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Abstract

We assemble a broad Natural Language Un-001
derstanding benchmark suite for the German002
language and consequently evaluate a wide ar-003
ray of existing German-capable models in order004
to create a better understanding of the current005
state of German LLMs. Our benchmark con-006
sists of 29 different tasks ranging over different007
types like document classification, sequence008
tagging, document embedding and question009
answering. We evaluate 10 different German-010
pretrained models and thereby chart the land-011
scape of German LLMs. In our comprehensive012
evaluation we find that encoder models are a013
good choice for most tasks, but also that the014
largest encoder model does not necessarily per-015
form best for all tasks. We make our benchmark016
suite and a leaderboard publically available at017
upon-acceptance.com and encourage the com-018
munity to contribute new tasks and evaluate019
more models on it.020

1 Introduction021

Fueled by the release of ChatGPT (OpenAI, 2022),022

the development of very capable, large language023

models (LLMs) has been accelerating, which also024

results in the release of more and more powerful025

models capable of the German language (Plüster,026

2023; Jiang et al., 2023). From an NLP point027

of view, German is a language that apart from028

smaller, commonly BERT-based models tradition-029

ally has seen little attention when it comes to pub-030

licly available, explicitly for German pretrained031

foundational models. This now led to the situation032

that an increasing number of presumably very capa-033

ble, German-pretrained LLMs are being released,034

but no established, diverse and systematic German035

evaluation suite for these models is available. To036

underline this point, we emphasize that, newly in-037

troduced German BERT-based models have histor-038

ically only been evaluated on two tasks (Scheible039

et al., 2020; Chan et al., 2020) each, which is not040

enough to get a comprehensive understanding of041

the models capabilities. Such a German evalua- 042

tion suite is desireable to properly compare and 043

assess the abilities of existing but also newly de- 044

veloped models, like there is e.g. for English with 045

GLUE (Wang et al., 2018), SuperGLUE (Wang 046

et al., 2019) or even more recently OpenCom- 047

pass (2023). Consequently researchers turned to 048

these English evaluation suites to assess their Ger- 049

man models and - for lack of a better solution - 050

had to help themselves by translating very hard 051

benchmark datasets from English to German using 052

e.g. ChatGPT (Plüster, 2023). This arguably leads 053

to unreliable results, as the models are evaluated 054

on a task that has been machine-translated some- 055

times by the very same model these benchmarks 056

were created to be hard to solve and understand 057

for (Vago, 2023). 058

Our benchmark evaluation suite thus aims for 059

both: 1. aggregating a diverse set of available Ger- 060

man Natural Language Understanding (NLU) tasks, 061

2. identifying commonly used German-pretrained 062

LLMs and evaluating the models on this bench- 063

mark. To this end, we select a wide range of dif- 064

ferent task types to make sure to properly assess 065

the models’ capabilities, such that our benchmark 066

includes document classification, sequence tagging, 067

document embedding and question answering tasks 068

(Table 2). Like in existing LLM benchmarks for 069

other languages (Wang et al., 2019; Hardalov et al., 070

2023) in this benchmark we challenge the mod- 071

els to perform well on a wide range of different 072

tasks, which are not necessarily related to each 073

other. These tasks focus on reasoning and language 074

understanding, are sourced from public datasets 075

across different domains. Inspired by SuperGLUE, 076

we select tasks with a very simple input and output 077

format to avoid “complex task-specific architec- 078

tures” (Wang et al., 2019), as well as tasks that 079

can be evaluated using a simple and intuitive met- 080

ric. This rules out tasks like e.g. text generation, 081

which is inherently hard to evaluate. In addition 082
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to assembling this benchmark we also run an ex-083

tensive evaluation of 4 encoder-only, 3 decoder-084

only, and 3 encoder-decoder German-capable trans-085

former models as depicted in Table 1. In our com-086

prehensive evaluation we find, that overall the en-087

coder models perform best and usually consistently088

close to each other. Notably, the two largest mod-089

els mBART and leo-7b are also performing well,090

despite not being encoder models, which is likely091

owed to their large size. Nevertheless, we did not092

find a clear advantage for the larger encoder model,093

as the gBERT-large model is not able to profit from094

its larger size, compared to its smaller counterparts.095

We see the effort of this benchmark not as a done096

“once and for all” issue, but rather aim to introduce097

a foundation to be extended by further tasks and098

models in the future, to support and foster research099

for german LLMs. To this end we open-source100

our evaluation code, including a public leaderboard101

and aim to continously expand on this effort in the102

future.103

Our contributions are as follows: 1. assembling104

a diverse benchmark for German NLU consisting105

of 29 different tasks, 2. comprehensively evaluat-106

ing 10 different German-pretrained LLMs across107

various architectures on this benchmark, 3. pro-108

viding this open-source evaluation framework to109

the community, allowing for easy extension of this110

benchmark in the future.111

2 German Evaluation Tasks112

In order to create a challenging and diverse bench-113

mark for German NLU we select a wide range of114

different tasks from various different domains for115

our evaluation suite. We also list the included tasks116

as well as statistics for each dataset in the appendix117

in Table 2. In order to evaluate different capabilities118

of the pretrained models we select various different119

task types: text classification, sequence tagging,120

document embeddings and question answering.121

2.1 Text Classification122

Text classification describes the task of assigning a123

label to either an entire input document or a combi-124

nation of input documents. We span a wide range125

of different domains and prediction targets, which126

we group into the following five categories.127

Toxic & Offensive Language Identification128

Here we have two different datasets, which we129

evaluate separately: The task of Offensive Lan-130

guage Identification has been introduced by Wie-131

gand et al. (2018), while Toxic Comments Identifi- 132

cation has been introduced by Risch et al. (2021). 133

For the first we evaluate on the fine-grained anno- 134

tation distinguishing between three different types 135

of offensive language (“profanity”, “insult”, and 136

“abuse”), while the second is a binary classification 137

task, where the model has to predict whether the 138

input sentence contains toxic language or not. 139

Sentiment Analysis Here we cover two different 140

levels of granularity: document-level and aspect- 141

based sentiment analysis. The dataset introduced 142

by Wojatzki et al. (2017) spans both granularities. 143

First it is annotated with the sentiment expressed 144

in the document towards the topic of “Deutsche 145

Bahn”, where all other sentiments expressed to- 146

wards unrelated topics should be ignored. For a 147

more detailed evaluation we also include the iden- 148

tification of sentiment expressed towards specific 149

aspects within the input document in a multi-label 150

classification task. There are overall 20 aspects, 151

which can be e.g. “train_ride”, “atmosphere” or 152

“service” for which the model has to predict the sen- 153

timent towards each of these aspects as “positive”, 154

“negative” or “neutral”. In the same spirit we select 155

a second dataset for aspect-based sentiment analy- 156

sis, introduced by Fehle et al. (2023), consisting of 157

hotel reviews again annotated with the sentiment 158

expressed towards specific aspects like “location”, 159

“food&drinks” or “service”. 160

Text Pair Matching Next we evaluate the mod- 161

els ability to classify whether two input documents 162

share a certain semantic relation. For this we se- 163

lect two datasets introduced in the cross-lingual 164

benchmark XGLUE (Liang et al., 2020): Query-Ad 165

Matching and Question-Answer Matching. Here 166

the model has to predict whether the ad is a good 167

fit for a given query, and whether a sentence is 168

the answer for a given question. Furthermore we 169

use the paraphrase identification dataset PAWS-X 170

introduced by Yang et al. (2019), which consists 171

of sentence pairs where the model has to predict 172

whether the sentences are paraphrases of each other 173

or not. 174

Word Sense Disambiguation The first dataset 175

WebCAGe is a corpus annotated with senses from 176

GermaNet (Henrich et al., 2012). The task defined 177

on this dataset is to predict the correct sense of 178

a given word in the context of the sentence; e.g. 179

“bank” vs. “bank”. Furthermore we select a second 180

dataset by Ehren et al. (2021) focusing on the dis- 181
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ambiguation of German verbal idioms, where the182

model has to predict from context whether a phrase183

is meant literally or figuratively; e.g. “hold your184

breath” vs. “hold your breath”.185

Other Classification Tasks First, on the same186

dataset as the toxic comment identification task187

introduced previously (2.1), we also evaluate the188

models ability to identify whether the input com-189

ment is fact-claiming or engaging (Risch et al.,190

2021). Here, fact-claiming means that the sen-191

tence contains a claim that can or should be veri-192

fied/refuted by a fact-checker, while secondly en-193

gaging comments are defined as making readers194

join a discussion. Next, the argument mining task195

by Romberg and Conrad (2021) consists of sen-196

tences annotated with whether the sentence con-197

tains “options for actions or decisions that occur in198

the discussion” (major positions), “reasons that at-199

tack or support a major position or another premise”200

(premise), both or none. On the same dataset as201

the sentiment analysis task introduced previously202

(2.1), we evaluate the models ability to identify203

whether the input document is relevant to the topic204

of “Deutsche Bahn”. If the German railroad com-205

pany is neither directly nor indirectly (e.g. via206

their services) mentioned in the entire input doc-207

ument the label is “false”. Next, the MASSIVE208

dataset consists of annotated voice assistant inter-209

actions (FitzGerald et al., 2023). The utterances210

by users are annotated with the intent of the user,211

which the model has to predict e.g. the concrete212

intent of “setting an alarm”, or the intent to “play213

music”. We include the Natural Language Infer-214

ence (NLI) task, where the model has to predict215

whether a hypothesis is entailed by a premise or216

not. The dataset has been introduced in XNLI (Con-217

neau et al., 2018) and was intended as a cross-218

lingual evaluation dataset, but we use it as a mono-219

lingual dataset for German. Lastly, we include the220

news classification task from XGLUE (Liang et al.,221

2020), where the model has to predict the category222

of the news article.223

2.2 Sequence Tagging224

The task of sequence tagging describes annotating225

every word or token from the input document with226

its respective class. We again span a wide range of227

different domains and prediction targets, which we228

group into the following two categories.229

Named Entity Recognition NER is a common230

sequence tagging task, refering to annotating ev-231

ery token in the input document with its respective 232

named entity class. Named entities can be persons, 233

locations, organizations, but also more abstract en- 234

tities like time or monetary values. 235

The first dataset is taken from historical biodi- 236

versity literature annotated with named entities like 237

“persons”, “locations”, “organizations” or “other”, 238

as well as time and taxonomic entities (Ahmed 239

et al., 2019), while the EuropaParl dataset (Faruqui 240

and Padó, 2010) are proceedings from the Euro- 241

pean Parliament annotated with NEs like “persons”, 242

“locations” or “organizations”. The next dataset 243

was introduced by Benikova et al. (2014) and is 244

sourced from German Wikipedia articles as well as 245

various online news sources. Next, we also select a 246

dataset with legal entities annotated within German 247

court decisions (Leitner et al., 2019). It consists 248

of German court decisions annotated with 19 se- 249

mantic classes, like e.g. “person”, “lawyer”, “coun- 250

try”, “organization” but also more domain-specific 251

classes like “European legal norm”, “regulation” or 252

“contract”. Lastly, we take the NER datasets from 253

the cross-lingual benchmark XGLUE (Liang et al., 254

2020), which is a subset of a German news dataset 255

by Tjong Kim Sang and De Meulder (2003) an- 256

notated with “Person”, “Location”, “Organization” 257

and “Miscellaneous” entities. 258

Other Sequence Tagging Tasks On the Univer- 259

sal Proposition Banks by (Akbik et al., 2015), we 260

evaluate the models abilities to predict POS tags, 261

as well as dependency parse tree labels in two sep- 262

arate tasks. Furthermore, again on the MASSIVE 263

dataset introduced previously (2.1) we also evalu- 264

ate the models ability to identify “arguments” in 265

the user’s utterance; e.g. “weck mich [date : diese 266

woche] um [time : fünf uhr morgens] auf”. Lastly, 267

on the sentiment dataset by Wojatzki et al. (2017) 268

also used in Section 2.1 we evaluate the models 269

ability to identify the concrete opinion term ex- 270

pressing the sentiment in the input document. 271

2.3 Document Embeddings 272

Document embeddings tasks evaluate the models 273

capabilities to generate semantically meaningful 274

vector representations for the input documents. Se- 275

mantically similar documents should be placed 276

closer together in the model’s embedding space 277

than unrelated documents. For this we use the 278

PAWS-X (Yang et al., 2019) dataset, which con- 279

sists of sentence pairs annotated with whether the 280

sentences are paraphrases of each other or not. 281
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2.4 Question Answering282

Our last task type is extractive question answering,283

where the model has to answer a question given an284

input document. We evaluate this on two different285

datasets: GermanQuAD (Möller et al., 2021) and286

MLQA (Lewis et al., 2020). MLQA was intended287

to be a cross-lingual evaluation dataset, but we use288

it as a mono-lingual dataset for German.289

3 Training Methodology290

3.1 Training Methodology by LLM Type291

Depending on the of transformer architecture, we292

use different training approaches, each tailored293

to the specific model: we distinguish between294

encoder-only, decoder-only and encoder-decoder295

models and follow the established training ap-296

proaches for the respective model type. For trans-297

formers following the encoder or decoder architec-298

ture, we finetune the text classification tasks using299

the standard approach of adding a linear layer on300

top of the output representation of the CLS token,301

while for sequence tagging tasks we use the same302

approach, but train the linear layer to predict the303

correct class on top of the output representation of304

each input token individually. For the document305

embedding we follow the SentenceBERT (Reimers306

and Gurevych, 2019) approach and finetune the307

model using a triplet loss with negative sampling308

on the mean-pooled final output representations of309

the model. When finetuning for extractive question310

answering, we again follow the standard approach311

of adding a linear layer on top of the output repre-312

sentations of the input tokens, and train the linear313

layer to predict the start and end token of the an-314

swer span. For transformer models following the315

encoder+decoder architecture, we follow common316

practice in discarding the models decoder entirely317

for classification, sequence tagging and embedding318

tasks, and only finetune the encoder part of the319

model as described above and for question answer-320

ing tasks we add the span extraction head on top of321

the decoder output.322

3.2 Training Procedure for the Task Types323

For each of the task types we implement the train-324

ing routine as described above using an established,325

publicly available library. That is, for text classifica-326

tion and sequence classification we use FLAIR (Ak-327

bik et al., 2019), for question answering and text328

generation we use the reference training loops329

provided by HuggingFace’s Transformers (Wolf330

et al., 2020), and for document embeddings we 331

use the reference script provided by the Sentence- 332

Transformers (Reimers and Gurevych, 2019) li- 333

brary. For all models we use the same training 334

procedure: We use the same default hyperparame- 335

ters across all models and libraries, and the same 336

fixed seed. These are: a batch size of 8, a learn- 337

ing rate of 5e-5, 5 epochs. We also introduce a 338

maximum input sequence length of 512 tokens 339

and class weighting for all classification tasks dur- 340

ing training. Furthermore, we consequently opt 341

to use QLoRA-training (Dettmers et al., 2023) for 342

all models where it is supported by the Hugging- 343

Face library (2020). If not supported by the li- 344

brary we skip the quantization steps and fall back 345

to LoRA (Hu et al., 2022), which in our case ap- 346

plies only to the BERT models. We do this, be- 347

cause not all models could be trained on a single 348

A100 GPU, hence we use QLoRA-training to re- 349

duce the memory footprint of the larger models 350

to make training them on a single GPU feasible. 351

Consequently enabling (Q)LoRA for all models 352

ensures comparability between different models 353

and rules out the possibility that the performance 354

difference between models stems from different 355

training procedures. We again closely follow the 356

hyperparameters given by Dettmers et al. (2023): 357

4-bit quantization, double quantization and Nor- 358

malFloat4. 359

3.3 Evaluation Metrics 360

As mentioned previously, we select tasks that can 361

be evaluated using a simple and intuitive metric. 362

When a metric has been used on the original dataset, 363

we keep this metric for this dataset. We list the met- 364

rics used for each task in the appendix in Table 2. 365

Used metrics are micro F1, macro F1, accuracy 366

for classification and tagging tasks, mean-token- 367

F1 (Lewis et al., 2020) for QA tasks (all defined 368

in the range of 0 to 1), as well as pearson correla- 369

tion calculated on cosine similarity for document 370

embedding tasks (defined in the range of -1 to 1). 371

For all metrics higher values indicate better perfor- 372

mance. For the sake of creating a benchmark eval- 373

uation suite we we follow other benchmarks (2019; 374

2020; 2023) and average across tasks and thereby 375

also across metrics. For all tasks we calculate the 376

metric with the native implementation included in 377

the used framework. 378
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4 Evaluated Models379

In our evaluation we aim to cover a large number380

of different models and model types available for381

the German language (Table 1) and evaluate these382

models on the tasks introduced in Section 2. We383

evaluate a range of different models and architec-384

tures, including encoder-only, decoder-only, and385

encoder-decoder models. The models have been386

pretrained on different datasets, some of which are387

multilingual, while others are monolingual Ger-388

man. We refer to the models by their respective389

HuggingFace (2020) model identifier and compare390

their parameter count in Table 3 in the appendix.391

We evaluate three different BERT models, one392

being “bert-base-german-cased”, pretrained on393

12GB of wikipedia, legal documents and news.394

The other two BERTs have been pretrained by Chan395

et al. (2020) and only differ in size: “deepset/gbert-396

base” and “deepset/gbert-large”. Both models397

have been pretrained on 163.4GB of German text,398

mostly consisting of OSCAR, enriched with OPUS,399

Wikipedia and legal documents. We also evaluate400

“uklfr/gottbert-base” (Scheible et al., 2020), which401

is a RoBERTa model pretrained on 145GB of OS-402

CAR, Wikipedia and a book corpus.403

For decoder models we evaluate404

“dbmdz/german-gpt2” (Schweter, 2020), which405

is a GPT2 model pretrained on about 16GB406

of German text, consisting of subtitles, and a407

diverse set of web crawls like CommonCrawl and408

news. “LeoLM/leo-hessianai-7b” is a very recent,409

comparably large language model, finetuned from410

a LLaMA2 checkpoint using German text (Plüster,411

2023) mostly sourced from OSCAR and has412

only been evaluated on a machine-translated413

version of the English OpenLLM dataset. Further-414

more, we also consider the multilingual-trained415

“bigscience/bloomz-560m” model (Muennighoff416

et al., 2023). It was trained in two steps: first417

on a 1.5TB multilingual corpus of 45 languages418

and 12 programming languages using causal419

language modeling (Workshop et al., 2023), then420

further multilingual, multi-task pretraining using421

supervised tasks (Muennighoff et al., 2023).422

We also evaluate the encoder-decoder423

multilingual-trained “bigscience/mt0-small”424

model (Muennighoff et al., 2023), which was425

finetuned analogously to the previously introduced426

Bloomz model, but is instead finetuned from the427

“google/mt5-small” checkpoint. This model in turn428

was trained on 101 languages, including German,429

using the “span-corruption” objective (Xue et al., 430

2021) on the C4 corpus (Raffel et al., 2020) and is 431

also included in our evaluation. Lastly we evaluate 432

the multilingual-trained “facebook/mbart-large-50” 433

model, trained on 50 languages, including German, 434

using the translation objective (Liu et al., 2020). 435

In contrast to BART, the mBART model was only 436

trained on the translation objective between any 437

pair of languages and not additionally on the 438

denoising objective, thus never saw German text as 439

input and target at the same time. 440

5 Evaluation 441

We extensively evaluate the models from Section 4 442

on the tasks introduced in Section 2 resulting in 443

Table 1. Here the results are averaged by the vari- 444

ous task types at varying levels of granularity. The 445

columns reading “avg” have been averaged across 446

the averages of the respective task types, in order 447

to not overweight any task type for which more 448

datasets exist, i.e. all “NER” tasks have been av- 449

eraged into a single value before averaging across 450

all tagging tasks. We also list the results for the 451

individual tasks in the appendix in Appendix D. 452

In the following we will discuss the results under 453

various different aspects. 454

5.1 Performance by Model and Task Type 455

For classification tasks we find that the encoder- 456

models all perform overall very similar to each 457

other (70.1 to 72.7), despite differences in the train- 458

ing data and even model size and architecture. Inter- 459

estingly, within the classification tasks the models 460

don’t perform equally well on all tasks. For exam- 461

ple the gBERT-large model performs above aver- 462

age for NLI, sentiment analysis, text pair match- 463

ing, as well as word sense disambiguation, but 464

at the same time below average for toxicity de- 465

tection. On average the largest encoder model 466

is thus even the worst performing encoder model. 467

For the encoder+decoder models there is a clear 468

distinction in performance between the mT5 and 469

mT0 models (46.6 and 53.4) on the one hand and 470

the mBART model (63.2) on the other hand. The 471

mBART model performs much better across most 472

classification tasks, often even being competetive 473

with the encoder models. We find that mT5 per- 474

forms consistently worse than its further pretrained 475

mT0 counterpart, with the only exception being the 476

sentiment analysis task. Within the decoder mod- 477

els GPT2 model performs similarly to the bloomz 478
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model (69.6 and 66.7), while the leo-7b model per-479

forms significantly better (81.2). Here the leo-7b480

model comfortably ranks first place across all mod-481

els, which is likely owed to its significantly larger482

size and training data. The GPT2 model also per-483

forms reasonably well, but is still outperformed by484

all encoder models.485

Overall we find that the encoder models perform486

best across all classification tasks, and rank overall487

places 2-5 across all models, with the best perform-488

ing encoder model being bert-base-german-cased,489

only getting beat by leo-7b. mT5 and mT0 perform490

worst across all models, with mT0 performing bet-491

ter than mT5.492

For sequence tagging tasks the encoder mod-493

els again perform very similar to each other, with494

the gBERT-large model performing as good as its495

smaller counterpart. Here the encoder-models rank496

places 1,2,4 and 5 across all models. Along the497

encoder+decoder models the mBART model again498

performs clearly best, with the mT0 and mT5 again499

placing at the bottom of the ranking. mBART is500

even competetive with the encoder-only models,501

ranking place 3 across all models, while GPT2 is502

the best performing decoder and bloomz is per-503

forming worst overall (52.2). The leo-7b model504

always performed slightly below or roughly at aver-505

age of all other models, only dominating by a large506

margin for the NER task on the EuroParl dataset.507

GPT2 is the best performing decoder model for508

sequence tagging, but is again outperformed by the509

encoder models and mBART.510

Analysing the document embedding tasks the511

encoder models performance varies drastically512

(53.3 to 65.1), with gBERT-large performing best513

by a large margin (rank 1). The other three encoder514

models are comfortably outperformed by two non-515

encoder models, namely mBART (rank 2) and leo-516

7b (rank 3). We find that GPT2, bloomz and mT5517

perform similarly bad, while mT0 is closer to the518

small encoder models.519

For QA performance all models are very close to520

each other. We find mBART to perform best (82.9),521

followed by gBERT-large (82.6) and GPT2 (81.5).522

Overall we find that depending on the task type523

different models perform best, but a clear trend524

is that the encoder models are always among the525

top. The size of the encoder models does not seem526

to have a large impact on the performance, as the527

gBERT-large model does not have a clear advan-528

tage over its smaller counterpart, except in the doc-529

ument embedding tasks. The mBART model per- 530

forms best across the evaluated encoder-decoder 531

models, often being competetive with the encoder 532

models, only being outperformed by them on the 533

classification tasks. Furthermore, the pretraining of 534

the mT0 model seems to have a positive effect on 535

the performance for German, as it very consistently 536

performs better than the mT5 model across all task 537

types, often by a large margin. It is clear that the 538

leo-7b model performs best across all decoder mod- 539

els for most task types, while the bloomz model 540

clearly performs worst. Given that mBART and leo- 541

7b are both the largest models in the benchmark, it 542

is not surprising that they perform best across most 543

task types. At the same time gBERT-large is not 544

able to profit from its larger size, as it is commonly 545

outperformed or matched by the smaller encoder 546

models. 547

5.2 Performance Stability Across Seeds 548

To make sure that the results are not a fluke of 549

the random initialization of the models, we eval- 550

uate the models on the same tasks using different 551

random seeds. At the size of this benchmark run- 552

ning the entire evaluation for all models and tasks 553

for multiple seeds becomes computationally pro- 554

hibitive (Appendix A), so we select one encoder 555

and one decoder model, as well as three tasks to 556

evaluate the stability of the results on. We run the 557

entire fine-tuning and evaluation an additional four 558

times for each selected model and task, using a 559

different random seed each time. For this exper- 560

iment, we select the gBERT-base model, as well 561

as the german-GPT2 model and for the task types 562

we select the verbal idioms classification task, the 563

biodiversity NER task and the PAWS-X document 564

embedding task. We list detailed results in the ap- 565

pendix in Table 5 and find the results to be very 566

stable across the different seeds with an average 567

standard deviation of the results being below 0.012 568

across tasks and models. 569

5.3 Performance w. and w/o. (Q)LoRA 570

As we exclusively use (Q)LoRA for our training 571

in order to keep the models small and the results 572

comparable across models, we also conduct a small 573

evaluation of the performance of the models with 574

and without (Q)LoRA training. For this we se- 575

lect the same models and tasks as in Section 5.2 576

and train them without (Q)LoRA once. For this 577

we use the same hyperparameter configuration and 578

seed as for the (Q)LoRA training, but train the 579

7



models using full precision. We list the results580

alongside in Table 5 and find that there is a signifi-581

cant performance difference between the (Q)LoRA582

and non-(Q)LoRA training. The performance drop583

ranges from 0.019 to 0.090 across tasks and mod-584

els. We explicitly welcome non-(Q)LoRA trained585

models in the benchmark evaluation leaderboards,586

but also encourage further research into the perfor-587

mance of (Q)LoRA training and its impact on the588

performance of the models. We also plan on dif-589

ferentiating between various training approaches590

in the benchmark, making it possible to compare591

the performance across different training methods.592

6 Related Work593

GLUE (Wang et al., 2018) and SuperGLUE (Wang594

et al., 2019) are two of the most prominent LLM595

benchmarks, consisting of 11 and 10 different NLU596

tasks respectively. These benchmarks only being597

available in English has quickly been identified as598

an issue for the evaluation of non-English models599

by the NLP community. Thus the development of600

various similar benchmarks for other languages fol-601

lowed, like e.g. for Russian (Shavrina et al., 2020),602

Persian (Khashabi et al., 2021), or recently for Bul-603

garian (Hardalov et al., 2023). These benchmarks604

are all similar in their setup, aiming to assess the605

models abilities on a wide range of different tasks.606

Cross- and multilingual benchmarks like607

XTREME (Hu et al., 2020) and XGLUE (Liang608

et al., 2020) on the other hand have been designed609

to evaluate the models’ cross-lingual capabilities.610

For this they consist of 9 tasks spread across 5 to611

40 languages for XTREME and 11 tasks across 3612

to 18 languages for XGLUE. Thus they also in-613

clude tasks in German, but neither the focus of the614

evaluation nor for the model itself is on German.615

The general idea behind these benchmarks is to616

evaluate the models’ ability to transfer knowledge617

from one language to another, but not to evaluate618

the models’ capabilities in a single language. Using619

these benchmarks as a basis for evaluating German620

models is thus not ideal, as the tasks are commonly621

accompanied by a rather small German training set,622

because the focus is on learning from the combined623

training data of all languages.624

As mentioned earlier, in the advent of increas-625

ingly large LMs, the need for German evaluation626

benchmarks has been recognized, but in the ab-627

sence of German focused benchmarks, the eval-628

uation is commonly done by machine-translating629

existing English evaluation datasets (Plüster, 2023), 630

which can give an estimate of the performance of a 631

model, but is not a reliable evaluation of the mod- 632

els’ capabilities (Vago, 2023). 633

Although there exists no diverse and compre- 634

hensive evaluation benchmark for German LLMs, 635

on which the various capabilities of different mod- 636

els are evaluated, there have been efforts to evalu- 637

ate German models on a specific task, like sen- 638

timent analysis (Cieliebak et al., 2017), coref- 639

erence resolution (Schröder et al., 2021), utter- 640

ance similarity (Asaadi et al., 2022), inclusive 641

language (Pomerenke, 2022) or document cluster- 642

ing (Wehrli et al., 2023). The evaluation of models 643

on these benchmarks is usually not comprehen- 644

sive, with only few models evaluated on a single 645

task, and usually only a single model architecture - 646

commonly encoder models - being evaluated. Over- 647

all, there is no established, easily runnable evalua- 648

tion framework for multiple German tasks, which 649

makes it hard to compare results across different 650

models. 651

7 Conclusion 652

We introduce the first large and diverse German lan- 653

guage understanding benchmark for language mod- 654

els, consisting of 29 different tasks and covering 4 655

different task types: text classification, sequence 656

tagging, document embeddings and question an- 657

swering. The text classification and sequence tag- 658

ging tasks themselves contain a wide range of dif- 659

ferent language understanding tasks, covering vari- 660

ous different domains and prediction targets. 661

We evaluate 10 different models, including 662

4 encoder-only, 3 decoder-only and 3 encoder- 663

decoder models on our newly introduced bench- 664

mark. In our comprehensive evaluation we find, 665

that on average the encoder models perform best 666

and are usually close to each other in performance 667

on the classification and sequence tagging tasks. 668

Despite not being encoder models, the two largest 669

evaluated models mBART and leo-7b are also per- 670

forming well. In contrast, we did not find a clear ad- 671

vantage for the larger encoder model, as the gBERT- 672

large model is not able to profit from its larger 673

size, often being outperformed or matched by its 674

smaller counterparts. We make the benchmark and 675

leaderbord publicly available and encourage the 676

community to contribute tasks as well as models to 677

the benchmark, thereby mapping the landscape of 678

German LLMs. 679
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Limitations680

7.1 Training Procedure681

Some of the used frameworks (FLAIR & Sentence-682

Transformers) only support training on a single683

GPU, which inherently limits the size of the mod-684

els we can evaluate using our framework. We thus685

opt for QLoRA-training here to reduce the memory686

footprint of the larger models and make training687

them on a single GPU feasible.688

As mentioned in Table 1 we encounter some689

issues with the training procedure of the mBART690

model (OutOfMemory), as well as the training of691

the bloomz model (ShapeError). The first seem to692

be an issue between the bitsandbytes quantization693

library and the mBART model, while the second694

seems to be imcompatibilities between the used695

framework and the respective model, which we696

could not easily resolve. We will investigate these697

issues further and update the results accordingly, if698

we find a solution. Furthermore, for the LLaMa2699

architecture no QA-model is implemented within700

the HuggingFace library, but we will update the701

results once a QA-model is available.702

7.2 Representativeness of the Results703

As we train and evaluate all models using QLoRA,704

we cannot make any statements about the perfor-705

mance of the models without QLoRA. Our exem-706

plary evaluation of the models with and without707

QLoRA training (Section 5.3) shows that there is708

a performance difference between the two train-709

ing procedures, which is acceptable for our pur-710

poses, as we evaluate all models using the same711

training procedure, thus keeping the results com-712

parable. Furthermore we do not limit our leader-713

board to QLoRA-trained models, but also explicitly714

welcome non-QLoRA-trained models, or even the715

same models trained without QLoRA.716

Next, we only evaluate a single hyperparameter717

configuration for each model, which is the default718

configuration of the respective library. We leave719

the evaluation of different hyperparameter configu-720

rations to future work and do not limit the leader-721

board to the default configuration of the respective722

library.723

We only report the results for the same random724

seed for each model and task and conduct a small725

evaluation of the stability of the results across dif-726

ferent seeds (Section 5.2). We find the results to727

be stable across different seeds, such that we are728

confident in our results reported in Table 1.729

For some models, like the mT0, mT5, bloomz 730

and leo-7b we evaluated only the smallest model 731

size, as otherwise computing the benchmark results 732

for all model sizes would have been computation- 733

ally prohibitive (Appendix A). Nevertheless we 734

encourage the community to contribute results for 735

the larger model sizes, but also plan to add larger 736

versions of used models to the benchmark in the 737

future ourselves. 738

Ethics Statement 739

As we only include publicly available datasets and 740

models, we do not see any ethical issues with this 741

work. We only select datasets and tasks, where the 742

intended use of the data is clearly to be used for 743

research. 744

Intended Use We intend this benchmark to be 745

used for the evaluation of German LLMs. To this 746

end we make the benchmark and leaderboard pub- 747

licly available and encourage the community to 748

contribute tasks as well as models to the bench- 749

mark. For this we provide an open-source evalua- 750

tion framework, which can be easily extended to 751

include new tasks and models and publish it under 752

an open-source license. 753
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A Putting the Compute into Perspective1194

We list the number of trainable parameters for each1195

model in Table 3. This includes the number of1196

parameters of the base model as well as the number1197

of trainable parameters after (Q)LoRA has been1198

applied.1199

Estimating the GPU hours for our experiments -1200

especially including development and debugging -1201

is difficult, as we did not keep track of all time spent1202

on GPUs. Nevertheless we estimate the total GPU1203

hours spent on the development of this benchmark1204

to be around 1500 h of A100 GPU time.1205

B Dataset Domains and Licenses1206

The datasets we use in our benchmark are listed in1207

Table 2, and are described in Section 2. In Table 41208

we list the domains and licenses of the datasets.1209

C Training Stability1210

Table 5 lists the results of the training stability ex-1211

periment described in Section 5.2, as well as the1212

results of a single run without (Q)LoRA training1213

for comparison (Section 5.3).1214

D Individual results1215

We list the detailed results of every task for every1216

model in Tables 6 to 8. Models achieving a 0.01217

score on for multi-class classification tasks are a1218

known instability within the Flair library and occur1219

only for large number of output classes for cer-1220

tain models: https://github.com/flairNLP/1221

flair/issues/6781222

14

https://github.com/flairNLP/flair/issues/678
https://github.com/flairNLP/flair/issues/678
https://github.com/flairNLP/flair/issues/678


task type target task name |Train| |Dev| |Test| metric

te
xt

cl
as

si
fic

at
io

n

to
x. offensive language 4508 501 3532

macro F1toxic comments 2920 324 944

se
nt

. sentiment polarity 20 941 2584 2566

micro F1DB aspect sentiment 16 200 1930 2095
Hotel aspect sentiment 3446 383 425

m
at

ch
Query => Ad Matching 9000 1000 10 000

ACCQuest. => Ans. Matching 9000 1000 10 000
Paraphrase Matching 49 129 2000 2000

W
SD WebCAGe 8339 926 1030

micro F1Verbal Idioms 6902 1488 1511

ot
he

r

Factclaiming Comments 2920 324 944 macro F1
Engaging Comments 2920 324 944 macro F1
CIMT: Arg. Min. 14 460 1607 1785 macro F1
Topic Relevance 20 941 2584 2566 micro F1
Intent Identification 13 382 1487 1652 micro F1
NLI 2245 250 5010 ACC
News Classification 9000 1000 10 000 ACC

se
qu

en
ce

ta
gg

in
g

N
E

R

Historical Biodiversity 12 668 1584 1584

micro F1

EuropaParl 3184 354 858
Wikipedia & News 24 000 2200 5100
Legal 53 384 6666 6673
News 2587 287 3007

ot
he

r

DEP Univ. Prop. Bank 14 118 799 977
POS Univ. Prop. Bank 14 118 799 977
MASSIVE Arguments 13 382 1487 1652
GermEval Opinions 19 432 2369 2566

embedding PAWS-X 49 129 2000 2000 pearson corr.

question answering
MLQA 512 - 4517 mean-token

F1GermanQuAD 11 518 - 2204

Table 2: The different datasets and tasks making up the benchmark and their associated task type.

Model Total Params Trainable Params Trainable %

gbert-base 110,222,592 294,912 0.268%
gbert-large 336,522,240 786,432 0.234%

gottbert 126,279,936 294,912 0.234%
bert-base-german-cased 109,376,256 294,912 0.270%

mbart-large-50 612,059,136 1,179,648 0.193%
mt0-small 147,055,296 114,688 0.078%
mt5-small 147,055,296 114,688 0.078%

german-gpt2 124,740,864 294,912 0.236%
bloomz-560m 560,001,024 786,432 0.140%

leo-hessianai-7b 6,611,537,920 4,194,304 0.063%

Table 3: Number of parameters as well as number of trainable parameters per model after QLoRA
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dataset domain license

EuroParl protocol GNU GPL
Hist. Bio. Div. bio literature cc-by-4.0

Legal legal texts cc-by-4.0
NLI misc OANC

WebCAGe misc N/A
Verbal Idioms misc N/A

XGLUE datasets misc usable for non-commercial research (N/A)
MASSIVE spoken language, misc cc-by-4.0

CIMT Arg Min. dialogue CC BY-SA
Univ. Prop. Bank misc CDLA-Sharing-1.0

GermanQuAD misc cc-by-4.0
DB Sentiment Blogs & News N/A

Hotel Sentiment Reviews N/A
XGLUE datasets misc N/A

PAWS-X misc "may be freely used" (N/A)
MLQA misc CC-BY-SA 3.0

toxic, fact, engag. com. user comments N/A
NERWikipedia & News Wikipedia & News CC-BY

NER News news N/A

Table 4: Domains and licenses for the used datasets, more details in Section 2. For our benchmark we made sure to
only use datasets where the intended use of the data set clearly allows for the use in our benchmark. Nevertheless,
where no license could be found (N/A), we will contact the authors to clarify the license.

amount of
train type

Verbal Idioms Bio Hist NER embd
runs avg sd avg sd avg sd

5
LoRA gbert-base 0.918 0.017 0.640 0.013 0.557 0.015

QLoRA german-GPT2 0.902 0.007 0.499 0.016 0.355 0.003

1 no (Q)LoRA
gbert-base 0.937 0.704 0.639

german-GPT2 0.937 0.589 0.419

Table 5: Training stability across five different seeds. We evaluate on the two models on the three datasets and task
types described in Section 5.2. We report the average and standard deviation across the five runs. Furthermore we
report the performance of a single run without (Q)LoRA training for comparison (Section 5.3).
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