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Abstract

Chemical design is often complex, requiring the optimal trade-off between several
competing objectives. Multi-objective optimization algorithms are designed to
optimally balance multiple objectives, but many chemical design approaches use
the naïve weighted sum method, which is not guaranteed to give desired solu-
tions. Here, we rigorously assess the performance of genetic algorithms for inverse
molecular design using more advanced multi-objective methods. CHIMERA and Hy-
pervolume are assessed against relevant baselines for the optimization of molecules
with high logP and high QED score. As a more realistic task, we also simulate a
drug design campaign, optimizing for synthetically accessible molecules which
bind to the 1OYT protein. Additionally, we include a three-objective task of opti-
mizing logP, QED and SAS to investigate scalability to more than two objectives.
We show that both methods achieve better formal optimality than the baselines
and generate molecules closer to a user-specified Utopian point in property space,
mimicking typical materials design objectives.

1 Introduction

Advances in machine learning (ML) and artificial intelligence (AI) have the potential to transform
chemical discovery into an inverse design problem, where molecules are generated and optimized
with desired properties at an accelerated rate [1]. In the context of data-driven materials discovery,
AI-guided chemical design can efficiently explore chemical space while improving performance
based on experimental feedback. Important application areas are drug discovery [2], catalyst design
[3] and materials discovery [4]. Examples of inverse design algorithms based on deep learning (DL)
include generative adversarial networks (GANs) [5, 6], variational autoencoders (VAEs) [7], and
reinforcement learning [8, 9], among other approaches [1]. An older family of inverse design methods
are genetic algorithms (GAs) [10–12], which have been applied in the context of chemical design
for decades [13–17]. Despite being older, GAs often out-perform DL approaches on benchmarks
[18–20]. In particular, GAs are preferred in design campaigns where there exists insufficient data to
train DL models [21], which generally require datasets on the order of 104–105 samples or more [22].
Efforts are underway to combine GAs with DL to leverage the best of both worlds [23, 24].

GAs mimic natural evolution to optimize a population of molecules against selection pressure based
on a fitness function [10–12]. The fitness function is chosen to mimic the design objectives. Due
to the complexity of molecular design, a single objective (single-objective optimization) cannot
cover most multi-faceted design problems. Therefore, strategies are needed that can optimize for
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Figure 1: A) Schematic figure of the Pareto front with two objectives. B) Plot of logP and QED
values for the ZINCred dataset, with Pareto-optimal molecules marked in red.

multiple, potentially competing objectives simultaneously (multi-objective optimization). An example
of such a trade-off is finding drug molecules that should both bind strongly to their intended protein
target, and be synthetically accessible [25]. The goal of multi-objective optimization strategies is to
find Pareto-optimal solutions [26, 27], for which improvement on none of the objectives is possible
without simultaneously deteriorating at least one other objective. Multi-objective optimization with
GAs [28, 29, 24] have generally used variations on the weighted sum (WeightedSum) or product
methods [30, 31]. Although WeightedSum is easy to implement, it is difficult to define weights which
yield desired solutions. Approaches that use more advanced multi-objective optimization algorithms
often do not compare to adequate baselines [17, 32, 3, 33].

In this paper, we implement multi-objective optimization for the JANUS genetic algorithm [24] with
achievement scalarizing functions (ASFs) implemented in the OLYMPUS benchmarking framework
[34]. ASFs define a single cumulative value from the set of all objectives and encode user preferences
about a multi-objective optimization problem such that their optimal solution ideally corresponds to
the desired Pareto-optimal solution. We conduct three inverse design tasks related to drug design
and show that the more advanced multi-objective scalarizers improve upon the simple WeightedSum
approach.

2 Methodology

In JANUS, the fitness of a molecule is determined by a user-defined function based on the molecular
properties of interest, which returns a scalar value. JANUS operates on the SELFIES representation
of molecules in order to perform mutations and crossovers, and maintains parallel exploration and
exploitation populations for optimization [35–37]. More details are available in the literature [24, 38].

We perform multi-objective optimization on three tasks: (1) a drug lipophilicity-related task, in
which we maximize the quantitative estimate of drug-likeness (QED) [39] and the logarithm of the
water-octanol partition function (logP), both calculated using RDKit [40]; (2) a docking task, in
which we minimize both the docking score to the human 1OYT protein (calculated with SMINA [41])
and the synthetic accessibility score (SAS) [42]; and (3) a three-objective task in which we maximize
QED and logP, and minimize SAS.

For our implementation of multi-objective optimization, an arbitrary number of fitness functions
are scalarized according to a specified recipe to output a single cumulative fitness value for each
molecule. Molecules are then sorted based on these scalarized values, which are used to assess
their viability for propagation. We use two baseline approaches and two more advanced scalarizer
approaches and assess their performance according to three metrics: (1) the hypervolume indicator
and (2) the R2 indicator of the generated Pareto front, the former of which balances assessment of
the molecules’ proximity to the Pareto front, their diversity, and spread [43, 44] (see sections A.2.2,
A.2.4 for further details), the latter assessing proximity of the Pareto front to the best values achieved
across all runs [45, 46], and (3) the minimum distance to a pre-selected optimal goal, commonly
referred to as the Utopian point [47] (Figure 1A).
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2.1 Optimization methods

We consider three ASFs in our experiments: WeightedSum, Hypervolume, and CHIMERA. WeightedSum
constitutes a baseline approach considering its typical, simple usage for multi-objective optimization.
The weight vector is set as the ratio of fitness values described by the Utopian point, and is elaborated
upon in Appendix Sec. A.2.1. Hypervolume aims to find solutions that maximize the dominated
hypervolume indicator. CHIMERA is a lexicographic ASF which organizes objectives in a hierarchy of
importance and constructs a cumulative function according to user-specified tolerances on individual
objectives. Tolerances for CHIMERA were set based on the Utopian point coordinates. For the three-
objective experiment, two CHIMERA configurations were used, both of which prioritized achievement
of the QED Utopian value first, but differed in their prioritisation of the remaining two objectives. As
the Utopian value for SAS (1.0) was observed to be more accessible than the value for logP (10.0),
the latter configuration aims to demonstrate CHIMERA’s ability to encode expert knowledge in its
hyperparameters to more intelligently solve an inverse design task. As compared to WeightedSum,
setting these tolerances does not require knowledge of the relative scale of the objectives, which is not
readily available without a large dataset like ZINC. More information on the ASFs used in this work
is given in Appendix Sec. A.2. We also formulate a Random baseline, in which fitness values for each
generated structure are sampled randomly from [0, 1]. This approach mimics a random generation of
structures as all molecules have equal chance to proceed to the next generation.

2.2 Experiments

For the experiments, each approach was initialized with a starting population of 200 molecules
which were allowed to evolve for 100, 50 and 100 generations for the lipophilicity, docking and
three-objective tasks, respectively. To curate the starting population, the objectives for each task
were computed for a reduced ∼250,000 molecule subset of the ZINC dataset [48] following Gómez-
Bombarelli et al. [7], here dubbed ZINCred. The starting population was chosen to represent the
worst part of the dataset – hypervolume values in the lowest 10th percentile – to make the optimization
more difficult. For each task, the optimization campaign was repeated ten times, the data produced
being analysed for the metrics listed below, and we report both the means and standard deviations
across the runs.

2.2.1 Hypervolume and R2 Distance of Pareto front

In this analysis, all molecules generated by JANUS for each run were collected, along with the
associated objective values. The Pareto front was generated and the hypervolume and R2 distance of
the Pareto region were calculated using OLYMPUS. The worst objective values in the original ZINCred
dataset were used as a reference point for calculating the hypervolume, while the best objective
values across all runs was used as a reference point for calculating the R2 distance. As a baseline, we
generated the Pareto front for the reduced ZINCred dataset (Figure 1B) and computed its hypervolume
(Table S1) and R2 (Table S2). Approaches that generate Pareto fronts with larger hypervolumes and
smaller R2 distances are generally considered better at multi-objective optimization for a particular
problem.

2.2.2 Distance to Utopian point

Based on the Pareto front extracted from the reduced ZINCred dataset (Fig 1B), a Utopian point
outside of the front was selected by visual inspection. The Utopian points were QED of 0.6 with
logP of 10, and SAS value of 1.0 with docking score of -20 for the lipophilicity and docking tasks,
respectively. For the three-objective task, the Utopian point was a QED of 0.6 with a logP of 10 and a
SAS of 1.0. These can be seen as a reasonably challenging design goals which improve upon the
existing dataset. For a maximization problem with n objective functions, the distance between a
generated molecule’s objective values and the Utopian point is computed as

D(y,y0) =

√√√√ n∑
i=1

(
max(0, yi,0 − yi)

yi,0

)2

, (1)
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Figure 2: A) Minimum distance to Utopian point as a function of the number of generations, averaged
over ten runs with standard deviation given by shaded region. Lower is better. B) The 30 closest
molecules to the Utopian point in property space for each approach. The Pareto front of ZINCred
dataset is also shown. C) Hypervolumes of generated Pareto fronts over ten runs. Higher is better.
D-F) The corresponding results for the docking task. Note that ZINCred has large hypervolume due to
points with higher SAS, which were not prioritized by the ASFs. G-I) The corresponding results for
the three-objective task. A 3D plot is used to display the 30 closest molecules to the Utopian point,
demonstrating improvement upon the ZINCred Pareto front.

where y ∈ Rn and y0 ∈ Rn are the objective space coordinates of the generated molecule and
Utopian point, respectively. The min function is used in place of max for a minimization problem.
With this metric, objective values that are as good or better than the Utopian point are considered
equally advantageous.

3 Results and Discussion

The results for the three tasks are shown in Figure 2. We start by looking at the results for distance
to the Utopian point. For the lipophilicity task, CHIMERA allows for optimization to be guided most
quickly and closely to the specified Utopian point (Figure 2A-B), validating CHIMERA’s use of a
hierarchy of objectives and specified threshold. Importantly, CHIMERA determines when one objective
is satisfied and can then focus on the remaining objectives, while the other algorithms would continue
optimization of individual objectives beyond the Utopian point. Furthermore, the results over ten
runs for CHIMERA produced the lowest variance. The Hypervolume approach gives a comparable
distance, albeit with higher variance. In the docking task, the differences are less pronounced, with
WeightedSum and CHIMERA achieving similar minimal distances to the Utopian point, on average
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(Figure 2D-E). This indicates that appropriate weights for WeightedSum were chosen for this task.
However, as observed in the lipophilicity task, the same method of selecting weights does not
guarantee good performance.

To test whether the results scale to additional objectives, we optimized for three objectives QED, logP
and SAS at the same time. For this three-objective task, it is less obvious which optimization method
produces molecules closer to the Utopian point (Figure 2G-H). While CHIMERA and Hypervolume
perform better than the naive WeightedSum and Random methods on average, the variances overlap
significantly. It is worth noting that in contrast to the previous tasks, the Random method performs
comparably. However, this is contextualized by the Random method still having a significantly smaller
Pareto front hypervolume (Figure 2I), suggesting that the method is simply able to serendipitously
find a few molecules relatively near to the Utopian point, rather than a reliable set of viable molecules.

We decided to test if we could improve the optimization of CHIMERA based on the results of the
first run. In the first CHIMERA configuration, the objectives were prioritized to (1) maximize QED
beyond 0.6, (2) maximize logP beyond 8, and finally (3) allow SAS to minimize without constraint.
In contrast, the second CHIMERA configuration incorporated knowledge gained from the first run.
Understanding that the minimum possible SAS value was 1, and that SAS values near this minimum
were easily attained during the first run, the objectives were re-prioritized to (1) maximize QED
beyond 0.6, (2) minimize SAS below 1.1, and then (3) allow unconstrained maximization of logP.
While attempts to continually minimize SAS beyond the minimum possible value could potentially
inhibit optimization of the remaining two objectives, this configuration afforded a more intelligent
and consistent optimization, as evidenced by the closer distance to the Utopian point achieved, and
the narrow standard deviation across ten runs.

We now turn to evaluating the methods based on the hypervolume and the R2 indicator. For the
lipophilicity task, molecules generated by CHIMERA and Hypervolume produced the Pareto fronts with
the largest hypervolume on average (Table S1 in the Appendix). While the best run for Hypervolume
gave the Pareto front with the single highest hypervolume, the algorithm overall was less consistent
(Figure 2C). Similarly for the docking task, CHIMERA and Hypervolume achieve a higher average
hypervolume than both the WeightedSum and Random approaches (Figure 2F). Remarkably, in both
tasks, CHIMERA seems to be competitive with the Hypervolume scalarizing strategy, which explicitly
tries to maximize the hypervolume itself. Both CHIMERA and Hypervolume produced significantly
larger hypervolumes than the two baseline approaches WeightedSum and Random.

For the three-objective task, all methods except for Random generally improve upon the ZINCred
dataset (Figure 2I). In contrast to the previous tasks with two objectives, Hypervolume performs
better than both CHIMERA methods. Furthermore, between the two CHIMERA configurations, the latter
– which incorporates property space knowledge to more precisely guide optimization – produces
Pareto fronts with smaller hypervolumes, as well as a smaller standard deviation.

The results for the R2 indicator of the Pareto fronts (Figure S1) tell a similar story to the hypervol-
umes, but with less disparity between approaches. These results can be found in Table S2 of the
Appendix. A sample of the molecular structures generated by each run can be found in the Appendix,
Section A.5. Figure S2 compares the molecular diversity of the Pareto sets identified by each strategy.
Unsurprisingly, Pareto sets generated using JANUS with ASFs are typically less diverse than the
Random method, as they constitute targeted inverse design strategies.

4 Conclusion

In conclusion, we have demonstrated the capacity for multi-objective optimization with ASFs to
guide molecular evolutionary algorithms towards a fuller Pareto frontier and greater proximity to a
specified Utopian point. Importantly, we show that the two most advanced scalarizers, CHIMERA and
Hypervolume, outperform adequate baseline methods, the naïve WeightedSum approach and randomly
generated molecules. These results show that the more advanced methods better position researchers
to solve multi-faceted inverse molecular design problems with two or more design objectives. In
particular, we find CHIMERA and Hypervolume to be most suitable for design tasks with multiple,
potentially competing objectives. In upcoming work, we plan to use molecular similarity metrics to
further enhance the rate at which JANUS can produce desirable multi-objective optimization solutions.
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A Appendix

A.1 Supplemental code

All code written for this paper, including implementation of multi-objective optimisation and
relevant results, can be found at https://github.com/natkusanda/multiobjective-janus.
The code is licensed under Apache 2.0. This code builds upon the original JANUS code, which
is also made available under Apache 2.0 license, and can be found at https://github.com/
aspuru-guzik-group/JANUS. ZINC is free to use for everyone. See license at https://wiki.
docking.org/index.php/UCSF_ZINC_License. The reduced version of ZINC was downloaded
from https://github.com/aspuru-guzik-group/chemical_vae

Please note that an expanded mutation alphabet was used to increase the presence of ring groups in
all runs and approaches. This alphabet can be found in /janus_chimera/janus/mutate.py in
the repository linked above, and the ring groups were extracted using Extended Functional Groups
(EFGs) software written by Lu, et. al [49].
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A.2 Details of achievement scalarizing functions

In this section, we formally define each of the achievement scalarizing functions (ASFs) used in this
work. For the purpose of this discussion, we consider a molecular design task which features a set of
n objective functions, f = {fi}ni=1, to be minimized concurrently. For molecule x, noiseless objective
values are obtained as yi = fi(x). Furthermore, we assume a dataset of objective values D = {yi}Ki=1
corresponding to K generated molecular candidates has been collected by our optimization procedure.

A.2.1 WeightedSum

Weighted sum ASFs maps multiple objectives onto a cumulative scalar objective using a vector of
weights w ∈ Rn to produce the weighted sum

J (y;w) =

n∑
i=1

wiyi . (2)

Here, we select each weight wi according to the ratio specified by the Utopian point, scaling the
relative magnitude of the ith objective.

As the Utopian point was specified as 0.6 for QED and 10 for logP, the weights were selected as
10/0.6 = 16.66 for the former objective, and 1 for the latter. As the same experimental data was used
for both analyses, these weights were reflected in the Hypervolume of Pareto front analyses as well.

A.2.2 Hypervolume indicator

The hypervolume indicator is an example of a set-quality indicator, which facilitate assessment of
Pareto fronts by summarizing their characteristics (such as proximity to the Pareto front, diversity
and spread) with a single scalar value. Owing to its ease of interpretation, hypervolume is one of the
most widely employed set-quality indicators [44].

The hypervolume indicator maps a set of objective values D to a measure of the region dominated
by that set and bounded above by some reference point r ∈ Rn. Intuitively, the indicator provides a
notion of the size of the covered objective space or the size of the dominated space [50, 51, 44, 52]
Formally, the hypervolume indicator H given a dataset of objective value measurements D is

H (D; r) = Λ ({q ∈ Rn | ∃p ∈ D : p ≤ q ∧ q ≤ r}) , (3)

where Λ is the Lebesgue measure. Here, for two objective space points p ∈ Rn and q ∈ Rn, the
expression p ≤ q is used to indicate that p weakly dominates q, that is pi ≤ qi ∀ 1 ≤ i ≤ n. H can
also be described as the union of hyperrectangles

H (D; r) = Λ

 ⋃
p∈D, p≤r

[p, r]

 , (4)

where [p, r] represents the hyperrectangle fixed from above by reference point r and below by p.

In most cases (including this work), the hypervolume indicator is used as an analysis tool to assess the
quality and diversity of a Pareto set after an optimiziation campaign has transpired. However, it can
also be used as an ASF to which aims to find solutions which maximize the dominated hypervolume.
In this case, the solutions in D are considered one at a time, which simplifies the calculation of H to
the volume of the hyperrectangle with corners at y and r,

H (y) =

n∏
i=1

ri − yi . (5)

Importantly, using the hypervolume indicator as a ASF this way produces a constraint that y ≤ r.
As such, we update r at each iteration such that each of its elements correspond to the maximum
observed value for that objective in the optimization history D.
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A.2.3 Chimera

CHIMERA is an achievement scalarizing function which combines a priori scalarizing with lexico-
graphic approaches, and is created for optimization problems where the objective is expensive to
evaluate. CHIMERA allows users to organize multiple objectives into a hierarchy, i.e., f = {fi}ni=1 is
replaced by f = (f1, . . . , fn) ordered according to a descending hierarchy of importance (f1 is more
important than f2, f2 than f3, and so on).

User-specified tolerance values ytol are provided to CHIMERA which indicate objective value thresh-
olds at which the user is satisfied (e.g., one may want to generate a molecule with a QED of at least
0.6, before prioritizing optimizing its lipophilicity). Whether or not some measured value of the ith

objective function yi satisfies its corresponding tolerance can be indicated by the Heaviside function,
Θ
(
ytoli − yi

)
= 0 if yi ≥ ytoli and 1 if yi < ytoli . Alternatively, discontinuities in the cumulative

function can be avoided by utilizing a smooth logistic function approximation to Θ, parameterized by
smoothing parameter τ ,

θ
(
ytoli − yi

)
=

[
1 + exp

(
−ytoli − yi

τ

)]−1

. (6)

CHIMERA constructs an ASF using approximate Heaviside functions to weight objective functions
f . Importantly, the resulting ASF is sensitive to only one objective function at a time in any given
parameter space region. As such, objective values yi are shifted based on the minimum of yi−1 (the
next most important objective function in f ) in the parameter space regions where yi−1 does not
satisfy its corresponding tolerance ytoli . This minimum value is denoted ymin

i−1 . CHIMERA, χ(D;ytol)
is then formulated as

χ(D;ytol) = y1θ
+
1 +

n∏
i=1

(
y1 − ymin

i−1

)
θ−i +

n∑
i=2

(
yi − ymin

i−1

)
θ+i

i−1∏
j=0

θ−m , (7)

where θ+i and θ−i are used to abbreviate θ
(
ytoli − yi

)
and θ

(
yi − ytoli

)
, respectively. We set the

smoothing parameter τ = 0.001 in all our experiments.

The tolerances for the lipophilicity task were 0.6 for QED, and 1000 for logP, which entails uncon-
strained maximization of logP once the tolerance for QED is fulfilled. For the docking task, the
tolerances were 2.0 for SAS and -1000 for docking score.

A.2.4 R2 indicator

Originally proposed to assess the relative quality of two sets, the R2 indicator [45, 46] can be used to
determine the quality of a single set D against some reference point r. The Tchebycheff scalarizing
function is used as the utility function [53].

R2 (D;W, r) =
∑
w∈W

(
p(w)×min

y∈D
{ max
1≤i≤n

wi|ri − yi|}
)

. (8)

W is a set of weight vectors w ∈ Rn, and p is a probability distribution on W . Here, the weight
vectors are sampled uniformly from the objective space. The reference point r must not be dominated
by any possible solution, and is chosen a parameter set by the user (often chosen to be a Utopian
point). Eq. 8 can be written as

R2 (D;W, r) =
1

|W|
∑
w∈W

min
y∈D

{ max
1≤i≤n

wi|ri − yi|} . (9)

A smaller R2 value indicates that the set D is closer to the reference point, and is bounded from below
by 0. Similar to the hypervolume indicator, the R2 indicator can also be used as and ASF which
aims to find solutions which minimize the distance to r. In this case, solutions in D are considered
one-by-one, which simplifies the computation to
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A B C

Figure S1: A - C) Plots of R2 indicator values of Pareto front for lipophilicity, docking and three-
objective tasks over ten repeats.

R2 (y;W, r) =
∑
w∈W

max
1≤i≤n

wi|ri − yi| . (10)

In the case of using the R2 indicator as an ASF, the reference point r is updated in light of new
measurements. At a given iteration, we set r to contain the cumulative best objective function values
in D for each objective, i.e., ri = miny∈D yi for each of i = 1, . . . , n.

A.3 Additional details of optimization experiments

Table S1: Hypervolumes of generated Pareto fronts for the lipophilicity, docking and three-objective
tasks. The results are averages over ten repeats with standard deviations. Higher is better.

Hypervolume

Approach QED-logP ↑ SAS-docking ↑ QED-logP-SAS ↑

ZINCred 12.40 123.91 66.23
Random 12.36 ± 0.24 77.83 ± 2.73 63.21 ± 0.59
Weighted sum 13.04 ± 0.27 92.63 ± 6.23 68.35 ± 1.12
Hypervolume 13.52 ± 0.22 99.27 ± 3.66 70.53 ± 0.82
CHIMERA 13.84 ± 0.14 100.40 ± 2.00 69.44 ± 0.79
CHIMERA B - - 68.45 ± 0.50

Table S2: R2 indicator of generated Pareto fronts for the lipophilicity, docking and three-objective
tasks. The results are averages over ten repeats with standard deviations. Lower is better.

R2 Indicator

Approach QED-logP ↓ SAS-docking ↓ QED-logP-SAS ↓

ZINCred 0.4158 1.767 0.2526
Random 0.3761 ± 0.0307 2.017 ± 0.351 0.2483 ± 0.0201
Weighted sum 0.3677 ± 0.0368 1.270 ± 0.332 0.2478 ± 0.0181
Hypervolume 0.3647 ± 0.0440 1.379 ± 0.315 0.2202 ± 0.0239
CHIMERA 0.3622 ± 0.0250 1.272 ± 0.234 0.2448 ± 0.0159
CHIMERA B - - 0.2289 ± 0.0175
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A.4 Analysis of Pareto fronts and sets

A.4.1 Molecular diversity of generated Pareto sets

In this section, we compare the molecular diversity of the Pareto sets generated by each strategy.
Diversity is quantified using

Diversity = 1− 1

n

∑
X,Y

Sim (X,Y ) , (11)

where n is the cardnality of the Pareto set and Sim(·) is a molecular similarity metric, in this case
the Tanimoto similarity calculated using Morgan fingerprints [54]. The summation is over all unique
pairs of Pareto set molecules [55]. Figure S2 shows the distributions diversity values for the Pareto
sets identified by each strategy.

Figure S2: Box-and-whisker plots show means of the diversity metric in Eq. 11 for the Pareto sets
identified by each strategy. The diversity of the ZINCred Pareto set is shown as a horizontal dotted
trace.
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A.5 Sample of Generated Molecules

A

B

C

D

Figure S3: Sample of top ten generated molecules for the task of maximising logP and QED metrics,
with minimum distance to Utopian point for A) WeightedSum B) Random Search C) Chimera D)
Hypervolume. Note that the mutation alphabet was augmented to include more ring groups.
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C

D

Figure S4: Sample of top ten generated molecules for the docking task of minimising SAS and the
docking score metrics, with minimum distance to Utopian point for A) WeightedSum B) Random
Search C) Chimera D) Hypervolume. Note that the mutation alphabet was augmented to include
more ring groups. Here, we observe the use of SAS as a measure of synthetic accessibility prioritizes
hydrocarbons, phenyl groups, and alternating double and single bonds. A more sophisticated measure
of synthetic accessibility will give more realistic molecules.
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C

D

E

Figure S5: Sample of top ten generated molecules for the three-objective task of maximising logP and
QED metrics, and minimizing SAS, with minimum distance to Utopian point for A) WeightedSum
B) Random Search C) Chimera A D) Chimera B E) Hypervolume. Note that the mutation alphabet
was augmented to include more ring groups.
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