (76.3% RM accuracy) reach only 49.87. These results suggest a multiplicative rather than additive interaction between reward quality and agent capability.

Equally important, our analysis shows that simply replacing the reward model in existing systems is not sufficient. For instance, combining CharacterRM with our dialogue agent yields only 46.87—worse than even our ablated R4 variants (e.g., R4-RM w/o Reasoning: 49.87). This indicates that R4's effectiveness comes not from stronger individual components but from their deliberate co-design. In other words, reward and agent must be engineered to complement each other's reasoning and retrieval processes, rather than swapped in isolation.

Q2: Is Character-Specific Knowledge Necessary? The contrast between R4-all w/ GenericRetrieval (47.95) and R4-RM w/o Retrieval (58.31) highlights the critical role of knowledge specificity. Counterintuitively, removing retrieval from the reward model outperforms equipping the entire system with generic retrieval—demonstrating that inaccurate or irrelevant knowledge is more damaging than having none at all. This result overturns common assumptions about knowledge augmentation and underscores a key design principle: effective role-playing systems depend on *precisely curated, character-specific information*, rather than broad but unfocused knowledge access.

4 CONCLUSION

We present R4, a unified framework that addresses the fundamental challenge of reliable supervision in role-playing dialogue by equipping both reward models and dialogue agents with reasoning and retrieval capabilities. By formulating reward modeling as a structured reasoning task and integrating retrieval into both supervision and generation, our approach enables fine-grained, persona-aligned evaluation and expressive, contextually grounded dialogue generation.

REFERENCES

- Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z. Pan, Wen Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and Weipeng Chen. Research: Learning to reason with search for llms via reinforcement learning. *CoRR*, abs/2503.19470, 2025a. doi: 10.48550/ARXIV.2503.19470. URL https://doi.org/10.48550/arXiv.2503.19470.
- Nuo Chen, Yan Wang, Haiyun Jiang, Deng Cai, Yuhan Li, Ziyang Chen, Longyue Wang, and Jia Li. Large language models meet harry potter: A dataset for aligning dialogue agents with characters. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023*, pp. 8506–8520. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-EMNLP.570. URL https://doi.org/10.18653/v1/2023.findings-emnlp.570.
- Nuo Chen, Zhiyuan Hu, Qingyun Zou, Jiaying Wu, Qian Wang, Bryan Hooi, and Bingsheng He. Judgelrm: Large reasoning models as a judge, 2025b. URL https://arxiv.org/abs/2504. 00050.
- Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang, Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning Ding. Process reinforcement through implicit rewards. *CoRR*, abs/2502.01456, 2025. doi: 10.48550/ARXIV.2502.01456. URL https://doi.org/10.48550/arXiv.2502.01456.
- DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. CoRR, abs/2501.12948, 2025. doi: 10.48550/ARXIV.2501.12948. URL https://doi.org/10.48550/arXiv.2501.12948.
- Guanting Dong, Keming Lu, Chengpeng Li, Tingyu Xia, Bowen Yu, Chang Zhou, and Jingren Zhou. Self-play with execution feedback: Improving instruction-following capabilities of large language models. In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.* OpenReview.net, 2025a. URL https://openreview.net/forum?id=cRR0oDFEBC.
- Guanting Dong, Yutao Zhu, Chenghao Zhang, Zechen Wang, Ji-Rong Wen, and Zhicheng Dou. Understand what LLM needs: Dual preference alignment for retrieval-augmented generation. In Guodong Long, Michale Blumestein, Yi Chang, Liane Lewin-Eytan, Zi Helen Huang, and Elad Yom-Tov (eds.), *Proceedings of the ACM on Web Conference 2025, WWW 2025, Sydney, NSW, Australia, 28 April 2025- 2 May 2025*, pp. 4206–4225. ACM, 2025b. doi: 10.1145/3696410. 3714717. URL https://doi.org/10.1145/3696410.3714717.
- André V. Duarte, João Marques, Miguel Graça, Miguel Freire, Lei Li, and Arlindo L. Oliveira. Lumberchunker: Long-form narrative document segmentation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, Florida, USA, November 12-16, 2024*, pp. 6473–6486. Association for Computational Linguistics, 2024. URL https://aclanthology.org/2024.findings-emnlp.377.
- Xiachong Feng, Longxu Dou, and Lingpeng Kong. Reasoning does not necessarily improve role-playing ability. *CoRR*, abs/2502.16940, 2025. doi: 10.48550/ARXIV.2502.16940. URL https://doi.org/10.48550/arXiv.2502.16940.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement learning. *CoRR*, abs/2503.09516, 2025. doi: 10.48550/ARXIV.2503.09516. URL https://doi.org/10.48550/arXiv.2503.09516.

Jiajie Jin, Yutao Zhu, Xinyu Yang, Chenghao Zhang, and Zhicheng Dou. Flashrag: A modular toolkit for efficient retrieval-augmented generation research. *CoRR*, abs/2405.13576, 2024a. doi: 10.48550/ARXIV.2405.13576. URL https://doi.org/10.48550/arXiv.2405.13576.

- Jiajie Jin, Yutao Zhu, Yujia Zhou, and Zhicheng Dou. BIDER: bridging knowledge inconsistency for efficient retrieval-augmented llms via key supporting evidence. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024*, pp. 750–761. Association for Computational Linguistics, 2024b. doi: 10.18653/V1/2024.FINDINGS-ACL.42. URL https://doi.org/10.18653/v1/2024.findings-acl.42.
- Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html.
- Cheng Li, Ziang Leng, Chenxi Yan, Junyi Shen, Hao Wang, Weishi Mi, Yaying Fei, Xiaoyang Feng, Song Yan, HaoSheng Wang, Linkang Zhan, Yaokai Jia, Pingyu Wu, and Haozhen Sun. Chatharuhi: Reviving anime character in reality via large language model. *CoRR*, abs/2308.09597, 2023. doi: 10.48550/ARXIV.2308.09597. URL https://doi.org/10.48550/arXiv.2308.09597.
- Xiaoxi Li, Jiajie Jin, Yujia Zhou, Yongkang Wu, Zhonghua Li, Qi Ye, and Zhicheng Dou. Retrollm: Empowering large language models to retrieve fine-grained evidence within generation. *CoRR*, abs/2412.11919, 2024. doi: 10.48550/ARXIV.2412.11919. URL https://doi.org/10.48550/arXiv.2412.11919.
- Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *CoRR*, abs/2501.05366, 2025a. doi: 10.48550/ARXIV.2501.05366. URL https://doi.org/10.48550/arXiv.2501.05366.
- Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability, 2025b. URL https://arxiv.org/abs/2504.21776.
- Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL https://openreview.net/forum?id=v8L0pN6E0i.
- Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. *CoRR*, abs/2410.18451, 2024a. doi: 10.48550/ARXIV.2410.18451. URL https://doi.org/10.48550/arXiv.2410.18451.
- Jingyu Liu, Jiaen Lin, and Yong Liu. How much can RAG help the reasoning of llm? CoRR, abs/2410.02338, 2024b. doi: 10.48550/ARXIV.2410.02338. URL https://doi.org/10.48550/arXiv.2410.02338.
- Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu. Inference-time scaling for generalist reward modeling, 2025. URL https://arxiv.org/abs/2504.02495.

- Xingzhou Lou, Dong Yan, Wei Shen, Yuzi Yan, Jian Xie, and Junge Zhang. Uncertainty-aware reward model: Teaching reward models to know what is unknown. *CoRR*, abs/2410.00847, 2024. doi: 10.48550/ARXIV.2410.00847. URL https://doi.org/10.48550/arXiv.2410.00847.
- Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA: a benchmark for general AI assistants. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.* OpenReview.net, 2024. URL https://openreview.net/forum?id=fibxvahvs3.
- OpenAI. Learning to reason with llms, 2024. URL https://openai.com/index/learning-to-reason-with-llms/.
- Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal, Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated process verifiers for LLM reasoning. In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.* OpenReview.net, 2025. URL https://openreview.net/forum?id=A6Y7AqlzLW.
- Yunfan Shao, Linyang Li, Junqi Dai, and Xipeng Qiu. Character-LLM: A trainable agent for role-playing. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 13153–13187, Singapore, December 2023. Association for Computational Linguistics. URL https://aclanthology.org/2023.emnlp-main.814/.
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *CoRR*, abs/2402.03300, 2024. doi: 10.48550/ARXIV.2402.03300. URL https://doi.org/10.48550/arXiv.2402.03300.
- Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient RLHF framework. In *Proceedings of the Twentieth European Conference on Computer Systems, EuroSys 2025, Rotterdam, The Netherlands, 30 March 2025 3 April 2025*, pp. 1279–1297. ACM, 2025. doi: 10.1145/3689031. 3696075. URL https://doi.org/10.1145/3689031.3696075.
- Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement learning. *CoRR*, abs/2503.05592, 2025. doi: 10.48550/ARXIV.2503.05592. URL https://doi.org/10.48550/arXiv.2503.05592.
- Jiejun Tan, Zhicheng Dou, Yutao Zhu, Peidong Guo, Kun Fang, and Ji-Rong Wen. Small models, big insights: Leveraging slim proxy models to decide when and what to retrieve for llms. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, *ACL 2024, Bangkok, Thailand, August 11-16, 2024*, pp. 4420–4436. Association for Computational Linguistics, 2024. doi: 10. 18653/V1/2024.ACL-LONG.242. URL https://doi.org/10.18653/v1/2024.acl-long.242.
- Quan Tu, Shilong Fan, Zihang Tian, Tianhao Shen, Shuo Shang, Xin Gao, and Rui Yan. Charactereval: A chinese benchmark for role-playing conversational agent evaluation. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, *ACL 2024*, *Bangkok, Thailand, August 11-16*, 2024, pp. 11836–11850. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.638. URL https://doi.org/10.18653/v1/2024.acl-long.638.
- Liang Wang, Nan Yang, and Furu Wei. Query2doc: Query expansion with large language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023*, pp. 9414–9423. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023. EMNLP-MAIN.585. URL https://doi.org/10.18653/v1/2023.emnlp-main.585.
- Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Multilingual E5 text embeddings: A technical report. *CoRR*, abs/2402.05672, 2024a. doi: 10.48550/ARXIV.2402.05672. URL https://doi.org/10.48550/arXiv.2402.05672.

- Liang Wang, Haonan Chen, Nan Yang, Xiaolong Huang, Zhicheng Dou, and Furu Wei. Chain-of-retrieval augmented generation. *CoRR*, abs/2501.14342, 2025. doi: 10.48550/ARXIV.2501.14342. URL https://doi.org/10.48550/arXiv.2501.14342.
- Noah Wang, Z.y. Peng, Haoran Que, Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu, Hongcheng Guo, Ruitong Gan, Zehao Ni, Jian Yang, Man Zhang, Zhaoxiang Zhang, Wanli Ouyang, Ke Xu, Wenhao Huang, Jie Fu, and Junran Peng. RoleLLM: Benchmarking, eliciting, and enhancing role-playing abilities of large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 14743–14777, Bangkok, Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024. findings-acl.878. URL https://aclanthology.org/2024.findings-acl.878/.
- Xintao Wang, Yunze Xiao, Jen-tse Huang, Siyu Yuan, Rui Xu, Haoran Guo, Quan Tu, Yaying Fei, Ziang Leng, Wei Wang, Jiangjie Chen, Cheng Li, and Yanghua Xiao. InCharacter: Evaluating personality fidelity in role-playing agents through psychological interviews. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1840–1873, Bangkok, Thailand, August 2024c. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.102. URL https://aclanthology.org/2024.acl-long.102/.
- Zekun Xi, Wenbiao Yin, Jizhan Fang, Jialong Wu, Runnan Fang, Ningyu Zhang, Yong Jiang, Pengjun Xie, Fei Huang, and Huajun Chen. Omnithink: Expanding knowledge boundaries in machine writing through thinking. *CoRR*, abs/2501.09751, 2025. doi: 10.48550/ARXIV.2501.09751. URL https://doi.org/10.48550/arXiv.2501.09751.
- Tianyi Xiong, Xiyao Wang, Dong Guo, Qinghao Ye, Haoqi Fan, Quanquan Gu, Heng Huang, and Chunyuan Li. Llava-critic: Learning to evaluate multimodal models. *CoRR*, abs/2410.02712, 2024. doi: 10.48550/ARXIV.2410.02712. URL https://doi.org/10.48550/arXiv.2410.02712.
- Fangyuan Xu, Weijia Shi, and Eunsol Choi. RECOMP: improving retrieval-augmented lms with context compression and selective augmentation. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024a. URL https://openreview.net/forum?id=mlJLVigNHp.
- Rui Xu, Xintao Wang, Jiangjie Chen, Siyu Yuan, Xinfeng Yuan, Jiaqing Liang, Zulong Chen, Xiaoqing Dong, and Yanghua Xiao. Character is destiny: Can large language models simulate persona-driven decisions in role-playing? *CoRR*, abs/2404.12138, 2024b. doi: 10.48550/ARXIV. 2404.12138. URL https://doi.org/10.48550/arXiv.2404.12138.
- Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal. Generative verifiers: Reward modeling as next-token prediction. In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.* OpenReview.net, 2025. URL https://openreview.net/forum?id=Ccwp4tFEtE.
- Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren Wang, Yunteng Geng, Fangcheng Fu, Ling Yang, Wentao Zhang, and Bin Cui. Retrieval-augmented generation for ai-generated content: A survey. *CoRR*, abs/2402.19473, 2024. doi: 10.48550/ARXIV.2402.19473. URL https://doi.org/10.48550/arXiv.2402.19473.
- Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environments, 2025. URL https://arxiv.org/abs/2504.03160.
- Jialun Zhong, Wei Shen, Yanzeng Li, Songyang Gao, Hua Lu, Yicheng Chen, Yang Zhang, Wei Zhou, Jinjie Gu, and Lei Zou. A comprehensive survey of reward models: Taxonomy, applications, challenges, and future, 2025. URL https://arxiv.org/abs/2504.12328.
- Jinfeng Zhou, Zhuang Chen, Dazhen Wan, Bosi Wen, Yi Song, Jifan Yu, Yongkang Huang, Pei Ke, Guanqun Bi, Libiao Peng, JiaMing Yang, Xiyao Xiao, Sahand Sabour, Xiaohan Zhang, Wenjing Hou, Yijia Zhang, Yuxiao Dong, Hongning Wang, Jie Tang, and Minlie Huang. CharacterGLM: Customizing social characters with large language models. In Franck Dernoncourt, Daniel Preoţiuc-Pietro, and Anastasia Shimorina (eds.), *Proceedings of the 2024 Conference on Empirical Methods*

in Natural Language Processing: Industry Track, pp. 1457–1476, Miami, Florida, US, November 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-industry.107. URL https://aclanthology.org/2024.emnlp-industry.107/.

Yujia Zhou, Zheng Liu, and Zhicheng Dou. Assistrag: Boosting the potential of large language models with an intelligent information assistant. *CoRR*, abs/2411.06805, 2024b. doi: 10.48550/ARXIV.2411.06805. URL https://doi.org/10.48550/arXiv.2411.06805.

A RELATED WORK

A.1 RETRIEVAL-AUGMENTED GENERATION

Retrieval-Augmented Generation (RAG) enhances the capabilities of language models by incorporating external knowledge through retrieval mechanisms, grounding responses in factual, domain-specific knowledge (Lewis et al., 2020; Zhao et al., 2024). This approach has been widely studied across several dimensions, including determining when retrieval is necessary (Tan et al., 2024), refining query representations (Mialon et al., 2024; Wang et al., 2023), compressing and filtering retrieved content (Jin et al., 2024b; Xu et al., 2024a), mitigating noise from retrieved documents (Liu et al., 2024b; Dong et al., 2025b), and improving retrieval quality through instruction tuning (Dong et al., 2025a; Zhou et al., 2024b). Beyond single-step retrieval, more sophisticated multi-step or structured RAG pipelines have been proposed to support complex tasks such as multi-hop reasoning, knowledge planning, and decision-making in domain-specific contexts (Li et al., 2024; Wang et al., 2025; Xi et al., 2025). These methods often integrate search with structured task decomposition to guide model reasoning over intermediate knowledge states. Recent work also explores tighter coupling between retrieval and reasoning through prompt engineering or agentic frameworks. For instance, Search-o1 (Li et al., 2025a) introduces a modular agent that dynamically interleaves retrieval and document-level reasoning. Others employ reinforcement learning to jointly optimize search policies (Zheng et al., 2025; Li et al., 2025b) and reasoning procedures from scratch (Jin et al., 2025; Song et al., 2025; Chen et al., 2025a).

Despite these advancements, current RAG methods remain underexplored in role-playing dialogue settings. Most prior efforts focus on fact-based or reasoning-centric benchmarks, offering limited support for persona-grounded interaction. In particular, they struggle to retrieve and apply character-specific knowledge in emotionally rich or stylistically nuanced conversations—leading to responses that lack consistency with the speaker's persona or fail to sustain user engagement. Our work addresses this gap by leveraging retrieval not just for factual grounding, but as a mechanism to dynamically support character fidelity and dialogue appeal in role-play scenarios.

A.2 REWARD MODEL FOR REINFORCEMENT LEARNING

Reward modeling (RM) plays a central role in aligning language models with human preferences in reinforcement learning. Early reward models primarily focused on outcome-level supervision—ranking complete outputs based on human preferences (Zhong et al., 2025). However, such models often fail to capture nuanced qualities such as reasoning faithfulness or process transparency. To address these limitations, recent work has explored process reward models (PRMs) that judge the correctness of intermediate steps in chain-of-thought reasoning (Lightman et al., 2024; Setlur et al., 2025; Cui et al., 2025). While effective, PRMs rely on manually annotated intermediate labels or task-specific schemas, limiting their generalizability. To reduce dependence on hand-crafted annotations, generative reward models (GRMs) have been proposed. Models such as Generative Verifiers (Zhang et al., 2025), DeepSeek-GRM (Liu et al., 2025), and JudgeLM (Chen et al., 2025b) frame reward modeling as a next-token prediction task, using generated reasoning chains and voting strategies to produce more interpretable and consistent judgments. Other approaches include prompt-based scoring using instruction-tuned language models (Xiong et al., 2024), and scalar scoring with learned reward heads (Liu et al., 2024a; Lou et al., 2024). While efficient, these methods tend to lack interpretability or rely heavily on prompt design.

Despite these advances, reward modeling remains underexplored in role-playing dialogue, where preferences are shaped not only by correctness, but also by persona alignment, emotional tone, and narrative coherence. Moreover, most reward models operate without access to character-specific knowledge or dynamic reasoning capabilities. In this work, we propose a reward model that integrates reasoning, retrieval, and verifiable feedback. By treating reward modeling as a reasoning task and grounding it in retrieved contextual knowledge, our model provides more accurate and interpretable supervision for training character-aware dialogue agents.

A.3 ROLE-PLAYING DIALOGUE AGENT

Role-playing dialogue agents aim to generate responses that are not only coherent but also consistent with the persona, background, and emotional state of a given character. Most current approaches

simulate character behavior through prompt engineering or instruction-tuning with character profiles, where models are conditioned on static persona descriptions (e.g., background, tone, or occupation) to emulate specific roles during interaction (Chen et al., 2023; Tu et al., 2024; Zhou et al., 2024a). Further improvements have been made through character-specific fine-tuning, memory-based retrieval, and consistency-oriented generation, which enhance short-term persona fidelity by aligning generated responses with predefined style or factual constraints (Li et al., 2023; Shao et al., 2023; Wang et al., 2024b). However, these methods often focus on surface-level traits (such as tone and wording) and fall short in modeling the underlying cognitive process behind a character's decisions or expressions. Some recent works have explored deeper aspects of role-play, such as simulating internal motivations (Xu et al., 2024b) or reasoning from the character's perspective (Wang et al., 2024c). Yet, most of these rely on human-written references or evaluations, and lack a scalable method for embedding such reasoning capabilities into the generative process itself.

In contrast, our work approaches role-playing as a reasoning task grounded in character-specific knowledge. We go beyond static prompts or stylistic imitation by modeling how agents recall relevant context, reason about their own persona constraints, and produce responses that reflect both situational understanding and consistent character behavior. Our framework explicitly equips the dialogue model with retrieval and reasoning abilities, bridging the gap between surface-level persona simulation and deeper, goal-driven character modeling.

B DETAILS OF CHARACTER-SPECIFIC KNOWLEDGE CONSTRUCTION

B.1 NARRATIVE SEGMENTATION

System Prompt for Narrative Segmentation

You will receive as input an English or Chinese document with paragraphs identified by 'ID XXXX: <text>'.

Task: Find the first paragraph (not the first one) where the content clearly changes compared to the previous paragraphs.

Output: Return the ID of the paragraph with the content shift as in the exemplified format: 'Answer: ID XXXX'.

Additional Considerations: Avoid very long groups of paragraphs. Aim for a good balance between identifying content shifts and keeping groups manageable.

Document:

To support retrieval-augmented reasoning in role-playing dialogue, we design a dynamic narrative segmentation procedure tailored for long-form fiction. This module decomposes narrative texts into semantically coherent and contextually self-contained segments, enabling more precise and relevant retrieval during downstream reasoning. Our approach draws inspiration from prior work on LLM-guided segmentation (e.g., LumberChunker (Duarte et al., 2024)), but is adapted to better reflect the episodic, character-centric structure of fictional narratives.

We begin by preprocessing the input novel or story into paragraph-level units, each tagged with a unique identifier. These paragraphs are grouped sequentially into candidate windows G_i , such that the total token count of each window remains below a pre-defined threshold θ . The threshold is empirically chosen to balance contextual completeness with model efficiency: large enough to preserve inter-paragraph coherence, yet small enough to avoid context overflow during LLM inference.

For each group G_i , we query GPT-40 to determine whether a semantic shift occurs within the window—i.e., whether a paragraph introduces a new event, emotional beat, or dialogue context distinct from the preceding content. This shift point is selected as a segmentation boundary. The next group G_{i+1} starts from the identified boundary, and the process repeats until the entire document is segmented. This iterative, LLM-informed strategy ensures that each resulting chunk reflects a topically unified unit of narrative, improving both retrieval granularity and interpretability in downstream character-centric knowledge synthesis. The prompt used is provided in Table B.1.

B.2 CHARACTER-SPECIFIC KNOWLEDGE SYNTHESIS

Following narrative segmentation, we construct a structured, character-aligned knowledge repository using the extracted narrative segments. To achieve fine-grained and persona-consistent retrieval and reasoning, we represent each narrative segment as a dynamic, structured "story-event tree", inspired by recent advances in hierarchical modeling and dataset construction. Each event tree explicitly captures key narrative dimensions, including temporal structure (time), environmental and contextual setting (scene), character states and relationships (character), and event progression (event), thus providing a comprehensive, interconnected representation of the narrative content. The synthesis process employs a systematic four-agent pipeline, where each agent addresses specific aspects of character-centric knowledge construction:

Knowledge Extraction Agent. This agent leverages GPT-40 to extract essential factual information from each narrative segment through structured prompting. The extraction process targets five core categories: (1) explicit temporal markers (start and end timestamps, duration, sequence relationships), (2) spatial-environmental contexts (geographical locations, physical settings, atmospheric conditions), (3) causal event chains (action-consequence relationships, trigger events, outcome states), (4) character presence and participation levels, and (5) narrative significance scores. To ensure consistency, we employ a standardized prompt template that constrains the output format to JSON schema with predefined fields, reducing extraction variability across segments.

Perspective Transformation Agent. This specialized agent reconstructs narrative events from individual character viewpoints through perspective-aware prompting strategies. For each character present in a segment, the agent generates character-specific interpretations by conditioning on three key factors: (1) the character's established personality profile (accumulated from prior segments), (2) their emotional state trajectory, and (3) their relationship dynamics with other characters. The transformation process systematically infers internal attributes across multiple dimensions: personality traits (introversion/extraversion, risk tolerance, emotional stability), emotional states (anxiety levels, mood valence, arousal intensity), and cognitive patterns (decision-making heuristics, attention focus, memory priorities).

Mind Agent. Building upon persona-aligned event representations, this agent synthesizes deeper psychological reasoning through theory-of-mind modeling. The agent explicitly reconstructs each character's internal cognitive processes using structured psychological frameworks: motivation hierarchy (following Maslow's framework), cognitive biases (confirmation bias, attribution patterns), and emotional regulation strategies (coping mechanisms, defense patterns). We prompt GPT-40 with targeted psychological queries such as "Given this character's established personality and current emotional state, what unconscious motivations drive their behavioral choice?" and "What cognitive dissonance or internal conflicts emerge from this situation?" The agent outputs detailed psychological annotations structured as belief-desire-intention (BDI) triplets, enabling downstream reasoning about character behavior patterns.

Dialogue Extract Agent. This agent enhances the knowledge repository by identifying and preserving high-fidelity conversational exemplars from the source narrative. Rather than generating synthetic dialogues, the agent employs a two-stage selection process: (1) dialogue identification using linguistic markers (quotation detection, speaker attribution, conversational turn boundaries), and (2) relevance scoring based on psychological significance. The relevance scoring algorithm evaluates dialogues across four criteria: emotional intensity (measured through sentiment analysis and emotional lexicon matching), character revelation (degree of personality or motivation disclosure), relationship dynamics (power shifts, intimacy changes), and narrative pivotality (impact on subsequent

plot development). Selected dialogues are annotated with contextual metadata including speaker emotional states, conversational goals, and implicit subtext interpretations. This approach ensures authentic character voice preservation while providing rich conversational anchors for downstream generation tasks.

Quality Assurance and Validation To ensure knowledge quality, we implement a multi-stage validation process: (1) inter-agent consistency checking to identify contradictions across different perspectives, (2) temporal coherence validation to ensure character development follows logical progressions, and (3) psychological plausibility assessment using established personality psychology frameworks. Inconsistencies trigger automated revision cycles where conflicting interpretations are resolved through evidence-based arbitration. This systematic approach ensures knowledge base maintains both factual accuracy and psychological authenticity.

The output from all these agents—structured facts, character-perspective interpretations, psychological annotations, and dialogue exemplars—are integrated into a unified character-specific knowledge base, organized into a composable and indexed event-tree structure. This comprehensive knowledge representation enables precise multi-dimensional retrieval nuanced reasoning during downstream dialogue generation and reward assessment tasks, significantly improving the realism and the consistency of the generated role-playing interactions.

C DETAILS OF BIASES IN REWARD MODEL

To systematically investigate biases in reward models used for role-playing dialogue evaluation, we conducted a detailed comparative study between two representative reward modeling paradigms: scalar-based reward modeling and generative-based reward modeling. Specifically, we compared CharacterRM (scalar-based) with instruction-tuned Qwen2.5-7B-Instruct and reasoning-enabled generative models DeepSeek-R1-Distill-Qwen-7B.

We constructed a controlled evaluation corpus based on two representative fictional universes: *Dragon Raja* and *Harry Potter*. We selected two main characters—Lu Mingfei (*Dragon Raja*) and Harry Potter (*Harry Potter*)—and four secondary characters: Hui Liyi, Xia Mi, Luna Lovegood, and Severus Snape. Each character was associated with 100 dialogue-response evaluation pairs, evenly covering diverse interaction contexts and emotional complexities. To establish a reliable reference, the evaluation pairs were manually reviewed by the authors.

D IMPLEMENTATION DETAILS

For the knowledge generation pipeline, we use gpt-4o-2024-05-13 to perform all related steps, including narrative segmentation based on plot structure and the generation of character-specific knowledge such as persona attributes, internal states, and inferred goals. The reward model is built upon Qwen2.5-32B-Instruct and trained for 2 epochs on our constructed dataset. Similarly, the role-playing agents is based on Qwen2.5-7B/32B-Instruct and also trained for 2 epochs. We initialize from instruction-tuned models rather than base models to ensure more stable reinforcement learning and better final performance—consistent with findings reported in prior work such as ReSearch. The reinforcement learning framework is implemented using Verl (Sheng et al., 2025) and ReSearch (Chen et al., 2025a). Both the reward model and the role-playing agent share the same retrieval backend. We use multilingual-e5-large (Wang et al., 2024a) as the retriever, with indexing and embedding handled by FlashRAG (Jin et al., 2024a). Both models query the top-3 retrieved documents per prompt during training and inference. For baseline models comparisons, we directly adopt the implementations and services provided by FlashRAG. All experiments were conducted on 64 NVIDIA H100 GPUs, with full parameter optimization. For reinforcement learning of reward model and dialogue agent, we used a learning rate of 1×10^{-6} and a training batch size of 64. The model was trained for 2 epochs, with each prompt generating 5 rollouts during the sampling phase. We set the rollout temperature to 1.0 to balance exploration and response diversity. Additionally, the KL loss coefficient is 0.001 and clipping ratio is 0.2 to constrain policy updates and ensure training stability.

Case study of R4's role-playing agent: Case 1 (Romantic Ambiguity and Persona Adherence)

Character: Lu Mingfei

User Question: Do you love Nono?

Agent Response:

<think> This is a direct question about Lu Mingfei's romantic feelings—a core emotional arc in the story. Lu Mingfei doesn't openly confess. He often avoids the topic or hides behind humor and self-deprecation. Still, he can't outright deny it—doing so would break character consistency. A proper response needs to balance emotional tension: denial on the surface, vulnerability underneath, wrapped in sarcasm or jokes.

<search> Lu Mingfei's feelings toward Nono </search>

<result> Lu Mingfei secretly likes Nono but never confesses directly... </result>

<think> The answer should reflect that: - He won't say "yes" outright; - He'll joke, then slip in a wistful, subtle admission; - Tone should shift between light sarcasm and buried longing; - End on ambiguity, leaving the user to guess the real feeling.

<answer> Like her? She's the kind of girl who walks in sunlight with her own background music. Me standing next to her? It's like the local ramen guy photobombing a global fashion shoot—do you think I could like someone like that?

Sure, I fantasized—so much I could write a 25-episode drama. No ads included. But in real life... I just sneak glances and pretend I'm looking at the vending machine. So... I don't know. </answer>

Case study of R4: Case 2 (Self-Reflection and Character Growth)

Character: Lu Mingfei

User Question: Why did you go on that mission involving the Sheqi Bajia? I thought you were afraid of dying?

Agent Response:

<think> User's question touches a core contradiction in Lu Mingfei: his fear of death versus his pattern of self-sacrifice. On the surface, he's someone who avoids danger. My first instinct is to say he didn't volunteer—he was pushed into it.

<search> Lu Mingfei motivation Sheqi Bajia mission </search>

<result> Initially hesitant and fearful; attempted avoidance... Later learned of the mission's link to Chen Motong, his brother ...

<search> Lu Mingfei emotional reaction to Chen Motong </search>

<result> Shift from avoidance to personal responsibility... Expressed guilt and emotional paralysis upon learning of Chen's death... Quote: "I'm not a brave man, but sometimes even cowards get pushed forward."

<think> Wait—that contradicts my initial assumption. He did go willingly in the end, out of guilt and unresolved family ties. Saying he only went because he was forced would ignore his emotional growth and deeper motivations. The final answer should reflect this progression: from fear to acceptance, driven by emotional weight.

<answer> I'm afraid of dying—of course I am. You think I didn't consider faking a fever to skip it? But that time was different. I learned it involved my brother, Chen Motong—and he was already gone. I just... froze. Sometimes you do things you're not ready for, because not doing them would be worse. I didn't get brave—I just didn't want to regret it later. </answer>

E CASE STUDY

We present two cases where the agent role-plays Lu Mingfei from Dragon Raja.

In the first case (Table D), when asked "Do you love Nono?", the agent avoids direct confession, instead responding with humor, self-deprecation, and emotional ambiguity—faithfully reflecting Lu Mingfei's canonical behavior. This illustrates the model's ability to maintain nuanced character consistency and emotional appeal.

In the second case (Table D), the user challenges the agent's motivations: "Why did you go on that mission? I thought you were afraid of dying?" Initially, the model assumes fear-based reluctance, but after retrieving relevant context (e.g., family ties), it revises its reasoning and generates a more accurate, emotionally grounded response. This self-correction process highlights an emergent *self-reflection* ability, where retrieval informs dynamic reasoning adjustment.

These examples showcase R4's capacity to blend character grounding, retrieval-augmented reasoning, and high-level behavioral coherence—key to effective role-playing dialogue.