
Under review as a conference paper at ICLR 2023

ENHANCING CROSS-CATEGORY LEARNING IN
RECOMMENDATION SYSTEMS WITH
MULTI-LAYER EMBEDDING TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern DNN-based recommendation systems rely on training-derived real-
valued embeddings of sparse categorical features. Input sparsity makes obtain-
ing high-quality embeddings for rarely-occurring categories harder as their rep-
resentations are updated infrequently. We demonstrate an effective overparame-
terization technique for enhancing embeddings training by enabling useful cross-
category learning. Our scheme trains embeddings using training-time forced fac-
torization of the embedding (linear) layer, with an inner dimension higher than the
target embedding dimension.
We show that factorization breaks update sparsity via non-homogeneneous
weighting of dense base embedding matrices. Such weighting controls the mag-
nitude of weight updates in each embedding direction, and is adaptive to training-
time embedding singular values. The dynamics of singular values further explains
the puzzling importance of factorization inner dimension on learning enhance-
ments.
We call the scheme multi-layer embeddings training (MLET). For deployment
efficiency, MLET converts the trained two-layer embedding into a single-layer
one at the conclusion of training, avoiding inference-time model size increase.
MLET consistently produces better models when tested on multiple recommen-
dation models for click-through rate (CTR) prediction. At constant model quality,
MLET allows embedding dimension reduction by up to 16x, and 5.8x on average,
across the models. MLET retains its benefits in combination with other table-
reduction methods (hashing and quantization).

1 INTRODUCTION

Recommendation models (RMs) underlie a large number of applications and improving their per-
formance is increasingly important. The click-through rate (CTR) prediction task is a special case
of general recommendation that seeks to predict the probability of a user clicking on a specific item.
User reactions to earlier-encountered instances are used in training a CTR model and are described
by multiple features that capture user information (e.g., age and gender) and item information (e.g.,
movie title, cost) Ouyang et al. (2019). Features are either numerical or categorical variables.

A fundamental aspect of modern recommendation models is their reliance on embeddings which
map categorical variables into dense representations in an abstract real-valued space. State-of-the-
art RMs increasingly use deep neural networks. Most high-performing models use a combination of
multi-layer perceptrons (MLPs) to process dense features, linear layers to generate embeddings of
categorical features, and either dot products or sub-networks that generate higher-order interactions.
The outputs of the interaction sub-networks and MLPs are used as inputs into a linear (logistic)
model to produce the CTR prediction. Broadly, the above describes modern deep recommender
systems, including: Wide and Deep Cheng et al. (2016), Deep and Cross (DCN) Wang et al. (2017),
DeepFM Guo et al. (2017), Field-Aware Factorization Machine (FFM) Juan et al. (2016), Neural
Factorization Machine (NFM) He & Chua (2017), AutoInt Song et al. (2019), and xDeepFM Lian
et al. (2018).

The contribution of this paper is in developing a simple yet effective overparameterization method
of deriving superior embeddings through training-time factorization of linear embedding layers
that enhances their cross-category learning. The proposed technique, which we call multi-layer
embedding training (MLET), trains embeddings via a sequence of two linear layers, instead of a
single one. Figure 1b illustrates the technique and the transformations involved.

1

Under review as a conference paper at ICLR 2023

4 8 1 6 3 2 6 4 1 2 8

0 . 4 4 9

0 . 4 5 0

0 . 4 5 1

0 . 4 5 2

0 . 4 5 3

0 . 4 5 4

0 . 4 5 5

 N o - F a c t o r i z a t i o n
 M L E T k = 6 4

V
al

id
at

io
n

Lo
gL

os
s

E m b e d d i n g D i m e n s i o n (d)

(a)

(1) Conventional Training
(2) MLET Inference-time Embedding Table

Dot Product Interactions

Top MLP

Dense Features

MLET Training-time Embedding Table

10 0...

...

...

Sparse Feature 1 Sparse Feature n

...

...

01 0...

...

Sparse Feature 2

...

00 1...

...

...

Collapse for InferenceFactorize for Training

Bottom MLP
...

Sparse Feature n

00 1...

...

Sparse Feature 2

01 0...

...

Sparse Feature 1

10 0...

...

(b)

Figure 1: (a) CTR model quality worsens at low embedding dimensions (and model sizes). Improve-
ments due to MLET’s factorization can be traded for reduced model size. (b) Our strategy retains
inference-time model size.

Effectiveness of training-time factorization of the embedding layer is puzzling. We identify the cen-
tral role of a term that controls the magnitude of updates in different embedding directions. We
refer to this term as the enhancement factor of embedding update directions. The non-homogeneous
weighting of MLET breaks the sparse nature of traditional embedding updates and is cross-category
informative: training on queried items also leads to embedding updates of all other non-queried
items. We also point out that the properties of non-homogeneous weighting explain why training
results are highly correlated with the inner dimension of embedding factorization. The inner di-
mension is very important because it determines the size of training-time embedding and is thus a
practical limitation.

The improvements are consistent and non-negligible. A major challenge for RMs is balancing the
improved performance afforded by higher embedding vector dimensions Naumov (2019); Yin &
Shen (2018) with the increasingly heavy cost in deployment of embedding tables Ginart et al.
(2019a). The memory required to store the embedding tables scales linearly with the embedding
dimension and the trade-off is illustrated in Figure 1a using the DLRM model Naumov et al. (2019)
on the Criteo-Kaggle dataset Labs (2014). This fundamental trade-off between model quality and
size makes it natural to think of learning improvements provided by MLET in terms of not just
higher-quality models but also reductions in model size at constant model quality. We implement
MLET in PyTorch and test it on seven state-of-the-art recommendation models for CTR predic-
tion. We demonstrate the substantial benefits of MLET in producing superior models – it achieves
the same or better performance than single-layer models while using up to 16x less (5.8x less on
average) parameters in embeddings on two public CTR datasets.

2 BETTER EMBEDDINGS VIA FORCED CROSS-CATEGORY LEARNING

In training recommendation models, a key feature that differs from other DNN setups is the sparsity
of queries in embedding training. Further, some items are rarely-occurring. How can we improve
their learning quality? We first observe that in each iteration of stochastic gradient descent (SGD),
the only updated embeddings in the single-layer model are those of the queried categories/items.
Because of this, the embedding update in each training iteration is sparse and embeddings of rarely-
occurring items are updated infrequently.

However, we show that with multi-layer embedding training, embeddings of all categories/items are
updated in each training iteration. Extra knowledge of the queried categories/items is extracted and
shared to update embeddings of other categories/items that are not queried. We refer to this extra
knowledge shared from the queried categories/items to other non-queried categories/items as cross-
category information. Cross-category information leads to dense embedding updates and much more
effective learning of rarely-occurring items.

2

Under review as a conference paper at ICLR 2023

2.1 EMBEDDINGS AND THEIR FACTORIZATION

We now introduce the notation and details of MLET. Let the full embedding table be 𝑊 of size 𝑑×𝑛,
where 𝑛 is the number of elements in the table and 𝑑 is the embedding dimension. Note that each
column of the table represent the embedding of a category/item.

𝑊 ∈ R𝑑×𝑛 (1)

We consider a two-layer architecture and factorize the embedding table 𝑊 in terms of 𝑊1 and 𝑊2:

𝑊 = 𝑊1𝑊2 with 𝑊1 ∈ R𝑑×𝑘 ,𝑊2 ∈ R𝑘×𝑛 (2)

In the above equations, 𝑘 is a hyperparameter for the inner dimension of embedding factorization.
(Note that 𝑘 does not need to be equal to 𝑑.) Let the vector 𝑞 ∈ Z𝑛 denote a one-hot encoding of a
query to 𝑛 categories/items. The embedding lookup is represented by a matrix-vector product:

𝑟 = 𝑊1𝑊2𝑞 (3)

Here, 𝑟 ∈ R𝑑 is the embedding of the queried item. 𝑊1 and 𝑊2 are trained jointly. After training
there is no need to keep both 𝑊1 and 𝑊2, and we only store their product, 𝑊 = 𝑊1𝑊2. This reduces
a two-layer embedding into a single one for inference-time evaluation and storage. Note that this
simple transformation reduces the model storage cost from O(𝑛𝑘) to O(𝑛𝑑), which is significant
since 𝑘 is usually much larger than 𝑑.

2.2 BREAKING SPARSITY OF UPDATES VIA EMBEDDING FACTORIZATION

Why should we expect to obtain a better embedding if we factorize the linear layer? Specifically,
in the MLET operating regime of 𝑘 ≥ 𝑑, any embedding defined by a two-layer model lies in the
search space of a single-layer model. Therefore, if there is an optimal solution found by a two-layer
model, our intuition is that a single-layer model should also be able to find it, and, thus, a two-
layer model should not be better than a single-layer model. Yet, empirically, we find that two-layer
models consistently outperform their single-layer counterparts. To understand why factorization
helps, we analyze the dynamics of embedding updates for both single-layer and multi-layer models.
Our analysis assumes that SGD with batch size 1 is used in model training. The same conclusions
can be easily extended to SGD with other batch sizes.

Our analysis pins down the superiority of multi-layer training to its more frequent and more infor-
mative embedding updates that learn the correlation between items. Mathematically, we show that
these more informative updates can be seen as the result of applying a special linear transformation
on single-layer models’ updates. This linear transformation is fully parameterized by the SVD of
training-time embeddings.

Consider the 2-layer embedding 𝑊 = 𝑊1𝑊2 of Eq.3. The factorization explicitly formulates the
embeddings as linear combinations of the embedding basis formed by the columns in 𝑊1. Because
the embedding basis is shared, correlations between all items are implicitly explored during training.
At each iteration of training, the loss on a few queried items is used to adjust the whole embedding
basis. By analyzing the gradient updates, we show that the learning of correlation between items
leads to more frequent and more informative embedding updates. Let the loss function be 𝐿 and loss
gradient 𝐺 = 𝜕𝐿

𝜕𝑤
. Given a learning rate 𝜂, for training of the single-layer model, embedding updates

are given by:
𝑊 = 𝑊 − 𝜂𝐺 (4)

Note that matrix 𝐺 is sparse, with only one column being non-zero. To see this, first notice that 𝑞 is
a one-hot encoding vector representing the queried item. Let 𝑔 = (𝑔1, 𝑔2, .., 𝑔𝑑)𝑇 be the gradient of
loss w.r.t. 𝑟, i.e., 𝑔 = 𝜕𝐿/𝜕𝑟. Let 𝐶 represent the index of the queried item.

𝐺𝑖 𝑗 =
𝜕𝐿

𝜕𝑊𝑖 𝑗

=

𝑑∑︁
𝑘=1

𝜕𝐿

𝜕𝑟𝑘

𝜕𝑟𝑘

𝜕𝑊𝑖 𝑗

= 𝑔𝑖𝑞 𝑗 (5)

Eq.5 uses the fact that 𝜕𝐿/𝜕𝑟𝑘 = 𝑔𝑘 and 𝜕𝑟𝑘/𝜕𝑊𝑖 𝑗 = 𝑞 𝑗 when 𝑘 = 𝑖 and is 0 otherwise. In matrix
form it is equivalent to 𝐺 = 𝑔𝑞𝑇 , because 𝑞 𝑗 = 1 only when 𝑗 = 𝐶, otherwise 𝑞 𝑗 = 0. It follows
that only the 𝐶 th column of G is non-zero and is equal to 𝑔. With batch size 𝑏 > 1, the conclusion
extends: no more than 𝑏 columns are non-zero. Because 𝑏 << 𝑛 for most embedding tables, G is

3

Under review as a conference paper at ICLR 2023

still sparse. In contrast, with the same learning rate, embedding updates of the 2-layer model are
captured by:

𝑊 = 𝑊 − 𝜂𝑊1𝑊
𝑇
1 𝐺 − 𝜂𝐺𝑊𝑇

2 𝑊2 (6)
The derivation is as follows. First, the gradients w.r.t. 𝑊1 and 𝑊2 are (derivation similar to Eq.5):

𝜕𝐿

𝜕𝑊1
= 𝑔𝑞𝑇𝑊𝑇

2 = 𝐺𝑊𝑇
2 (7)

𝜕𝐿

𝜕𝑊2
= 𝑊𝑇

1 𝑔𝑞
𝑇 = 𝑊𝑇

1 𝐺 (8)

Let 𝑊 (𝑡) be the embedding at 𝑡th iteration. 𝐺 is the gradient of embedding at the same iteration,
𝐺 = 𝜕𝐿/𝜕𝑊 (𝑡). The embedding updates of the 2-layer model are:

𝑊 (𝑡 + 1) = 𝑊1 (𝑡 + 1)𝑊2 (𝑡 + 1)

= (𝑊1 (𝑡) − 𝜂
𝜕𝐿

𝜕𝑊1 (𝑡)
) (𝑊2 (𝑡) − 𝜂

𝜕𝐿

𝜕𝑊2 (𝑡)
) (9)

Bringing Eq.7,8 into Eq.9 and replacing 𝑊1 (𝑡)𝑊2 (𝑡) with 𝑊 (𝑡), we get:

𝑊 (𝑡 + 1) = 𝑊 (𝑡) − 𝜂𝑊1 (𝑡)𝑊1 (𝑡)𝑇𝐺
− 𝜂𝐺𝑊2 (𝑡)𝑇𝑊2 (𝑡) +𝑂 (𝜂2) (10)

Following the convention of gradient flow analysis, we ignore the 𝑂 (𝜂2) term in Eq.10 to get Eq.6.
Comparing Eq.4 and Eq.6, we can see that the embedding updates of 2-layer training are more fre-
quent than those of single-layer training and have the property of being cross-category informative,
which cannot be obtained by single-layer training. We first observe that in each step of training a
single-layer model (Eq.4), only one column of 𝑊 is updated. However, in each step of training a
2-layer model (Eq.6), the whole embedding table 𝑊 is updated because the term 𝜂𝐺𝑊𝑇

2 𝑊2 breaks
the sparsity (𝑊𝑇

2 𝑊2 is usually dense and post-conditioning a column-sparse matrix by dense ma-
trices breaks the column-sparsity). This implies that given the same number of training iterations
(N), embeddings are updated N times more frequently for the 2-layer model than for the single-layer
model.

In summary, Eq.4 and Eq.6 show that the updates of the two models differ by a pre-conditioning
term 𝑊1𝑊

𝑇
1 and a post-conditioning term 𝑊𝑇

2 𝑊2 on the gradient 𝐺. Further, the post-conditioning
term breaks the sparsity.

2.3 IMPROVING CROSS-CATEGORY LEARNING VIA EMBEDDING FACTORIZATION: THEORY

Why does breaking the sparsity in this way help embedding training? We now explain it via the
structure of the updates of the two models. The theory reformulates the process of embedding
updates and represents the difference between updates by a single term that scales different em-
bedding directions. This scaling term effectively strengthens the updates along directions that have
significant contribution to embedding’s SVD spectrum and suppresses the updates along directions
that have minor contribution. The theory also helps explain other properties of MLET, namely, its
dependence on inner dimension.

We use the following notation: vec(𝑋) is the vectorization of the matrix X, formed by stacking the
columns of X into a single column vector. ⊗ is the Kronecker product operator. The SVDs of 𝑊1
and 𝑊2 are denoted by 𝑊1 = 𝑈Σ1𝑋

𝑇 and 𝑊2 = 𝑌Σ2𝑉
𝑇 , and 𝑢𝑖 and 𝑣 𝑗 represent the 𝑖th column of 𝑈

and 𝑗 th column of 𝑉 , respectively. 𝜎1 (𝑖), 𝜎2 (𝑗) are the 𝑖th singular value in Σ1 and 𝑗 th singular value
in Σ2. Note that the range of index 𝑖 is from 1 to d and that of index 𝑗 is from 1 to n. We make the
following two claims.

Claim 1. 𝑆 = {𝑣 𝑗 ⊗ 𝑢𝑖 , 𝑖 ∈ {1, 2, ..., 𝑑}, 𝑗 ∈ {1, 2, ..., 𝑛}} is an orthornormal basis in R𝑛𝑑 .

Claim 2. There must exist a set of 𝑔𝑖 𝑗 with 𝑖 ∈ {1, 2, ..., 𝑑} and 𝑗 ∈ {1, 2, ...𝑛} such that

vec(𝐺) =
∑︁
𝑖, 𝑗

𝑔𝑖 𝑗𝑣 𝑗 ⊗ 𝑢𝑖 (11)

4

Under review as a conference paper at ICLR 2023

The proof to Claim 1. is presented in Appendix. Claim 2. follows directly from the fact that vec(𝐺)
is in R𝑛𝑑 and 𝑆 is an orthornormal basis in the same vector space. Based on the above claims,
embedding updates for both models can be re-formulated as in the following theorem.

Theorem 1. (Main Theorem) The embedding updates of the 1-layer model and those of the 2-layer
model can be represented in terms of the basis:

𝑊 − 𝜂𝐺 = 𝑊 − 𝜂
∑︁
𝑖, 𝑗

𝑔𝑖 𝑗𝑢𝑖𝑣
𝑇
𝑗 (12)

𝑊 − 𝜂(𝑊1𝑊
𝑇
1 𝐺 + 𝐺𝑊𝑇

2 𝑊2) = 𝑊 − 𝜂
∑︁
𝑖, 𝑗

𝑔𝑖 𝑗 (𝜎1 (𝑖)2 + 𝜎2 (𝑗)2)𝑢𝑖𝑣𝑇𝑗 (13)

The proof is presented in the Appendix. This theorem re-formulates the embedding updates as
weighted sums of a set of base matrices, formed by outer products of singular vectors of embeddings.
Thus, it pins down the source of cross-category information to a re-weighting process that is guided
by squared terms of singular values of embeddings.

In the single-layer model (Eq.12), the update in direction 𝑢𝑖𝑣
𝑇
𝑗

is with magnitude 𝑔𝑖 𝑗 . In the 2-
layer model (Eq.13), the magnitude is adjusted by a factor of (𝜎1 (𝑖)2 + 𝜎2 (𝑗)2). This term acts
as an enhancement factor of updates and is adaptive to the training-time embeddings. If 𝑢𝑖 and 𝑣 𝑗

make significant contributions to embeddings, the corresponding 𝜎1 (𝑖) and 𝜎2 (𝑗) will be large, so
updates in the direction 𝑢𝑖𝑣

𝑇
𝑗

get boosted. If 𝑢𝑖 and 𝑣 𝑗 make minimal contribution to embeddings,
the corresponding 𝜎1 (𝑖) and 𝜎2 (𝑗) will be small and the update in the direction 𝑢𝑖𝑣

𝑇
𝑗

gets attenuated.

Note that Eq.12 is sparse; Eq.4 was shown to be sparse in Section 2.2. Now this sparsity can be
seen as the result of homogeneous weighting of dense embedding matrices 𝑔𝑖 𝑗𝑢𝑖𝑣𝑇𝑗 . In contrast, the
enhancement factor (𝜎1 (𝑖)2 + 𝜎2 (𝑗)2) produces heterogeneous weighting of these dense matrices,
thereby breaking the sparsity.

2.4 LEARNING ENHANCEMENT: REQUIREMENTS ON OVERPARAMETERIZATION

There are two aspects of MLET that seem quite surprising. The first is why, with an appropriate
choice of inner dimension, it is superior to single-layer training at the same embedding dimension?
The second is why its quality improves with a larger inner dimension? Empirically, higher 𝑘s
consistently achieve higher performance than small ones. With 𝑘 < 𝑑, MLET can be worse than a
single-layer model. Since the inference-time embedding table is of size 𝑛 × 𝑑, factorization with
𝑘 > 𝑑 introduces more parameters (𝑛𝑘 + 𝑘𝑑) than needed (𝑛𝑑) and overparameterizes the model.
Why do the benefits of such overparameterization increase with 𝑘?

There are two factors contributing to these phenomena: degeneration of enhancement factor and
search space of the embedding learning. In Section 2.3, we attribute the superiority of 2-layer
embeddings over 1-layer embeddings to a term (𝜎1 (𝑖)2 + 𝜎2 (𝑗)2). Notice that 𝑖 ∈ {1, 2, .., 𝑑} and
𝑗 ∈ {1, 2, .., 𝑛} and 𝜎1 (𝑥) = 𝜎2 (𝑥) = 0 if 𝑥 > 𝑘 . It means that if 𝑘 is small, the majority of 𝜎1 (𝑖)
and 𝜎2 (𝑗) will be 0. We believe this explains, why the performance of MLET degrades when the
inner dimension shrinks. Further, we observe that in 1-layer model (Eq.12), the enhancement factor
of different update directions 𝑢𝑖𝑣𝑇𝑗 can be treated as constant 1.

For 𝑘 ≥ 𝑑, consider two MLET models with inner dimensions 𝑘 larger, 𝑘smaller (𝑘 larger > 𝑘smaller ≥ 𝑑).
The number of non-zero enhancement factors is the same in both models: 𝑑𝑛. However, the number
of enhancement factors with a non-zero 𝜎2 differs since it is equal to 𝑘𝑑. Thus the MLET model
with inner dimension 𝑘smaller has 𝑑 (𝑘 larger − 𝑘smaller) fewer effective enhancement factors because
of 𝜎2 being 0. Notice that 𝜎2 (𝑗) measures the importance of 𝑣 𝑗 to the embedding table—it is
informative in determining the confidence in taking update 𝑢𝑇

𝑖
𝑣 𝑗 , 𝑖 ∈ {1, 2, .., 𝑑}. The use of less

informative enhancement factors in a larger number of update directions explains why MLET with
inner dimension 𝑘smaller performs worse than MLET with inner dimension 𝑘 larger.

For 𝑘 < 𝑑, there are (−𝑘2+(𝑛+𝑑)𝑘) non-zero enhancement factors in the 2-layer model. (To see this,
consider that the number of non-zero enhancement factors equals to the number of terms with at least
one of 𝜎1 (𝑖) and 𝜎2 (𝑗) being non-zero. For 𝑖 ∈ {1, .., 𝑘}, all 𝜎1 (𝑖)s are non-zero, so their related
enhancement factors are non-zero and there are 𝑘 × 𝑛 such values. For 𝑖 ∈ {𝑘 + 1, .., 𝑑}, all 𝜎1 (𝑖)s
are zero and enhancement factors are non-zero only when 𝑗 ∈ {1, .., 𝑘}. There are (𝑑 − 𝑘)𝑘 such
values. Thus, there are 𝑘𝑛 + (𝑑 − 𝑘)𝑘 non-zero enhancement factors in total.) However, the number

5

Under review as a conference paper at ICLR 2023

of non-zero enhancement factors in the 1-layer model is 𝑑𝑛 (for all 𝑑𝑛 terms, the enhancement factor
is 1). Notice that 𝑑𝑛 > (−𝑘2 + (𝑛 + 𝑑)𝑘) for all 𝑘 < 𝑑. It indicates that single-layer models consider
more 𝑢𝑖𝑣

𝑇
𝑗

terms in their embedding updates than MLET models with 𝑘 < 𝑑. For such MLET
models, this lack of flexibility in update directions cancels the benefit of being more informative
in each direction, and possibly worsens performance. We point out that there is another, intuitive
reason for MLET being worse than a single-layer model in the case of 𝑘 < 𝑑: the search space of
the multi-layer model is reduced to a subset of the single-layer search space. We do not recommend
working in the 𝑘 < 𝑑 regime.

3 EXPERIMENTS

We evaluate the proposed MLET technique using a large set of state-of-the-art recommendation
models on two public datasets for click-through rate tasks: Criteo-Kaggle and Avazu. Both datasets
are composed of a mix of categorical and real-valued features (Table 1).

The Criteo-Kaggle dataset is split based on the time of data collection: the first six days are used for
training and the seventh day is split evenly into the test and validation sets. The Avazu dataset is ran-
domly split into training and test sets of 90% and 10%, respectively. The models are implemented
in PyTorch and trained on systems with NVIDIA GPUs (CUDA acceleration enabled). We evaluate
MLET on seven state-of-the-art recommendation models. DLRM is tested both on Criteo-Kaggle
and Avazu. Other models are tested exclusively on the Avazu dataset because of its shorter run time
relative to Criteo-Kaggle. We use publicly available implementations of non-DLRM models from
the open-source recommendation model library DeepCTR-Torch Shen (2019). To decrease the im-
pact of randomized initialization and run-to-run variation due to non-deterministic GPU execution,
the reported results are averages over several training runs. All DLRM results are the mean of five
training runs. Results from the other models are the mean of three training runs. We report two
quality metrics: area under the ROC curve (AUC) and binary cross-entropy (LogLoss).

Following prior work Naumov et al. (2019), we train all models for a single epoch. Two optimizers
are used in the experiments: SGD and Adagrad. DLRM and its MLET variants are trained using
SGD with a learning rate of 0.2. Other models are trained with Adagrad with a learning rate of
0.02. Most recommendation systems use the same overall architecture (embeddings + interactions +
MLP). The biggest difference between most models is in the interaction layers. In all experiments,
𝑑 stands for embedding dimension. For DLRM, on both datasets we configure its top MLP to have
two hidden layers with 512 and 256 nodes. On the Avazu dataset, we set DLRM’s bottom MLP
to be 256 → 128 → 𝑑. On the Criteo-Kaggle dataset, we configure DLRM’s bottom MLP to be
512 → 256 → 128 → 𝑑. For other models we keep the same criteria for 𝑑 and use all default
model parameters from the DeepCTR implementations. We do not tune any model architecture
(e.g., number, type, and size of layers). We summarizd the configurations used in Table 2.

3.1 LEARNING ENHANCEMENT

The experiments demonstrate the effectiveness of MLET in producing superior models compared to
the baseline single-layer embedding implementation. Figures 2 and 3 summarize the more extensive
experiments with DLRM carried out on two datasets for models trained using SGD. Figure 4 presents
the main results for three other models: DCN, NFM, and AutoInt. Table 2 summarizes the results
of MLET across 7 models for several values of 𝑘 and 𝑑.

4 8 1 6 3 2 6 4 1 2 8
0 . 7 9 9

0 . 8 0 0

0 . 8 0 1

0 . 8 0 2

0 . 8 0 3

0 . 8 0 4

0 . 8 0 5

0 . 8 0 6

V
al

id
at

io
n

A
U

C

E m b e d d i n g D i m e n s i o n (d)

 M L E T k = 1 2 8
 M L E T k = 6 4
 M L E T k = 3 2
 M L E T k = 1 6
 M L E T k = 8
 N o - F a c t o r i z a t i o n

4 8 1 6 3 2 6 4 1 2 8

0 . 4 4 9

0 . 4 5 0

0 . 4 5 1

0 . 4 5 2

0 . 4 5 3

0 . 4 5 4

0 . 4 5 5

V
al

id
at

io
n

Lo
gL

os
s

E m b e d d i n g D i m e n s i o n (d)

 N o - F a c t o r i z a t i o n
 M L E T k = 8
 M L E T k = 1 6
 M L E T k = 3 2
 M L E T k = 6 4
 M L E T k = 1 2 8

Figure 2: MLET with DLRM on the Criteo-Kaggle dataset, trained with SGD.

6

Under review as a conference paper at ICLR 2023

Table 1: Dataset composition.

Dataset Samples Dense Features Sparse Features
Criteo-Kaggle Labs (2014) 45,840,617 13 26
Avazu Kaggle (2014) 40,400,000 1 21

4 8 1 6 3 2 6 4 1 2 8

0 . 7 6 1

0 . 7 6 3

0 . 7 6 6

0 . 7 6 8

0 . 7 7 0

0 . 7 7 3

0 . 7 7 5

0 . 7 7 8

0 . 7 8 0

V
al

id
at

io
n

A
U

C

E m b e d d i n g D i m e n s i o n (d)

 M L E T k = 1 2 8
 M L E T k = 6 4
 M L E T k = 3 2
 M L E T k = 1 6
 N o - F a c t o r i z a t i o n

4 8 1 6 3 2 6 4 1 2 8

0 . 3 8 1

0 . 3 8 2

0 . 3 8 3

0 . 3 8 4

0 . 3 8 5

0 . 3 8 6

0 . 3 8 7

0 . 3 8 8

0 . 3 8 9

0 . 3 9 0

0 . 3 9 1

V
al

id
at

io
n

Lo
gL

os
s

E m b e d d i n g D i m e n s i o n (d)

 N o - F a c t o r i z a t i o n
 M L E T k = 1 6
 M L E T k = 3 2
 M L E T k = 6 4
 M L E T k = 1 2 8

Figure 3: MLET with DLRM on the Avazu dataset, trained with SGD.

As Figures 2 and 3 show, MLET consistently squeezes more performance out of fixed-size em-
beddings of DLRM model. The benefits begin to be observed in MLET curves even for 𝑘 = 𝑑.
Increasing 𝑘 for a given 𝑑 leads to a monotonic improvement in model accuracy. For CTR systems,
an improvement of 0.001 in AUC is considered substantial. The maximum AUC benefit of MLET
for Criteo-Kaggle is 0.0027, and the maximum benefit for Avazu is 0.1241. This improvement in
model accuracy saturates as 𝑘 grows, e.g., on the Criteo-Kaggle dataset the curves with 𝑘 = 64 and
𝑘 = 128 are very similar.

We further observe that the relative quality improvements are largely defined by 𝑘/𝑑.

As can be seen in Figures 2 and 4, the general LogLoss vs. vector dimension behavior is similar
across the different models evaluated. We note that not only is the overall behavior similar, but also
that MLET provides substantial benefits for most models with 4−16× savings of embedding param-
eters while maintaining the same or better performance as compared to the single-layer embedding
training.

3.2 LEARNING QUALITY FOR HIGH- AND LOW-FREQUENCY EMBEDDINGS

In Section 2 we argue that the embedding updates of MLET are cross-category informative and
are more frequent. They lead to better learning quality of embeddings, especially those of the
least frequently queried items. To verify this intuition, we conduct experiments that compare the
performance of MLET and that of single-layer training on two test sets.

The first set (A) is composed by 10% test samples with the most frequently queried items. The sec-
ond set (B) is composed by 10% test samples with the least frequently queried items. Experiments
are done with three models (DCN, AutoInt, and xDeepFM) on the Avazu dataset. We use the relative

4 8 1 6 3 2

0 . 7 9 0

0 . 7 9 1

0 . 7 9 2

0 . 7 9 3

0 . 7 9 4

0 . 7 9 5

V
al

id
at

io
n

A
U

C

E m b e d d i n g D i m e n s i o n (d)

 M L E T k = 6 4
 M L E T k = 3 2
 M L E T k = 1 6
 M L E T k = 8
 N o - F a c t o r i z a t i o n

(a) AutoInt

4 8 1 6 3 2

0 . 7 8 9

0 . 7 9 0

0 . 7 9 1

0 . 7 9 2

0 . 7 9 3

0 . 7 9 4

0 . 7 9 5

V
al

id
at

io
n

A
U

C

E m b e d d i n g D i m e n s i o n (d)

 M L E T k = 6 4
 M L E T k = 3 2
 M L E T k = 1 6
 M L E T k = 8
 N o - F a c t o r i z a t i o n

(b) DCN

4 8 1 6 3 2

0 . 7 8 0
0 . 7 8 1
0 . 7 8 2
0 . 7 8 3
0 . 7 8 4
0 . 7 8 5
0 . 7 8 6
0 . 7 8 7
0 . 7 8 8
0 . 7 8 9
0 . 7 9 0
0 . 7 9 1
0 . 7 9 2
0 . 7 9 3

V
al

id
at

io
n

A
U

C

E m b e d d i n g D i m e n s i o n (d)

 M L E T k = 6 4
 M L E T k = 3 2
 M L E T k = 1 6
 M L E T k = 8
 N o - F a c t o r i z a t i o n

(c) NFM

Figure 4: MLET on several state-of-the-art RM models on the Avazu dataset, trained with Adagrad.

7

Under review as a conference paper at ICLR 2023

Table 2: Effectiveness of MLET across models for two common settings.

Baseline AUC MLET AUC (𝑘, 𝑑) Maximum Memory Reduction
Model Dataset 𝑑 = 4 𝑑 = 16 64,4 64,16 (same or higher performance)

DLRM Criteo 0.799 0.803 0.801 0.804 4x (𝑑 32 → 8 , 𝑘 ≥ 128)
Avazu 0.761 0.768 0.770 0.775 16x (𝑑 64 → 4 , 128 → 8 , 𝑘 ≥ 128)

Wide & Deep Avazu 0.789 0.790 0.792 0.793 4x (𝑑 16 → 4 , 𝑘 ≥ 64)
DeepFM Avazu 0.790 0.794 0.792 0.795 1x
xDeepFM Avazu 0.792 0.796 0.794 0.798 2x (𝑑 16 → 8 , 𝑘 ≥ 64)
Deep & Cross Avazu 0.789 0.791 0.792 0.794 8x (𝑑 32 → 8 , 16 → 4 , 𝑘 ≥ 64)
AutoInt Avazu 0.790 0.792 0.793 0.795 8x (𝑑 32 → 4 , 𝑘 ≥ 32)
NFM Avazu 0.781 0.789 0.787 0.792 4x (𝑑 16 → 4 , 𝑘 ≥ 64)

improvement in PR-AUC to evaluate MLET’s enhancement in the learning quality of embeddings.
We choose PR-AUC instead of ROC-AUC because it is more robust to imbalanced data (20% of set
A are clicked while only 15% of set B are clicked) and is also more sensitive to the improvements
for the positive class Czakon (2021) (clicked samples in CTR task).

As shown in Table 3, MLET generally improves embedding quality on both sets of samples: on
both set A and B, PR-AUC is improved with MLET except for one configuration (xDeepFM with
k=4,d=8). Further, MLET consistently improves performance on the least popular samples (set B)
and the improvements on them are larger than the improvements on the most popular samples (set
A). This empirical observation aligns with our expectation from the theory that MLET’s dense and
cross-category informative updates are most beneficial to the learning quality of the embeddings of
rarely-occurring items.

Table 3: Improvement of PR-AUC on test samples with the most frequently queried items and on
test samples with the least frequently queried items. Aligned with our theory, the learning quality of
low-frequency embeddings benefits more from MLET.

Model (d / k) Set A Set B
(Most Frequent) (Least Frequent)

DCN (4 / 8) +0.0004 +0.0013
DCN (16 / 64) +0.0033 +0.0045
AutoInt (4 / 8) +0.0005 +0.0008

AutoInt (16 / 64) +0.0038 +0.0048
xDeepFM (4 / 8) -0.0009 +0.0019

xDeepFM (16 / 64) +0.0001 +0.0024

3.3 MLET AND MODEL COMPRESSION

We have demonstrated MLET’s capability in producing superior models. However, there are many
other model compression techniques that can also be used to squeeze more performance out of a
fixed-size model. We develop experiments to compare and test the composition of MLET with these
model size reduction techniques. Specifically, we include three commonly adopted techniques in our
experiments – low rank SVD approximation, hashing, and post-training quantization. We found that
MLET consistently outperforms low rank SVD approximation of embedding tables and improves
model quality with all combinations of quantization and hashing. MLET consistently enhances
the INT8 post-training quantization and hashing, as observed in Figure 5. Experimental results on
SVD, further results on quantization and hashing, and a discussion of experimental settings are in
the Appendix due to space limitations.

4 RELATED WORK

We discuss three primary tracks of prior work related to MLET: (1) theoretical aspects of training
evolution, (2) table-compression approaches, and (3) table-decomposition approaches.

The theory we develop for the evolution of embeddings in gradient descent training of recommen-
dation models is inspired by recent work on the benefits of training with overparameterization Arora
et al. (2018; 2019). However, we find that this prior work does not directly apply to MLET be-

8

Under review as a conference paper at ICLR 2023

1 2 4 8 1 6 3 2

0 . 7 8 5

0 . 7 8 6

0 . 7 8 7

0 . 7 8 8

0 . 7 8 9

0 . 7 9 0

0 . 7 9 1

0 . 7 9 2

V
al

id
at

io
n

A
U

C

R e l a t i v e T a b l e S i z e

 M L E T
 I N T 8 + M L E T
 I N T 8
 N o - F a c t o r i z a t i o n

(a) MLET and quantization

1 2 4 8 1 6 3 2

0 . 7 8 0
0 . 7 8 1
0 . 7 8 2
0 . 7 8 3
0 . 7 8 4
0 . 7 8 5
0 . 7 8 6
0 . 7 8 7
0 . 7 8 8
0 . 7 8 9
0 . 7 9 0
0 . 7 9 1
0 . 7 9 2

V
al

id
at

io
n

A
U

C

R e l a t i v e T a b l e S i z e

 M L E T
 N o - F a c t o r i z a t i o n
 H a s h i n g T r i c k + I N T 8 + M L E T
 H a s h i n g T r i c k + I N T 8

(b) MLET with quantization and hashing trick

Figure 5: Composition of MLET with quantization and Hashing Trick on DCN. The combination of
MLET and quantization provides improved performance.

cause MLET-trained embeddings are not lower rank than with traditional training. Moreover, this
prior theoretical framework does not predict the impact of the inner dimension on the evolution
of parameters, which is because of their restrictive assumptions on the initialization of the matri-
ces. Our newly-developed theory relaxes the restrictive assumptions and successfully explains the
empirically-observed benefits of using higher inner dimensions and the impact of initialization vari-
ance.

The benefit of MLET is in producing embedding tables with superior performance for fixed table
size. An orthogonal set of approaches for achieving this goal include compressing a large trained
embedding with pruning and quantization Ling et al. (2016); Tissier et al. (2019); Sun et al. (2016);
pruning and quantization applied during training Alvarez & Salzmann (2017); Naumov et al. (2018);
and applying different types of hashing tricks to share embeddings within or between tables Atten-
berg et al. (2009); Shi et al. (2019). Techniques that utilize statistical knowledge of embedding usage
(access frequency) have also been developed to adapt the embedding dimension or precision to us-
age, with more-compact representations of less-accessed embeddings Ginart et al. (2019b); Yang
et al. (2020).

In addition to being an orthogonal approach to those above, MLET produces high-quality embed-
dings without assuming any prior knowledge of access frequency and without reducing parameter
precision. Instead, under the same inference-time embedding size, we seek a superior training-time
embedding architecture that achieves better performance by promoting more frequent and more in-
formative updates of embeddings than those in single-layer training.

MLET is also related to approaches that are based on decomposition techniques. For example,
trained embedding tables can be compressed via a low-rank SVD approximation Bhavana et al.
(2019) or using a tensor-train decomposition Khrulkov et al. (2019). TT-Rec Yin et al. (2021)
uses tensor-train decomposition to represent embeddings and is similar to MLET in that multiple
tensors instead of one are used in learning each embedding table. However, TT-Rec and MLET are
orthogonal and completely differ in their working mechanisms and implications. TT-Rec shows that
underparameterization of an embedding layer maintains performance while reducing the inference-
time table size. MLET, in contrast, shows that overparameterization of an embedding layer using
two layers enhances performance while keeping the same inference-time table size.

With the empirical benefits demonstrated by MLET, we believe many opportunities are now open
for exploring the combinations of MLET with the above techniques. For example, one can apply
TT-Rec to learn the first layer of MLET, or one can overparameterize the tensors in TT-Rec to see if
desirable performance improvement can be obtained.

We conclude this survey by pointing out that no other work has shown how to enhance cross-category
training or theoretically analyzed its mechanism.

5 CONCLUSION

We introduce a simple yet effective multi-layer embedding training (MLET) architecture that trains
embeddings via a sequence of linear layers to derive superior models. We present a theory that
explains for its superior embedding learning based on the dynamics of embedding updates. We pro-
totype MLET across seven state-of-the-art open-source recommendation models and demonstrate
that MLET alone is able to achieve the same or better performance as compared to conventional
single-layer training scheme while uses up to 16x less (5.8x less on average) embedding parameters.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Jose M Alvarez and Mathieu Salzmann. Compression-aware training of deep networks. In Advances
in Neural Information Processing Systems, pp. 856–867, 2017.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. ArXiv, abs/1802.06509, 2018.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. In NeurIPS, 2019.

Josh Attenberg, Kilian Weinberger, Anirban Dasgupta, Alex Smola, and Martin Zinkevich. Collab-
orative email-spam filtering with the hashing trick. CEAS, 2009.

Prasad Bhavana, Vikas Kumar, and Vineet Padmanabhan. Block based singular value decomposition
approach to matrix factorization for recommender systems. arXiv preprint arXiv:1907.07410,
2019.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,
Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan
Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning for recommender
systems. CoRR, abs/1606.07792, 2016. URL http://arxiv.org/abs/1606.07792.

Jakub Czakon. F1 score vs roc auc vs accuracy vs pr auc: Which evaluation metric should you
choose? https://neptune.ai/blog/f1-score-accuracy-roc-auc-pr-auc,
2021. [Online; Updated December 31st, 2021].

Antonio Ginart, Maxim Naumov, Dheevatsa Mudigere, Jiyan Yang, and James Zou. Mixed di-
mension embeddings with application to memory-efficient recommendation systems. ArXiv,
abs/1909.11810, 2019a.

Antonio Ginart, Maxim Naumov, Dheevatsa Mudigere, Jiyan Yang, and James Zou. Mixed dimen-
sion embeddings with application to memory-efficient recommendation systems, 2019b.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In AISTATS, 2010.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: A factorization-
machine based neural network for ctr prediction. In IJCAI, 2017.

Xiangnan He and Tat-Seng Chua. Neural factorization machines for sparse predictive analytics.
In Proceedings of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’17, pp. 355–364, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450350228. doi: 10.1145/3077136.3080777. URL https:
//doi.org/10.1145/3077136.3080777.

Yu-Chin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. Field-aware factorization ma-
chines for ctr prediction. In RecSys ’16, 2016.

Kaggle. Avazu click-through rate prediction, 2014. https://www.kaggle.com/c/
avazu-ctr-prediction.

Valentin Khrulkov, Oleksii Hrinchuk, Leyla Mirvakhabova, and Ivan Oseledets. Tensorized embed-
ding layers for efficient model compression. arXiv preprint arXiv:1901.10787, 2019.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. ArXiv, abs/1806.08342, 2018.

Criteo Labs. Kaggle display advertising challenge dataset, 2014. http://labs.criteo.com/
2014/02/kaggle-display-advertising-challenge-dataset/.

Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong Sun.
xdeepfm: Combining explicit and implicit feature interactions for recommender systems. Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2018.

10

http://arxiv.org/abs/1606.07792
https://neptune.ai/blog/f1-score-accuracy-roc-auc-pr-auc
https://doi.org/10.1145/3077136.3080777
https://doi.org/10.1145/3077136.3080777
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

Under review as a conference paper at ICLR 2023

Shaoshi Ling, Yangqiu Song, and Dan Roth. Word embeddings with limited memory. In Pro-
ceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pp. 387–392, Berlin, Germany, August 2016. Association for Computational
Linguistics. doi: 10.18653/v1/P16-2063. URL https://www.aclweb.org/anthology/
P16-2063.

Maxim Naumov. On the dimensionality of embeddings for sparse features and data. arXiv preprint
arXiv:1901.02103, 2019.

Maxim Naumov, Utku Diril, Jongsoo Park, Benjamin Ray, Jedrzej Jablonski, and Andrew Tul-
loch. On periodic functions as regularizers for quantization of neural networks. arXiv preprint
arXiv:1811.09862, 2018.

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundara-
man, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro
Dzhulgakov, Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krishnamoorthi, An-
sha Yu, Volodymyr Y. Kondratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao,
Bill Jia, Liang Xiong, and Misha Smelyanskiy. Deep learning recommendation model for per-
sonalization and recommendation systems. ArXiv, abs/1906.00091, 2019.

Wentao Ouyang, Xiuwu Zhang, Shukui Ren, Linlin Li, Zhaojie Liu, and Y. Du. Click-through rate
prediction with the user memory network. ArXiv, abs/1907.04667, 2019.

Weichen Shen. Deepctr-torch: Easy-to-use,modular and extendible package of deep-learning based
ctr models. https://github.com/shenweichen/DeepCTR-Torch, 2019.

Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang. Compositional em-
beddings using complementary partitions for memory-efficient recommendation systems. arXiv
preprint arXiv:1909.02107, 2019.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang.
Autoint: Automatic feature interaction learning via self-attentive neural networks. In CIKM ’19,
2019.

Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi Cheng. Sparse word embeddings using l1
regularized online learning. In Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, pp. 2915–2921. AAAI Press, 2016.

Julien Tissier, Christophe Gravier, and Amaury Habrard. Near-lossless binarization of word em-
beddings. Proceedings of the AAAI Conference on Artificial Intelligence, 33:7104–7111, Jul
2019. ISSN 2159-5399. doi: 10.1609/aaai.v33i01.33017104. URL http://dx.doi.org/
10.1609/aaai.v33i01.33017104.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click predictions.
In ADKDD’17, 2017.

Jie Amy Yang, Jianyu Huang, Jongsoo Park, Ping Tak Peter Tang, and Andrew Tulloch. Mixed-
precision embedding using a cache, 2020.

Chunxing Yin, Bilge Acun, Xing Liu, and Carole-Jean Wu. Tt-rec: Tensor train compression for
deep learning recommendation models. ArXiv, abs/2101.11714, 2021.

Zi Yin and Yuanyuan Shen. On the dimensionality of word embedding. ArXiv, abs/1812.04224,
2018.

11

https://www.aclweb.org/anthology/P16-2063
https://www.aclweb.org/anthology/P16-2063
https://github.com/shenweichen/DeepCTR-Torch
http://dx.doi.org/10.1609/aaai.v33i01.33017104
http://dx.doi.org/10.1609/aaai.v33i01.33017104

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 PROOF TO CLAIM 1

Proof. Consider two vectors from S: 𝑣 𝑗 ⊗ 𝑢𝑖 and 𝑣𝑞 ⊗ 𝑢𝑝 .

(𝑣 𝑗 ⊗ 𝑢𝑖)𝑇 · (𝑣𝑞 ⊗ 𝑢𝑝) = (𝑣𝑇𝑗 ⊗ 𝑢𝑇𝑖) · (𝑣𝑞 ⊗ 𝑢𝑝) = (𝑣𝑇𝑗 𝑣𝑞) ⊗ (𝑢𝑇𝑖 𝑢𝑝) (14)

Bringing 𝑖 = 𝑝, 𝑗 = 𝑞 into Eq.14, we see that both (𝑢𝑇
𝑖
𝑢𝑖) and (𝑣𝑇

𝑗
𝑣 𝑗) are 1 so the product of every

vector 𝑣 𝑗 ⊗ 𝑢𝑖 ∈ 𝑆 to itself is 1. The product of any two different vectors is 0. Indeed, 𝑖 = 𝑝

and 𝑗 = 𝑞 cannot hold true at the same time, so either 𝑣𝑇
𝑖
𝑣𝑝 = 0 or 𝑣𝑇

𝑖
𝑣𝑝 = 0. In consequence,

(𝑣𝑇
𝑖
𝑣𝑝) ⊗ (𝑢𝑇

𝑗
𝑢𝑞) = 0. □

A.2 PROOF TO MAIN THEOREM

Proof. Eq.12 follows from claim 2. Now we show that the right side of Eq.13 equals to its left side.

Recall that the SVDs of 𝑊1 and 𝑊2 are 𝑊1 = 𝑈Σ1𝑋
𝑇 and 𝑊2 = 𝑌Σ2𝑉

𝑇 . Let 𝐼𝑘 denote the identity
matrix of shape 𝑘 × 𝑘 . Use the property vec(𝐴𝐵𝐶) = (𝐶𝑇 ⊗ 𝐴)vec(𝐵)

vec(𝑊1𝑊
𝑇
1 𝐺 + 𝐺𝑊𝑇

2 𝑊2)
= vec(𝑈Σ1Σ

𝑇
1 𝑈

𝑇𝐺) + vec(𝐺𝑉Σ𝑇
2 Σ2𝑉

𝑇)
= vec(𝑈Σ1Σ

𝑇
1 𝑈

𝑇𝐺𝐼𝑛) + vec(𝐼𝑑𝐺𝑉Σ𝑇
2 Σ2𝑉

𝑇)
= (𝐼𝑛 ⊗ 𝑈Σ1Σ

𝑇
1 𝑈

𝑇)vec(𝐺) + (𝑉Σ𝑇
2 Σ2𝑉

𝑇 ⊗ 𝐼𝑑)vec(𝐺)
(15)

Use the property 𝐴𝐵 ⊗ 𝐶𝐷 = (𝐴 ⊗ 𝐶) (𝐵 ⊗ 𝐷) and (𝐴 ⊗ 𝐵)𝑇 = (𝐴𝑇 ⊗ 𝐵𝑇)

Let 𝑄 =(𝐼𝑛 ⊗ 𝑈Σ1Σ
𝑇
1 𝑈

𝑇) + (𝑉Σ𝑇
2 Σ2𝑉

𝑇 ⊗ 𝐼𝑑)
=(𝑉𝐼𝑛𝑉𝑇 ⊗ 𝑈Σ1Σ

𝑇
1 𝑈

𝑇) + (𝑉Σ𝑇
2 Σ2𝑉

𝑇 ⊗ 𝑈𝐼𝑑𝑈
𝑇)

=(𝑉 ⊗ 𝑈) (𝐼𝑛 ⊗ Σ1Σ
𝑇
1) (𝑉

𝑇 ⊗ 𝑈𝑇)
+ (𝑉 ⊗ 𝑈) (Σ𝑇

2 Σ2 ⊗ 𝐼𝑑) (𝑉𝑇 ⊗ 𝑈𝑇)
=(𝑉 ⊗ 𝑈) (𝐼𝑛 ⊗ Σ1Σ

𝑇
1 + Σ𝑇

2 Σ2 ⊗ 𝐼𝑑) (𝑉 ⊗ 𝑈)𝑇

=
∑︁
𝑖, 𝑗

(𝑣 𝑗 ⊗ 𝑢𝑖) (𝜎1 (𝑖)2 + 𝜎2 (𝑗)2) (𝑣 𝑗 ⊗ 𝑢𝑖)𝑇

(16)

Bringing Eq.16,11 into Eq.15 and notice that 𝑣 𝑗 ⊗ 𝑢𝑖 are orthornormal, we have

vec(𝑊1𝑊
𝑇
1 𝐺 + 𝐺𝑊𝑇

2 𝑊2) =𝑄vec(𝐺)
=
∑︁
𝑖, 𝑗

𝑔𝑖 𝑗 (𝜎1 (𝑖)2 + 𝜎2 (𝑗)2) (𝑣 𝑗 ⊗ 𝑢𝑖) (17)

Notice that (𝑣 𝑗 ⊗ 𝑢𝑖) is the vectorization of (𝑢𝑖𝑣𝑇𝑗), so Eq.17, when converted into matrix form, is
equivalent to

𝑊1𝑊
𝑇
1 𝐺 + 𝐺𝑊𝑇

2 𝑊2 =
∑︁
𝑖, 𝑗

𝑔𝑖 𝑗 (𝜎1 (𝑖)2 + 𝜎2 (𝑗)2) (𝑢𝑖𝑣𝑇𝑗). (18)

Bringing Eq.18 into Eq.6, we get Eq.13 and conclude the proof. □

A.3 EXTENDED EXPERIMENTS DETAILS

Initialization strategy used for embedding layers is of critical importance in training RMs. In con-
ventional RMs, the embedding table of each sparse feature is represented by a single linear layer.
We follow a conventional approach in initializing this layer that uses Xavier initialization scheme
Glorot & Bengio (2010).

MLET adds another linear factorization layer. We use a Gaussian distribution to initialize this sec-
ond factorization layer. To make MLET effective, initialization variance cannot be too small. As

12

Under review as a conference paper at ICLR 2023

8 1 6 3 2

0 . 3 8 2

0 . 3 8 4

0 . 3 8 6

0 . 3 8 9

0 . 3 9 1

0 . 3 9 3

0 . 3 9 5

0 . 3 9 7

0 . 3 9 9

V
al

id
at

io
n

Lo
gL

os
s

E m b e d d i n g D i m e n s i o n (d)

 S t d e v = 0 . 0 0 3 7
 S t d e v = 0 . 0 0 8 3
 S t d e v = 0 . 0 5 6 0
 S t d e v = 0 . 0 9 5 0
 S t d e v = 0 . 2 5 0 0
 S t d e v = 0 . 4 8 0 4
 N o - F a c t o r i z a t i o n

Figure 6: Search of initialization variance (embedding factorization) for DLRM with MLET 𝑘 = 32.
Small variance leads to vanishing enhancement factors hence poor performance.

suggested by our Main Theorem, small initialization effectively leads to vanishing enhancement
factor and slows down embedding updates. This results in poor performance as shown in Figure 6.
Empirically, if variance is too high then the training suffers from convergence issue. In all the experi-
ments, we set the initialization standard deviation to 0.25 for DLRM and 0.5 for other models unless
otherwise noted. Those values ensure the effectiveness of MLET while preserving training-time
convergence.

A.4 MLET AND MODEL COMPRESSION

We have demonstrated MLET’s capability in producing superior models. However, there are many
other model compression techniques that can also be used to squeeze more performance out of
a fixed-size model. We develop the following experiments to compare and test the composition
of MLET with these model size reduction techniques. Specifically, we include three commonly
adopted techniques in our experiments – low rank SVD approximation, hashing, and post-training
quantization. Experiments on the comparison between MLET and SVD compression are performed
on three models – DCN, AutoInt, and xDeepFM. Experiments on the composition of MLET with
quantization and hashing are performed on two models – DCN and DLRM. All experiments are
done on the Avazu dataset.

A.4.1 LOW RANK SVD APPROXIMATION

As pointed out by Bhavana et al. (2019), the numerical rank of embedding tables can be much
smaller than their embedding dimension, and hence, SVD factorization allows the matrix to be stored
inexpensively, which means that the original embedding table then can be recovered with these low-
dimensional factor matrices. Low rank SVD compression and MLET share a common feature of
utilizing factorized matrices in deriving embedding tables and for both methods, the number of
embedding parameters at inference can be greatly reduced as compared to training time.

Table 4 summarizes a comparison of two methods applied on three models at different embedding
sizes. For a MLET model, the effective embedding size is its embedding dimension. For a SVD-
compressed model, it is the number of reserved ranks in the low rank SVD approximation of its
embedding tables. For example, SVD d=64 with effective embedding size 32 means that the single-
layer model with embedding dimension 64 is first trained and then its embedding tables (of shape
𝑛 × 64) are approximated by rank-32 SVD approximations. As shown in the table, for the three
models we tested, SVD compression is most effective when the number of reserved ranks is at least
half of the original embedding dimension. Further, MLET maintains its advantages over low rank
SVD compression at all levels of embedding budgets.

13

Under review as a conference paper at ICLR 2023

Table 4: MLET vs. Low Rank SVD Approximation of embedding tables. With the same size of
embeddings (at both training- and inference-time), MLET produces better models than low rank
SVD compression.

Model Configuration Effective Embedding Size
4 8 16 32

DCN
SVD d=32 0.7783 0.7903 0.7914 -

MLET k=32 0.7922 0.7932 0.7939 -
SVD d=64 0.7659 0.7902 0.7923 0.7927

MLET k=64 0.7924 0.7939 0.7945 0.7946

AutoInt
SVD d=32 0.7812 0.7916 0.7929 -

MLET k=32 0.7920 0.7937 0.7938 -
SVD d=64 0.7761 0.7910 0.7927 0.7930

MLET k=64 0.7930 0.7942 0.7947 0.7948

xDeepFM
SVD d=32 0.7672 0.7818 0.7920 -

MLET k=32 0.7933 0.7955 0.7972 -
SVD d=64 0.7618 0.7783 0.7895 0.7962

MLET k=64 0.7935 0.7957 0.7978 -

A.4.2 HASHING

The hashing trick as described in Attenberg et al. (2009) reduces table height by hashing the indices
of table rows into a smaller index space. In this case, we choose the frequently used modulo opera-
tion as the hash function. We choose to hash the tables to half of their original size and only apply
hashing on the two largest tables in the Avazu dataset (device ip and device id). These two tables
jointly account for 99.7% of all embeddings. We do not apply hashing to other tables as hashing
degrades model quality and the hashing of small tables has negligible memory savings.

1 2 4 8 1 6 3 2
0 . 7 7 9
0 . 7 8 0
0 . 7 8 1
0 . 7 8 2
0 . 7 8 3
0 . 7 8 4
0 . 7 8 5
0 . 7 8 6
0 . 7 8 7
0 . 7 8 8
0 . 7 8 9
0 . 7 9 0
0 . 7 9 1
0 . 7 9 2

V
al

id
at

io
n

A
U

C

R e l a t i v e T a b l e S i z e

 M L E T
 N o - F a c t o r i z a t i o n
 H a s h i n g T r i c k (2 x) + M L E T
 H a s h i n g T r i c k (2 x)

(a) DCN

1 2 4 8 1 6 3 2
0 . 7 4 5

0 . 7 5 0

0 . 7 5 5

0 . 7 6 0

0 . 7 6 5

0 . 7 7 0

0 . 7 7 5

V
al

id
at

io
n

A
U

C

R e l a t i v e T a b l e S i z e

 M L E T
 N o - F a c t o r i z a t i o n
 H a s h i n g T r i c k (2 x) + M L E T
 H a s h i n g T r i c k (2 x)

(b) DLRM

Figure 7: Composition of MLET and Hashing Trick. Hashing leads to degradation. Quality is
improved when combined with MLET.

A.4.3 QUANTIZATION

When post-training quantization Krishnamoorthi (2018) is applied, all values in the embedding ta-
bles are quantized to be 8-bit integers. We adopt a uniform symmetric quantizer where the scale
factor of each table is determined by a grid search that minimizes the L2 error between original
FP32 embeddings and the de-quantized embeddings. We select eight (INT8) as the bitwidth be-
cause near-zero degradation is observed in this case. Bitwidths smaller than eight lead to model
quality degradation. Note that we only quantize embedding tables and not other parts of the model.
Quantization that accelerates the computation (e.g., activations, weights of top MLP, bottom MLP
in DLRM) is not our concern.

A.4.4 CALCULATION OF TABLE SIZE

Unlike our previous experiments, embedding dimension is not the sole factor that determines ta-
ble size. In addition to embedding dimension, table size reduction due to quantization and hashing
must be considered when calculating the table size. In our experiments, we use relative table size
to measure the size of embedding tables. Relative table size normalizes the size of derived tables

14

Under review as a conference paper at ICLR 2023

with respect to a set of un-hashed tables with embedding dimension 1. For example, the orginal
FP32 model with no hashing trick applied is of relative table size 𝑑 where 𝑑 is its embedding di-
mension. An INT8 quantized model with hashing trick applied is of size 𝑑

8 where the extra division
by 8 comes from 2x reduction of table heights by hashing and 4x reduction by quantization to int8
representation. To make a fair comparison between the various combinations of techniques, their
performance under different table size are plotted. We present their AUC-table size curves in Figure
7 and Figure 5.

A.4.5 DISCUSSION

As shown in the figures, MLET consistently improves model quality with all combinations of quanti-
zation and hashing. Hashing reduces the size at some quality loss; but, when combined with MLET,
the quality-size trade-off produced by hashing is improved. We observe that the best quality-size
trade-off is achieved by combining quantization and MLET.

15

	Introduction
	Better Embeddings via Forced Cross-Category Learning
	Embeddings and Their Factorization
	Breaking Sparsity of Updates via Embedding Factorization
	Improving Cross-Category Learning via Embedding Factorization: Theory
	Learning Enhancement: Requirements on Overparameterization

	Experiments
	Learning Enhancement
	Learning Quality for High- and Low-Frequency Embeddings
	MLET and Model Compression

	Related Work
	Conclusion
	Appendix
	Proof to Claim 1
	Proof to Main Theorem
	Extended Experiments Details
	MLET and Model Compression
	Low Rank SVD Approximation
	Hashing
	Quantization
	Calculation of Table Size
	Discussion

