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Abstract

Enterprise documents such as forms, receipts,001
reports, and other such records, often carry rich002
semantics at the intersection of textual and spa-003
tial modalities. The visual cues offered by their004
complex layouts play a crucial role in compre-005
hending these documents effectively. In this pa-006
per, we present DocLLM, a lightweight extension007
to traditional large language models (LLMs)008
for reasoning over visual documents, taking009
into account both textual semantics and spatial010
layout. Our model differs from existing mul-011
timodal LLMs by avoiding expensive image012
encoders and focuses exclusively on bounding013
box information to incorporate the spatial lay-014
out structure. Specifically, the cross-alignment015
between text and spatial modalities is captured016
by decomposing the attention mechanism in017
classical transformers to a set of disentangled018
matrices. Furthermore, we devise a pre-training019
objective that learns to infill text segments. This020
approach allows us to address irregular layouts021
and heterogeneous content frequently encoun-022
tered in visual documents. The pre-trained023
model is fine-tuned using a large-scale instruc-024
tion dataset, covering four core document in-025
telligence tasks. We demonstrate that our solu-026
tion outperforms SotA LLMs on 14 out of 16027
datasets across all tasks, and generalizes well028
to 4 out of 5 previously unseen datasets.029

1 Introduction030

Documents with rich layouts, including invoices,031

contracts, and forms, constitute a significant por-032

tion of enterprise corpora, and the automatic anal-033

ysis of these documents offer considerable advan-034

tages (Kunduru, 2023). Although Document AI035

(DocAI) has made tremendous progress, there re-036

mains a significant performance gap in real-world037

applications due to the complex layouts, bespoke038

type-setting and template diversity exhibited by039

these visually rich documents. In particular, ac-040

curacy, reliability, contextual understanding and041

generalization to previously unseen domains con- 042

tinues to be a challenge (Cui et al., 2021). 043

Conventional large language models (LLMs) 044

such as GPT-3.5 (Brown et al., 2020), Llama (Tou- 045

vron et al., 2023) or Falcon (Penedo et al., 2023) 046

primarily accept text-only inputs and assume that 047

the documents exhibit simple layouts and uniform 048

formatting. They are not suitable for document in- 049

telligence tasks, which are inherently multi-modal, 050

requiring the understanding of both text content 051

and visual layout cues. Numerous vision-language 052

frameworks (Li et al., 2022; Huang et al., 2022) 053

that can process documents as images and cap- 054

ture the interactions between textual and visual 055

modalities do exist. However, these frameworks 056

necessitate the use of complex vision backbone 057

architectures (Dosovitskiy et al., 2021) to encode 058

image information, and often make use of spatial 059

information as an auxiliary contextual signal (Xu 060

et al., 2021; Lee et al., 2022). 061

In this paper, we present DocLLM, a lightweight 062

extension to standard LLMs that excels in several 063

visually rich form understanding tasks. Unlike tra- 064

ditional LLMs, it models both spatial layouts and 065

text semantics, and therefore is intrinsically multi- 066

modal. The spatial layout information is incorpo- 067

rated through bounding box coordinates of the text 068

tokens obtained typically using optical character 069

recognition (OCR), and does not rely on a complex 070

vision encoder component. Consequently, our so- 071

lution preserves the causal decoder architecture, in- 072

troduces only a marginal increase in the model size, 073

and has reduced processing times. We demonstrate 074

that merely including the spatial layout structure is 075

sufficient for various document intelligence tasks 076

such as form understanding, table alignment and 077

visual question answering. 078

Existing efforts to incorporate spatial layout in- 079

formation typically involve either concatenating 080

spatial and textual embeddings (Tang et al., 2023) 081

or summing the two (Xu et al., 2020). In contrast, 082
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Figure 1: Key elements of DocLLM. (1) Input documents with text tokens and bounding boxes. (2) Extended attention
mechanism captures cross-alignment between text semantics and spatial layouts. (3) Infilling text blocks is used as
pre-training objective. (4) Task adaptation is performed on a newly collated dataset of instructions.

we treat the spatial information as a distinct modal-083

ity and compute its inter-dependency with the text084

modality in a disentangled manner (Meng et al.,085

2021). Specifically, we extend the self-attention086

mechanism of transformers to include new atten-087

tion scores that capture cross-modal relationships.088

There is often a correlation between the content,089

position and size of the fields in a form and hence090

representing their alignments at various abstraction091

levels across the transformer layers can enhance092

document understanding.093

Visual documents often feature heterogeneous094

content, irregular layouts, and disjointed text seg-095

ments. A classical next token prediction in self-096

supervised pre-training can be restrictive for these097

documents since the preceding tokens may not al-098

ways be relevant due to the diverse arrangements099

of text. To tackle this issue, we propose two modi-100

fications to the pre-training objective: (a) adopting101

cohesive blocks of text that account for broader con-102

texts, and (b) implementing an infilling approach103

by conditioning the prediction on both preceding104

and succeeding tokens. Due to these modifications,105

the model is better equipped to address misaligned106

text, contextual completions, intricate layouts, and107

mixed data types. Although text spans and infilling108

tasks have been studied before (Du et al., 2021),109

our solution is tailored for visual documents with110

an emphasis on semantically coherent blocks.111

We tune DocLLM on instruction data curated112

from multiple datasets for several document intelli-113

gence tasks including Key Information Extraction114

(KIE), Natural Language Inference (NLI), Visual115

Question-Answering (VQA) and document classi-116

fication (CLS). The modifications introduced by117

DocLLM enhances the performance of Llama2-7B118

model by 15-60% in four of five datasets unseen119

during training.120

Our contributions include: (1) A lightweight 121

extension to LLMs designed for understanding vi- 122

sual documents. (2) A disentangled spatial atten- 123

tion mechanism that captures cross-alignment be- 124

tween text and layout modalities. (3) An infilling 125

pre-training objective tailored to address irregular 126

layouts effectively. (4) A large instruction tuning 127

dataset (with OCR data) specially curated towards 128

visual document intelligence tasks. (5) Compre- 129

hensive experiments and insights into the model 130

behavior. Fig. 1 summarizes the framework. 131

2 Related Work 132

General Purpose Models. By treating a document 133

as text content, many text based LLMs (OpenAI, 134

2023; Touvron et al., 2023; Anil et al., 2023) can 135

be directly utilized for document intelligence tasks. 136

Despite the remarkable capabilities provided by 137

these LLMs, their lack of understanding of visual 138

elements and layouts can be severely limiting in the 139

DocAI context (Liu et al., 2023c). Although multi- 140

modal LLMs (Li et al., 2023; Zhu et al., 2023; Liu 141

et al., 2023a; Wu et al., 2023; Ye et al., 2023c) that 142

explicitly include image information can account 143

for visual signals, they often struggle to recognize 144

structures and patterns observed in enterprise docu- 145

ments since most are not trained specifically for vi- 146

sually rich document understanding (VRDU) tasks. 147

Document Understanding Models. Models such 148

as UDOP (Tang et al., 2023) and LayoutLM (Xu 149

et al., 2020) specifically cater towards document 150

processing tasks. They can account for different 151

modalities including text, image and layout infor- 152

mation and are trained using large document cor- 153

pora. However, these models require task-specific 154

fine-tuning, may lack a flexible interface and can- 155

not understand open-domain instructions. Recent 156
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efforts like mPLUG-DocOwl (Ye et al., 2023a) and157

UReader (Ye et al., 2023b) build on LLMs and per-158

form DocAI-focused instruction tuning. We differ159

from these by avoiding expensive visual encoders.160

Model Architecture. Disentangled attention mech-161

anisms, where different signals are represented by162

independent vectors, have been studied before (He163

et al., 2020). While we use a similar construct, our164

spatial position based encodings are more complex165

and applied in a multimodal context. Learning to166

infill autoregressive language models has been ex-167

plored in Bavarian et al. (2022), Shen et al. (2023),168

and Du et al. (2021). Although we share their goal169

of adding fill-in-the-middle (FIM) capability, we170

differ in the mechanism by integrating FIM into the171

visual document contexts and avoiding extremely172

short segments.173

3 DocLLM Framework174

3.1 Architecture Overview175

DocLLM is constructed upon the foundation of an176

auto-regressive transformer language model (Tou-177

vron et al., 2023; Penedo et al., 2023) following a178

causal decoder structure. It integrates lightweight179

visual information by utilizing the spatial posi-180

tions and dimensions of text tokens obtained using181

OCR. Instead of simply augmenting the text with182

bounding box information via additive positional183

encoding (Xu et al., 2021), separate vectors are184

used to represent these two distinct modalities and185

the self-attention mechanism of the transformer186

architecture is extended to compute their inter-187

dependencies in a disentangled manner. Further-188

more, the traditional left-to-right next token predic-189

tion during self-supervised training is replaced by190

a block infilling objective that better leverages con-191

textual information. See Figure 2 for an overview.192

3.2 Disentangled Spatial Attention193

Let x = (x1, ..., xi, ..., xT ) be an input sequence194

of length T , where xi is a text token. In classi-195

cal transformers, using a learned embedding matrix196

based on the text vocabulary and a learned set of pa-197

rameters for the token position in the sequence, the198

input tokens are first encoded into hidden vectors199

H ∈ RT×d. A self-attention head then computes200

the attention scores between tokens i and j as:201

Qt = HWt,q, Kt = HWt,k, At
i,j = Qt

iK
t
j
⊺

(1)202

where Wq ∈ Rd×d and Wk ∈ Rd×d are projection203

matrices, and the superscript t indicates the text204

modality. The attention scores A ∈ RT×T along 205

with another projection matrix Wv are further used 206

to compute the hidden vectors H′, which are in turn 207

used as inputs for a subsequent layer: 208

Vt = HWt,v, H′ = softmax(
At

√
d
)Vt. (2) 209

In DocLLM, the input is represented 210

as x = {(xi, bi)}Ti=1, where bi = 211

(left, top, right, bottom) is the bounding 212

box corresponding to xi. To capture the new 213

modality (i.e. spatial information), we encode the 214

bounding boxes into hidden vectors represented 215

by S ∈ RT×d. We then decompose the attention 216

matrix computation into four different scores, 217

namely text-to-text, text-to-spatial, spatial-to-text 218

and spatial-to-spatial. Formally, the new attention 219

mechanism is calculated as: 220

Qs = SWs,q, Ks = SWs,k,

Ai,j = Qt
iK

t
j
⊺
+ λt,sQ

t
iK

s
j
⊺

+ λs,tQ
s
iK

t
j
⊺
+ λs,sQ

s
iK

s
j
⊺,

(3) 221

where Ws,q ∈ Rd×d and Ws,k ∈ Rd×d are newly 222

introduced projection matrices corresponding to 223

the spatial modality, and λs are hyperparameters 224

that control the relative importance of each score. 225

The input hidden vectors for the next layer H′ are 226

computed exactly as before. However, in contrast 227

to equation (2), the newly calculated hidden vectors 228

rely not only on the text semantics but also on the 229

layout information of the text tokens. 230

It is important to mention that the hidden vec- 231

tors S are reused across different layers, while each 232

layer retains the flexibility to employ different pro- 233

jection matrices. We also note that the number of 234

extra parameters required to encode the bounding 235

box information is significantly lower compared to 236

the overhead introduced by image based models 237

(Li et al., 2022). By simply adding S to H sim- 238

ilar to Xu et al. (2020), we could have avoided 239

using Ws matrices altogether and further reduced 240

the number of parameters. However, it would have 241

irreversibly coupled the layout information with 242

the text semantics. In contrast, our disentangled 243

representation of these modalities in the attention 244

scores enables selective focus when appropriate 245

(He et al., 2020), thereby providing an optimal bal- 246

ance between model size and effectiveness. 247

3.3 Pretraining 248

DocLLM is first pre-trained in a self-supervised fash- 249

ion on a large number of unlabeled documents. 250
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Figure 2: DocLLM model architecture with disentangled spatial attention and infilling objective. left: Input document
with text tokens xi and bounding boxes bi. Some text blocks are randomly masked (two blocks here) and the
model predicts the tokens in these text blocks autoregressively. right: The infilling sequence is created by replacing
the sampled blocks with [M] and prepending them with [S]. The attention mechanism is extended to account for
cross-attention between text and spatial modalities.

Visual documents are often sparse and irregular,251

featuring isolated and disconnected text fragments.252

It is preferable to consider coarse segments of re-253

lated tokens during pre-training rather than focus-254

ing on individual tokens. Hence we use the broader255

context provided by multiple tokens, referred as256

blocks1, for better comprehension. Most OCR en-257

gines can provide block level information, which258

makes it feasible to identify coherent text blocks259

such as a heading or an address2.260

Learning to infill text, where the prediction is261

conditioned on both prefix and suffix tokens rather262

than only preceding tokens, can be beneficial for263

document understanding. The infilling objectives264

enable contextually relevant completions, provide265

robustness to OCR noise or misaligned tokens, and266

can better handle relationships between various267

document fields. Hence we modify the standard268

pre-training objective to predict blocks of text given269

preceding and following text blocks. Inspired by270

(Du et al., 2021), we follow an autoregressive block271

infilling objective, where text blocks are randomly272

masked, and the masked blocks are shuffled and273

reconstructed in a sequential left-to-right fashion.274

Formally, let c = {c1, ..., cK} be a set of text275

blocks that partitions an input sequence x into non-276

1In Figure 2, “Name”, “John Doe” , and “Doctor” are all
examples of blocks

2In order to avoid any leakage of useful information, the
block information is only used during pre-training, and the
model is unaware of the number of tokens in a masked block.

overlapping contiguous tokens such that c1 ∪ ... ∪ 277

cK = x and ck ∩ ck′ = ∅. Let z = {zm}Mm=1 be 278

M ≪ K different text blocks randomly sampled 279

from c, where each block zm = (zm,1, ..., zm,Nm) 280

contains a consecutive series of tokens. Further, 281

let x̃ be a corrupted version of x where the con- 282

tiguous tokens corresponding to a sampled text 283

block are replaced with a special mask token [M]. 284

To facilitate the identification of the block to be 285

filled during text generation, each input block is 286

augmented with a special start token [S] while the 287

output block includes an end token [E]. For in- 288

stance, a block with tokens (x4, x5) becomes [M] 289

in x̃, ([S], x4, x5) when conditioned upon, and is 290

expected to generate (x4, x5, [E]) as output autore- 291

gressively3. Let θ denote all the parameters of the 292

transformer model, including the projection matri- 293

ces discussed above. The following cross-entropy 294

loss is then minimized for the infilling objective 295

LIF(θ) = −
M∑

m=1

Nm∑
j=1

log pθ(zm,j |x̃, z<m, zm,<j).

(4)

296

3.4 Instruction Tuning 297

Following recent work in the field of VRDU (Tang 298

et al., 2023; Ye et al., 2023a,b) and prior work 299

in NLP (Wei et al., 2022; Chung et al., 2022), we 300

3See Figure 2 for an illustration of these configurations.
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Table 1: Prompt templates used for instruction-tuning (spatial tokens not included).

Task Template type Prompt template Expected response

VQA Extraction {document} {question} answer annotation

NLI MCQ {document} "{statement}", Yes or No? answer annotation

KIE

Extraction {document} What is the value for the "{key}"? Associated value annotation

MCQ
{document} What is "{value}" in the document? Possible choices: {keys}.
(where keys is a subset of all the key names in the dataset in random order)

Associated key annotation

Internal classification {document} What is "{value}" in the document? Associated key annotation

CLS
MCQ

{document} What type of document is this? Possible choices: {classes}.
(where classes is a subset of all the classes in the dataset in random order)

class annotation

Internal classification {document} What type of document is this? class annotation

instruction-tune DocLLM on a variety of instructions301

curated from multiple DocAI datasets using tem-302

plates. We employ a total of 16 datasets with their303

corresponding OCRs, spanning four DocAI tasks.304

The diversity of supervised fine tuning (SFT) in-305

structions is critical in helping zero-shot generaliza-306

tion (Wei et al., 2022; Chung et al., 2022; Ouyang307

et al., 2022). Thus, we diversify templates per308

task when possible, with each template asking a309

different question, and in some cases, expecting310

different types of answers. We re-use the templates311

introduced in Ye et al. (2023a,b) when applicable.312

We create the templates following what we be-313

lieve end users would generally ask about docu-314

ments (see Table 1). For KIE and CLS, we hypoth-315

esize that (1) the extraction instructions can teach316

DocLLM to correlate names of keys in the prompts317

with document fields so as to retrieve values, (2)318

the internal classification instructions can help the319

model understand what intrinsically characterizes320

each key or document type, and (3) the multiple321

choice question (MCQ) instructions can teach the322

model to leverage its comprehension of key names323

included as choices in the prompt (resp. document324

type names) to classify extracted values (resp. en-325

tire documents). The templates are as follows4:326

Visual Question Answering. A single template.327

Prompt Example: What is the deadline for scien-328

tific abstract submission for ACOG - 51st annual329

clinical meeting?330

Natural Language Inference. A single template.331

Prompt Example: "The UN commission on Korea332

include 2 Australians.", Yes or No?333

Key Information Extraction. Three templates334

corresponding to extraction, internal classification,335

and MCQ instructions. Example prompt for extrac-336

4Examples are derived from DocVQA (Mathew et al.,
2021), TabFact (Chen et al., 2020), KLC (Stanislawek et al.,
2021), RVL-CDIP (Harley et al., 2015).

tion: What is the value for the "charity number"? 337

Document Classification. Two templates corre- 338

sponding to internal classification and MCQ in- 339

structions. Example prompt for MCQ: What type 340

of document is this? Possible answers: [budget, 341

form, file folder, questionnaire]. 342

See Appendix A.2 for further details. 343

4 Experiments 344

4.1 Datasets 345

Pre-training. We gather data for pre-training from 346

two primary sources: (1) IIT-CDIP Test Collection 347

1.0 (Lewis et al., 2006) and (2) DocBank (Li et al., 348

2020). IIT-CDIP Test Collection 1.0 encompasses 349

a vast repository of over 5 million documents, com- 350

prising more than 16 million document pages. This 351

dataset is derived from documents related to legal 352

proceedings against the tobacco industry during 353

the 1990s. DocBank consists of 500K documents, 354

each featuring distinct layouts and a single page per 355

document. We obtain a collection of 16.7 million 356

pages comprising a total of 3.8 billion tokens. See 357

Table 6 in the Appendix for detailed statistics. 358

Instruction Tuning. To instruction-tune the model 359

for the VQA task, we collect DocVQA (Mathew 360

et al., 2021), WikiTableQuestions (WTQ) (Pasu- 361

pat and Liang, 2015), VisualMRC (Tanaka et al., 362

2021), and DUDE (Landeghem et al., 2023). For 363

NLI, we only include TabFact (Chen et al., 2020) 364

in our instruction-tuning data mix, due to lack 365

of additional DocAI NLI datasets available. For 366

KIE, we gather Kleister Charity (KLC) (Stanis- 367

lawek et al., 2021), CORD (Park et al., 2019), 368

FUNSD (Jaume et al., 2019), DeepForm (Svetlich- 369

naya, 2020), PWC (Kardas et al., 2020), SROIE 370

(Huang et al., 2019), and VRDU ad-buy (Wang 371

et al., 2023) (with random train-test splitting). Fi- 372

nally, we use RVL-CDIP (Harley et al., 2015) to 373
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build our CLS instruction-tuning data. We also374

downsample RVL-CDIP in the train split to avoid375

hindering the other datasets due to size. See Table376

7 in the Appendix for detailed statistics.377

To the above datasets, we add BizDocs, a col-378

lection of ∼1,600 business entity filings curated379

from state registration websites within the US. Biz-380

Docs is annotated for three tasks – VQA, KIE, and381

CLS – and we therefore include it in the respective382

instruction-tuning collections5.383

4.2 Evaluation Setup384

Model Configuration. We train two variants385

of DocLLM: DocLLM-1B, which is based on the386

Falcon-1B architecture (Penedo et al., 2023), and387

DocLLM-7B, which is based on the Llama2-7B ar-388

chitecture (Touvron et al., 2023)6. The maximum389

sequence length is set to 1,024 for both these mod-390

els during the entire training process. See Appendix391

B for a detailed discussion on the model configura-392

tion and training hyper-parameters.393

Settings. We investigate two experimental settings:394

Same Datasets, Different Splits (SDDS): Follow-395

ing previous work (Lee et al., 2023; Davis et al.,396

2022; Kim et al., 2022; Tang et al., 2023; Ye et al.,397

2023a,b), we first evaluate DocLLM on the unseen398

test split (or dev split when labeled test split is not399

publicly available) of each of the 16 datasets com-400

posing the instruction tuning data. The motivation401

behind this very typical setting is to check how402

DocLLM performs when tasks and domains suppos-403

edly stay the same from train to test.404

Same Tasks, Different Datasets (STDD): Follow-405

ing (Wei et al., 2022; Chung et al., 2022; Dai406

et al., 2023; Zhang et al., 2023a), we also eval-407

uate DocLLM on held-out datasets. More precisely,408

we instruction-tune the pretrained checkpoint of409

DocLLM on prompts from 11 of the 16 datasets con-410

sidered in SDDS, then evaluate DocLLM on the test411

split of the remaining five datasets. The rationale412

behind this evaluation setting is to assess the per-413

formance of DocLLM when tasks are unchanged414

but domains and layouts differ from train to test.415

We believe examining this setting in the DocAI416

field is relevant because industry use cases usu-417

ally encountered in practice revolve around VQA,418

KIE, and CLS, while document characteristics tend419

5The BizDocs dataset will be released upon acceptance.
6Since LLaMA2 does not come with pre-trained weights

at 1B parameters, we use the Falcon-1B architecture for the
smaller version of DocLLM.

to change more often in production. We specif- 420

ically isolate DocVQA, KLC, and BizDocs for 421

STDD evaluation in order to (1) exclude at least 422

one dataset per task from SFT when possible, (2) 423

leave enough datapoints per task in the training 424

split of the instruction-tuning data, (3) avoid data 425

leakage, and (4) benchmark models on popular yet 426

challenging datasets when possible. Due to the 427

high cost of instruction-tuning, we were not able to 428

run experiments with other held-out datasets. 429

Baselines. In SDDS and STDD, we benchmark 430

DocLLM against comparably-sized SotA LLMs us- 431

ing ZS prompts that contain the text extracted 432

from each document using an OCR engine (exclud- 433

ing the spatial information) (Touvron et al., 2023; 434

Ouyang et al., 2022). In SDDS, we also report 435

numbers from recent DocAI LLMs evaluated in a 436

similar setting (Ye et al., 2023a,b). As motivated 437

in Section 2, we do not consider DocAI models 438

that require task-specific fine-tuning such as Lay- 439

outLMv3 (Huang et al., 2022) or Pix2Struct (Lee 440

et al., 2023), and/or dataset-specific prompts such 441

as UDOP (Tang et al., 2023). We instead focus 442

on LLMs with out-of-the-box instruction following 443

capability7. 444

Metrics. Following previous work (Borchmann 445

et al., 2021; Lee et al., 2023; Ye et al., 2023b,a), we 446

evaluate all VQA datasets using Average Normal- 447

ized Levenshtein Similarity (ANLS) (Biten et al., 448

2019), with the exception of VisualMRC, for which 449

we use CIDEr8 (Vedantam et al., 2015) and WTQ, 450

for which we use accuracy. Performance on all 451

CLS and NLI datasets is measured using accuracy. 452

We evaluate all KIE datasets with the F1 score. 453

4.3 Results 454

SDDS Setting. Table 2 shows that DocLLM-7B 455

excels in 12 out of 16 datasets, inclusively com- 456

pared to ZS results of GPT4 and Llama2, and 457

SDDS results of mPLUG-DocOwl and UReader. 458

Among equivalent models (excluding GPT4), our 459

model outperforms in 14 out of 16 datasets. Specif- 460

ically, DocLLM demonstrates superior performance 461

in layout-intensive tasks such as KIE and CLS. In 462

VQA and NLI, its performance surpasses that of 463

most multimodal language models, although it un- 464

derperforms compared to GPT4. GPT4 outper- 465

7Refer to Appendix C.4 for a comparison against SotA
models regardless of architecture.

8This is done to remain consistent with the results reported
by other baselines.
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Table 2: Performance comparison in the SDDS setting against other multimodal and non-multimodal LLMs;
non-multimodal LLMs are Zero-Shot (ZS) prompted while multimodal LLMs are instruction-tuned on the train
split of the datasets considered. ‘*’ indicates datasets for which a designated test set was not publicly available.

Dataset
GPT4+OCR Llama2+OCR mPLUG-DocOwl UReader DocLLM-1B DocLLM-7B

– (T) 7B (T) 7B (T+V) 7B (T+V) 1B (T+L) 7B (T+L)
ZS ZS SDDS SDDS SDDS SDDS

VQA

DocVQA 82.8 47.4 62.2 65.4 61.4 69.5
WTQ (Accuracy) 65.4 25.0 26.9 29.4 21.9 27.1

VisualMRC (CIDEr) 255.1 115.5 188.8 221.7 245.0 264.1
DUDE* 54.6 38.1 - - 42.6 47.2
BizDocs 76.4 48.8 - - 84.5 86.7

NLI TabFact 77.1 48.2 60.2 67.6 58.0 66.4

KIE

KLC 45.9 27.8 30.3 32.8 58.9 60.3
CORD 58.3 13.8 - - 66.9 67.4
FUNSD 37.0 17.8 - - 48.2 51.8

DeepForm 42.1 20.5 42.6 49.5 71.3 75.7
PWC 18.3 6.8 - - 25.7 29.06

SROIE 90.6 56.4 - - 91.0 91.9
VRDU a.-b.* 43.7 18.7 - - 87.6 88.8

BizDocs 66.1 10.8 - - 95.4 96.0

CLS RVL-CDIP 68.2 32.8 - - 90.9 91.8
BizDocs 84.9 40.9 - - 98.3 99.4

Table 3: Performance comparison in the STDD setting on held-out VRDU datasets against non-multimodal LLMs.

Model Size Setting DocVQA KLC BizDocs
VQA KIE VQA KIE CLS

GPT4+OCR – ZS 82.8 45.9 76.4 66.1 84.9
Llama2+OCR 7B ZS 47.4 27.8 48.4 10.8 40.9

DocLLM-1B 1B STDD 53.5 40.1 65.5 63.0 20.8
DocLLM-7B 7B STDD 63.4 49.9 73.3 72.6 31.1

Table 4: Ablation study on disentangled spatial attention.
T and S stands for text and spatial modality respectively.

Cross-Modal Interactions NTP Accuracy

T2T 35.43
T2S + T2T 38.08
S2T + T2T 38.05
S2S + T2T 39.12

T2S + S2S + T2T 39.06
S2T + S2S + T2T 39.07

T2S + S2T + S2S + T2T 39.02

forms DocLLM in VQA, possibly due to the higher466

complexity of reasoning and abstraction involved467

in VQA datasets compared to tasks like KIE or468

CLS9. DocLLM-1B demonstrates performance close469

to that of our larger model, suggesting that the470

smaller model can derive significant benefits from471

the architecture of DocLLM.472

STDD Setting. Table 3 shows that our model473

demonstrates superior performance compared to474

9See Appendix C.2 for further details.

Table 5: Ablation study on the block infilling objective.

Pretraining Objective NTP Accuracy

Causal Learning 32.6
Causal Learning + Spatial 36.2
Block Infilling + Spatial 39.1

Llama2 across four out of five datasets, and 475

achieves the best score overall for two of them (KIE 476

task again). DocLLM also outperforms mPLUG- 477

DocOwl on DocVQA and both mPLUG-DocOwl 478

and UReader on KLC, despite both baselines hav- 479

ing been instruction-tuned on these datasets. How- 480

ever, it is important to note that classification accu- 481

racy is notably lower in our model. This discrep- 482

ancy may stem from the fact that our model has 483

been trained using only one CLS dataset, limiting 484

its ability to generalize effectively to new datasets. 485

Qualitative Comparisons. Figure 3 shows 486

qualitative examples, comparing the outputs of 487

DocLLM-7B and GPT4. Figure 3a corresponds to a 488

7



(a) Prompt: What is the value for
the “advertiser”?
DocLLM: Bloomberg/D/President
GPT4+OCR: MIKE BLOOMBERG 2020

(b) Prompt: What is written
under the heading ‘emergency
protein allowances’?
DocLLM: Grams per person per day
GPT4+OCR: Men (70 Kg.) 50 55 ...

(c) Prompt: How many objectives
are listed under at-event
activities?
DocLLM: 4
GPT4+OCR: 5

Figure 3: Qualitative examples of DocLLM-7B performance for KIE (Svetlichnaya, 2020) and VQA (Mathew et al.,
2021) tasks. Correct answers are highlighted in blue and incorrect answers are highlighted in red.

KIE instruction, showing that DocLLM can provide489

correct answers when a question requires some490

knowledge of the semantic nuances of enterprise491

documents. DocLLM’s spatial reasoning abilities492

are demonstrated in Figure 3b, where the model493

correctly locates the heading ‘emergency protein494

allowances’ and identifies the text immediately un-495

derneath it. Figure 3c highlights a limitation, with496

the model failing at a counting task, at which GPT4497

succeeds. See Appendix C.1 for more examples.498

Ablation Analysis. We conduct ablation studies499

based on Next Token Prediction (NTP) accuracy500

to validate the main contributions of DocLLM. We501

observe that incorporating the spatial modality in502

the attention mechanism performs better over the503

classical text-only modality, thereby validating the504

utility of disentangled spatial attention (See Table505

4). Furthermore, block infilling with spatial modal-506

ity outperforms causal learning, highlighting the507

value of fill-in-the-middle objectives (See Table 5).508

Appendix D contains more details.509

5 Discussion510

Impact. DocLLM enables language models to go be-511

yond plain text settings and offers immediate utility512

in visually rich document understanding tasks. By513

accommodating complex layout structures, DocLLM514

allows documents with rich layouts to be included515

in the pre-training corpus without requiring exten-516

sive preprocessing. The explicit modeling of spatial517

relationships enables perceiving the documents as518

inherently structured knowledge.519

Flexibility. The support for multi-page documents,520

implemented through page breaks and document521

boundaries, enhances the model’s ability to com-522

prehend documents with diverse lengths. This over-523

comes the constraints of small multimodal models524

that can handle only a single page and multimodal 525

LLMs mainly designed for images. 526

Limitations. The use of English-language datasets 527

derived from limited enterprise domains (such as 528

IIT-CDIP) may introduce inherent representational 529

biases in VRDU models, including DocLLM. Also, 530

DocLLM may be vulnerable to inaccurate bounding 531

box information produced by an OCR engine. How- 532

ever, several modern off-the-shelf solutions can ro- 533

bustly extract text from documents, mitigating this 534

issue. DocLLM’s support for long-form documents 535

is restricted by its context length. Increasing the 536

model size and allowing unbounded context length 537

during inference can address this limitation. Fi- 538

nally, DocLLM may not excel at complex reasoning 539

tasks, especially those requiring a deep understand- 540

ing of numerical concepts. See Appendix E for 541

additional discussion. 542

6 Conclusions 543

We introduced DocLLM, a lightweight extension to 544

traditional LLMs, tailored for generative reason- 545

ing over documents with rich layouts. DocLLM es- 546

chews expensive image encoders and instead uti- 547

lizes bounding box information to capture the spa- 548

tial layout structure of documents. This is achieved 549

through a disentangled attention mechanism that 550

models cross-alignment between text and spatial 551

modalities. Notably, our model addresses the chal- 552

lenges posed by irregular layouts and heteroge- 553

neous content using a learning to infill pre-training 554

objective. Tuning the model on a carefully curated 555

instruction dataset provides a flexible interface for 556

interactions. Our evaluation across various docu- 557

ment intelligence tasks demonstrates that DocLLM 558

surpasses equivalent models both for in-domain 559

and out-of-domain tasks. In the future, we plan to 560

infuse vision into DocLLM in a lightweight manner. 561
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A Dataset Details985

A.1 Preprocessing986

Of the datasets used in our study, IIT-CDIP and987

DocBank do not provide token-level OCR out-988

put. Therefore we process both datasets using989

the Tesseract-OCR engine10. For the remaining990

datasets, we used the OCR output provided by each991

publisher.992

A.2 Instruction Tuning Templates993

For the extraction template, we add a “None” an-994

swer if a key does not exist in the given document,995

following Ye et al. (2023a,b). As described in Sec-996

tion 3.4 and Table 1, to increase diversity in the997

training data, we derive internal classification and998

MCQ instructions in addition to extraction instruc-999

tions from the original KIE annotations. However,1000

to stay consistent with benchmarks from previous1001

work (Ye et al., 2023a,b), we only keep the prompts1002

derived from the extraction template in the test split1003

of each KIE dataset. To avoid the cold start prob-1004

lem induced by potentially unseen types of docu-1005

ments in testing or production usage, we only keep1006

the MCQ prompts for the test split of each CLS1007

dataset. Note that when a prompt accepts more1008

than one answer, we create multiple copies of the1009

prompt with one acceptable answer assigned to1010

each. We only perform this “flattening” operation1011

in the training split of the dataset.1012

A.3 Dataset Statistics1013

See Table 6 for pretraining dataset details and Table1014

7 for instruction tuning dataset details.1015

B Training Details1016

DocLLM-1B is composed of 24 layers, each with1017

16 attention heads and a hidden size of 1,536.1018

DocLLM-7B comprises 36 layers, 32 heads, and a1019

hidden size of 4,096. Using pretrained weights as1020

the backbone for the text modality, we extend the1021

Falcon-1B and Llama2-7B models by adding the1022

disentangled attention and block infilling objective1023

as described in Section 3. We start directly from1024

the pretrained weights of the backbone LLMs in1025

order to continue their pretraining in a multimodal1026

manner and avoid catastrophic forgetting of instruc-1027

tion following abilities (Luo et al., 2023; Zhai et al.,1028

2024).1029

10https://github.com/tesseract-ocr/tesseract

Table 6: Pretraining dataset statistics.

Dataset #Docs #Pages #Tokens

CDIP 5,092,636 16,293,353 3,637,551,478
DocBank 499,609 499,609 228,362,274
Total 5,592,245 16,792,962 3,865,913,752

Table 7: Instruction tuning dataset statistics.

Task #Train prompts #Test prompts

VQA 145,090 24,347
NLI 104,360 12,720
KIE 236,806 38,039
CLS 149,627 21,813
Total 635,883 96,919

For DocLLM-1B, we use a pre-training learning 1030

rate of 2 × 10−4 with 1,000 warmup steps, em- 1031

ploying a cosine scheduler, and Adam optimizer 1032

(Kingma and Ba, 2015) with β1 = 0.9, β2 = 0.96 1033

and a weight decay of 0.1. For instruction tun- 1034

ing we use a learning rate of 1 × 10−4 with 500 1035

warmup steps and a cosine scheduler, and the same 1036

parameters for weight decay and Adam optimizer 1037

as the pre-training phase. The Adam epsilon is 1038

set to 1 × 10−5. We pretrain for one epoch, and 1039

instruction-tune for a total of 10 epochs. 1040

For DocLLM-7B, pretraining involves a learning 1041

rate of 3× 10−4 with 1,000 warmup steps and co- 1042

sine scheduler, weight decay of 0.1, and Adam opti- 1043

mizer with β1 = 0.9, β2 = 0.95. Instruction tuning 1044

uses a learning rate of 1× 10−4 with 500 warmup 1045

steps and a cosine scheduler, weight decay of 0.1, 1046

and Adam optimizer with β1 = 0.9, β2 = 0.95. 1047

Adam epsilon is set at 1× 10−6. We conduct one 1048

epoch of pretraining, followed by three epochs of 1049

instruction tuning, considering available computing 1050

resources. 1051

The DocLLM-7B models are trained with 16-bit 1052

mixed precision on 8 24GB A10G GPUs using 1053

fully sharded data parallelism, implemented with 1054

the Accelerate library.11 The DocLLM-1B model, on 1055

the other hand, is trained on a single 24GB A10G 1056

GPU. 1057

Table 8 provides an overview of the model con- 1058

figuration and training hyper-parameters that were 1059

used. 1060

11https://huggingface.co/docs/accelerate

13

https://github.com/tesseract-ocr/tesseract
https://huggingface.co/docs/accelerate


Table 8: Model configuration and training hyperparameters setting for DocLLM-1B and -7B.

DocLLM-1B DocLLM-7B

Backbone Falcon-1B (Penedo et al., 2023) Llama2-7B (Touvron et al., 2023)
#Parameters 1,524,963,328 7,853,019,136
Layers 24 36
Attention heads 16 32
Hidden size 1,536 4,096
Precision bfloat16 bfloat16
Batch size 2 5
Max context length 1,024 1,024

Pretraining Instruction tuning Pretraining Instruction tuning

Learning rate 2× 10−4 1× 10−4 3× 10−4 1× 10−4

Warmups 1,000 500 1,000 500
Scheduler type cosine cosine cosine cosine
Weight decay 0.1 0.1 0.1 0.1
Adam βs (0.9, 0.96) (0.9,0.96) (0.9,0.95) (0.9,0.95)
Adam epsilon 1× 10−5 1× 10−5 1× 10−6 1× 10−6

(a) Prompt: What is the doctor’s
id no.?
DocLLM: 162
GPT4: No information provided

(b) Prompt: What is the value for
the “contract num”?
DocLLM: 1328762
GPT4: 09732930

(c) Prompt: What is the value for
the “gross amount”?
DocLLM: None
GPT4: 40,000.00

(d) DocLLM: resume
GPT4: form

(e) DocLLM: budget
GPT4: scientific report

(f) DocLLM: budget
GPT4: invoice

Figure 4: Qualitative examples of DocLLM-7B performance versus a SotA baseline (GPT4). Correct answers are
highlighted in blue and incorrect answers are highlighted in red. (a): VQA example from the DocVQA dataset
(Mathew et al., 2021). (b)-(c): KIE examples from the DeepForm dataset (Svetlichnaya, 2020). (d)-(f): CLS
examples from the RVL-CDIP dataset (Harley et al., 2015). The prompt used here was: What type of document
is this? Possible answers: [letter, memo, email, file folder, form, handwritten, invoice,
advertisement, budget, news article, presentation, scientific publication, questionnaire,
resume, scientific report, specification].
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C Detailed Performance Analysis1061

C.1 Qualitative Examples1062

Figure 4 shows additional qualitative examples1063

from the DocLLM-7B output, where 4a highlights a1064

VQA example from the DocVQA dataset (Mathew1065

et al., 2021), 4b and 4c display two KIE examples1066

from the DeepForm dataset (Svetlichnaya, 2020),1067

and the bottom row shows CLS examples from the1068

RVL-CDIP dataset (Harley et al., 2015).1069

As Figures 4a and 4e show, DocLLM can pro-1070

vide correct answers when the question requires1071

some knowledge of the semantic nuances of en-1072

terprise documents. As an example, in Figure 4e,1073

GPT4 mislabels a tax report issued by a local tax1074

council as a scientific report, possibly due to the1075

numeric contents of the table, whereas DocLLM is1076

able to associate the content and the correspond-1077

ing issuing authority with a budget report. Figure1078

4b demonstrate DocLLM’s spatial reasoning capa-1079

bility. The rightmost column of Figure 4 shows1080

examples of failure by DocLLM. Each failure case1081

demonstrates a limitation in the design and scope1082

of the model. Figure 4c shows an example where1083

DocLLM is unable to extract the gross amount. This1084

error is due to the fact that the correct answer falls1085

outside of the context window of the model, as it1086

is located on the fourth page of a multi-page doc-1087

ument. Lastly, Figure 4f shows an example for1088

which the class predicted by DocLLM, i.e. “budget”,1089

is semantically viable, but is nevertheless not the1090

correct class. In future studies, we plan to address1091

some of the above mentioned limitations, and in-1092

crease the context length of the model.1093

C.2 DocVQA Deep-Dive1094

We conduct an in-depth analysis of the performance1095

of DocLLM-7B on the various question categories1096

of DocVQA. As depicted in Table 9, DocLLM ex-1097

hibits strong performance on “Form” and “Layout”1098

questions, attaining scores of 82.2 and 72.4 respec-1099

tively. These results underline the model’s profi-1100

ciency in understanding and processing structured1101

document formats and layouts. Conversely, the1102

"Image/Photo", "Figure/Diagram", and "Yes/No"1103

questions have lower scores of 47.9, 41.4, and 43.91104

respectively. The absence of integrated vision fea-1105

tures might account for DocLLM’s lower capacity in1106

recognizing certain visual cues.1107

Table 9: DocLLM-7B scores for DocVQA categories.

Category ANLS

Figure/Diagram 41.4
Form 82.2
Table/List 66.2
Layout 72.4
Free text 64.6
Image/Photo 47.8
Handwritten 62.8
Yes/No 43.9
Other 56.8

C.3 GPT4V Performance Comparison 1108

Given the recent roll out of the GPT4V API12 and 1109

the interest it has generated, we also benchmark 1110

DocLLM-7B against GPT4V on DocVQA and Biz- 1111

Docs (Table 10). We select these datasets in order 1112

to include both SDDS and STDD results in the 1113

comparison. Moreover, as BizDocs has not been 1114

made public yet, we can be certain that GPT4 and 1115

GPT4V have not been trained on it. Due to cost 1116

and daily API usage limitations, we were not able 1117

to cover additional datasets. 1118

We first observe that GPT4V does not uniformly 1119

outperform GPT4+OCR on the datasets consid- 1120

ered. Both models show close ZS performance in 1121

BizDocs CLS, but GPT4+OCR beats GPT4V in 1122

BizDocs VQA while GPT4V tops GPT4+OCR on 1123

BizDocs KIE and DocVQA. The additional vision 1124

component of GPT4V seems to help in general, es- 1125

pecially for datasets such as DocVQA. However, as 1126

the characteristics of these model are undisclosed, 1127

analyzing their performance differences in depth 1128

is difficult. We do note that, despite its lack of 1129

visual and spatial features, GPT4+OCR fares well 1130

on VQA, KIE, and CLS tasks, and might be able 1131

to partially model the spatial relationships in docu- 1132

ments based on the natural ordering of OCR tokens. 1133

12https://openai.com/blog/
new-models-and-developer-products-announced-at-
devday

Table 10: DocLLM-7B performance comparison against
GPT4+OCR and GPT4V. BizDocs KIE GPT4V results
were obtained on a sample of 5K (cost & API limits).

Model Setting DocVQA BizDocs
VQA VQA KIE CLS

GPT4+OCR ZS 82.8 76.4 66.1 84.9
GPT4V ZS 88.4 67.9 70.0 86.0

DocLLM-7B SDDS 69.5 86.7 96.0 99.4
DocLLM-7B STDD 63.4 73.3 72.6 31.1
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Its robustness to OCR token position permutations1134

is however not guaranteed.1135

Next, we observe that DocLLM-7B also outper-1136

forms GPT4V in addition to GPT4+OCR on Biz-1137

Docs SDDS. In the STDD evaluation setting, which1138

is closer to out-of-distribution ZS inference, our1139

model still exhibits competitive performance in1140

VQA and KIE – although not consistently exceed-1141

ing the scores of the likely larger GPT4 models.1142

DocLLM’s lack of vision encoder appears to be1143

mostly detrimental on DocVQA, where it particu-1144

larly struggles on “Image/Photo” and “Figure/Dia-1145

gram” questions, as seen in Section C.2.1146

C.4 SotA Performance Comparison1147

In Table 11, we compare DocLLM-7B against the1148

SotA on the datasets considered in this paper. Note1149

that BizDocs is not included here as it has not been1150

made public yet. Similarly, DUDE and VRDU1151

ad-buy are not considered in this section, since1152

we used validation and bespoke splits respectively1153

to evaluate models on them (see the caption on1154

Table 2). FUNSD and PWC are also excluded1155

from this study, as the prompts we built for these1156

datasets leveraged annotations differently than pre-1157

vious work: our FUNSD KIE questions are based1158

on the annotated key-value links, and our PWC KIE1159

questions are formulated using the annotated set of1160

Machine Learning tasks covered by the dataset.1161

Table 11 offers a few notable takeaways. First,1162

despite the recent progress in multi-modal docu-1163

ment understanding, a foundation model that out-1164

ranks others across a wide range of tasks and1165

datasets does not currently exist. Most SotA mod-1166

els are single-task fine-tuned models that outper-1167

form others in one or a few datasets, as seen here1168

with LayoutT5 (Tanaka et al., 2021), StructuralLM1169

(Li et al., 2021), PASTA+DATER (Ye et al., 2023d),1170

GPT-3.5+DP+PyAgent+MixSC (Liu et al., 2023b),1171

and GraphDoc (Zhang et al., 2023b). The same1172

observation applies to general NLP (Brown et al.,1173

2020; Wang et al., 2022; Chowdhery et al., 2022;1174

Naveed et al., 2023). While UDOP tops all mod-1175

els on three KIE datasets, it remains an expert1176

model that requires dataset-specific prompts and1177

per dataset fine-tuning (on top of its multitask su-1178

pervised pretraining) in order to reach the perfor-1179

mance reported. On table-based datasets such as1180

WTQ and TabFact, SotA models rely on large, text-1181

only LLMs to reason over data using SQL or Pan-1182

das – thus reducing their ability to generalize to1183

non-tabular document data. The abstractive reason-1184

ing limitations of DocLLM-7B are more apparent on 1185

these table-based datasets, but our single model 1186

performs competititvely in KIE and CLS (even on 1187

KLC and Deepform, despite DocLLM’s relatively 1188

short context-length). 1189

Second, recent multimodal LLMs such as Qwen- 1190

VL-Max13 and GPT4V14 show impressive ZS per- 1191

formance in VQA. These generalist models report 1192

strong performance on DocVQA and other datasets 1193

like ChartQA (Masry et al., 2022) and Infograph- 1194

icVQA (Mathew et al., 2022) (which we do not 1195

consider in this paper) thanks to their additional vi- 1196

sion encoder15. However, the lack of transparency 1197

about their size, exact architecture, training pro- 1198

cedure, and training data makes it hard to draw 1199

any conclusions. On DocVQA, DocLLM-7B outper- 1200

forms Qwen-VL-10B (Bai et al., 2023). Moreover, 1201

as these recent multimodal LLMs were designed 1202

to tackle a wide range of tasks (e.g., image cap- 1203

tioning) and not just DocAI, their ZS performance 1204

on certain tasks considered here (document NLI, 1205

KIE, CLS) has not been investigated – making a 1206

thorough comparison with our model even more 1207

complex. 1208

Finally, despite lower performance compared 1209

to the top-performing model in each category, 1210

DocLLM still shows superior performance to gen- 1211

eralist LLMs of comparable size, as indicated in 1212

Table 2. The model also proves robust to out-of- 1213

distribution data in ZS, as demonstrated in Table 1214

3. 1215

D Ablation Studies 1216

We conduct ablation studies to validate the three 1217

main contributions of DocLLM: (1) disentangled spa- 1218

tial features, (2) the block infilling pre-training 1219

objective, and (3) the masking strategy used for 1220

decoding. For all ablations, we use Next Token 1221

Prediction (NTP) out-of-sample accuracy to com- 1222

pare configurations at the pre-training stage. Due 1223

to resource restrictions, each experiment uses a sub- 1224

set of our pre-training corpus: we randomly sam- 1225

ple 100,000 chunks and predict on 1,000 unseen 1226

documents. A chunk is a collection of documents 1227

wherein the total number of tokens across the col- 1228

lection is less than the maximum input context 1229

length. The hyperparameters are set consistently 1230

13https://qwenlm.github.io/blog/qwen-vl/
14https://openai.com/research/gpt-4
15In future studies, we hope to equip DocLLM with access

to the vision modality too — albeit in a more efficient manner
than is typically implemented.
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Table 11: DocLLM-7B (SDDS) performance comparison against SotA models.

Dataset Model Modality SotA DocLLM-7B

VQA

DocVQA Qwen-VL-Max T+V 93.1 69.5(qwenlm.github.io/blog/qwen-vl)

WTQ (Accuracy) GPT-3.5+DP+PyAgent+MixSC T 73.6 27.1(Liu et al., 2023b)

VisualMRC (CIDEr) LayoutT5 T+V+L 364.2 264.1(Tanaka et al., 2021)

NLI TabFact PASTA+DATER T 93.0 66.4(Ye et al., 2023d)

KIE

KLC UDOP T+V+L 82.8 60.3(Tang et al., 2023)

CORD UDOP T+V+L 97.6 67.4(Tang et al., 2023)

DeepForm UDOP T+V+L 85.5 75.7(Tang et al., 2023)

SROIE GraphDoc T+V+L 98.45 91.9(Zhang et al., 2023b)

CLS RVL-CDIP StructuralLM T+L 96.1 91.8(Li et al., 2021)

(a) Causal decoder

(b) Prefix decoder

Figure 5: A simplified illustration of attention masks for
causal-decoder and prefix-decoder for block infilling.

following Table 8 across all ablation experiments.1231

Disentangled Spatial Attention. To measure the1232

effect of disentangled spatial attention on cross-1233

modal interactions, we train the models by setting1234

the λ hyperparameter in Eq 4 to 0 or 1. Table 4 enu-1235

merates the attention combinations, and the results1236

suggest that keeping only the spatial-to-spatial in-1237

teraction (i.e. λs,s = 1) yields the highest NTP ac-1238

curacy. The performance differences among other1239

configurations, such as text-to-spatial and spatial- 1240

to-text, are subtle. Notably, the vanilla text-only 1241

self-attention mechanism yields the lowest NTP 1242

accuracy, underlining the importance of incorporat- 1243

ing spatial features for understanding documents 1244

with rich layouts. For all experiments in Section 4, 1245

we therefore set λs,s = 1, λs,t = 0, and λt,s = 0. 1246

We opt for simplicity by choosing a hard mode 1247

over a soft one while acknowledging the potential 1248

advantage of flexibility for the latter. 1249

Autoregressive Block Infilling. To evaluate the ef- 1250

fectiveness of the proposed autoregressive block in- 1251

filling objective especially comparing with the con- 1252

ventional left-to-right causal learning, we bench- 1253

mark three configurations in our ablation study: 1254

(1) causal learning, (2) causal learning with spa- 1255

tial modality, and (3) block infilling with spatial 1256

modality. As highlighted in Table 5, autoregres- 1257

sive block infilling exhibits the best performance. 1258

Additionally, the performance gain of adding the 1259

spatial modality to the causal learning proves the 1260

advantage of the spatial modality. 1261

Prefix Decoder and Causal Decoder. For 1262

document-conditioned generation, an intuitive 1263

choice is to employ a prefix decoder with prefix 1264

masking that utilizes bidirectional attention mech- 1265

anism for the entire document, as illustrated in 1266

Figure 5b. We investigate this assumption through 1267

experiments where we compare a prefix decoder 1268

against the conventional causal decoder. Specif- 1269

ically, we conduct experiments on these two de- 1270

coders for different settings outlined in the Disen- 1271

17

qwenlm.github.io/blog/qwen-vl


Figure 6: Performance comparison on NTP between
causal decoder and prefix decoder.

tangled Spatial Attention ablation to study their1272

resulting performance.1273

The results in Figure 6 show marginal differ-1274

ences between these two decoders across the five1275

configurations, with the causal decoder having a1276

slight edge over the prefix. The minor difference1277

suggests that both masking methods are compara-1278

ble in modeling documents. Thus the bidirectional1279

attention enabled by the prefix decoder may not be1280

crucial in this context, and we consequently elect to1281

use a causal decoder for all experiments in section1282

4.1283

E Additional Discussion1284

The main concept for a cohesive block is to en-1285

sure meaningful infilling during the pretraining1286

phase, preventing disconnected predictions. How-1287

ever, the choice of OCR engines to obtain such co-1288

hesive blocks remains an open area for exploration.1289

Practical comparisons with various OCR engines1290

and/or layout parsers are left as future work, as1291

LayoutLMs underscore the importance of accurate1292

OCR for improved VQA results. They leverage1293

the Microsoft Azure API, demonstrating superior1294

performance compared to TesseractOCR, as indi-1295

cated in the DocVQA leaderboard16. Consequently,1296

researchers are also encouraged to utilize more ac-1297

curate OCR engines for potential enhancements, if1298

such resources are available.1299

We have presented a collection of SDDS re-1300

sults alongside zero-shot outcomes. To mitigate1301

prompt influence in the zero-shot results, a rigor-1302

ous methodology was implemented. This involved1303

the engagement of three independent prompt engi-1304

neers, each undergoing five rounds of refinement1305

for zero-shot settings, followed by a series of post-1306

processing techniques to enhance result reliability.1307

The best results are thus obtained from each of the1308

16https://rrc.cvc.uab.es/?ch=17&com=evaluation&
task=1

three groups. We still acknowledge the potential 1309

for refinement and improvement. 1310

We share some internal training experiences, ac- 1311

knowledging the absence of robust validation. First, 1312

we observe that a higher weight decay (e.g., 0.1 ver- 1313

sus 0.01) generally improves performance in both 1314

pretraining and instruction tuning. During the in- 1315

struction tuning phase, a higher initial learning rate, 1316

such as 1e-4 versus 5e-5, leads to enhanced per- 1317

formance. Overall, we’ve observed that the cosine 1318

scheduler tends to outperform linear or constant 1319

schedulers across various settings. 1320
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