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ABSTRACT

Conventional split learning faces the challenge of preserving training data and
model privacy as a part of the training is beyond the data owner’s control. We
tackle this problem by introducing blind training, i.e., training without being
aware of the data or the model, realized by shuffled Transformers. This is at-
tributed to our intriguing findings that the inputs and the model weights of the
Transformer encoder blocks, the backbone of Transformer, can be shuffled with-
out degrading the model performance. We not only have proven the shuffling
invariance property in theory, but also design a privacy-preserving split learning
framework following the property, with little modification to the original Trans-
former architecture. We carry out verification of the properties through experi-
ments, and also show our proposed framework successfully defends privacy at-
tacks to split learning with superiority.

1 INTRODUCTION

Recent years have witnessed remarkable growth in deep learning applications, as deep neural net-
works (DNNs) have grown deeper and larger. It poses a dilemma for the thin edge device: on one
hand, it lacks the computational power to individually train the models; on the other, data privacy
would be violated if it sends all data to an untrusted party, e.g., the cloud, to process. A paradigm
called split learning (Gupta & Raskar, 2018) emerges to be a potential solution: without sharing its
raw data, the edge transmits intermediate features to the cloud while offloading partial computation.

Typically, the private inputs are transformed into intermediate features by feeding through the first
few layers of the DNN. The vanilla split learning still faces privacy leakages as an adversary could
infer the input from the feature (Erdogan et al., 2021; Isola et al., 2017). Hence many works have
proposed to remove the sensitive information from the features, such as encryption (Lee et al., 2022),
adversarial learning (Xiao et al., 2020), differential privacy (Dong et al., 2019), etc. However, these
works mostly sacrifice accuracy or efficiency for privacy guarantee. More importantly, the privacy
threat of the model weights trained on the cloud is left to be an open problem — the trained weights
reveal the privacy of the training data (Fredrikson et al., 2015; Carlini et al., 2019; Zhang et al.,
2020), and should be proprietary to the data owner, i.e., the edge.

We propose a novel blind training framework on the Transformer (Steiner et al., 2021), a state-of-
the-art DNN achieving impressive accuracy performance on a wide range of tasks. Blind training
means that the cloud conducts its part of computation ‘in blind’ — being unaware of the data or
the model it trains, yet executing valid computation to assist the edge. The framework resembles
the homomorphic encryption where the edge encrypts training data with its key, and feeds to the
encrypted DNN hosted in the cloud. The cloud trains the DNN in ciphertext, without knowing the
input or the model. Different from the cryptographic tool, our framework is built all in plaintext,
and thus avoiding the hassle of encryption.

The key is to exploit the shuffle invariance property of Transformers. We discovered that Trans-
formers have an intriguing property that each input, being an image or a sentence, can be randomly
permuted within itself, to feed through the network, yet being equivalently trained to that without
permutation. Despite that the previous work (Naseer et al., 2021) has recognized Transformer is
ignorant of position information without position embeddings, we non-trivially found that even with
position embeddings, Transformer is shuffling-invariant, proved by theories. By regarding the per-
mutation order as a ‘key,’ the edge feeds shuffled training data to the cloud which performs natural
training. Another interesting property we found is that, by training on the shuffled data, we inher-
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ently obtain a Transformer encoder block with shuffled weights, which only yields valid results on
inputs permuted by the ‘key.’ Hence the Transformer is ‘encrypted’ to train on the shuffled data.
More importantly, the shuffled model can be ‘decrypted’ to obtain an equivalent plain network to
which normal data can be fed.

Highlights of our contributions are: we discovered the intriguing shuffle invariance property of
Transformers (and other models with Transformer encoder blocks as backbone), and built a privacy-
preserving split learning framework on it. The framework provides shuffling-based privacy guar-
antees for training data, testing data, as well as the model weights. A variety of experiments are
implemented to verify the properties, and demonstrate the superior performance of our scheme in
terms of accuracy, privacy and efficiency.

2 BACKGROUND AND RELATED WORKS
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Figure 1: Transformer
Encoder Block

Transformer-based models are the state-of-the-art deep neural net-
works and have attracted great attention in both areas of computer
vision and natural language processing. Models including trans-
former encoder blocks as their backbone, such as Bert (Devlin et al.,
2018), ViT (Dosovitskiy et al., 2020), T2T-ViT (Yuan et al., 2021),
ViTGAN (Hirose et al., 2021), BEiT (Wang et al., 2022) and CoCa
(Yu et al., 2022), have been achieving exceeding performance in a
great many tasks.

Transformer encoder blocks, as shown in Fig. 1, mainly contain two
critical components: Multi-head Scaled-dot-product self-attention
and a feed-forward network (MLP). Inputs are fed in the form of
patches, which are usually embedding vectors for words in Bert,
or for fractions of images in ViT. The relative position of patches
are learned by position embeddings (Vaswani et al., 2017), which
are injected into the model. Recent studies have found that by re-
moving the position embeddings, ViT merely loses 4% accuracy on
ImageNet (Russakovsky et al., 2015). And the work further reports
the shuffling invariance property of ViT through experiments.

Split learning. As deep neural networks are growing deeper and
wider, it is hardly fit for the edge which lacks the computational
power but owns abundant data. Hence split learning (Gupta &
Raskar, 2018) proposes to let the cloud server shoulder partial com-
putation without accessing the data. To achieve this, a model is split into two parts, deployed on
the edge and the cloud, respectively. The edge processes the first few layers and sends the interme-
diate features to the cloud which holds the main body of the model. If the cloud does not own the
corresponding labels, it returns the prediction to the edge for computing the loss. In the backward
propagation, error gradients are passed between the edge and the cloud instead of the features.

Studies have revealed that the untrusted cloud can reconstruct the private data with the intermediate
features (Erdogan et al., 2021; Isola et al., 2017). Additionally, split learning allows the cloud to
directly touch the model weights, which is also a threat to the privacy of training data at the edge.

Privacy-preserving split learning. Many efforts have been made to preserve data privacy in split
learning but most have been devoted to inference data, rather than training data or model protection.
Almost no lightweight protection scheme is feasible for trained model weights, which should be
proprietary to the edge, and not be taken advantage of by the cloud. Traditional methods include
cryptographic ones such as secure multi-party computation and homomorphic encryption. But these
methods typically involve significant overhead in encryption, decryption, computation, and commu-
nication. Lee et al. (2022) implemented a polynomial approximation over nonlinear functions and
encrypted the training process with FHE, but it demands 10 to 1000 times more computation power
compared to plain split learning. The approximation computation also results in accuracy losses.
Xiao et al. (2020) adversarially trained the edge sub-module to produce features not containing any
private information, but sufficient to complete the learning task. However, the method only works
when the learning converges and thus suffers potential leakage at the early stage of training. Dong
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et al. (2019) inserted Gaussian noise to the features following the convention of differential privacy.
Ryoo et al. (2018) adjusted the image resolution to seek a sweetspot in the tradeoff between utility
and privacy. These works have to sacrifice considerable model accuracy performance to meet the
privacy requirement.

Matrix Multiplication Computation (MMC) is a fundamental mathematical operation, and works
(Lei et al., 2014; Liu et al., 2021) propose random permutation as an encryption scheme to the out-
sourced MMC tasks. To enhance the security, the recent work (Liu et al., 2021) introduces additive
perturbation besides the multiplicative one; but their works are mostly theoretical and should be
viewed as complementary to ours. We investigate the privacy guarantee in a more challenging scene
— deep neural networks, and propose a practical protection scheme.

3 PROBLEM FORMULATION

We formally formulate our problem in the setting of split learning. The edge holds a private training
data set Dtrain = {X,Y }, where X are the private data and Y are the private labels. The edge aims
at training a model with the assistance of the cloud, yet without revealing any private input or the
model weights to the cloud. The cloud possesses powerful computing power but is curious about
the private data of the edge and the model it trains. The edge selects a model and splits it into two
parts, F and F ′, to deploy on the edge and the cloud, respectively. Referring to the loss function as
Ltask and the local privacy-preserving method as M , the ultimate goal of the edge is to train F and
F ′ jointly to

minimize
F,F ′

Ltask(F
′(F (X)), Y ), (1)

without revealing X or F ′ to the cloud or any other third party. Although the cloud does not directly
access the input, it is possible to invert X from F (X) by the following attacks.

We assume the cloud server is honest-but-curious, meaning that it obeys the protocol and performs
the learning task accordingly, but is curious about the private data. Depending on whether the edge
model is accessible to the attacker, we divide the attacks into two categories:

Black-box attacks. The attacker is able to obtain the auxiliary data set Xaux and the corresponding
features under protection mechanism M as M(F (Xaux)), which may be collected over multiple
training rounds. It trains an inversion model G over (Xaux, F (Xaux)) to invert the raw input from
features. The attack goal can be

minimize
G

Lattack(G(M(F 1(Xaux)), · · · ,Me(F e(Xaux))), Xaux). (2)

The superscript e denotes the number of trained iterations for the features. The loss Lattack can be
the mean square error (MSE) between the reconstructed input X̃aux and Xaux. At convergence, G
works as a decoder to invert features into inputs. It should be noted that the attack we model here is
different from the feature-space hijacking attack in split learning (Pasquini & Bernaschi, 2021), as
the latter destroys model accuracy, inconsistent with the honest-but-curious assumption we made.

White-box attacks. The attacker has full access to the edge model F and the protection mechanism
M , and performs gradient descent over M(F (X)) and its guess M(F (X̃)) by

minimize
X̃

Lattack(M(F (X)),M(F (X̃))). (3)

4 INTRIGUING PROPERTIES OF TRANSFORMER ENCODER BLOCK

To tackle the privacy issue in split learning, it is important to perform transformations over F (X)
for training or inference, meanwhile preventing the adversary from inverting X from F (X). In our
work, we adopt permutation as the transformation method, and model it by row and column shuffle,
which can be expressed by matrix multiplications, i.e., given a matrix Z ∈ Rp×d, the row shuffle is
represented by PRZ where PR ∈ {0, 1}p×p is a permutation matrix. Similarly, the column shuffle
is defined as ZPC where permutation matrix PC ∈ {0, 1}d×d. Further explanations can be found in
Appendix A. In this section, we will introduce key properties we discovered on Transformer encoder
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Figure 2: Properties of shuffled Transformers. White blocks denote initialized models, gray blocks
mean the naturally trained models, and red ones indicates ‘encrypted’ model Enc(P ). O represents

the original outputs. Ri suggests the order of row shuffle can vary for each input.

blocks, which serve the building blocks to our privacy-preserving split learning framework showed
later.

Fig. 2 summarizes the properties we found and each detailed proof is provided in Appendix B.
Denoting the Transformer encoder as Enc, the input matrix of Enc as Z, and the row permutation
matrix as PR, we have the following theorem:
Theorem 1. Transformer encoder blocks are row-permutation-equivalent:

Enc(PRZ) = PREnc(Z) (4)

As shown in Fig. 2a, the row permutation PR can ‘pass through’ the encoder so that a reverse oper-
ation can be performed at the output of the encoder to return the original output: P−1

R Enc(PRZ) =
Enc(Z). More interestingly, the gradients of Transformer encoder blocks in the backward propaga-
tion are invariant to row shuffle:
Theorem 2. The gradients of Transformer encoder blocks w.r.t. the loss l are row-permutation-
invariant:

∂l

∂W(R)
=

∂l

∂W
. (5)

In Eq. 5, W generally refers to the weights learned naturally in the multi-head attention or the
MLP of the Transformer encoder block. W(R) is the corresponding weights learned on PRZ.
Hence indicating by Fig. 2a, the learned weights are the same with or without row shuffle on Z.
Rigorously speaking, it is not the same W learned since the weights are initialized differently; it
can be considered the row shuffle is transparent to the Transformer encoder blocks, either in training
or inference. Similarly, denoting PC as the column permutation matrix, we have
Theorem 3. If the Transformer encoder is permuted as Enc(P ) = PCEncP−1

C , Enc(P ) is row-
column-shuffle-equivalent:

Enc(P )(PRZP−1
C ) = PREnc(Z)P−1

C . (6)

And the outputs can be reversed by P−1
R Enc(P )(PRZP−1

C )PC = Enc(Z). More intriguingly, we
have
Theorem 4. The gradients of Transformer encoder blocks Enc(P ) w.r.t. the loss l is column-
permutation-equivalent:

∂l

∂W(P )
= PC

∂l

∂W
P−1

C . (7)
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By induction, we prove that if one shuffles the normally trained Enc, it would obtain an equivalent
Enc(P ) trained on the shuffled data. Specifically, letting the weights of the normally trained Trans-
former encoder block be W , the weights of the model trained on PRZP−1

C are PCWP−1
C , as

shown in Fig. 2b. If the ‘encrypted’ model Enc(P ) is deployed in the cloud, the cloud would have no
clue about the model weights or the inputs, but train the model ‘blindly’ for the edge. Compared to
cryptographic tools like fully homomorphic encryption (Lee et al., 2022), our ‘encryption’ method
realizes a similar idea but with far less computation overhead.

Similar to the ‘encryption’ process, ‘decryption’ is feasible by reverse shuffling, as in Fig. 2c. Re-
encryption is also viable by matrix multiplication, suggesting that Enc can be ‘encrypted’ not only
by training on shuffled data, but also by permuting the trained weights.

To sum up, the row shuffle is transparent to the Transformer encoder blocks. The row-and-column-
shuffle serves in a similar way to homomorphic encryption, in that the weights of Enc(P ) are not
known, while Enc(P ) is only capable of processing shuffled Z. Either by training on shuffled data or
by matrix multiplication, can the weights of Enc(P ) be obtained. The entire process does not incur
additional computational burden, or sacrifice accuracy performance.
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Figure 3: The structure of our privacy-preserving split learning over shuffled Transformers.

5 METHODOLOGY

Inspired by the permutation invariance properties of Transformer encoder blocks, we present our
method to preserve training data, inference data and model weights privacy in the split learning
framework, followed by the privacy indication of shuffling.

5.1 SHUFFLED TRANSFORMERS

The overall scheme of our method is shown in Fig. 3. We split a typical Transformer-based model
into three stubs: the part from input layer to patch embeddings residing at the edge, the transformer
encoder blocks at the cloud, and the MLP and loss layer at the edge. Position embedding is op-
tional and depends on practical situations. Being transmitted between the edge and the cloud, the
smashed data in the forward loop and backward loop are referred to as features and error gradients,
respectively.

Our method runs at the edge, processing the smashed data transmitted back and forth between the
edge and the cloud. We introduce four basic operations: row shuffle and unshuffle, column shuffle
and unshuffle. All shuffling orders are secret of the edge. We perform row and column shuffle to
the features sent from the edge to the cloud. The features Z = F (X) are expressed by a (p, d) (e.g.,
(197, 768)) matrix, where p denotes the number of patches and d the dimension of each patch. We
left the batch size out of the modeling, as shuffling takes place within a single input. We shuffle the
patches to be sent and unshuffle the received features by

Shuffle: MZ(Z) = PRZP−1
C , (8)

Unshuffle: M−1
Z (F ′

(P )(MZ(Z))) = P−1
R F ′

(P )(MZ(Z))PC , (9)

where PR ∈ {0, 1}p×p and PC ∈ {0, 1}d×d are row and column permutation matrices, respectively.
The row and column shuffle are jointly denoted as mechanism MZ . PR is chosen randomly per Z,
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whereas PC is chosen per model, i.e., PC is the same for all inputs. The model stub F ′
(P ) on the

cloud is trained as the usual network, and the output of Transformer encoder block is sent to the edge
for unshuffle by Eq. 9. The backward loop is no different from the normal backward propagation.

Privacy for model weights and training data. From Thm. 4, we know that Transformer en-
coder blocks at the cloud trained on MZ has the following unique property. Letting F ′

(P ) =

{W(P ), b(P ), γ(P )} and F ′ = {W , b, γ} denote the {weight matrix, bias, layer normalization pa-
rameter} of the cloud model trained on MZ(Z) and the normal Z, respectively, we have:

W(P ) = PCWP−1
C ≜ MW (W ), b(P ) = bP−1

C , γ(P ) = γP−1
C . (10)

Note that Eq. 10 demands the weight matrix to be a square one, which requires minor modification
to the cloud model as we will elaborate on later. It is an interesting fact that if the model is trained on
the shuffled patches MZ(Z), the randomly initialized weight W0 learns to become W(P ) instead of
W , and thus the true model weights are unknown to the cloud. Privacy for training data is preserved
by MZ , as each input is randomly row-shuffled by PR and column-shuffled by PC before being
sent. Note that since no particular patch size is specified, all patch size would work but the finest
granularity is recommended for privacy concerns. We will give the formal guarantee in Sec. 5.2.

Protection of the inference data. According to Thm. 3, it is obvious that the shuffle (Eq. 8) and
unshuffle (Eq. 9) procedures give legitimate testing results. Since the feature sent to the cloud is
shuffled, the testing data privacy is preserved. In addition, only the entity who holds P−1

C would
produce valid inference results on F ′

(P ):

F ′
(P )(Z) = Invalid Result, F ′

(P )(MZ(Z)) = MZ(F
′(Z)). (11)

Re-encrypting the model is also available with our method. The edge may pre-train a secret Trans-
former body with a secret PC , and later can obtain the unencrypted weights W = P−1

C W(P )PC ,
or re-encrypt the model to authorize other party to use it: W(P ′) = PC′WP−1

C′ . Other parties who
hold PC′ can further perform privacy-preserving transfer learning or fine-tuning on the model.

Model structure modification. Our method requires all the weight matrices in the Transformer
encoder blocks and the MLP layer to be square ones. For example, the multi-head attention in the
classical ViT-Base (Dosovitskiy et al., 2020) introduces non-square weight matrices, and its MLP
has an input/output dimension of 768 but a hidden layer of dimension 3072. To implement shuffled
transformers, each head has to be square: weights of the linear projection layers of Q,K, V are
reshaped to (768 × no. of heads, 768), so that each head has a shape of (768, 768). Instead of
concatenating them, we calculate their average to keep the square shape of the weight matrices,
which mildly increases the computational overhead but no accuracy decline. Or one can simply
choose to use single-head attention to replace the multi-head one, which also has limited impact to
the model performance. The MLP layer is reshaped with 768-hidden units, which keeps the weight
matrices square.

5.2 DEFINITION OF PRIVACY

The purpose of shuffling is to prevent the attacker from reconstructing input X given the feature
MZ(Z). In this work, we consider recovering Z to be the same with reconstructing X , as a black-
box or white-box attacker can easily invert X from Z. To quantize the likelihood that an adversary
rebuilds Z from MZ(Z), we first define neighboring permutations as:
Definition 1. (Neighboring Permutations.) For feature matrix Z ∈ Rp×d, all row-column permuta-
tion orders of Z constitute S. Any two permutations σ, σ′ ∈ S are neighboring permutations.

Our privacy definition based on shuffling is as follows.
Definition 2. (σ-privacy.) Given the private feature Z and permutation set S, a randomized shuf-
fling mechanism M : M(Z) 7→ Z ′ ∈ S is σ-private if for all Z,Z ′, and any neighbouring permu-
tations σ, σ′, we have

Pr[M(σ(Z)) = Z ′] = Pr[M(σ′(Z)) = Z ′]. (12)

σ-privacy suggests that shuffling mechanism M is agnostic of the relative order of patches. Thus
any adversary is incapable of telling the original order from its neighboring permutations, given the
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perturbed feature Z ′. This definition shares some similarities with dσ-privacy in (Meehan et al.,
2021) but ours removes α in dσ-privacy as permutations are sampled from a uniform distribution
rather than Mallows model. With the definition, we can calculate that if all row-column permutations
are equally likely for an input, our MZ(Z) has the probability of 1

p!d! to reveal the true Z, which is
negligible. Similarly for weights shuffling, MW (W ) and MW (PWP−1) (where P is a random
permutation matrix) have the same probability to yield W ′, which has 1

d! probability to be the true
W . Hence the mechanism prevents any adversary from recovering the true weights. Hereby we
have
Proposition 1. Input shuffling MZ(·) is σ-private with S being the set for all possible PR,P

−1
C

permutations.
Proposition 2. Weights shuffling MW (·) is σ-private with S being the set for all possible PC ,P

−1
C

permutations.

6 EXPERIMENTS AND EVALUATIONS

We first verify the properties of the shuffled Transformer by experiments, and show its defence
capability against attacks.

Setup: Our implementation is built on Pytorch and Torchvision. We use Cifar10
(Krizhevsky et al., 2009) consisting of 60,000 natural images in 10 classes, and CelebA (Liu et al.,
2015) containing 2,022,599 faces from 10,177 celebrities. On CelebA, we adopt timm1 model
vit base patch16 224 (ViT-Base) pre-trained on ImageNet to transfer to a 40-binary-attribute clas-
sification task. We adopt a single-head ViT-Base according to the modification stated in Sec. 5.1
with the following structure: 12 layers, image size=224, patch size=16, embedding dim=768,
mlp hidden dim=768 and one head. The model is referred to as single-head ViT for CelebA later.
A SGD optimizer is used with a cosine scheduler, for which the (initial, final) learning rate are set
to (0.05, 2× 10−4) and (5× 10−4, 2× 10−6) for the MLP and the encoder blocks, respectively.

On Cifar10, we use a smaller ViT with the structure: 6 layers, image size=32, patch size=4, embed-
ding dim=512, mlp hidden dim=512, 1 head in the row-column-shuffle case and 6 heads in others.
The models are called the single-head and the multi-head ViT for Cifar10, respectively. These ViTs
are trained from scratch on Cifar10, and thus it provides satisfying but inferior accuracy to the pre-
trained one. An Adam optimizer and a cosine scheduler with learning rate 10−4 are used.

Baselines: We compare our method with a set of existing privacy-preserving methods. Conventional
cryptographic tools are not included for unbearable computational and communication costs. Base-
lines include unprotected split learning (SL), adversarial learning (adv) (Xiao et al., 2020), methods
based on Transform containing adding Gaussian noise ∼ N (0, 4) (GN) (Dong et al., 2019) and
Blur (Ryoo et al., 2018).

Metrics: We evaluate model performance from the accuracy, privacy, and efficiency aspects. The
average classification accuracy of 40 attributes, and the 10-class classification accuracy are reported
for CelebA and Cifar10, respectively. Privacy is gauged by the attackers’ capability in reconstruct-
ing inputs. We select popular metrics such as Structural Similarity (SSIM), Peak Signal to Noise
Ratio (PSNR) (Hore & Ziou, 2010), and F-SIM. For F-SIM, We feed the original and reconstructed
inputs into a third-party network and compare the cosine similarity between the features. The third-
party network for CelebA is InceptionResNetV1 of FaceNet (Schroff et al., 2015), pre-trained on
VggFace2 (Cao et al., 2018), and that for Cifar10 is ResNet18 pre-trained on ImageNet.

6.1 VERIFYING PROPERTIES

We experimentally verify the properties of shuffled Transformers by their accuracy performance.

Row-permutation-equivalence: To verify Thm. 1 and Thm. 2, we train and test models with or
without row-shuffled (RS) inputs. No model modification are needed for row shuffle and thus the
original model structures are used. Testing accuracies are reported in Tab. 1. Despite being shuffled
or not, the testing data reach approximately the same accuracy for each dataset, verifying the row
shuffle is indeed transparent to the Transformer encoder blocks. The model trained on row-shuffled

1https://github.com/rwightman/pytorch-image-models
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data has an equivalent performance to the model normally trained, verifying their training processes
are equivalent. On CelebA, removing the position embedding from the model merely leads to an
0.506% accuracy drop compared to the unprotected SL (91.908%).

Table 1: Accuracies(%) on row-shuffled and row-column-shuffled data. Shuffle methods of the
testing data correspond to that of the training data.

PPPPPPPTest
Train ViT Cifar10 ViT-Base CelebA multi-head ViT Cifar10 single-head ViT CelebA

w/ RS w/o RS w/ RS w/o RS w/ RCS w/o RCS w/ RCS w/o RCS
w/ Shuffle 78.35 78.38 91.40 91.61 80.76 10.38 91.30 79.76
w/o Shuffle 79.08 78.40 91.62 91.52 7.50 80.98 71.50 91.51

Row-column-shuffle-equivalence: To verify Thm. 3 and Thm. 4, we train and test on natural
or row-column-shuffled (RCS) data, and report the testing accuracies in Tab. 1. Particularly for
CelebA, we pre-train the single-head ViT on RCS (natrual) ImageNet data, and transfer the weights
of the 20th epoch to CelebA. ‘Training with RCS’ suggests both pre-training and fine-tuning are on
RCS data. Note that due to the imbalanced data distribution, the average accuracy reported for the
40 attributes of CelebA is around 66− 73% for random guesses. And the benchmark of CelebA on
pre-trained ImageNet is around 91%. It is clear that if the model is trained on normal data but test
on shuffled data, or vice versa, its performance is close to random guesses. Otherwise, the shuffled
Transformer almost achieves no accuracy loss.

Table 2: Accuracies(%) of
decrypted/re-encrypted models.

Encrypted Decrypted
single-head ViT Cifar10 79.55 79.01
multi-head ViT Cifar10 80.96 80.67
single-head ViT CelebA 91.51 91.30

Table 3: Accuracies(%) of CelebA models
w/ and w/o Position Embedding (PE).

w/ PE w/o PE
unprotected SL 91.91 91.52

RS 91.83 91.40

Decryption and Re-encryption: We also verify decrypting and re-encrypting the weight matrices
are feasible with Eq. 10. For each model, we ‘encrypt’ the naturally trained model by multiplying
a random permutation matrix and have it tested on the shuffled test data. And we also ‘decrypt’ the
model trained on row-column-shuffled data and test it on plain data. All the testing accuracies are
reported in Tab. 2, and the results are almost no different from the benchmarks.

Position embeddings: Our method has no influence on network parameters on the edge, including
positional embeddings (see Appendix B.6 and C.6 for more detail). As shown in Tab. 3, shuffling
has little impact to accuracy despite the position embeddings exist or not.

Further verification experiments on NLP tasks and tabular data can be found in Appendix C.3&C.4.

6.2 DEFENCE AGAINST ATTACKS

We focus on the privacy performance of our method against attacks in Sec. 3, in comparison to the
baselines. As we observe, position embeddings hurt training data privacy in our black-box attack
since such an attack is very strong, and almost does not affect accuracy, we choose to remove
position embedding in training.

Defence in inference. The train set of CelebA is adopted as Xaux and the test set is used as
the private inference data. All defence methods are applied to the same edge model F , a fixed
patch embedding layer.

In inference, the black-box attacker can only acquire smashed data once, and thus we fix weights
of the edge model and train the attacker model to minimize the loss of Eq. 2 where e = 1. We
implement the attacker with an MAE decoder G, pre-trained on ImageNet with an additional position
embedding layer at the head of the decoder and a Tanh activation layer at the rear. We report the
inference accuracy and attack performance in Tab. 4. It is observed that adv and Blur fails to maintain
a privacy guarantee. GN successfully prevents the attacker from reconstructing the private inputs but
degrades the accuracy considerably. Our methods achieve satisfying privacy performance across all
metrics while sharing a close accuracy to SL.

8
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Table 4: Accuracy and privacy on the inference data, CelebA. ↓ means desirable direction.

Utility Privacy in Black-Box Privacy in White-Box
Accuracy↑ SSIM↓ PSNR↓ F-SIM↓ SSIM↓ PSNR↓ F-SIM ↓

unprotected SL 91.91% 0.645 16.247 0.933 0.173 12.411 0.738
adv 91.82% 0.539 12.123 0.767 0.173 12.411 0.738
Blur 89.84% 0.501 14.233 0.501 0.079 10.729 0.124
GN 82.40% 0.290 13.052 0.361 0.078 9.968 0.127

Our RS 91.83% 0.243 10.395 0.299 0.315 10.519 0.139
Our RCS 91.58% 0.270 10.629 0.345 0.160 10.464 0.107

Figure 4: The visualization effect of input reconstruction on CelebA under black-box attacks
(Black), white-box attacks (White) and attacks to training (e = 10).

The white-box attack follows Eq. 3 with 100,000 optimization iterations. As we can tell from Tab. 4,
the transform-based methods successfully defends against the white-box attack for introducing ran-
domness, so as our method, but their methods suffer great accuracy losses. This is also verified in
the visualization results of Fig. 4, and further results on Cifar10 are left to Appendix C.5.

Defence in training. We launch an adaptive black-box attack on features collected over 10 rounds
(e = 10 in Eq. 2). The attack we launch is much stronger than practice, as we choose Xaux from the
training set. In real-world, the adversary hardly obtains the training data. The final testing accuracy
and privacy performance is reported in Tab. 5. It can be found that our RCS is strong in preserving
the privacy of the training data without any loss of accuracy.

Table 5: Results of black-box attack on
CelebA to the training process.

Utility Privacy
Accuracy↑ SSIM↓ PSNR↓ F-SIM↓

blur 89.84% 0.34 13.60 0.39
Our RS 91.40% 0.27 10.81 0.39

Our RCS 89.92% 0.09 10.46 0.34
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Figure 5: The computational overhead, memory
cost, and convergence curves on ImageNet of the
normal split learning and our method. PE stands

for position embedding (ViT-Base).

Efficiency. To see if our method incurs additional overhead to the normal split learning framework,
we evaluate its efficiency by MAC operation counts (Macc, recording the number of multiplication
and addition operations) on the edge, the memory consumption, and the convergence curve of pre-
training ImageNet. The ImageNet image of size 224×224 is adopted with a batch size 256. Results
of Fig. 5 can be concluded that our methods are almost as efficient as the normal SL.

7 CONCLUSION

We propose a blind training method to realize privacy-preserving split learning, where the cloud
trains over unknown data and model for the edge. The method is founded on the shuffle invariance
property we discovered on Transformers, and other Transformer-based models. Theoretical proofs,
property verification, and real-world performance resisting attacks are provided. Our method suc-
cessfully defends black-box, and white-box attacks without degrading accuracy and efficiency.
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Algorithm 1 Shuffling at the Edge

1: Initialization: Initialize the model. Load permutation matrix PC of size (d, d) as the key and
get its inverse P−1

C
2: Start training
3: repeat
4: Start a new epoch
5: repeat
6: Get a batch of data X from data loader
7: Get the patch embedding Z of size (batch size, p, d).
8: if using row shuffle then
9: Get a random permutation matrix PR of size (p, p) and its inverse P−1

R
10: Z = torch.matmul(PR,Z)
11: end if
12: if using column shuffle then
13: Z = torch.matmul(Z,P−1

C )
14: end if
15: Send Z to the cloud and retrieve the output Y
16: if using row shuffle then
17: Y = torch.matmul(P−1

R ,Y )
18: end if
19: if using column shuffle then
20: Y = torch.matmul(Y ,PC)
21: end if
22: Complete the usual backward propagation
23: until done all batches
24: until done all epochs
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Figure 6: The row shuffle and unshuffle

A DETAILS ON SHUFFLING

Our shuffling scheme is described in pseudo code in Alg. 1 and the illustration figure is given by
Fig. 6. It should be noted that the shuffling takes place not on the dimension of ‘batches’ but on
the rest two dimensions. Taking ViT for example, each image is transformed into a (p, d) matrix
representing p patches, and each patch denotes a fraction of the image. Each fraction is embedded
into a d-dimensional vector. For example, let Z of shape (3, 4) and the row shuffle matrix PR be

Z =

(
1 2 3 4
5 6 7 8
9 10 11 12

)
PR =

(
0 1 0
0 0 1
1 0 0

)
.

The row shuffle is:

PRZ =

(
5 6 7 8
9 10 11 12
1 2 3 4

)
.
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To further demonstrate the results of shuffling, we visualize the row shuffle and row-column shuffle
methods on CelebA pictures in Fig. 7b and 7c. The column shuffle mixes up pixels from three
channels and hence makes the images look like a gray one.

The shuffle method is simple, easy-to-deploy, and effective. We show why it works in the following
section.

(a) Original CelebA pictures.

(b) Row (patch) shuffled pictures of CelebA. Each row of Z denotes a fraction of the
image, and thus to shuffle the rows is to shuffle the fractions.

(c) Row-column shuffled pictures of CelebA. Each element in a patch comes from a
pixel, and thus to shuffle the columns is to shuffle the pixels of three channels within the

fraction.

Figure 7: Visualization of Shuffling. Our method works on embedded features instead of images,
but here we directly shuffle the image to visualize shuffling.

B PROOFS

We show the theorems in Sec. 4 hold for Transformer encoder blocks.

B.1 NOTATIONS AND LEMMAS

The Transformer encoder block is denoted as Enc and the loss is ℓ. The patch embedding of a single
input X is expressed as Z of shape (p, d). The first layer in the self-attention contains three parallel
linear layers projecting Z to Q,K, V as

ZW T
Q = Q, (13)

ZW T
K = K, (14)

ZW T
V = V . (15)

Q,K, V are fed to the following attention operation

S = Softmax(
QKT

√
d

), (16)

A = SV , (17)

where S and A are the softmax output, and the attention output, respectively.

The part following the attention layer is the MLP layer:

A1 = AW T
1 , (18)

H = a(A1), (19)

A2 = HW T
2 (20)
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where A1,A2 are the outputs of the linear layers with weights W1,W2, respectively, and H is the
output of the element-wise activation function a, being ReLu or Tanh.

Element-wise operators including shortcut, Hadamard product, matrix addition/subtraction and
other element-wise functions are permutation-equivalent:
Lemma 1. Element-wise operators are permutation-equivalent:

(P1AP2)⊙ (P1BP2) = P1(A⊙B)P2. (21)

On the left hand-side of the equation, aij in A and bij in B are permuted to the same position before
being performed the operation. On the right hand-side, aij and bij are performed the operation of
which the results are permuted. The two are obviously equivalent. Importantly,
Lemma 2. Softmax is permutation-equivalent:

Softmax(P1AP2) = P1Softmax(A)P2. (22)

This is because an element is always normalized with the same group of elements, which are not
changed in permutations. Thus Softmax is permutation-equivalent.

B.2 PROOF OF THEOREM 1

Proof. We prove the row-permutation equivalence of Transformer encoder blocks in forward prop-
agation (Eq. 5). We denote the row-permutation matrix as PR. Features are permuted as Z(R) =
PRZ. It is worth noting that

P T
RPR = E

holds for permutation matrix PR. E is the identity matrix.

We first prove the permutation equivalence of attention.

A(R) = Softmax(
Q(R)K

T
(R)√

d
)V(R)

= Softmax(
Z(R)W

T
QWKZT

(R)√
d

)Z(R)W
T
V

= Softmax(
PRZW T

QWKZTP T
R√

d
)PRZW T

V

= PRSoftmax(
ZW T

QWKZT

√
d

)P T
RPRZW T

V

= PRSoftmax(
ZW T

QWKZT

√
d

)ZW T
V

= PRSoftmax(
QKT

√
d

)V

= PRA,

and thus
Attention(PRZ) = PRAttention(Z). (23)

By Lemma 2, the softmax layer following the attention is permutation-equivalent. And the subse-
quent is the MLP layer which satisfies:

A2(R) = a(A(R)W
T
1 )W T

2

= a(PRAW T
1 )W T

2

= PRa(AW T
1 )W T

2

= PRA2,

meaning
MLP (PRA) = PRMLP (A). (24)

Hence we have proved the transformer encoder block is row-permutation-equivalent:
Enc(PRZ) = PREnc(Z). (25)
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B.3 PROOF OF THEOREM 2

Proof. To prove the gradients are the same when the inputs are row-shuffled, we first calculate the
all the gradients from the final layer back to the first. Gradients are expressed as

dl = tr(
∂l

∂A2

T

dA2)

= tr(
∂l

∂A2

T

(dH)W T
2 ) + tr(

∂l

∂A2

T

Hd(W T
2 )).

Let’s study H first:

dl1 ≜ tr(
∂l

∂A2

T

(dH)W T
2 )

= tr(W T
2

∂l

∂A2

T

dH)

= tr((
∂l

∂A2
W2)

TdH),

indicating
∂l

∂H
=

∂l

∂A2
W2. (26)

For W2,

dl2 ≜ tr(
∂l

∂A2

T

Hd(W T
2 ))

= tr(dW2H
T ∂l

∂A2
)

= tr((
∂l

∂A2

T

H)TdW2),

and
∂l

∂W2
=

∂l

∂A2

T

H. (27)

For A1:

dl1 = tr((
∂l

∂A2
W2)

TdH)

= tr(
∂l

∂H

T

d(a(A1)))

= tr(
∂l

∂H

T

a′(A1)⊙ dA1))

= tr((
∂l

∂H
⊙ a′(A1))

TdA1),

and
∂l

∂A1
=

∂l

∂A2
W2 ⊙ a′(A1). (28)

Similarly, we calculate the gradients of A and W1:

∂l

∂A
=

∂l

∂A1
W1, (29)

∂l

∂W1
=

∂l

∂A1

T

A. (30)

15



Under review as a conference paper at ICLR 2023

In the attention operation:

dl3 ≜ tr(
∂l

∂A

T

dA)

= tr(
∂l

∂A

T

(dS)V ) + tr(
∂l

∂A

T

SdV )

= tr((
∂l

∂A
V T )TdS) + tr((ST ∂l

∂A
)TdV ),

and
∂l

∂S
=

∂l

∂A
V T , (31)

∂l

∂V
= ST ∂l

∂A
. (32)

First, for V = ZW T
V :

dl4 ≜ tr(
∂l

∂V

T

dV )

= tr(
∂l

∂V

T

(dZ)W T
V ) + tr(

∂l

∂V

T

ZdW T
V ).

Similarly, the gradients of Z and WV are:

∂l

∂Z
=

∂l

∂V
WV , (33)

∂l

∂WV
=

∂l

∂V

T

Z. (34)

Now we focus on S = Softmax(QKT

√
d

):

dl5 ≜ tr(
∂l

∂S

T

dS)

= tr(
∂l

∂S

T

(diag(S)− STS)d(
QKT

√
d

))

= tr(((diag(S)− STS)T
∂l

∂S
)Td(

QKT

√
d

)),

and thus
∂l

∂Q
=

1√
d
((diag(S)− STS)T

∂l

∂S
)K, (35)

∂l

∂K
=

1√
d
((diag(S)− STS)T

∂l

∂S
)TQ. (36)

And similarly the gradients of WQ and WK are:

∂l

∂WQ
=

∂l

∂Q

T

Z, (37)

∂l

∂WK
=

∂l

∂K

T

Z. (38)

What happens in backward propagation with RS: First, let us take a black-box view of the
Transformer encoder blocks. In our scheme, the input of Enc is the shuffled smashed data PRZ
and the output is PRA2. The edge client obtains PRA2 and reverse the shuffling order to get
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A3(R) = P T
RA2(R). In the following, we denote all variables involved with our RS method with

subscript (R), and variables in vanilla split learning are without the subscript. According to Eq. 1,

A3(R) = P T
RA2(R) = P T

RPRA2 = A2. (39)

We have A3 = A2 in plain SL, and thus

∂l

∂A3(R)
=

∂l

∂A2
=

∂l

∂A3
. (40)

Eq. 40 suggests since the forwarding (from A3(R) to the loss) is the same between the original and
our scheme on the edge, its backward process is also equivalent, i.e., each gradient of the weights
between A3(R) and the loss l is the same for our method and the original SL. Hence we only need
to focus on gradients from A2(R) backward.

dl = tr(
∂l

∂A3(R)

T

P T
R dA2(R))

= tr((PR
∂l

∂A3
)TdA2(R)),

and thus
∂l

∂A2(R)
= PR

∂l

∂A3
= PR

∂l

∂A2
. (41)

It is quite an interesting conclusion, and we will soon find it important to the permutation-invariance
of gradients of the weight matrix. By substituting Eq. 41 into Eq. 27, we obtain:

∂l

∂W2(R)
=

∂l

∂A2(R)

T

H(R) (42)

=
∂l

∂A2

T

P T
RPRH (43)

=
∂l

∂A2

T

H (44)

=
∂l

∂W2
. (45)

Eq. 45 reveals that the gradients of the weight matrix in our RS scheme would be the same as the
gradients in vanilla SL. In fact, each gradient of the weight matrix is ‘permutation-invariant,’ i.e.,
satisfying Eq. 45, whereas each gradient of the intermediate feature is ‘permutation-equivalent,’
meeting Eq. 41. Properties of Eq. 45 and Eq. 41 are transductive, carrying from the final layer
backward to the first layer. Hence by Eq. 26,

∂l

∂H(R)
= PR

∂l

∂H
, (46)

and by Eq. 28,

∂l

∂A1(R)
= PR

∂l

∂A2
W2 ⊙ PRa

′(A1)

= PR(
∂l

∂A2
W2 ⊙ a′(A1)).

Thus,
∂l

∂A1(R)
= PR

∂l

∂A1
, (47)

and by Eq. 30,
∂l

∂W1(R)
=

∂l

∂W1
. (48)
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By Eq. 29, we have:
∂l

∂A(R)
= PR

∂l

∂A
(49)

which passes the property to S. But S is a tricky one since in the derivation of Eq. 23, we notice
that S(R) = PRSP

T
R . According to Eq. 31,

∂l

∂S(R)
=

∂l

∂A(R)
V T
(R)

= PR
∂l

∂A
V TP T

R ,

which interestingly leads to
∂l

∂S(R)
= PR

∂l

∂S
P T

R . (50)

This is consistent with the S(R)’s permutation form, which passes the elegant properties down to
Q,K:

∂l

∂Q(R)
=

1√
d
((diag(S(R))− ST

(R)S(R))
T ∂l

∂S(R)
)K(R)

=
1√
d
((PRdiag(S)P

T
R − PRS

TP T
RPRSP

T
R )TPR

∂l

∂S
P T

R )PRK

=
1√
d
(PR(diag(S)− STS)TP T

RPR
∂l

∂S
P T

R )PRK

= PR
1√
d
((diag(S)− STS)T

∂l

∂S
)K,

and hence
∂l

∂Q(R)
= PR

∂l

∂Q
. (51)

Similarly,
∂l

∂K(R)
= PR

∂l

∂K
. (52)

By Eq. 37,

∂l

∂WQ(R)
=

∂l

∂Q(R)

T

Z(R) (53)

=
∂l

∂Q

T

P T
RPRZ =

∂l

∂WQ
. (54)

Similarly,
∂l

∂WK(R)
=

∂l

∂WK
. (55)

And for V ,

∂l

∂V(R)
= ST

(R)

∂l

∂A(R)
(56)

= PRS
TP T

R · PR
∂l

∂A
(57)

= PRS
T ∂l

∂A
(58)

= PR
∂l

∂V
(59)

Similarly,
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∂l

∂WV (R)
=

∂l

∂V(R)

T

X(R) (60)

=
∂l

∂V
P T

R · PRX (61)

=
∂l

∂WV
. (62)

For now, we have proved that the gradients of weights in our RS scheme are exactly the same as
the gradients of weights in vanilla split learning, and by induction, we can conclude that the learned
Enc with RS method is no different from the learned Enc without. It is worth mentioning that if the
attention is cut to multi-head, the property remains because cutting the second dimension (column)
does not affect the permutation of the first dimension (row).

B.4 PROOF OF THEOREM 3

Proof. We denote variables involved in our RCS method with subscript (P ). Row shuffling is
included as a special case of RCS.

First and foremost, we ‘encrypt’ all the weight matrices by Eq. 10:
Wi(p) = PCWiP

T
C ,

where PC is the column permutation matrix, Wi is the weight of a normal Enc, and i ∈
{1, 2, Q,K, V }. We denote the Transformer encoder block with such ‘encryption’ as Enc(P ). Note
that this operation requires Wi to be a square one. We have proposed two ways to achieve this with
little modification to the original model without performance loss.

For Q:
Q(P ) = Z(P )W

T
Q(P ) (63)

= PRZP T
C · PCW

T
QP T

C (64)

= PRZW T
QP T

C (65)

= PRQP T
C . (66)

Similarly for K,V :
K(P ) = PRKP T

C , (67)

V(P ) = PRV P T
C . (68)

For S = Softmax(QKT

√
d

):

S(P ) = Softmax(
Q(P )K

T
(P )√

d
) (69)

= Softmax(
PRQP T

C · PCK
TP T

R√
d

) (70)

= Softmax(
PRQKTP T

R√
d

) (71)

= PRSoftmax(
QKT

√
d

)P T
R (72)

= PRSP
T
R . (73)

So for A:
A(P ) = S(P )V(P ) (74)

= PRSP
T
R · PRV P T

C (75)

= PRSV P T
C (76)

= PRAP T
C . (77)
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Following the attention layer, A is fed to the MLP layer:

A1(P ) = A(P )W
T
1(P ) (78)

= PRAP T
C · PCW1P

T
C (79)

= PRAW1P
T
C (80)

= PRA1P
T
C . (81)

Similarly for A2,
A2(P ) = PRA2P

T
C . (82)

As for the activation in the middle, the element-wise activation function is permutation-equivalent:

H(P ) = PRHP T
C . (83)

Overall, we have proved Thm. 3.

B.5 PROOF OF THEOREM 4

Proof. By row and column unshuffle, the computation of the forward propagation and backward
propagation on the edge is no different with or without our RCS method. Hence we only focus on
the propagation of the Transformer encoder blocks.

Similarly to the proof on RS, we denote A3(P ) as the reversed intermediate feature that the edge
receives:

A3(P ) = P T
RA2(P )PC . (84)

By Thm. 3, we have
A3(P ) = A2 = A3. (85)

First we focuses on the MLP layer:

dl = tr(
∂l

∂A3

T

P T
R d(A2(P ))PC)

= tr(PC
∂l

∂A3

T

P T
R dA2(P ))

= tr((PR
∂l

∂A3
P T

C )TdA2(P )),

that is:
∂l

∂A2(P )
= PR

∂l

∂A2
P T

C . (86)

With H(P ) = PRHP T
C and Eq. 27, the gradient:

∂l

∂W2(P )
=

∂l

∂A2(P )

T

H(P )

= PC
∂l

∂A2
P T

R · PRHP T
C

= PC
∂l

∂A2
HP T

C

= PC
∂l

∂W2
P T

C ,

that is:
∂l

∂W2(P )
= PC

∂l

∂W2
P T

C . (87)
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By Eq. 28, Eq. 87, and a similar derivation of Eq. 47, we have

∂l

∂A1(P )
=

∂l

∂A2(P )
W2(P ) ⊙ a′(A1(P ))

= [PR
∂l

∂A2
P T

C · PCW2P
T
C ]⊙ [PRa

′(A1)P
T
C ]

= [PR
∂l

∂A2
W2P

T
C ]⊙ [PRa

′(A1)P
T
C ]

= PR[
∂l

∂A2
W2 ⊙ a′(A1)]P

T
C

= PR
∂l

∂A1
P T

C ,

that is:
∂l

∂A1(P )
= PR

∂l

∂A1
P T

C . (88)

The weight W1(P ) in the MLP has the following gradient by Eq. 30:

∂l

∂W1(P )
=

∂l

∂A1(P )

T

A(P )

= PC
∂l

∂A1

T

P T
R · PRAP T

C

= PC
∂l

∂W1
P T

C ,

that is:
∂l

∂W1(P )
= PC

∂l

∂W1
P T

C . (89)

And we come to the attention operation, from Eq. 29, we have

∂l

∂A(P )
=

∂l

∂A1(P )
W1(P )

= PR
∂l

∂A1
P T

C · PCW1P
T
C

= PR
∂l

∂A1
W1P

T
C

= PR
∂l

∂A
P T

C ,

that is:
∂l

∂A(P )
= PR

∂l

∂A
P T

C . (90)

Hence we observe the permutations rules for the gradients of the intermediate-layer outputs vary
from the gradients of the weights. As for the gradients of the softmax-layer output, we have

∂l

∂S(P )
=

∂l

∂A(P )
V T
(P )

= PR
∂l

∂A
P T

C · PCV
TP T

R

= PR
∂l

∂A
V TP T

R

= PR
∂l

∂S
P T

R ,
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that is:
∂l

∂S(P )
= PR

∂l

∂S
P T

R . (91)

Since S(P ) follows Eq. 73, we have the gradients for Q(P ) combining with Eq. 91:

∂l

∂Q(P )
=

1√
d
[(diag(S(P ))− ST

(P )S(P ))
∂l

∂S(P )
]K(P )

=
1√
d
[(PRdiag(S)P

T
R − PRS

TP T
R · PRSP

T
R )PR

∂l

∂S
P T

R ]PRKP T
C

=
1√
d
[(PRdiag(S)P

T
R − PRS

TSP T
R )PR

∂l

∂S
P T

R ]PRKP T
C

=
1√
d
[PR(diag(S)− STS)P T

R · PR
∂l

∂S
P T

R ]PRKP T
C

=
1√
d
[PR(diag(S)− STS)

∂l

∂S
P T

R ]PRKP T
C

=
1√
d
PR(diag(S)− STS)

∂l

∂S
P T

R · PRKP T
C

= PR
1√
d
(diag(S)− STS)

∂l

∂S
KP T

C

= PR
∂l

∂Q
P T

C .

By a similar derivation on K we obtain:
∂l

∂K(P )
= PR

∂l

∂K
P T

C . (92)

Following a similar proof to the gradients of W1(P ) or W2(P ), we could easily derive:

∂l

∂WQ(P )
= PC

∂l

∂WQ
P T

C , (93)

∂l

∂WK(P )
= PC

∂l

∂WK
P T

C . (94)

And by Eq. 32, the gradient of V(P ) is

∂l

∂V(P )
= ST

(P )

∂l

∂A(P )

= PRSP
T
R · PR

∂l

∂A
P T

C

= PR
∂l

∂V
P T

C ,

thus we have
∂l

∂V(P )
= PR

∂l

∂V
P T

C , (95)

∂l

∂WV (P )
= PC

∂l

∂WV
P T

C . (96)

So far, we have proved the rule for the gradient of weight matrices:
∂l

∂Wi(P )
= PC

∂l

∂Wi
P T

C , i ∈ {1, 2, Q,K, V }. (97)

Wi(P ) are the weights of Enc(P ) while Wi are the weights of Enc. With some induction, we can
reach the conclusion that if a Transformer encoder blocks is randomly initialized and trained with
Z(P ), it would eventually learn to become Enc(P ), which is associated with Enc by Eq. 97.
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B.6 PROOFS ON PARAMETERS OF THE EDGE

We show in this section that the parameters of the edge, including the weights associating position
embeddings, are the same despite the shuffling method is used or not.
Theorem 5. The parameters on the edge trained with or without row-column shuffling are the same.

Proof. We denote the embedded feature in the naive SL and in the our shuffling scheme as
Z0,Z0(P ), respectively, and the feature to be sent to the cloud in the two schemes as Z,Z(P ).
In naive split learning, Z0 = Z and ∂l

∂Z0
= ∂l

∂Z . In our scheme we have:

Z(P ) = PRZ0(P )P
T
C . (98)

To prove the claim is to prove:
∂l

∂Z0(P )
=

∂l

∂Z0
. (99)

It is clear that

dl = tr(
∂l

∂Z(P )

T

dZ(P ))

= tr(PC
∂l

∂Z

T

P T
R PRdZ0(P )P

T
C )

= tr(P T
C PC

∂l

∂Z

T

dZ0(P ))

= tr(
∂l

∂Z

T

dZ0(P )),

Hence,
∂l

∂Z0(P )
=

∂l

∂Z
=

∂l

∂Z0
. (100)

The second equality holds by a similar argument to Eq. 95. The equivalence between the edge
weights in the two schemes is accomplished by Eq. 100 and the fact that their forward procedure is
exactly the same.

C SUPPLEMENTARY EXPERIMENTS

C.1 VERIFYING THE PROPERTIES ON BIAS AND LAYER NORM

We do not mention bias and γ, the weight in layer normalization, in the proofs in Appendix B. Here
is some intuition about why they are encrypted in the way shown in Eq. 10:

b(P ) = bP−1
C , γ(P ) = γP−1

C .

Both bias and γ are 1-D vector, and each element only interrelates with the corresponding column
of Z in both forward and backward propagation. So if the columns are permuted, bias and γ should
be permuted in the same way. During the experiments we find that the encryption/decryption of
bias and γ hardly affect the model performance on Cifar10. But on CelebA, if most weight matrices
are encrypted by MW while bias and γ are not permuted, the accuracy would be greatly affected,
which is merely 79.056%. But if the encryption is strictly performed as Eq. 10, the relative accuracy
difference between a normally trained model (tested with Z) and an encrypted model (tested with
ZP T

C ) is merely 0.00013% (91.50991% and 91.50979% respectively).

C.2 VERIFYING ON ORDER-DEPENDENT TASKS

We consider the classification task is weakly order-dependent, i.e., the task may rely little on the
order of the patches of an input image. To verify the feasibility of our method on strictly order-
dependent tasks, we designed a simple task which strongly depends on the input order. We label
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the shuffled images in CelebA as 1 and the original ones as 0, and train a ViT-Base on the them
from scratch to distinguish whether the images are shuffled. Within one epoch, the accuracy of ViT-
Base reaches around 97%, showing the model and the task are strictly order-dependent. And we
conduct similar property-verifying experiments in Sec. 6.1, and the conclusion does not change: RS
is transparent to the encoder, and encrypted models can only process encrypted data. It demonstrates
the shuffled Transformer also works on tasks strongly associated with the input patch order.

C.3 VERIFYING ON NLP DATA

We implement a small Bert model and use a pre-trained model to fine-tune it for natural lan-
guage inference on the SNLI dataset2. The small Bert has 2 layers and the input Z is of shape
(batch size, 128, 256). Due to the non-square MLP (with a hidden dimension of 512), the column
shuffle is not suitable for this pre-trained model. Noting that the position embedding is not removed
from the model. With or without the row shuffle method, the small Bert achieves the similar accu-
racies: 76.4% and 76.5% respectively. The code is provided in supplementary materials.

C.4 VERIFYING ON TABULAR DATA

We use the DIFM (Lu et al., 2021) model and Criteo dataset to verify the proved properties on
tabular data. The vector-wise part of DIFM model is a Transformer encoder block. We shuffle the
rows of the vector-wise part of the input and unshuffle its output. The model achieves the same
AUC, 0.777, with or without the row shuffle method.

In summary, our method works on CV, NLP and tabular data, despite the specific tasks. This is
attributed to the modeling where Z is a general matrix, and the permutation invariance property
holds with no strings attached. Speaking of invariance, a negligible 10−7 error occurs per element
in the permutation due to float calculation error.

C.5 ATTACK RESULTS TO CIFAR10

(a) Original Cifar10 images

(b) Black-box (e=1): RCS

(c) Black-box (e=10): RCS

Figure 8: Results of the black-box attack to the private inference data of Cifar10.

We provide additional experimental results on Cifar10 in Fig. 8 and Tab. 6. Black-box attacks
described in Sec. 3 is launched. Due to the sparse data distribution, the defence on Cifar10 is more
successful than on CelebA. RCS almost eliminates the sketch of the object in each reconstructed
image in Fig. 8.
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Table 6: Results of the black-box attack to the private training and testing data of Cifar10. ↓ means
desirable direction.

SSIM↓ PSNR↓ F-SIM↓
unprotected SL 0.360 2.761 0.644

Our RS (inference) 0.075 0.987 0.464
Our RCS (inference) 0.094 0.984 0.421

Our RS (training) 0.275 10.812 0.390
Our RCS (training) 0.264 10.460 0.336

Figure 9: Cosine similarity between every two patches of position embeddings learned in different
ways.

C.6 EXPERIMENTS ON POSITION EMBEDDINGS

To further verify that our method has little impact to network parameters on the edge as proved
in Appendix B.6, we visualized in Fig. 9 the cosine similarity of position embeddings learned at
different places of the model on the CelebA classification tasks. We found that if the position
embedding is placed ahead of shuffling, the cosine similarity shares a similar state to that without
shuffling, as shown in Fig. 9, resembling a human face. Hence our shuffling method almost does not
vary the weights on the edge.

To verify the impact of the removal of position embeddings in training, we train the Transformer
from scratch and on pre-trained ones, both on large and small datasets. Except for training from
scratch on Cifar10, all model accuracies maintain at a similar level to that with position embeddings.
In the exceptional case, the accuracy drops by ∼ 10% (∼ 80% with position embeddings and ∼ 70%
otherwise). We consider it mainly due to the poor performance of the natural Transformer on small
datasets. After all, Transformer works best with pre-training on a large dataset.

C.7 ABLATION STUDY OF PATCH SIZE

Table 7: The privacy, utility and efficiency when selecting different patch size on cifar10. The
width and height of input image are both 32 pixels. ↓ means desirable direction.

Utility Privacy Efficiency
patch size num. Accuracy↑ JigsawGAN Acc↓ infer time (2k images)
2× 2 256 82.64% <0.1% 33s659ms
4× 4 64 79.67% 1.16% 7s751ms
8× 8 16 77.25% 60.03% 2s186ms
16× 16 4 66.51% 83.52% 694ms

The selection of different patch size have significant influences on the privacy, accuracy and ef-
ficiency. For fixed input image size, increasing the patch size will decrease the total number of
patches which are the basic unit of shuffling. As shown in Table 7, increasing the patch size obvi-

2https://nlp.stanford.edu/projects/snli/
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ously degrades the accuracy, since the performance of ViT is affected by decreased patch numbers.
Revealed by the results of JigsawGAN (Li et al., 2021) (using GAN model to reorganize the shuf-
fled patches, aka. Jigsaw problem) and black-box attack, increasing the patch size also has harmful
impact on the privacy, which indicates that larger size of patches carry more information in one
basic unit of shuffling and make it easier for attacker to solve the relationships between patches.
However, larger patch size and fewer patches significantly shorten the computation cost, as the time
complexity of Attention block is quadratically proportional to the number of patches.
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