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ABSTRACT

High-resolution medical images pose considerable computational challenges
for training deep learning models. While modern architectures continue to
achieve strong performance, these demands have motivated a shift toward latent
space–based approaches. Particularly in generative modeling, Variational Autoen-
coders (VAEs) provide an efficient foundation for representation learning. The
effectiveness of this entire paradigm, however, is contingent upon the VAE’s abil-
ity to fulfill a dual mandate: preserving sufficient information for downstream
understanding tasks while enabling high-fidelity image generation. Despite the
central role of this dual capability, the medical imaging community lacks a stan-
dardized framework for its systematic evaluation. To fill this gap, we introduce
MediBench, a comprehensive benchmark designed to systematically evaluate
how existing VAEs perform in the medical domain. Our framework evaluates
VAEs across three pillars: (1) Reconstruction Fidelity and (2) Clinical Structure
Preservation to evaluate whether reconstructions maintain essential clinically rel-
evant structures, and (3) Latent Space Utility to measure the effectiveness of the
learned latent space in supporting clinically relevant downstream analyses. We
conduct an extensive evaluation on a diverse suite of medical datasets, comparing
a wide range of general-purpose and medical-specific VAE architectures across 2D
and 3D modalities. Our analysis reveals consistent trade-offs across the three pil-
lars. Tokenized and vector quantized VAEs learn stronger latents than continuous
VAEs. Medical pretraining improves transfer and structural preservation. Higher
pixel fidelity often does not translate into downstream gains. MediBench provides
a standardized and clinically grounded tool for selecting and developing VAEs in
medicine. It advances reliable and efficient foundation models for medical AI.

1 INTRODUCTION

The resolution of medical imaging keeps rising. Digital pathology reaches gigapixel scales. Radi-
ology acquires full volumes in CT and MRI. These advances give clinicians unprecedented anatom-
ical and pathological detail (Patil et al., 2024). They also introduce heavy computational costs that
slow down model development and deployment (Sarki et al., 2023). As a result, many pipelines
move computation to compact latent spaces instead of raw pixels. This shift powers both generative
tasks, such as high-fidelity synthesis with latent diffusion (Rombach et al., 2022), and understand-
ing tasks, such as disease classification and segmentation (Marisca et al., 2023). Variational Au-
toencoders (VAEs) sit at the center of this paradigm. They produce efficient and informative latent
representations. The quality of these latents largely determines the reliability of later generative and
discriminative models.

The role of the VAE introduces a rate versus distortion trade-off. The encoder must retain task-
relevant information while keeping reconstruction errors low. Improving one objective does not
guarantee the other. Aggressive compression may blur thin vessels or under-encode low-contrast
lesions. In practice, many medical pipelines reuse VAEs trained on natural images (StabilityAI,
2022). This creates cross-domain shifts in intensity calibration, resolution, and protocol. Small
or rare findings can be affected disproportionately. Downstream linear probes and segmentation
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Figure 1: Benchmarking data. Modalities and downstream tasks included in MediBench. We
cover histopathology, dermatoscopy, fundus photography, chest X-ray, and 3D MRI/CT cohorts
with clinically meaningful tasks (e.g., tumor detection, disease grading, anatomical segmentation).

can also change (Guan & Liu, 2021). These issues motivate a principled evaluation that measures
reconstruction fidelity, clinical structure preservation, and latent utility.

From a practical standpoint, VAEs are now central to medical AI. Pathology scanners produce gi-
gapixel slides. Radiology systems handle thousands of 3D scans per day. Direct pixel-space model-
ing is often infeasible. Compact latents reduce storage and transmission. They speed up training and
inference. They also enable real-time or resource-constrained deployment. If a VAE fails to preserve
critical structures, the downstream pipeline suffers. Diagnosis and planning can be compromised.
A medical VAE benchmark is therefore useful in practice. It should tell practitioners which models
balance compactness and clinical fidelity.

Scientifically, systematic evaluation of medical VAEs remains limited. Model designs are diverse.
Reports differ in datasets, resolutions, and training regimes. Results are hard to compare across
studies. This echoes computer vision before ImageNet. Progress existed, but it was difficult to
measure. A standardized medical VAE benchmark can change this. It can align evaluation across
modalities and tasks. It can turn isolated improvements into cumulative progress.

Medical imaging also poses unique challenges. Downstream tasks are sensitive to subtle structural
errors. A blurred branch or a missed small lesion may change interpretation. Compression levels
that look harmless on natural images may erase diagnostic patterns. Natural-image benchmarks
do not capture these risks. A medical benchmark should therefore be judged by practical utility.
It should help choose the right VAE for clinical or research use. It should balance efficiency and
reliability.

Common metrics have limits. PSNR and FID are convenient, but they measure pixels or distribu-
tions (Zhang et al., 2018). They can miss structural errors that matter clinically. They also say
nothing about how useful the latent is for classification or segmentation. This gap calls for a frame-
work that evaluates complementary dimensions tied to clinical plausibility and task performance.

We introduce MediBench to meet this need. The benchmark evaluates VAEs against their dual
mandate in medicine. It covers diverse modalities and resolutions. It separates competing goals
and reports clear summaries. First, we assess reconstruction fidelity with SSIM and PSNR on
held-out data using consistent normalization and subject-wise splits. This yields a concise view
of rate vs. distortion under clinically relevant resolutions. Second, we evaluate clinical structure
preservation. We generate label maps on original and reconstructed images using robust pretrained
segmenters. We then compare structure-focused metrics, including model-provided quality scores
and label agreement. This targets semantically meaningful anatomy and aligns with clinical reading.
Third, we measure latent representation utility. We train lightweight classifiers on VAE latents and
compare to image-based baselines on raw inputs. For 2D we report Accuracy, Macro F1, Precision,
Recall, and Macro AUC. For 3D we compare Image Accuracy and Latent Accuracy under standard-
ized protocols. This isolates the value of the representation and highlights when compact latents
remain discriminative.
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With MediBench, we run a head to head comparison of medical specific and general purpose VAEs
in both 2D and 3D. We cover multiple modalities and report both per dataset and aggregated results.
The benchmark exposes clear patterns: tokenized and vector quantized models deliver stronger
latent utility, medical pretraining improves transfer, and gains in SSIM or PSNR do not guarantee
downstream performance. Structure aware metrics capture failure modes that pixel metrics miss.
MediBench therefore enables principled model selection and development for medical AI.

2 RELATED WORK

2.1 VAES AND LATENT SPACE MODELING IN MEDICAL IMAGING

Variational Autoencoders (VAEs) have been central to modern generative modeling and representa-
tion learning since their introduction by Kingma & Welling (2014). By optimizing the ELBO to bal-
ance reconstruction and latent regularization, VAEs learn structured latent spaces that support both
synthesis and analysis. Beyond the original continuous formulation, a rich line of discrete/quantized
models replaces Gaussian latents with codebooks. VQ-VAE and VQ-VAE-2 alleviate posterior
collapse and yield sharper reconstructions through a categorical bottleneck (Van Den Oord et al.,
2017; Razavi et al., 2019), while VQ-GAN adds perceptual and adversarial terms to recover high-
frequency detail without sacrificing a learnable latent interface (Esser et al., 2021). Residual or
multi-stage quantization increases effective capacity by composing quantizers (Lee et al., 2022).
Recent work further casts quantization itself as stochastic variational inference: SQ-VAE improves
codebook utilization and stability without heuristic resets (Takida et al., 2022) and explores tok-
enization without explicit codebooks via binary/spherical constraints for extremely compact visual
tokens (Zhao et al., 2024).

Progress on priors and inference complements these designs. Hierarchical and multi-scale de-
coders (NVAE/VDVAE-style pyramids) factorize latents across depth to capture global-to-local
structure; flow-augmented inference and flow/autoregressive priors shrink amortization gaps and
better fit complex posteriors; PixelVAE-style decoders model high-frequency detail while latents
encode semantics. Objective-side refinements such as β-VAE/FactorVAE for disentanglement and
WAE/InfoVAE-style distribution matching, together with practical recipes like KL annealing, free
bits, and perceptual losses, mitigate blurriness or collapse and improve downstream utility. Two
recent peer-reviewed surveys synthesize these axes: Foo et al. (2023) situates hierarchical, dis-
crete/quantized, and hybrid VAE families within contemporary AIGC pipelines, and Teli (2025)
emphasizes clinically motivated variants that promote sparse/structured latents, sharpen reconstruc-
tions with adversarial or perceptual terms, and integrate heterogeneous inputs.

These properties are especially attractive in medical imaging, where data are high dimensional and
labels expensive. On the generative side, VAEs and hybrids synthesize data to balance rare co-
horts and reconstruct missing modalities, from PET-from-MRI translation to diffusion-augmented
pipelines operating in compact latents (Pan et al., 2018; Meng et al., 2024). On the analytical side,
VAE-derived features support classification, anomaly detection, and interpretable diagnosis; exam-
ples include attribute-aligned latents for myocardial infarction prediction and reconstruction-error
screening for head-CT quality control (Marisca et al., 2023; Ghosh et al., 2023). Together, these re-
sults underscore the dual role of VAEs in medicine: enabling realistic, controllable image generation
while providing compact, discriminative representations for downstream analysis.

2.2 BENCHMARKING VAES AND VISUAL REPRESENTATIONS

Standardized evaluation of VAEs has lagged behind their adoption. In the general domain, TokBench
examines whether VAEs preserve fine-grained cues such as text and faces (Wu et al., 2025), and
VBench organizes video evaluation along perceptual, motion, and fidelity dimensions (Wang et al.,
2024). These protocols, however, do not directly address medical idiosyncrasies: domain shift across
scanners and protocols, limited labels, and strict requirements for robustness and interpretability
(Ghassemi et al., 2020). Moreover, pixel/distribution scores like PSNR or FID may miss subtle
but clinically consequential structural errors and say little about latent informativeness for analysis
(Zhang et al., 2018).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Motivated by these gaps, our benchmark adopts three complementary pillars—reconstruction fi-
delity, clinical structure preservation, and latent-space utility—under consistent, modality-aware
protocols. Full definitions and implementation details appear in Sections 3 and 4.

3 MEDIBENCH: FRAMEWORK AND METRICS

To systematically assess the fitness of Variational Autoencoders (VAEs) for their dual mandate in
medicine, we introduce MediBench, a comprehensive evaluation framework. This section lays out
the methodological foundation of our benchmark. We begin by providing the necessary technical
preliminaries on VAE architectures, then detail our unified evaluation pipeline, and finally, provide
formal definitions and computational details for each of our evaluation metrics.

3.1 PRELIMINARIES: VAES AND VQ-VAES

Our benchmark evaluates two primary families of autoencoder architectures that are foundational to
modern latent space-based models.

Variational Autoencoders (VAEs). The standard VAE (Kingma & Welling, 2014) learns a map-
ping to a continuous latent space. It consists of a probabilistic encoder qϕ(z|x) that models the
distribution of the latent vector z given an input image x, and a probabilistic decoder pθ(x|z) that
models the distribution of the image given the latent vector. The encoder typically outputs the pa-
rameters of a diagonal Gaussian distribution, N (µ,σ2I). The model is trained by maximizing the
Evidence Lower Bound (ELBO) on the data log-likelihood:

LELBO(θ, ϕ;x) = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z)) (1)

where the first term is the expected reconstruction log-likelihood and the second is the Kullback-
Leibler (KL) divergence between the encoder’s output distribution and a prior p(z), usually a stan-
dard normal distribution.

Vector-Quantised Variational Autoencoders (VQ-VAEs). In contrast, the VQ-VAE (Van
Den Oord et al., 2017) learns a discrete latent representation. Its encoder E(x) produces a contin-
uous output feature map ze(x) ∈ Rh×w×d. This output is then quantized by replacing each vector
with its nearest neighbor from a learned, finite codebook of embeddings E = {ek}Kk=1, ek ∈ Rd.
The quantization process for a vector zij at a spatial location (i, j) can be written as:

zq(x)ij = Quantize(ze(x)ij) = ek where k = argmin
j

||ze(x)ij − ej ||2 (2)

The decoder then reconstructs the image from this quantized feature map zq(x). This discrete repre-
sentation is often better at preserving sharp details in reconstructions. Both architectures are assessed
on their ability to perform Image Reconstruction and Feature Encoding.

3.2 EVALUATION PIPELINE

The core of MediBench is a unified pipeline that assesses a given VAE across our three evaluation
pillars, as illustrated in Figure 2. An input medical image x (either 2D or 3D) is passed through
the VAE’s encoder to produce a latent representation z and a reconstructed image x̂. These outputs
are then systematically evaluated according to our three pillars: Pillar 1 (Reconstruction Fidelity)
quantifies pixel-level accuracy using PSNR and SSIM. Pillar 2 (Clinical Structure Preservation)
applies only to 3D data, where we use segmentation-based quality and similarity measures to as-
sess structural plausibility. Pillar 3 (Latent Representation Power) evaluates the utility of z for
downstream classification tasks, with performance compared against image-based baselines. Rep-
resentative qualitative examples of reconstruction and subtraction maps are provided in Figure 3,
demonstrating how these pillars complement each other in practice. For all metrics, let x be the
original image and x̂ be the reconstructed image.

Pillar 1: Reconstruction Fidelity. This pillar assesses the global quality of the reconstructed im-
age. For both 2D and 3D data, we report two metrics. First, the Peak Signal-to-Noise Ratio (PSNR),
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Figure 2: The MediBench evaluation pipeline. An input medical image x is processed to generate a
latent representation z and a reconstructed image x̂. These outputs are then systematically assessed
by our three evaluation pillars, corresponding to the dual mandate of understanding and generation.
The pipeline is applied to multiple datasets across various modalities.

which measures the ratio between the maximum possible power of a signal and the power of cor-
rupting noise that affects the fidelity of its representation:

PSNR(x, x̂) = 10 · log10
(

MAX2
I

MSE(x, x̂)

)
, (3)

where MAXI is the maximum possible pixel value of the image and MSE is the Mean Squared
Error. Second, the Structural Similarity Index (SSIM), which measures the similarity between two
images based on luminance, contrast, and structure. Higher values indicate better similarity.

Pillar 2: Clinical Structure Preservation. This pillar evaluates whether diagnostically critical
features are preserved, a key aspect of the generative mandate. It applies only to 3D data, since
anatomical structures in volumetric scans (e.g., brain regions, organs) are meaningful to assess in
this way. We leverage an automated segmentation tool as a proxy for expert anatomical assessment.
First, Segmentation Quality Control (Seg QC) uses SynthSeg v2 Billot et al. (2023) to assign plausi-
bility scores for reconstructed volumes. The final score is the average QC score across all anatomical
regions of interest (ROIs). Second, Segmentation Similarity (SegSim) directly measures the voxel-
wise label agreement between segmentation maps of the original and reconstructed images:

SegSim(x, x̂) =
1

N

N∑
i=1

1(S(x)i = S(x̂)i), (4)

where S(·) denotes segmentation maps and 1(·) is the indicator function. Scores closer to 1 indicate
better structural preservation.

Pillar 3: Latent Representation Power. This pillar quantifies the utility of the latent space for
downstream understanding tasks by measuring the performance of classifiers trained directly on
latent vectors. For 2D tasks, we report Accuracy, Macro F1-score, Precision, Recall, and Macro
AUC. These metrics are compared against two image-based baselines: a ResNet-18 feature extractor
with an MLP, and a simpler MLP trained directly on raw images. For 3D tasks, we report Image
Accuracy (using a SEResNet152 from MonAI Cardoso et al. (2022) + MLP baseline trained on raw
volumes) and Latent Accuracy (using an MLP classifier trained on the VAE’s latent vectors).

4 EXPERIMENTS

4.1 DATASETS

We evaluate MediBench on a diverse suite of public datasets spanning histopathology, der-
matoscopy, fundus photography, chest X-ray, and 3D magnetic resonance imaging(MRI)/computed
tomography(CT). When official splits exist, we follow them and report on the official test set. Other-
wise we construct patient/subject-wise splits to prevent leakage and report on the held-out validation
set. Expanded dataset narratives and exact split/count details are provided in Appendix B.
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Figure 3: Qualitative comparison of reconstructions and subtraction maps. The main text shows
two modalities (CT scan, Chest X-ray). Rows are modalities and columns are VAEs (MedVAE,
MediTok, PUMIT, VQ-GAN, SDXL, TokenFlow, UniTok, Emu3). Top: reconstructions; Bottom:
subtraction maps vs. ground truth. The complete panel appears in Appendix C Figure 6.

4.2 EXPERIMENT DETAILS AND RESULTS

We evaluate MediBench under a unified experimental skeleton and report consolidated findings.
Implementation choices are standardized across models when possible and follow official releases.
Full details, including the dataset overview tables formerly in the main text, now appear in Appendix.

Qualitative reconstructions. Figure 3 shows two representative 2D modalities. We include CT scan
and chest X-ray to highlight challenging settings. (The full multi-modality panel is in Appendix.)
Tokenized and VQ-style models (MediTok, PUMIT, TokenFlow, UniTok, Emu3, VQ-GAN) pre-
serve sharper boundaries and leave fewer residuals in subtraction maps. Continuous VAEs (Med-
VAE, SDXL) produce smoother images but may attenuate fine details. These visual trends align
with the quantitative results below.

2D results. Tokenization dominates latent classification. MediTok and PUMIT achieve very strong
AUC on histopathology and dermatoscopy (e.g., 0.961 and 0.962 on histopathology; 0.961 and
0.923 on dermatoscopy in Table 2). TokenFlow is also competitive across modalities (column-
average AUC 0.829). Continuous VAEs trail on AUC despite strong SSIM and PSNR. For example,
SDXL has high SSIM in Table 1 but moderate AUC in Table 2. This shows that pixel fidelity and
discriminative utility are weakly aligned in 2D.

Resolution effects are modest. Higher resolution improves SSIM and PSNR but often yields small
AUC gains. Some datasets benefit slightly. Others do not. Ranking and thresholding can diverge on
imbalanced tasks. Several models reach high AUC with low macro-F1. This indicates probability
clustering near decision thresholds and weaker minority-class calibration.

3D results. Medically pre-trained tokenizers transfer well to volumes. On fMRI (Parkinson), Med-
iTok reaches latent AUC 0.885 versus MedVAE 0.625 in Table 5. On CT (Coltea), MediTok attains
latent AUC 0.983. Continuous decoders can deliver very high pixel fidelity. SDXL and MediTok
both exceed 0.96 SSIM on CT (Table 3). Latent AUC does not always follow fidelity. Segmentation
proxies are sensitive to structure. On T1 MRI (Parkinson), MediTok improves SegSim (99.2) over
MedVAE (91.4) with similar SegQC (84.1 vs. 84.5) in Table 4. This suggests that large-scale pre-
training can compensate for architectural constraints. It also explains why MediTok, although not
natively 3D, is competitive on structure preservation.

Domain mismatch hurts continuous VAEs on specific cohorts. MedVAE underperforms on fMRI
and multi-modal MRI in Table 3 (e.g., 0.359 SSIM on MRI Parkinson; 0.180 on BraTS). A likely
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Table 1: 2D Panel A: Reconstruction fidelity. psnr/ssim at 256×256. Columns are grouped by
model family. The last column is the row average. The last row is the column average. Bold marks
the maximum per column by SSIM.

Continuous VAEs VQ VAEs Avg

Modality SDXL MedVAE VQ-GAN MediTok PUMIT TokenFlow UniTok Emu3

Histopathology 26.0/0.740 20.6/0.840 19.5/0.394 25.6/0.796 20.9/0.773 21.1/0.461 24.5/0.718 24.3/0.678 22.8/0.675
Dermatoscopy 37.2/0.905 22.5/0.905 29.4/0.769 33.6/0.899 29.0/0.881 31.1/0.789 33.5/0.869 34.9/0.865 31.4/0.860
Fundus 41.0/0.964 20.5/0.900 30.1/0.821 36.6/0.958 33.9/0.937 33.0/0.905 36.4/0.941 37.8/0.944 33.7/0.921
Chest X-ray 30.5/0.881 34.2/0.951 22.8/0.620 29.4/0.886 29.3/0.877 24.8/0.696 17.2/0.501 28.9/0.826 27.2/0.780

Average 33.7/0.872 24.5/0.899 25.5/0.651 31.3/0.885 28.3/0.867 27.5/0.713 27.9/0.757 31.5/0.829 N/A

Table 2: 2D Panel B: Latent representation power. AUC at 256×256. Columns are grouped by
model family. Each row average is in the last column. The last row reports column-wise averages
across modalities. Bold marks the maximum per column.

Continuous VAEs VQ VAEs Avg

Modality SDXL MedVAE VQ-GAN MediTok PUMIT TokenFlow UniTok Emu3

Histopathology 0.842 0.500 0.856 0.961 0.962 0.952 0.889 0.769 0.841
Dermatoscopy 0.873 0.771 0.862 0.961 0.923 0.933 0.879 0.675 0.847
Fundus 0.681 0.611 0.636 0.883 0.817 0.753 0.701 0.702 0.723
Chest X-ray 0.565 0.578 0.638 0.659 0.650 0.677 0.655 0.631 0.631

Average 0.740 0.615 0.748 0.866 0.838 0.829 0.781 0.694 N/A

Table 3: 3D Panel A: Reconstruction fidelity. psnr/ssim. Grouped by model family. Row and
column averages included. Bold marks the maximum per column by SSIM.

Continuous VAEs VQ VAEs Avg

Modality SDXL MedVAE VideoVAE CVVAE MediTok CogVideoX

fMRI (Parkinson) 29.0/0.630 27.0/0.555 28.0/0.558 31.4/0.776 30.1/0.784 27.5/0.712 28.8/0.669
fMRI (NeuroEmo) 43.1/0.952 30.0/0.597 42.9/0.910 42.9/0.899 44.1/0.948 29.8/0.557 38.8/0.811
MRI (Parkinson) 45.6/0.928 25.3/0.359 42.0/0.905 37.4/0.893 47.3/0.926 38.9/0.896 39.4/0.818
MRI (BraTS 2023) 26.0/0.204 23.5/0.180 22.3/0.158 17.8/0.150 40.7/0.968 26.5/0.216 26.1/0.313
CT (Coltea) 41.1/0.961 27.8/0.774 39.1/0.954 37.7/0.929 37.9/0.960 34.7/0.912 36.4/0.915

Average 37.0/0.735 26.7/0.493 34.9/0.697 33.4/0.729 39.4/0.917 31.5/0.659 N/A

Table 4: 3D Panel B: Clinical structure preservation. SegQC/SegSim. Grouped by model family.
Row and column averages included. Bold marks the maximum per column.

Continuous VAEs VQ VAEs Avg

Modality SDXL MedVAE VideoVAE CVVAE MediTok CogVideoX

MRI (Parkinson) 99.1/84.0 84.5/91.4 98.3/83.5 98.5/83.4 84.1/99.2 84.2/99.2 91.5/90.1
MRI (BraTS 2023) 79.5/98.3 79.4/98.1 70.8/95.7 78.6/97.6 79.6/98.3 79.2/98.5 77.9/97.8

Average 89.3/91.2 82.0/94.8 84.6/89.6 88.6/90.5 81.9/98.8 81.7/98.9 N/A

cause is limited exposure to those contrasts during pretraining. Pretraining scale matters. MediTok
benefits from broader pretraining data and thus outperforms MedVAE on several volumetric tasks,
including improved SegSim (98.8 vs. 94.8) and similar SegQC (81.9 vs. 82.0). Tokenized and VQ-
style models (MediTok, CogVideoX) also preserve more clinical structure detail.

Latent size and compression. Table 6 reports latent shapes and compression ratios for 2562 and
5122 inputs and a representative 3D setting. Combining these with publicly available parameter
counts where checkpoints are disclosed, we observe that raw parameter count is a weak predictor of
downstream performance. Tokenizer type and latent compactness matter more. Tokenized and VQ
models (MediTok, PUMIT, TokenFlow) reach the highest latent AUCs in 2D with compact latents
(e.g., MediTok uses 768 tokens, ratio 0.004 at 2562 and 0.001 at 5122). Continuous VAEs such as
SDXL-VAE have ratios around 0.083. High SSIM and PSNR do not guarantee strong latent utility.
SDXL shows high reconstruction fidelity and moderate AUC on several datasets. This matches
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Table 5: 3D Panel C: Latent representation power. AUC for latent (top) and reconstruction-
embedding (bottom). Grouped by model family. Row and column averages included. Bold marks
the maximum per column.

Continuous VAEs VQ VAEs Avg

Latent Embedding SDXL MedVAE VideoVAE CVVAE MediTok CogVideoX

fMRI (Parkinson) 0.985 0.625 0.926 0.910 0.885 0.465 0.799
fMRI (NeuroEmo) 0.506 0.519 0.531 0.553 0.493 0.501 0.517
MRI (Parkinson) 0.560 0.415 0.535 0.526 0.485 0.551 0.512
CT (Coltea) 0.801 0.592 0.776 0.714 0.983 0.814 0.780

Average 0.713 0.538 0.692 0.676 0.709 0.583 N/A

Reconstruction Image Embedding SDXL MedVAE VideoVAE CVVAE MediTok CogVideoX

fMRI (Parkinson) 0.580 0.482 0.508 0.509 0.575 0.547 0.533
fMRI (NeuroEmo) 0.512 0.496 0.507 0.510 0.510 0.493 0.505
CT (Coltea) 0.625 0.667 0.620 0.767 0.683 0.687 0.675

Average 0.572 0.548 0.545 0.595 0.589 0.576 N/A

PSNR (Rec)

SSIM (Rec)

Latent Acc (Latent)

Seg QC (Seg)
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Figure 4: Correlation heatmaps on the 3D MRI T1 dataset. Left: metric-level correlation among
PSNR, SSIM, latent accuracy, and segmentation metrics. Right: pillar-level correlation. Both
heatmaps are block-partitioned by downstream tasks. Black gridlines delineate task boundaries.

(a) Raw (b) MedVAE (c) MediTok (d) cogvideox (e) SDXL (f) VideoVAE (g) CVVAE

Figure 5: Segmentation overlays for reconstructed 3D scans (axial and sagittal views).

the finding that pixel fidelity and discriminative power are only partially aligned. In 3D, medical
pretraining and tokenizer design dominate. MediTok improves structure-preservation metrics over
MedVAE with similar quality-control scores. It also achieves strong latent AUC on CT although it
is not a native 3D encoder.
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Table 6: Latent shapes and compression ratios. Shapes from representative runs. Compression
ratio is #latent elements divided by #input elements. 2D inputs use 3 channels. Lower is more
compact.

Method Latent Shape #Elements Ratio @2562 (@5122)

VQ-GAN (256, 32, 32) 262,144 1.333 (0.333)
MedVAE (3, 128, 128) 49,152 0.250 (0.063)
SDXL-VAE (4, 64, 64) 16,384 0.083 (0.021)
Emu3-VQ (4, 1, 64, 64) 16,384 0.083 (0.021)
PUMIT (512, 32, 32) 524,288 2.667 (0.667)
MediTok (768) 768 0.004 (0.001)
UniTok (1024, 1024) 1,048,576 5.333 (1.333)
TokenFlow (40, 32, 32) 40,960 0.208 (0.052)

3D example (input 128×128×36; total elements 589,824)

MedVAE (32, 32, 9) 9,216 0.0156
MediTok (36, 768) 27,648 0.0469
CogVideoX (16, 32, 16, 4) 32,768 0.0556
SDXL (36, 4, 16, 16) 36,864 0.0625
VideoVAE (4, 9, 16, 16) 9,216 0.0156
CVVAE (4, 10, 16, 16) 10,240 0.0174

5 CONCLUSION AND DISCUSSION

This work introduces MediBench, a benchmark for medical VAEs that measures reconstruction fi-
delity, clinical structure preservation, and latent utility in a single framework. We evaluate continu-
ous and tokenized architectures across diverse modalities and tasks. The analysis yields three central
findings. First, tokenized and vector quantized encoders provide stronger latent representations than
continuous VAEs. They preserve sharp boundaries and fine textures in reconstructions. They also
produce latents that support classification across multiple datasets. MediTok, PUMIT, and Token-
Flow achieve the highest AUC in most 2D settings. They remain competitive in 3D tasks. Second,
medical pretraining matters. Models with broader exposure to clinical data preserve anatomy more
faithfully and transfer better. Continuous VAEs trained on natural images can attain high SSIM
and PSNR. They do not always yield high downstream performance. The gap is largest under do-
main shift, such as fMRI and multi–sequence MRI. MediTok benefits from larger and more diverse
pretraining and performs well even without a native 3D encoder. Third, pixel fidelity and discrim-
inative utility are only partially aligned. Raising resolution from 256 to 512 increases SSIM and
PSNR. AUC often changes little and sometimes drops. High AUC with low macro–F1 is common
on imbalanced tasks. Scores rank classes well yet cluster near default thresholds. Calibration and
class–aware decision rules are therefore important.

Our study also highlights the value of structure–aware evaluation. Segmentation–derived metrics are
more sensitive to small boundary shifts than pixel metrics. They better reflect clinical plausibility.
They capture failure modes that SSIM and PSNR may miss.

Limitations. This benchmark has limitations. The datasets are diverse yet finite. The CheXpert split
is a curated subset. SLAKE relies on VQA–style labels that are not dense segmentations. Some 3D
evaluations adapt models trained primarily on 2D data. Segmentation proxies do not replace clinical
endpoints. We report consolidated results in the main paper and provide extensive tables in the
appendix.

Future work will expand both scope and depth. We will add ultrasound and PET and include
multi–institution cohorts. We will study calibration, robustness, and fairness under shift. We will
incorporate native 3D tokenizers and cross–resolution consistency tests. We will evaluate clinical
endpoints and decision support scenarios. We will release task–specific adapters and stronger seg-
mentation oracles. These steps will advance the selection and design of medical VAEs and will
improve the reliability of latent spaces used in clinical pipelines.
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ETHICS STATEMENT

This work uses only publicly available medical-imaging datasets under their respective licenses.
All data were de-identified by the providers prior to our access. No additional data collection or
interaction with human subjects was conducted; therefore, no new IRB approval was required. We
report results at the subject level where applicable and avoid leakage via patient-wise splits.

We consider potential risks, including privacy leakage and clinically misleading reconstructions.
We mitigate these risks by (i) using patient-wise splits and standardized preprocessing, (ii) auditing
reconstructions with structure-preservation and quality-control metrics, and (iii) releasing only the
artifacts needed to reproduce the reported tables and figures under a research license. We discuss
dual-use concerns (e.g., synthetic images) and restrict releases to research purposes.

We estimate the computational footprint of training and evaluation in the Appendix and encourage
energy-efficient replication and reporting of compute/energy usage in follow-up work.

USE OF GENERATIVE AI

We used a large language model only to aid writing (grammar/style polishing) after the technical
content was drafted by the authors. The model was not used to generate datasets, code, results,
analyses, or claims. All scientific content, tables, and numbers originate from our pipeline and were
manually verified by the authors. Texts revised by generative AI are manually reviewed to ensure
factual correctness and to avoid biased or fabricated statements.

REPRODUCIBILITY STATEMENT

We release code, configs, and scripts to reproduce every table and figure in the paper.1 Our release
includes:

• Datasets and splits. Exact dataset versions, licenses, and subject-wise splits; preprocess-
ing steps with parameters (see Section 4 and Appendix B).

• Environments. Hardware/software details (GPU type, CUDA/cuDNN, Python/PyTorch),
dependency lockfiles, and Docker files; fixed random seeds (see Appendix A).

• Training and inference. Commands and configuration files for each model; hyperparame-
ters (optimizer, schedule, batch size, epochs), and expected wall-clock time (see Section 4
and Appendix A).

• Evaluation. Scripts for reconstruction metrics (e.g., SSIM/PSNR), structure-preservation
and quality-control metrics, and latent-utility tasks with identical protocols across models
(see Section 3).

• Models. Pointers to official checkpoints where licenses permit; for each VAE/tokenizer,
we document any deviations from the authors’ official recipes.

• Determinism. We set seeds and log non-deterministic CuDNN flags; we report mean ± std
over multiple runs where appropriate (see Appendix A).

These materials allow independent researchers to reproduce the reported numbers and regenerate all
plots and tables with a single command per experiment.

1Repository and checkpoints: <anonymized-link>.
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A EXPERIMENTAL DETAILS

Environments. All 2D experiments use a single NVIDIA RTX A5500 (24GB). All 3D experi-
ments use a single NVIDIA RTX 4090. For each VAE (2D/3D) we adhere to its official environment
(library versions, CUDA/cuDNN, dependencies) as specified by the authors to ensure out-of-the-box
behavior; custom code is limited to data I/O, metric computation, and training wrappers.

Pre-processing. For 2D data, images are resized to 256×256 and 512×512, converted to 3-
channel RGB, then normalized following each VAE’s official recipe. For 3D volumes, intensities
are normalized to [0, 1] for I/O and to [−1, 1] at the VAE encoder input; reconstructions are denor-
malized to [0, 1] for metrics.

Downstream classifiers. For 2D, we train an MLP on latents and compare against two image
baselines (ResNet-18+MLP; MLP on raw images). For 3D, the image baseline uses SEResNet152
features (2048-d) with a linear head; the latent branch flattens the latent and applies a linear classifier.
Optimizers, LR schedules, batch sizes and early stopping follow Section 4; any remaining dataset-
specific settings are provided alongside the full tables below.

Segmentation-driven evaluation (3D). We compute segmentation maps on originals and recon-
structions and report quality/similarity measures (SegQC/SegSim). These metrics reflect preserva-
tion of semantically meaningful anatomy beyond pixel similarity.

B DATASET DETAILS

CheXpert-Plus (subset). A curated subset of 5,000 frontal CXR with 14 thoracic findings; strict
patient-wise 80/20 split (4,000/1,000), reporting on the held-out test.

SLAKE (VQA-derived classification). This is a VQA corpus where each image is paired
with Q/A tuples, e.g., {"question": "What modality is used?", "answer":
"MRI", "content type": "Modality"} or {"question": "Which part of
the body?", "answer": "Abdomen", "content type": "Position"}. We
derive a 3-class content-type label ({Modality, Organ, Position}) from these annotations, enabling a
clinically meaningful metadata classification without pixel-level labels.
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Other datasets. MedMNIST v3 subsets (Path/Derma/Retina) use official splits; PCam uses offi-
cial splits; DERM12345 uses patient-wise 80/20; DDR follows the official split (13,673 train / 6,667
test). 3D cohorts (ds005700, ds005892, Coltea, BraTS 2023) follow the subject-wise protocols sum-
marized in Tables 11–12 (main text).

C FULL QUALITATIVE PANELS
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Figure 6: Complete modality-organized panel of reconstructions and subtraction maps across
all VAEs. This expands Figure 3 in the main text to include all modalities and all methods.
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Table 7: 2D Reconstruction (256×256). SSIM and PSNR dB per dataset and method.

Dataset MedVAE MediTok PUMIT VQ-GAN SDXL TokenFlow UniTok Emu3

dermamnist 0.905 (22.5) 0.899 (33.6) 0.881 (29.0) 0.769 (29.4) 0.905 (37.2) 0.789 (31.1) 0.869 (33.5) 0.865 (34.9)
pathmnist 0.840 (20.6) 0.796 (25.6) 0.773 (20.9) 0.394 (19.5) 0.740 (26.0) 0.461 (21.1) 0.718 (24.5) 0.678 (24.3)
retinamnist 0.900 (20.5) 0.958 (36.6) 0.937 (33.9) 0.821 (30.1) 0.964 (41.0) 0.905 (33.0) 0.941 (36.4) 0.944 (37.8)
pcam 0.898 (21.6) 0.858 (25.2) 0.848 (29.8) 0.379 (17.6) 0.796 (25.0) 0.464 (19.1) 0.772 (23.8) 0.718 (23.0)
ddr 0.818 (19.7) 0.903 (35.1) 0.880 (32.6) 0.762 (29.1) 0.916 (38.2) 0.805 (29.6) 0.850 (32.3) 0.887 (35.6)
chexpert plus 0.951 (34.2) 0.886 (29.4) 0.877 (29.3) 0.620 (22.8) 0.881 (30.5) 0.696 (24.8) 0.501 (17.2) 0.826 (28.9)
slake 0.964 (36.1) 0.926 (30.8) 0.906 (29.8) 0.731 (23.2) 0.926 (32.2) 0.817 (25.6) 0.905 (29.5) 0.901 (30.6)

Table 8: 2D Reconstruction (512×512). SSIM and PSNR dB per dataset and method.

Dataset MedVAE MediTok PUMIT VQ-GAN SDXL TokenFlow UniTok Emu3

dermamnist 0.947 (22.8) 0.956 (35.1) 0.910 (26.6) 0.879 (31.1) 0.962 (40.3) 0.867 (30.5) 0.948 (36.9) 0.940 (37.3)
pathmnist 0.919 (21.9) 0.917 (29.8) 0.877 (22.2) 0.596 (22.8) 0.911 (32.2) 0.524 (21.0) 0.889 (29.6) 0.849 (29.6)
retinamnist 0.922 (20.7) 0.978 (39.0) 0.950 (33.5) 0.826 (33.5) 0.983 (44.3) 0.883 (28.4) 0.971 (39.0) 0.971 (40.2)
pcam 0.939 (21.4) 0.958 (31.2) 0.897 (30.2) 0.621 (21.8) 0.968 (34.3) 0.530 (19.2) 0.941 (30.4) 0.915 (30.1)
ddr 0.761 (16.5) 0.878 (35.6) 0.858 (31.9) 0.748 (31.5) 0.895 (38.2) 0.741 (26.0) 0.831 (32.8) 0.866 (36.0)
chexpert plus 0.943 (35.7) 0.888 (31.0) 0.856 (26.9) 0.688 (25.2) 0.884 (32.7) 0.664 (23.7) 0.531 (17.2) 0.841 (31.1)
slake 0.965 (39.7) 0.932 (33.7) 0.908 (29.2) 0.755 (26.4) 0.928 (35.8) 0.716 (23.6) 0.913 (32.5) 0.910 (33.3)

D FULL PER-DATASET TABLES (256 AND 512)

D.1 2D RECONSTRUCTION FIDELITY (PER DATASET, ALL METHODS)

Each cell reports SSIM (PSNR in dB). Results are shown separately for 256×256 and 512×512.

D.2 CHEXPERT-PLUS LATENT CLASSIFICATION (256 AND 512)

Metrics include exact-match Accuracy, Macro AUC, Macro F1, Macro Precision, and Macro Re-
call. We report latent-based classifiers trained on the VAE representations for both 256×256 and
512×512.

E OVERVIEW OF DATASETS

Table 9: CheXpert-Plus latent classifiers at 256×256. Metrics are Accuracy, Macro AUC, Macro
F1, Precision, Recall (per method).

Method Acc. AUC F1 Prec. Rec.

MedVAE 0.738 0.578 0.061 0.053 0.071
MediTok 0.738 0.659 0.061 0.056 0.068
PUMIT 0.739 0.650 0.056 0.051 0.064
VQ-GAN 0.739 0.638 0.056 0.051 0.064
SDXL 0.740 0.565 0.056 0.049 0.065
TokenFlow 0.740 0.677 0.063 0.056 0.073
UniTok 0.740 0.655 0.058 0.052 0.068
Emu3 0.740 0.631 0.061 0.053 0.071
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Table 10: CheXpert-Plus latent classifiers at 512×512. Metrics are Accuracy, Macro AUC, Macro
F1, Precision, Recall (per method).

Method Acc. AUC F1 Prec. Rec.

MedVAE 0.741 0.582 0.061 0.053 0.071
MediTok 0.741 0.661 0.061 0.056 0.068
PUMIT 0.742 0.653 0.056 0.051 0.064
VQ-GAN 0.742 0.641 0.056 0.051 0.064
SDXL 0.742 0.567 0.056 0.049 0.065
TokenFlow 0.743 0.680 0.063 0.056 0.073
UniTok 0.742 0.657 0.058 0.052 0.068
Emu3 0.742 0.634 0.061 0.053 0.071

Table 11: Overview of 2D datasets in MediBench. We follow official splits when available;
otherwise we use patient-wise splits. Tasks are expressed in clinically meaningful terms (dis-
ease/severity/lesion) rather than generic “cls.”.

Dataset Modality (Input) Task Train/Total

PathMNIST
(MedMNIST v3)

Histopathology (224×224) Colon tissue-type classifica-
tion (9 classes)

89,996 /
107,180

DermaMNIST
(MedMNIST v3)

Dermatoscopy (224×224) Skin lesion classification (7
classes)

7,007 / 10,015

RetinaMNIST
(MedMNIST v3)

Fundus (224×224) Diabetic retinopathy severity
grading (5 ordinal classes)

1,080 / 1,600

PatchCamelyon
(PCam)

Histopathology (96×96) Metastatic tumor detection
(binary)

262,144 /
327,680

DERM12345 Dermatoscopy (→ 224×224) Fine-grained skin lesion
classification (40 classes)

9,876 / 12,345

DDR Fundus (→ 224×224) Diabetic retinopathy grading
(5 classes)

13,673 / 20,340

CheXpert-Plus Chest X-ray (→ 224×224) Thoracic disease multi-label
classification (14 labels)

4,000 / 5,000

SLAKE Mixed CT/MRI/X-ray (→
224×224)

Content-type classification
(3 classes: Modality / Organ
/ Position) from VQA anno-
tations

513 / 642

Table 12: Overview of 3D datasets in MediBench. Custom splits are subject-wise unless specified.
Tasks are phrased as disease/structure–centric semantics.

Dataset Modality (Input) Task Split / Size

ds005892
(func-
tional)

fMRI Parkinson’s disease status classification
(Healthy vs. PD vs. PD-MCI)

6 subjects held out;
49 / 55 subjects

ds005700 fMRI → 3D
(128×128×36)

Emotion recognition classification (6
categories)

4 subjects held out;
36 / 40 subjects

Coltea-
/Lung-
/CT-
/100W

Triphasic CT
(∼ 512×512×350)

Contrast phase classification
(Non-contrast, Venous, Arterial)

10 subjects held out;
90 / 100 subjects

ds005892
(struc-
tural)

T1w MRI Parkinson’s disease status classification
(Healthy vs. PD vs. PD-MCI)

10-fold CV;
49 / 55 subjects

ds005892
(struc-
tural)

T1w MRI Brain tissue segmentation
(grey matter, cerebellum, etc.)

BraTS
2023

Multi-modal MRI
(240×240×155)

Brain tumor segmentation
(enhancing, core, whole tumor)
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