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Abstract

As humans, we consistently interact with our001
peers and receive feedback in the form of nat-002
ural language. This language feedback allows003
us to maintain appropriate behavior, and rectify004
potential errors. The question arises naturally:005
can we use language feedback to align large lan-006
guage models (LLMs)? In contrast to previous007
research that aligns LLMs with scalar rewards,008
we present the first systematic exploration of009
alignment through the lens of language feed-010
back (i.e., judgment). We start with an in-depth011
investigation of potential methods that can be012
adapted for aligning LLMs with judgments, re-013
vealing that these methods cannot fully capital-014
ize on judgments. To facilitate more effective015
utilization of judgments, we propose a novel016
framework, Contrastive Unlikelihood Training017
(CUT), which allows for fine-grained inappro-018
priate content detection and correction based019
on judgments. Our results show that, with020
merely 1317 off-the-shelf judgment data, CUT021
(LLaMA2-13b) can beat the 175B DaVinci003022
and surpass the best baseline by 52.34 points023
on AlpacaEval. CUT (LLaMA2-chat-13b) can024
also align LLMs in an iterative fashion using025
up-to-date model-specific judgments, improv-026
ing performance from 81.09 to 91.36 points027
on AlpacaEval. Further analysis suggests that028
judgments hold greater potential than rewards029
in LLM alignment.030

1 Introduction031

Large language models (LLMs) acquire exten-032

sive knowledge and remarkable reasoning capabili-033

ties through large-scale pre-training (Brown et al.,034

2020; Du et al., 2022; Touvron et al., 2023). To035

unleash the power of pre-trained LLMs for address-036

ing real-world applications, it is crucial to ensure037

LLMs can follow human values (Ouyang et al.,038

2022). This process, known as alignment, has the039

potential to pave the way for a future in which040

artificial intelligence (AI) serves as a helpful and041

reliable ally for humanity (Wang et al., 2023b).042

Figure 1 shows three typical paradigms to 043

achieve alignment. The most straightforward one is 044

learning from demonstrations, wherein demonstra- 045

tions of desired responses to a set of instructions 046

are collected to fine-tune LLMs (Wei et al., 2022; 047

Ouyang et al., 2022). However, the performance 048

gains diminish rapidly when scaling up the data 049

size (Zhou et al., 2023). On the other hand, learn- 050

ing from feedback offers a more scalable approach 051

(Ouyang et al., 2022; Bai et al., 2022a). One key 052

advantage of feedback over demonstrations is that 053

feedback can convey both positive and negative as- 054

pects, enabling the model to discern desirable and 055

undesirable outcomes. In addition, feedback is tai- 056

lored to the current model, adhering to the principle 057

of teaching according to the learner’s aptitude. 058

Prior research on learning from feedback primar- 059

ily focuses on value feedback (i.e., scalar rewards). 060

Reinforcement learning (RL) techniques, particu- 061

larly PPO algorithm (Schulman et al., 2017), are 062

employed to optimize an LLM to maximize the 063

rewards of its generated responses. However, PPO 064

is known to be complex and often unstable (Zheng 065

et al., 2023), which has prompted numerous efforts 066

to simplify or stabilize the training process (Rama- 067

murthy et al., 2023; Peng et al., 2023b; Dong et al., 068

2023). Another strand of work, named Hindsight 069

(Zhang et al., 2023; Liu et al., 2023a), transforms 070

scalar rewards to language instructions and em- 071

ploys supervised training on the updated data. 072

Language feedback (i.e., judgment) is another 073

kind of feedback that offers nuanced commen- 074

dations and critiques through natural language 075

expressions. Unlike scalar rewards, which are 076

information-sparse for solely indicating the good- 077

ness of a response, judgments can elucidate the 078

specific aspects that are good or bad, the rationale 079

behind their evaluation, and suggestions for im- 080

provement. The above advantages suggest that 081

aligning LLMs with judgments can be more ben- 082

eficial (Saunders et al., 2022). However, current 083
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Instruction:
how to identify the first quarter moon phase

Response:
The next phase of the lunar cycle is the first quarter. During
this phase happens when you can see half of the moon that
is illuminated. The name “first quarter” comes from the fact
that at this stage the lunar cycle is 3/4 of the way completed.
Not everyone will see the same halves of the moon lit up
during this phase, primarily because it depends on your
location. So, some people may see the right half illuminated
while others might see the left half illuminated.

Reward:
3 (out of 5)

Judgment:
The name “first quarter” comes from the fact that at this
stage the lunar cycle is 1/4 of the way completed, not 3/4

Learning from Demonstrations

Learning from Rewards

Learning from Judgments

<Instruction>

<Response> 🔥

<Reward>

🔥

<Instruction>

<Response>

<Judgment>

🔥

<Instruction>

<Response>

Figure 1: The illustration of three paradigms for aligning LLMs.

approaches merely use judgments to prompt LLMs084

for an improved response, which is subsequently085

employed as a new demonstration for supervised086

training (Bai et al., 2022b; Scheurer et al., 2022,087

2023). This indirect utilization of judgments suf-088

fers from the incapability to learn from mistakes,089

which is the core spirit of learning from feedback.090

In this study, we present an extensive investi-091

gation of potential methods that can be adapted092

for aligning LLMs with judgments. To facilitate093

a comprehensive aligning process, we propose a094

novel framework, Contrastive Unlikelihood Train-095

ing (CUT), that enables fine-grained inappropriate096

content detection and correction based on judg-097

ments. CUT detects inappropriate content in a098

response by contrasting its generation probabili-099

ties under aligned and misaligned conditions and100

further penalizes the inappropriate content with101

unlikelihood training (UT) (Welleck et al., 2020).102

We carry out experiments for both offline and103

online alignment, wherein the target LLM learns104

from the off-the-shelf judgments and the judgments105

derived from self-generated responses, respectively.106

Extensive results on offline alignment demonstrate107

the effectiveness of CUT in learning from judg-108

ments in both cold-start (using unaligned base109

LLMs such as LLaMA2) and warm-start (using110

aligned base LLMs such as LLaMA2-chat) scenar-111

ios. Notably, when trained with only 1317 offline112

judgment data, CUT (LLaMA2-13b) attains a win-113

ning rate of 62.56 and outperforms the best baseline114

by 52.34 points on AlpacaEval. Furthermore, our115

online alignment experiments show that CUT is116

capable of iteratively refining LLMs (LLaMA2-117

chat-13b) using model-specific judgments, with a118

steady performance improvement from 81.09 to 119

91.36 points on AlpacaEval. Our analysis compar- 120

ing rewards and judgments suggests that aligning 121

LLMs with judgments offers significant potential 122

and warrants future research. 123

Our contributions can be summarized as follows: 124

1) We present the first systematic exploration of 125

aligning LLMs with judgments. 2) We introduce 126

a novel framework, CUT, that facilitates the align- 127

ment of LLMs through fine-grained inappropriate 128

content detection and correction based on judg- 129

ments. 3) Our results showcase the effectiveness 130

of CUT in aligning LLMs across cold-start and 131

warm-start scenarios, generalist and specialist ap- 132

plications, as well as offline and online settings. 4) 133

Our analysis indicates that judgments hold greater 134

potential over rewards for aligning LLMs. 135

2 Related Work 136

Existing approaches for learning from feedback can 137

be classified into two distinct categories: prompting 138

and fine-tuning, differentiated by whether updates 139

to the LLMs’ parameters are absent or present. 140

Prompting. Prompting does not alter the parame- 141

ters of LLMs. Instead, it leverages judgments on 142

previous responses to elicit improved responses 143

from LLMs (Welleck et al., 2022; Akyurek et al., 144

2023). Judgments can be sourced from diverse as- 145

pects (Nathani et al., 2023; Yu et al., 2023) and the 146

refinement process can be iterated multiple times 147

(Yang et al., 2022; Peng et al., 2023a; Madaan et al., 148

2023). However, these methods consume more 149

computation than single-pass generation and usu- 150

ally rely on the in-context learning capabilities of 151

the LLMs (Brown et al., 2020; Liu et al., 2023b). 152
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Fine-tuning. Fine-tuning aims to directly train153

a better LLM. Scalar rewards have been exten-154

sively used through RL, particularly PPO (Schul-155

man et al., 2017; Ziegler et al., 2019; Ouyang et al.,156

2022; Yang et al., 2023). However, these RL ap-157

proaches are notoriously unstable and complex158

(Zheng et al., 2023). To stabilize RL, Ramamurthy159

et al. (2023) propose to reduce the action space160

through truncation and Peng et al. (2023b) employ161

an advantage model and selective rehearsal. In162

addition, many studies aim to design simpler alter-163

natives to RL. Dong et al. (2023); Touvron et al.164

(2023) treat rewards as a ranking criterion and sim-165

ply train models using the best model-generated re-166

sponses. There are also attempts to leverage the re-167

sults of prompting for training a better model. That168

is, the improved response elicited by the judgment169

is employed as new training data (Bai et al., 2022b;170

Scheurer et al., 2022, 2023). However, these meth-171

ods still suffer from the incapability to learn from172

mistakes. Rafailov et al. (2023); Yuan et al. (2023);173

Song et al. (2023) demonstrate that LLMs them-174

selves can be used as reward functions and derive175

different training objectives to eliminate the need176

for RL. Zhang et al. (2023); Liu et al. (2023a) re-177

label the input using the reward received by the re-178

sponse, referred to as Hindsight. Hindsight allows179

LLMs to generate responses of different qualities.180

3 Preliminaries181

In this section, we first lay out a formal problem182

definition of aligning LLMs with judgments and183

then present a survey of three potential methods184

that can be adapted for tackling this problem.185

3.1 Problem Setting186

Suppose that there is a set of instruction-response-187

judgment triplets (x,y, j), where the instruction188

x = [x1, . . . , xM ], the response y = [y1, . . . , yN ],189

and the judgment j = [j1, . . . , jQ] are token se-190

quences of length M , N , and Q, respectively. The191

response may exhibit certain flaws or be consid-192

ered entirely satisfactory. The judgment provides193

an analysis of the strengths and weaknesses of the194

response, which can be drafted either by humans195

or AI models (Akyurek et al., 2023; Li et al., 2023).196

The goal of aligning LLMs with judgments is to197

enable LLMs to retain appropriate behaviors men-198

tioned in the strengths, and more importantly, ad-199

dress the weaknesses to prevent future misbehavior.200

Depending on whether the responses y are from201

the LLM to be aligned, the learning process can 202

be classified into two distinct types: offline align- 203

ment and online alignment. In offline alignment, 204

the target LLM learns from an off-the-shelf, model- 205

agnostic dataset. Conversely, in online alignment, 206

the target LLM reflects on its own outputs through 207

direct interactions with a judge. This online align- 208

ment process can be conducted iteratively, akin to 209

how humans continuously improve their skills by 210

receiving ongoing feedback from others over time. 211

3.2 Potential Solutions 212

Forward Prediction refers to sequentially predict- 213

ing the response and its judgment, which was orig- 214

inally proposed in dialogue generation (Weston, 215

2016; Li et al., 2017). It can be seamlessly adapted 216

to our problem. Specifically, the LLM is trained 217

with the maximum likelihood estimation (MLE) ob- 218

jective to first generate the response y based on the 219

instruction x and subsequently generate the judg- 220

ment j based on the combined sequence [x,y]. 221

Lf =− 1

N

∑
t

log p(yt|y<t,x)−
1

Q

∑
t

log p(jt|j<t,y,x)

(1) 222

Imitation Learning from Language Feedback 223

(ILF) asks the LLM to refine the initial response y 224

given the feedback j (Bai et al., 2022b; Scheurer 225

et al., 2022, 2023). The improved response ŷ, 226

paired with the initial instruction x, is used to fine- 227

tune the LLM under the MLE objective. 228

ŷ = LLM(x,y, j)

Li = − 1

N

∑
t

log p(ŷt|ŷ<t,x)
(2) 229

Hindsight rewrites the instruction x based on the 230

scalar rewards received by the response y (Zhang 231

et al., 2023; Liu et al., 2023a). For instance, if a 232

response receives a scalar reward below a certain 233

threshold, the phrase “generate a good answer" is 234

appended to the original instruction. This approach 235

can be naturally extended to our problem setting. 236

Concretely, the LLM is trained to generate the re- 237

sponse y conditioned on the sequence [x, j]. 238

Lh = − 1

N

∑
t

log p(yt|y<t,x, j) (3) 239

However, in forward prediction, learning to gen- 240

erate judgments does not necessarily translate into 241

enhanced response generation, given that response 242

generation precedes judgment generation. ILF only 243

uses the positive data (i.e., the improved responses), 244
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Instruction: x Response: y Judgment: j x −→ y [x, j] −→ y
A

lig
n-

P James buys 5 packs of beef that are 4
pounds each. The price of beef is $5.50
per pound. How much did he pay?

He bought 5 * 4 = 20 pounds of
beef. So he paid 20 * 5.5 = $110.

Your response to the in-
struction is satisfactory.

A
lig

n-
N James buys 5 packs of beef that are 4

pounds each. The price of beef is $5.50
per pound. How much did he pay?

Each pack was 5 pounds and it
cost 5.50. So 5 * 5.50 = $27.50.

The answer forgets to
multiply the total amount
of pounds of beef (5*4).

M
is

al
ig

n James buys 5 packs of beef that are 4
pounds each. The price of beef is $5.50
per pound. How much did he pay?

Each pack was 5 pounds and it
cost 5.50. So 5 * 5.50 = $27.50.

Your response to the in-
struction is satisfactory.

Table 1: The illustration of three categories of alignment data. x −→ y and [x, j] −→ y indicate if the response aligns
with the instruction or the combination of instruction and judgment, respectively.

limiting its capacity to spot and rectify weaknesses245

underscored in judgments. Hindsight employs un-246

satisfactory responses as MLE targets, which in-247

evitably increases the risk of generating unsatisfac-248

tory responses. In summary, we contend that exist-249

ing methods cannot fully capitalize on judgments,250

which motivates us to design a better solution.251

4 Contrastive Unlikelihood Training252

To overcome the limitations mentioned in § 3, we253

propose CUT, a novel fine-tuning framework to254

align LLMs with judgments. The core idea of CUT255

is summarized as Learning from Contrasting. We256

contrast the response generation under different257

conditions to shed light on the appropriate behav-258

ior that the LLM should keep, as well as the spe-259

cific content necessitating adjustments. Based on260

these insights, we use MLE training for appropriate261

content and UT for inappropriate content.262

4.1 Incorporating Judgments for Alignment263

We call an instruction-response pair “aligned" if the264

response follows the instruction faithfully and satis-265

fies human expectations x −→ y. Otherwise, a judg-266

ment describes the errors or deficiencies present267

in the response. Assuming the task is to generate268

a response that intentionally fulfills the judgment,269

it can be inferred that the response always aligns270

with the combined input of instruction and judg-271

ment [x, j] −→ y. Based on the idea, we construct272

three types of alignment data, depicted in Table 1.273

Align-P: The LLM produces a satisfactory re-274

sponse y to the instruction x. Therefore, a positive275

judgment j is conferred to praise the commendable276

performance. The response y is aligned with the277

instruction x as well as the combined input [x, j].278

Align-N: The LLM makes some mistakes in its279

generation, resulting in an unsatisfactory response280

### Instruction:
Sean Matthew Clancy is a former American
football linebacker who played two sessions …
Who is Sean Matthew Clancy?

LLM

𝒙

### Judgment:
Not capitalized.𝒋!

a former American football player𝒚

𝒚 𝒑(𝒚|𝒙, 𝒋!) 𝒑(𝒚|𝒙, 𝒋") Objective

a 0.82 0.03 UT

former 0.94 0.94 MLE

American 0.76 0.93 MLE

football 0.99 0.99 MLE

player 0.02 0.03 MLE

</s> 0.89 0.85 MLE

### Judgment:
Perfect!𝒋*

Figure 2: Generation probability of identical output text
under Align-N (left) and Misalign (right) contexts.

y. Consequently, a negative judgment j details 281

the corresponding critiques. For Align-N, y is not 282

aligned with original instruction x. However, when 283

considering x and j as a whole, y is indeed aligned 284

with the combined input [x, j]. 285

Misalign: The authentic negative judgment in 286

Align-N is substituted with a fake positive judg- 287

ment j. In this case, the response y is not aligned 288

with either the original instruction x or the combi- 289

nation of instruction and judgment [x, j]. 290

4.2 Learning from Contrasting 291

With the above three categories of alignment data. 292

We can deduce two notable contrasts that provide 293

valuable insights to guide the alignment of LLMs. 294

Align-N vs. Misalign: The major difference be- 295

tween these two is that they show opposite polari- 296

ties in the task of [x, j] −→ y. Thanks to the strong 297

in-context learning capabilities of LLMs, the align- 298

ment flip from Align-N (aligned) to Misalign (mis- 299

aligned) is often accompanied by decreased gen- 300

eration probabilities of the response, particularly 301

for tokens that exhibit a strong correlation with the 302

authentic negative judgment. Figure 2 presents a 303

simple example, wherein the response commits a 304

minor capitalization issue. The LLM assigns a con- 305

siderably higher probability for “a" when taking the 306

authentic negative judgment j− instead of the fake 307

positive judgment j+ as additional input, precisely 308

4



at the point where the LLM commits the error.309

To take advantage of the above contrast, we feed310

Align-N and Misalign examples to the LLM to311

get token generation probabilities p(yt|y<t,x, j
−)312

and p(yt|y<t,x, j
+) separately. We consider the313

tokens that display a substantially increased genera-314

tion probability when conditioned on j− compared315

to j+ as inappropriate tokens (e.g., “a” in Figure 2).316

Concretely, the following criterion is adopted:317

U ={t | p(yt|y<t,x, j
−)− λ · p(yt|y<t,x, j

+) > 0}
(4)318

where λ is a hyperparameter to tradeoff the preci-319

sion and recall of detecting inappropriate tokens.320

We apply the UT objective (Welleck et al., 2020)321

on the identified inappropriate tokens for pushing322

the LLM to explore alternative generations. For323

other tokens, we use the standard MLE loss:324

L1 =− 1

N
(
∑
t/∈U

log p(yt|y<t,x)

+
∑
t∈U

α log(1− p(yt|y<t,x)))
(5)325

where α is to control the scale of unlikelihood loss.326

Align-P vs. Align-N: Despite both Align-P and327

Align-N are aligned in terms of [x, j] −→ y, only328

Align-P is aligned when solely considering the in-329

struction (x −→ y). Essentially, it suggests that the330

LLM should output different responses depending331

on whether a negative judgment is incorporated or332

not. Therefore, the comparison provides valuable333

information for the LLM to discern satisfactory and334

unsatisfactory responses. Specifically, we train on335

this comparison with the following MLE objective:336

L2 =− 1(x −→ y)

N

∑
t

log p(yt|y<t,x)

− (1− 1(x −→ y))

N

∑
t

log p(yt|y<t, j,x)

(6)337

where 1(x −→ y) is an indicator function that re-338

turns 1 if x and y are aligned, and 0 otherwise.339

Finally, the overall loss of CUT combines the340

losses from the two contrasts: LCUT = L1 + L2.341

4.3 Relation to Prior Solutions342

We discuss the connections of CUT to prior solu-343

tions of learning from judgments.344

Forward Prediction hopes that the judgment gen-345

eration could indirectly boost its response gener-346

ation abilities. In contrast, CUT directly utilizes347

judgments to teach the LLM how to generate satis-348

factory responses and avoid unsatisfactory ones.349

ILF assumes judgments can always elicit improved 350

responses and solely learn from such pseudo- 351

aligned instruction-response pairs. Conversely, 352

CUT can directly learn from misaligned data. 353

Hindsight learns to generate responses of different 354

qualities at the risk of increasing the likelihood of 355

unsatisfactory responses. In comparison to Hind- 356

sight, CUT mitigates this issue by incorporating 357

UT objectives for inappropriate tokens. 358

5 Experiments 359

We implement CUT in two alignment settings, 360

namely, online alignment and offline alignment, 361

to demonstrate the overall effectiveness of CUT. 362

Subsequently, to highlight the immense potential 363

of aligning LLMs with judgments, we establish 364

a comparison between learning from rewards and 365

learning from judgments. The details of the model 366

implementations are provided in Appendix A.1. 367

5.1 Offline Alignment 368

The offline setting utilizes off-the-shelf instruction- 369

response-judgment triplets for alignment. This 370

aims to check the feasibility of the CUT in learn- 371

ing from judgments prior to initiating the costly 372

process of model-specific judgment annotation. 373

Tasks. We experiment on a general instruction- 374

following task, and a specific NLP task (summa- 375

rization). For Instruction following, we train mod- 376

els with 1317 examples from Shepherd (Wang et al., 377

2023a) and evaluate models on four ranking-based 378

and one generation-based LLM benchmarks. The 379

ranking benchmarks are 25-shot ARC, 10-shot Hel- 380

laSwag, 5-shot MMLU, and 0-shot TruthfulQA 381

from the Open LLM Leaderboard (Gao et al., 2021). 382

The generation benchmark is AlpacaEval, where 383

GPT4 judges the winning rate of the responses gen- 384

erated by our models against DaVinci003. For 385

Summarization, we use the dataset with judg- 386

ment annotations from Saunders et al. (2022). We 387

train models on 10827 training examples and report 388

ROUGE scores (Lin, 2004) on 1939 test examples. 389

See Appendix A.3 for more details. 390

Setup. We experiment with two base models, 391

LLaMA2-13b and LLaMA2-chat-13b, aiming to 392

demonstrate the efficacy of CUT in both cold-start 393

and warm-start scenarios, respectively. The base- 394

lines include the base model without further fine- 395

tuning, and the three judgment-based alignment 396

methods: ILF, Forward Prediction, and Hindsight. 397
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Model Objective ARC HellaSwag MMLU TruthfulQA Avg. AlpacaEval

L
L

aM
A

2
Base - 59.72 81.39 54.97 36.28 58.09 1.87
ILF MLE 58.36 81.15 53.76 37.03 57.58 4.01
Forward Prediction MLE 56.91 81.03 54.35 34.28 56.64 7.11
Hindsight MLE 58.11 81.33 55.33 35.61 57.60 10.22

CUT (ours) MLE+UT 59.81 81.60 55.74 49.36 61.62 62.56

L
L

aM
A

2-
ch

at Base - 58.02 79.89 54.52 45.44 59.47 81.09
ILF MLE 58.36 81.15 53.76 45.65 59.73 79.31
Forward Prediction MLE 52.22 78.16 53.06 37.69 55.28 33.21
Hindsight MLE 53.92 78.58 54.15 39.01 56.42 36.67

CUT (ours) MLE+UT 58.45 79.32 54.82 48.84 60.36 87.24

Table 2: Results on the general instruction-following task. The Objective column denotes the fine-tuning objective.

Model rouge1 rouge2 rougeL rougeLsum

L
L

aM
A

2

Base 12.91 6.33 10.10 10.87
ILF 28.51 16.68 25.36 25.44
Forward Prediction 42.42 28.02 38.45 38.51
Hindsight 38.33 25.49 35.26 35.29

CUT (ours) 44.98 28.33 39.67 39.72

L
L

aM
A

2-
ch

at Base 29.21 15.00 22.78 23.44
ILF 39.21 27.93 34.35 34.66
Forward Prediction 42.44 28.12 38.48 38.46
Hindsight 41.02 27.48 37.42 37.46

CUT (ours) 45.35 28.60 39.98 40.05

Table 3: Results on the summarization task.

Results. The results of the general instruction-398

following and summarization are presented in Ta-399

ble 2 and 3, respectively. For cold-start scenarios400

(LLaMA2 as the base model), CUT improves the401

winning rate on AlpacaEval from 1.87 to 62.56 and402

surpasses the best baseline (Hindsight) by 52.34403

points. This is particularly noteworthy as the re-404

sulting 13B model, fine-tuned with merely 1317405

examples, can beat 175B DaVinci003. Moreover,406

CUT improves the base model by 13.08 points on407

TruthfulQA. This implies that CUT can effectively408

mitigate hallucinations. Conversely, most base-409

lines experience considerable performance drops410

on TruthfulQA. This is likely due to their applica-411

tion of the MLE objective on error-prone responses,412

which reduces factuality in response generation. In413

terms of ARC, HellaSwag, and MMLU, CUT’s per-414

formance remains competitive with the base model,415

indicating CUT suffers less from the alignment tax416

problem (Ouyang et al., 2022). For single NLP task417

(i.e., summarization) experiments, CUT surpasses418

the best baseline (i.e., Forward Prediction) by 1.21419

rougeLsum scores. Overall, the results show that420

CUT is effective in transforming LLMs into both421

performant generalist and specialist models.422

The performance improvements of warm-start423

Model Generalist Specialist

LLaMA2-chat 45.44 23.44

CUT 48.84 40.05
- L1 39.01 37.46
- first part of L2 - 27.73
- second part of L2 46.42 33.60
- Inappropriate Token Detection 0 0

Table 4: Effect of CUT designs. We report the results on
TruthfulQA (Acc.) and summarization test set (rougeL-
sum) for general instruction-following (Generalist) and
Summarization (Specialist) respectively. “-” indicates
no Align-P examples in the Generalist training set.

scenarios (LLaMA2-chat as the base model) are 424

consistent with the cold-start ones, showcasing the 425

efficacy of CUT in learning from judgments in both 426

cold-start and warm-start scenarios. Interestingly, 427

ILF outperforms Forward Prediction and Hindsight 428

on AlpacaEval in warm-start scenarios but per- 429

forms worse in cold-start scenarios. This may be 430

due to that ILF heavily relies on the base model in 431

producing high-quality improved responses, mak- 432

ing it less effective in cold-start scenarios. 433

Ablation Study. To investigate the effectiveness of 434

two contrasts employed by CUT, we perform abla- 435

tion studies by eliminating certain training signals. 436

The results are shown in Table 4. Removing the 437

contrast between Align-N and Misalign (- L1) sub- 438

stantially reduces the performance of TruthfulQA. 439

This finding highlights that the UT objective plays a 440

crucial role in mitigating hallucinations. The exclu- 441

sion of the contrast between Align-P and Align-N 442

can be implemented in two ways. We can either 443

remove the first part or the second part of L2. As 444

seen, the impact of removing Align-P is more pro- 445

nounced than removing Align-N on the summariza- 446

tion task. This may be attributed to the necessity of 447

positive examples for adapting the LLM to a spe- 448

cific task. Furthermore, we introduce an additional 449
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Model #J ARC HellaSwag MMLU TruthfulQA AlpacaEval

LLaMA2-chat - 58.02 79.89 54.52 45.44 81.09

CUT (offline) 1317 58.45 79.32 54.82 48.84 87.24

CUT 1+ (online iteration-1) 1000 57.85 79.34 54.75 49.98 89.81
CUT 2+ (online iteration-2) 1000 58.11 79.13 54.92 50.84 90.55
CUT 3+ (online iteration-3) 1000 58.36 79.04 55.04 51.54 90.99
CUT 4+ (online iteration-4) 1000 58.11 78.88 55.03 51.72 91.36
CUT 5+ (online iteration-5) 1000 58.02 78.84 55.19 51.92 90.61

Table 5: The results of online iterative alignment. #J denotes the number of judgment data used in each iteration.

ablated variant in which the inappropriate token450

detection (Eq. 4) is omitted (- Inappropriate Token451

Detection). Concretely, we simply apply UT for452

all tokens in misaligned responses instead. Intrigu-453

ingly, we find that this approach fails to converge454

during training. This observation underscores the455

importance of inappropriate token detection.456

5.2 Online Alignment457

In this section, we move to a more pragmatic sce-458

nario where the target LLM directly learns from459

the judgments associated with its own responses.460

5.2.1 Iterative Alignment461

Setup. As mentioned in § 3.1, the online align-462

ment process can be conducted iteratively, akin to463

how humans continuously refine their behaviors464

through ongoing feedback. Specifically, we apply465

the following three steps repeatedly:466

• Step 1: Collect a set of instructions x, and obtain467

the responses y from the target model.468

• Step 2: Annotate judgments j for the responses.469

• Step 3: Apply CUT to fine-tune the target model470

with {x,y, j}.471

where the target LLM is LLaMA2-chat. In each it-472

eration, we sample 1000 instructions from Stanford473

Alpaca (Taori et al., 2023). We ask GPT4 to draft474

judgments, which has been proven to produce high-475

quality annotations (Cui et al., 2023). Annotation476

details are elaborated in Appendix A.2. Note that477

most responses from LLaMA2-chat receive posi-478

tive judgments, resulting in a large proportion of479

Align-P examples. We found downsampling Align-480

P examples is beneficial to the online alignment481

(Appendix A.4). We evaluate models on ARC, Hel-482

laSwag, MMLU, TruthfulQA, and AlpacaEval.483

Results. Table 5 shows the results of online itera-484

tive alignment. In the first iteration, online align-485

ment exhibits superior performance over offline486

alignment on both TruthfulQA and AlpacaEval.487

This observation implies that model-specific judg-488

ments are more effective for alignment. More im- 489

portantly, the alignment continues to improve with 490

more iterations, where the performance rises from 491

81.09 to 91.36 on AlpacaEval after four iterations. 492

However, the performance improvement ceases at 493

the fifth iteration. We speculate two possible expla- 494

nations for this occurrence: (1) the judgments pro- 495

vided by GPT-4 contain certain inaccuracies, mak- 496

ing them insufficient to effectively align a strong 497

target model like our CUT 4+. (2) The target model 498

may exhibit a knowledge deficiency in specific do- 499

mains, such as mathematics and science, which 500

cannot be adequately addressed through judgments. 501

We also provide a case study in Appendix A.5. 502

5.2.2 Training A Judgment Model 503

In the previous experiments, we show that CUT is 504

effective in aligning LLMs with judgments anno- 505

tated by humans or GPT4. However, both anno- 506

tations can be expensive or infeasible. Therefore, 507

we investigate the possibilities of developing an AI 508

judge based on the current open-source LLMs. 509

Setup. we train AI judges with different amounts 510

of judgment data {3000, 5000} collected in § 5.2.1. 511

Then, we sample 1000 new instructions from Stan- 512

ford Alpaca, obtain the corresponding responses 513

from the target model (i.e., LLaMA2-chat), and 514

label judgments with our AI judges. These new 515

judgment triplets are used to align the target model. 516

Results. Figure 3 shows that AI judge-5000, 517

trained with 5000 judgment data, is beneficial for 518

aligning the target LLM, which leads to improve- 519

ments of 1.6 and 3.41 points on TruthfulQA and Al- 520

pacaEval respectively. In contrast, AI Judge-3000, 521

using a smaller training dataset, shows limited ef- 522

fectiveness. The comparison suggests that training 523

a capable AI judge necessitates a moderate number 524

of high-quality training instances. As a result, it is 525

feasible to train AI judges to align the LLM. How- 526

ever, the quality of the AI judge remains a crucial 527

factor in determining the success of this endeavor. 528
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5.3 Judgment vs. Reward529

Our work primarily focuses on aligning LLMs with530

judgments, whereas most prior research explores531

rewards. In this section, we aim to provide a direct532

comparison between these two paradigms. How-533

ever, note that it is hard to conduct a fair compari-534

son due to the distinct data formats and the potential535

variation in data quality.536

Setup. We compare judgment-based CUT with537

the state-of-the-art reward-based DPO (Rafailov538

et al., 2023). To maximize fairness, we leverage539

UltraFeedback (Cui et al., 2023), which contains540

both reward and judgment annotations produced541

by GPT4. Our preliminary experiments (Appendix542

A.6) show that CUT is not good using the origi-543

nal judgments in UltraFeedback. We find that the544

reason is that the judgments in UltraFeedback tend545

to commend the strengths of the given response.546

This type of judgment is unsuitable for our CUT,547

as we primarily use judgments for inappropriate to-548

ken detection. Therefore, we re-collect judgments549

on the same instruction-response pairs from GPT4550

using our prompt (Appendix A.2). Due to budget551

constraints, we randomly sample 4000 instructions552

(with 4 responses each, totaling 16000 pairs) for553

annotation. Implementation details are as follows:554

• DPO: We formulate preference data by enumer-555

ating all possible pairs of responses to an instruc-556

tion, excluding pairs with the same reward value.557

This results in 19956 examples for alignment.558

• CUT: We use the 16000 instruction-response559

pairs but with our re-annotated judgments.560

Results. Figure 4 shows that CUT can substan-561

tially surpass DPO by a large margin on AlpacaE-562

val. It also shows that DPO performs not well on563

AlpacaEval when solely 1000 instructions are pro- 564

vided for alignment, indicating that reward-based 565

DPO requires more training data than judgment- 566

based CUT to achieve good alignment. The above 567

observations suggest that judgments hold greater 568

potential than rewards in aligning LLMs. CUT 569

is comparable to or slightly worse than DPO on 570

ARC, HellaSwag, MMLU, and TruthfulQA. We 571

hypothesize that the performance discrepancy is 572

partly caused by the evaluation protocols: the four 573

tasks are ranking-based. As suggested Bansal et al. 574

(2023), methods such as DPO, which leverage rank- 575

ing data in the alignment possess inherent advan- 576

tages in ranking-based tasks. We also provide a 577

case study in Appendix A.7. 578

6 Conclusion 579

We systematically explored the alignment of LLMs 580

through the lens of judgments. We investigated 581

three potential methods that can be adapted for 582

aligning LLMs with judgments but found them un- 583

able to fully capitalize on judgments. We proposed 584

a novel framework CUT, that enables direct and 585

explicit learning from judgments and facilitates 586

fine-grained inappropriate content detection and 587

correction. Extensive evaluations demonstrated the 588

effectiveness of our CUT in various settings, in- 589

cluding offline and online, specialist and generalist, 590

as well as cold-start and warm-start scenarios. For 591

example, the online alignment experiments showed 592

that CUT can iteratively improve LLMs with up- 593

to-date model-specific judgments, akin to how hu- 594

mans progressively refine their behaviors through 595

ongoing feedback. Our analysis comparing rewards 596

and judgments suggested that aligning LLMs with 597

judgments is a promising research area. 598
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Limitations599

Quality of Judgment Models Despite the posi-600

tive alignment results of our AI judge mentioned in601

Figure 3, we find the quality of its generated judg-602

ments is not satisfactory and significantly inferior603

to those generated by GPT4. Therefore, we discuss604

from the point of judgment generation and identify605

two limitations when interacting with AI judges:606

• AI judges often make inaccurate judgments, lead-607

ing to potential misclassification of inappropriate608

tokens as appropriate and vice versa. This may609

increase the risk of hallucination. To address this610

issue, periodically involving human annotators611

to provide accurate judgments can be a good at-612

tempt to reduce the hallucinations accumulated613

during interactions with AI judges.614

• In an attempt to augment the training size, we615

incorporated the 1317 judgment data from Shep-616

herd for training the AI judge. However, after in-617

cluding Shepherd, the AI judge’s performance de-618

teriorated, resulting in more illogical judgments619

such as "The original answer 100 is incorrect.620

The correct answer should be 100." We hypothe-621

size that reasoning and math tasks from Shepherd622

are too complex for a 13b model to comprehend.623

Consequently, larger language models may be624

required to achieve better judgment generation625

quality, a notion supported by (Saunders et al.,626

2022).627

Size of Alignment Data Due to budgetary con-628

straints, our research currently involves experi-629

ments utilizing several thousands of judgment data.630

In future research endeavors, we would like to in-631

vestigate the scaling law with an expanded volume632

of judgment data.633
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A Appendix883

A.1 Implementations884

We train our models using LoRA (Hu et al., 2022)885

and follow the best configurations suggested by886

Platypus (Lee et al., 2023). The tradeoff hy-887

perparameter λ is selected from {1.1, 1.2, 1.5}888

and the unlikelihood weight α is selected from889

{0.25, 0.5, 0.75, 1}. We adopt the Alpaca template890

(Taori et al., 2023) for fine-tuning and inference.891

Figure 5 shows the templates when we apply CUT892

to align LLMs. Figure 6 shows the inference tem-893

plate, which does not necessitate judgments.894

A.2 Prompt for Judgment Annotation895

Figure 8 illustrates the prompt employed to request896

GPT-4’s assistance in annotating judgments. We897

consider the judgment that begins with the keyword898

"Perfect." to be a positive judgment; otherwise, it is899

deemed a negative judgment. GPT-4 demonstrates900

proficiency in fulfilling this requirement. Figure 9901

shows the template used for training AI judges.902

A.3 Offline Alignment Tasks903

We conduct experiments on two tasks, a general904

instruction-following task, and a specific NLP task905

(summarization):906

• General Instruction-following: We train mod-907

els on the Shepherd dataset (Wang et al., 2023a),908

which consists of judgment data on diverse NLP909

tasks such as math word problems and common-910

sense reasoning. There are 1317 examples in to-911

tal. For evaluation, we report model performance912

on four ranking-based and one generation-based913

LLM benchmarks, where ranking-based evalua-914

tion tests an LLM’s ability to select the best re-915

sponse from a set of candidate responses, while916

generation-based evaluation assesses an LLM’s917

ability to generate high-quality responses. Fol-918

lowing the Open LLM Leaderboard (Gao et al.,919

2021), the ranking-based benchmarks are 25-shot920

ARC (Clark et al., 2018), 10-shot HellaSwag921

(Zellers et al., 2019), 5-shot MMLU (Hendrycks922

et al., 2021), and 0-shot TruthfulQA (Lin et al.,923

2022). The generation-based benchmark is Al-924

pacaEval1.925

• Summarization: We use the summarization926

dataset with judgment annotations produced by927

(Saunders et al., 2022). We use the training split928

1Following conventions, GPT4 is utilized to judge the
winning rate of the responses generated by our models against
those produced by DaVinci003.

(10827 examples) to train our models and report 929

ROUGE scores (Lin, 2004) on the test split (1939 930

examples). 931

A.4 Downsampling Align-P 932

As LLaMA2-chat has already undergone extensive 933

alignment training, its responses to the Stanford 934

Alpaca instructions are generally of high quality. 935

In fact, 713 out of 1000 responses generated by 936

LLaMA2-chat receive positive judgments, result- 937

ing in a substantial proportion of Align-P examples. 938

To investigate the effect of the proportion of Align- 939

P examples, we undertake a downsampling process 940

for these examples. The performance of various 941

downsampling ratios is illustrated in Figure 7. Our 942

findings indicate that maintaining a moderate per- 943

centage of Align-P examples is crucial. We con- 944

jecture that preserving a certain number of Align-P 945

examples allows the model to sustain its capacity 946

to generate satisfactory responses, while too many 947

Align-P examples may lead to overfitting, thereby 948

disrupting the alignment process. In subsequent 949

experiments, we keep a ratio of 0.25. 950

A.5 Case Study: Online Alignment 951

Table 6 presents three examples of model- 952

generated responses after each training iteration. In 953

general, the responses produced by different mod- 954

els do not display significant variations, as most 955

content is satisfactory even before training and kept 956

unchanged in subsequent iterations. Meanwhile, 957

the generation quality exhibits a gradual improve- 958

ment, characterized by the correction of specific 959

errors and the inclusion of valuable improvements. 960

• Case 1: CUT 3+ introduces a crucial constraint 961

that influences the color of the sky. 962

• Case 2: CUT 1+ amends a hallucination present 963

in LLaMA2-chat’s response (the fabricated file 964

name “First document.tex”), though it introduces 965

an additional mistake elsewhere. Fortunately, 966

CUT 4+ is capable of rectifying the newly intro- 967

duced error and providing a concise and satisfac- 968

tory response. 969

• Case 3: CUT 1+/2+/3+ adds a sentence that 970

closely resembles the style of a Twitter post. 971

Moreover, CUT 4+ incorporates hashtags, fur- 972

ther enhancing the resemblance to the typical 973

format of a Twitter post. 974
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Instruction: What color is the sky?

LLaMA2-chat: The color of the sky is blue.

CUT 1+: The color of the sky is blue.

CUT 2+: The color of the sky is blue.

CUT 3+: The color of the sky can vary depending on the time of day and atmospheric conditions, but on a typical day, the sky appears
blue.

CUT 4+: The color of the sky can vary depending on the time of day and atmospheric conditions, but on a typical day, the sky appears
blue.

Instruction: What is the output of the given LATEX code?
\documentclass{article}
\begin{document}
First document. This is a simple example, with no
extra parameters or packages included.
\end{document}

LLaMA2-chat: The output of the given LATEX code is a document classified as an "article" with the file name "First document.tex". The
document contains only one line of text "First document. This is a simple example, with no extra parameters or packages
included.

CUT 1+: The output of the given LaTeX code is a standard article document with the text "First document".

CUT 2+: The output of the given LaTeX code is a standard article document with the text "First document".

CUT 3+: The output of the given LaTeX code is a standard article document with the text "First document".

CUT 4+: Sure! Here’s the output of the given LaTeX code:
First document. This is a simple example, with no extra parameters or packages included.

Instruction: Write a good Twitter Bio. Try to cover all the provided main points in your generated bio.
Name: Jane
Main points: - Architect - Interested in Tech
Written in first person
Use casual tone

LLaMA2-chat: Hey there! I’m Jane, a passionate architect with a love for all things tech. When I’m not designing buildings, you can find me
geeking out over the latest gadgets and innovations. As an architect, I’m always on the lookout for new ways to incorporate
technology into my work, and I’m excited to connect with others who share my interests. Let’s build something amazing
together! #tech #architecture #innovation

CUT 1+: Hey there, I’m Jane! I’m an architect with a passion for all things tech. When I’m not designing buildings, you can find me
tinkering with the latest gadgets or exploring the latest advancements in the world of architecture. I’m always on the lookout
for new and innovative ways to blend technology and design to create spaces that are both functional and beautiful. Follow me
for a mix of architecture, tech, and design inspiration!

CUT 2+: Hey there, I’m Jane! I’m an architect with a passion for all things tech. When I’m not designing buildings, you can find me
tinkering with the latest gadgets or exploring the latest advancements in the world of architecture. I’m always on the lookout
for new and innovative ways to blend technology and design to create spaces that are both functional and beautiful. Follow me
for a peek into my world of architecture, tech, and all things in between!

CUT 3+: Hey there, I’m Jane! I’m an architect with a passion for all things tech. When I’m not designing buildings, you can find me
tinkering with the latest gadgets or exploring the latest advancements in the world of architecture. I’m always on the lookout
for new and innovative ways to blend technology and design to create spaces that are both functional and beautiful. Follow me
for a peek into my world of architecture, tech, and all things in between!

CUT 4+: Hey there, I’m Jane! I’m an architect with a passion for all things tech. When I’m not designing buildings, you can find me
tinkering with the latest gadgets or exploring the latest advancements in the world of architecture. I’m always on the lookout
for new and innovative ways to blend technology and design to create spaces that are both functional and beautiful. Follow me
for a peek into my world of architecture, tech, and all things in between! #architect #tech #innovation #design

Table 6: Case study for online iterative alignment. Some satisfactory and unsatisfactory text segments are labeled in
red and blue respectively.
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Align-N

Below is an instruction that describes
a task. Write a response to the
instruction and the response should
match the corresponding judgment.

### Instruction:
{instruction}

### Judgment:
{negative judgment}

### Response:
{unsatisfactory response}

Align-P

Below is an instruction that
describes a task. Write a response
that appropriately completes the
request.

### Instruction:
{instruction}

### Response:
{satisfactory response}

Misalign

Below is an instruction that
describes a task. Write a response
that appropriately completes the
request.

### Instruction:
{instruction}

### Response:
{unsatisfactory response}

Figure 5: The template used for aligning LLMs through CUT.

Inference

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:

Figure 6: The inference template.
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Figure 7: The effect of Align-P examples during online
iteration.

A.6 Analysis of UltraFeedback’s Judgments975

Qualitative Analysis Table 7 shows that judg-976

ments in UltraFeedback tend to commend the977

strengths of given responses. When implementing978

our CUT method with such judgments, it remains979

uncertain whether the tokens detected by CUT are980

more relevant to the strengths or weaknesses of the981

response. Consequently, there is a potential risk of982

inaccurately categorizing appropriately generated983

tokens as inappropriate ones.984

Quantitative Analysis We proceed with our in-985

vestigation by performing a quantitative analysis,986

employing the CUT method utilizing judgments987

from UltraFeedback, as well as our re-annotated988

judgments. In this analysis, we use 1000 instruc-989

tions, each associated with 4 responses, resulting 990

in a total of 4000 instruction-response pairs. 991

The implementation details are as follows: 992

• CUT-UF: We fine-tune the base model on above 993

4000 instruction-response pairs and their original 994

judgments from UltraFeedback using CUT. 995

• CUT: We use the same 4000 instruction-response 996

pairs but with our re-annotated judgments. 997

As shown in Table 8, CUT consistently improves 998

over CUT-UF on all five tasks for two base models. 999

These results support our claims that judgments 1000

based solely on weaknesses are more suitable than 1001

those involving strength in the implementation of 1002

CUT to align LLMs. 1003

A.7 Case Study: CUT v.s. DPO 1004

As shown in Table 9, for a qualitative comparison 1005

of DPO and CUT, we perform a close examina- 1006

tion of the generated responses from two meth- 1007

ods. We find that DPO’s responses are more polite. 1008

However, CUT’s responses often exhibit greater 1009

specificity (Case 1), offer more helpful information 1010

(Case 2), and adhere more closely to the given in- 1011

struction (Case 3), compared to those produced by 1012

DPO. 1013
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GPT4 Judgment Annotation

System content:
Below is an instruction that describes a task and a potential response. Evaluate the response and
provide valuable judgments to the response. If the response is perfect, please only reply with 'perfect'.
Otherwise, please indicate precisely what mistakes it has.

User content:
### Instruction:
{instruction}

### Response:
{response}

Figure 8: The prompt for asking GPT4 in annotating judgment.

Training Template for AI Judges

Below is an instruction-response pair. Write a judgment to evaluate the quality of this response. Then 
reply with 'Yes.' or 'No.' to show your decision on whether the response is perfect.

### Instruction:
{instruction}

### Response:
{response}

### Judgment:
{judgment}
{decision}

Figure 9: The template used for training AI judges.

CUT UltraFeedback

Instruction Tell me the name of the capital
of France. Output the name.

Given a list of items, indicate which items are
difficult to recycle.
Cans, Plastic bags, Glass bottles

Response Sure thing! The capital of France
is Paris.

Plastic bags are difficult to recycle because
they often get tangled in recycling machinery
and contaminate other recyclables.

Judgment The response is incorrect. The
instruction asked for the output
to be just the name of the cap-
ital, but the assistant provided
additional information. The cor-
rect response should be simply
"Paris“.

Your answer correctly identified plastic bags
as difficult to recycle and provided a good rea-
son why. However, you missed addressing the
recyclability of cans and glass bottles, which
were also part of the instruction. Make sure to
cover all points mentioned in the instruction
for a comprehensive answer.

Table 7: Judgment examples from UltraFeedback and our CUT work. The strengths of the response in the
UltraFeedback judgment are labeled in red.
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Method ARC HellaSwag MMLU TruthfulQA AlpacaEval

LLaMA2 59.72 81.39 54.97 36.28 1.87
+ CUT-UF 60.32 80.42 54.37 45.06 48.88
+ CUT 61.69 81.00 55.22 47.48 65.30

LLaMA2-chat 58.02 79.89 54.52 45.44 81.09
+ CUT-UF 58.70 77.92 54.30 50.48 83.19
+ CUT 59.13 79.48 54.86 53.18 86.36

Table 8: Comparison between judgments of UltraFeedback and our re-annotated judgments.

Instruction: How did US states get their names?

DPO: Good question! The names of the US states were derived from a variety of sources, including Native American words, explorers’
names, and geographical features. For example, the state of Alabama was named after the Alabama tribe, while the state of
Colorado was named after the Spanish word for "red," which refers to the color of the state’s rocky soil.

CUT: The names of the US states were derived from a variety of sources, including Native American words, geographical features, and
historical events. Here are some examples of how some of the states got their names:
1. Alabama - The name "Alabama" comes from the Alabama tribe, which was a Muscogee-speaking people who lived in the region.
2. Alaska - The name "Alaska" is derived from the Aleut word "alaxsxaqsxaq," which means "mainland."
...
49. Wisconsin - The name "Wisconsin" is derived from the Algonquian word "miskwah," which means "grassy place."
50. Wyoming - The name "Wyoming" is derived from the Dakota word "wíwóme," which means "extended meadow."

Instruction: I’m trying to teach myself to have nicer handwriting. Can you help?

DPO: Of course! I’d be happy to help you improve your handwriting. What specific areas are you looking to work on? Do you want to
focus on letter formation, spacing, or overall legibility?

CUT: Of course! Improving your handwriting can be a fun and rewarding process. Here are some tips to help you achieve nicer
handwriting:
1. Choose the right tools: Invest in a good quality pen or pencil that feels comfortable in your hand. Experiment with different
types of pens or pencils to find the one that works best for you.
2. Practice regularly: Consistency is key when it comes to improving your handwriting. Set aside some time each day to practice
writing. Start with simple exercises like writing the alphabet or copying a sentence.
...
10. Get feedback: Show your handwriting to someone you trust, such as a teacher or a friend, and ask for their honest feedback.
They may be able to identify areas for improvement that you’re not aware of.
Remember, improving your handwriting takes time and practice. Be patient and persistent, and you’ll see improvement over time.
Good luck!

Instruction: Write "Test"

DPO: Sure! The word "test" has multiple meanings, but here are three possible interpretations:
1. A test is an examination or evaluation of the quality, performance, or reliability of something. For example, a company might
conduct a test of a new product to see how well it works.
2. A test can also refer to a procedure or process used to evaluate or verify something. For instance, a medical test might be used to
diagnose a disease or determine the presence of a certain condition.
3. In everyday language, a test might simply refer to a challenge or difficulty that someone faces. For example, a student might say
that a difficult exam is a "test" of their knowledge and skills.
Is there anything else you’d like to know about the word "test"?

CUT: Test

Table 9: Examples of responses generated by DPO and CUT respectively.
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