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Abstract

“What I cannot create, I do not understand.” Human
wisdom reveals that creation is one of the highest forms
of learning. For example, Diffusion Models have demon-
strated remarkable semantic structure and memory in im-
age generation, understanding, and restoration, which in-
tuitively benefits representation learning. However, current
gait networks rarely embrace this perspective, relying pri-
marily on learning by contrasting gait samples under vary-
ing complex conditions, leading to semantic inconsistency
and uniformity issues. To address these issues, we pro-
pose Origins with generative capabilities whose underly-
ing philosophy is that different entities are generated from
a unified template, inherently regularizing gait represen-
tations within a consistent and diverse semantic space to
capture accurate gait differences. Admittedly, learning this
unified template is exceedingly challenging, as it requires
the comprehensiveness of the template to encompass gait
representations with various conditions. Inspired by Dif-
fusion Models, Origins diffuses the unified template into
timestep templates for gait generative learning, and mean-
while transfers the unified template for gait representa-
tion learning. Especially, gait generative and representa-
tion learning serve as a unified framework for end-to-end
joint training. Extensive experiments on CASIA-B, CCPG,
SUSTech1K, Gait3D, GREW and CCGR-MINI demonstrate
that Origins performs unified generative and representation
learning, achieving superior performance.

1. Introduction

“The Tao produced One; One produced Two; Two produced
Three; Three produced All things.”

— Laozi, Tao Te Ching, ch. 42

According to the associative theory of creativity, individ-
uals with higher creativity possess richer semantic structure
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Figure 1. Origins performs unified generative and representation
learning. The unified template T diffuses to the timestep tem-
plates, which generates gait representations. Meanwhile, the uni-
fied template T transfers to capture accurate gait differences.

and memory that support an expansive associative search,
facilitating the combination of distant concepts into novel
ideas [1, 27, 36]. Indeed, modern Generative AI (e.g., Dif-
fusion Models) has demonstrated remarkable visual con-
trol, memory and imagination in image generation [20], un-
derstanding [26], and restoration [61]. Intuitively, a net-
work, capable of controllably generating diverse entities
across different categories, implies a powerful representa-
tion space [5, 28, 49, 62, 67].

Within the scope of representation learning, gait serves
as a descriptor of walking patterns for long-distance hu-
man recognition [44, 46]. Although current gait recognition
has made significant progress, the gait representation learn-
ing obtains identity information by contrasting gait samples
under varying complex conditions (e.g., cross-view, cross-
clothing, occlusion and illumination conditions), causing
two problems: (i) Semantic Inconsistency. Gait repre-
sentations with different complex conditions may exhibit
significant gaps. For example, semantic inconsistency has
been observed in VPNet [35], where different view angles
correspond to distinct prompts, indicating significant varia-
tions in the current gait representations. Additionally, cross-
view gait networks potentially learn the 3D human body
projections from various 2D view angles and the chaining
relations between different view angles [34], while cross-
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Figure 2. The unified template is the consistent and diverse space.
The different semantic dimensions in this unified template linearly
construct each gait representation.

clothing gait networks may learn pose and motion informa-
tion [24]. Occluded gait networks may implicitly learn rea-
soning and filtering capabilities [25]. (ii) Semantic Unifor-
mity. Facing the combination of multiple covariates, gait
representations are constrained to a narrow representation
space, maintaining usable patterns for all conditions.

To address the above issues, we present Origins where
different entities are generated from a unified template.
The philosophy is inspired by Tao Te Ching, where All
things are said to originate from the “Tao”. Towards this
goal, gait representations exhibit Phenomena 1 (Figure 2).
Gait samples with different conditions align within the se-
mantic space. Phenomena 2 (Figure 4). The semantic
space possesses sufficient diversity to encompass all gait
samples with various conditions.

Admittedly, learning this unified template is exceedingly
challenging. Aligning and generating highly different gait
samples with the template distribution encounters the con-
vergence difficulty. As shown in Figure 1, Origins dif-
fuses a unified template (i.e., T ) into timestep templates
(i.e., T0, ..., TN ), which generates gait representations, and
meanwhile transfers the unified template information (T )
to capture accurate gait differences. Figure 3 illustrates
that more timestep templates enable better convergence and
more precise recognition performance. We specifically clar-
ify relations between Origins and Diffusion Models:
Inspirations. Origins is inspired by diffusion models, lies
in: (i) The step-by-step diffusion mechanism. In the vanilla
diffusion training, for each sample, a random timestep is
chosen, mapped through the time series and MLP, and con-
ditioned for generation. Analogously, in the Origins train-
ing, each gait sample randomly selects a timestep template,
which is transformed from the unified template through the
time series and MLP, and conditioned to generate gait rep-
resentations; (ii) A consistent and diverse semantic space.
The generative paradigm needs to generate every gait sam-

Figure 3. More timestep templates enable better convergence and
more precise recognition performance.

ple independent of cross-covariate conditions, which forces
the unified template to span the entire semantic manifold.
Highlights. Origins aims to recognize individuals with gen-
erative capabilities. (i) No noise addition. Origins inte-
grates the generative process to learn a consistent yet di-
verse semantic space without sampling new gait samples
from a known noise distribution (e.g., Gaussian distribu-
tion). (ii) Implicit timestep template relations. Origins does
not follow a conventional diffusion model where timestep
relations are explicitly equivalent to the Markov chain. In-
stead, it implicitly learns the timestep template relations by
randomly sampling to generate gait representations. (iii) No
identity constraint. The generative evolution aims to learn a
consistent and diverse space (i.e., a unified template), inde-
pendent of identity retention, where Origins only adopt the
unified template and real samples for identification.

Our main contributions can be summarized as follows:
• We propose a novel framework Origins where the uni-

fied generative and representation learning regularizes
gait representations within a consistent and diverse se-
mantic space, addressing the semantic inconsistency
and uniformity issues.

• We design Diffusing Timestep Templates to alleviate
the convergence difficulty, and Transferring Unified
Template to capture accurate gait differences.

• We evaluate Origins on six public benchmarks,
CASIA-B, CCPG, SUSTech1K, Gait3D, GREW and
CCGR-MINI, demonstrating the effectiveness and
achieving superior performance.

2. Related Work
2.1. Diffusion Models and Representation Learning
Diffusion Models (DMs). Diffusion models gradually add
noise to input data and learn to reverse this process for data
generation, making them a probabilistic generative frame-
work. (i) Architectures. DDPMs [20] leverages a U-Net ar-
chitecture for denoising, which enables effective noise pre-
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Figure 4. The heatmaps show that the unified template generates the missing human body parts for information supplementation and
matching (e.g., the regions in the red circle of the left and right figures), and rectifies temporal information (e.g., the region in the red circle
of the middle figure).

diction across varying timesteps. LDMs [42] apply diffu-
sion processes in the latent space of a pre-trained variational
autoencoder. This innovation significantly reduces compu-
tational overhead while maintaining high generation qual-
ity. DiT [38] adapts Vision Transformers (ViTs) by tokeniz-
ing inputs and attention-based mechanisms for more flexi-
bility. (ii) Guidance Techniques. Classifier Guidance [7]
uses gradients from pre-trained noise-robust classifiers to
guide the diffusion process. Classifier-Free Guidance [19]
avoids reliance on external classifiers by training a diffusion
model with both conditional and unconditional inputs. Self-
Guided Diffusion [23] introduces a self-supervised frame-
work that generates guidance signals via clustering.
Representation Learning Based on DMs. Representation
learning based on DMs can be broadly categorized into five
types. (i) Leveraging Intermediate Activations. DDPM-
Seg [3] extracts intermediate feature activations from de-
coder blocks of DDPMs for semantic segmentation. (ii)
Knowledge Transfer. RepFusion [64] employs reinforce-
ment learning to dynamically extract representations from
diffusion models, which are distilled into student networks
for downstream tasks. (iii) Reconstructing Diffusion Mod-
els. l-DAE [5] reconstructs DDPMs into autoencoder for
self-supervised learning, highlighting the role of denoising
in representation learning. (iv) Generative Augmentation.
GAM [2] employs latent diffusion models to create aug-
mented views of training data, enhancing the generaliza-
tion of learned representations across diverse datasets. (v)
Joint Diffusion Models. HybirdViT [65] and ADDP [49]
combine generative and discriminative objectives in a sin-
gle model, improving performances in both. Origins aims to
construct a consistent and diverse gait representation space
with generative capabilities, which falls under this scope.

2.2. Gait Recognition

Model-Based Gait Recognition. These methods focus on
human structure representations. PoseGait [31] uses 3D
human body pose features, including joint angles, limb
lengths, and motion patterns, to enhance gait robustness.
GaitGraph [47] and GaitGraph2 [48] employ Graph Convo-
lutional Networks (GCNs) to model robust spatio-temporal

information. GaitTR [68] and GaitMixer [41] incorporate
self-attention mechanisms to capture long-range spatial cor-
relations. GPGait [13] proposes a generalized pose-based
gait framework, improving cross-domain generalization by
transforming pose data into a unified representation. SM-
PLGait [69] introduces the SMPL model to integrate dense
3D mesh representations. SkeletonGait [11], HiH [56],
and GaitHeat [14] introduce gaussian-approximated skele-
ton maps for structural analysis and shape details.
Appearance-Based Gait Recognition. These methods pri-
marily employ human shape representations. GaitSet [4]
proposes a set-based method with a flexible, permutation-
invariant framework. GaitPart [9] introduces a tempo-
ral part-based framework with fine-grained body-part mo-
tion. GaitGL [32] combines global and local features with
3D CNNs to capture fine-grained temporal-spatial patterns.
GaitBase [10] proposes a simple yet robust baseline for
the real-world applications. DANet [33], DyGait [57],
HSTL [55], VPNet [35], GLGait [39] and GaitMoE [25]
focus on dynamic local-global gait representations. Gait-
GCI [8], GaitCSV [52], CLTD [63], GaitC3I [54], QA-
Gait [60], Free Lunch [53] and GaitAttack [22] address con-
founders and noises with the interpretability. In addition,
there are some research with other gait modalities, such as
GaitEdge [30] with RGB data; GaitParsing [58], Landmark-
Gait [59] and ParsingGait [70] with parsing information;
LidarGait [45] with point clouds; MMGaitFormer [6] and
CL-Gait [16] with multimodal data.

3. Methodology
In this section, we first introduce the gait network with Ori-
gins in Sec. 3.1, then present the overview of Origins in
Sec. 3.2, and finally, describe the unified gait generative and
representation learning as a unified framework for end-to-
end joint training in Sec. 3.3.

3.1. Overview
As shown in Figure 5, the vanilla gait framework typi-
cally consists of a Visual Encoder (E), a Horizontal Par-
tition (HP), a Recognition Head (RH), and a Joint Loss
(L). In this work, the Visual Encoder employs a Stem and
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Figure 5. The gait network with Origins. HP represents Horizontal Partition, and Visual Stage consists of basic convolution blocks.
After the gait silhouette sequence passes through Visual Encoder and HP, the part representations are fed into the respective Origins and
Recognition Head for generative and representation learning.

Figure 6. The overview of Origins, best viewed in colors and
shapes. The N , C4 and Z denote the number, dimension and
multi-heads of timestep templates. The unified template T dif-
fuses timestep templates by time serialization for generation and
transfers information to gait representations for recognition.

several Visual Stages (as in ResNet [17]). Notably, we in-
troduce the general backbone rather than sophisticated de-
signs for better validating the effectiveness of generative
learning. The HP horizontally splits the human body (P),
extracting and matching finer-grained identity information.
Finally, the RH performs feature mapping for optimization
with Joint Loss (i.e., Triplet Loss [18] and Cross-Entropy
Loss [10]). The proposed Origins is embedded after the
HP and individually on each human part, regularizing the
part representations into a consistent and diverse semantic
space. Here, we omit the part index for simplicity. For-
mally, given the gait silhouette sequence X ∈ R1×S×H×W ,
where 1,S,H,W represent channel, consecutive S frames,
height and width dimensions, the process of Visual Encoder
and Horizontal Partition is formulated as follows:

O = HP(E(X )) (1)

where O ∈ RC4×S×P is the part representations. Similar
to [42], generative learning in the latent space is generally

more efficient and flexible than in the pixel space.

3.2. Origins
Existing gait paradigms primarily rely on learning the in-
variant gait representations by contrasting gait samples with
different conditions. However, the complex real-world en-
vironment (e.g., cross-view and cross-clothing conditions)
inevitably causes semantic inconsistency and uniformity
(e.g., the view angle chaining relations vs. the motion in-
formation). To this end, we propose Origins with the gen-
erative capability to regularize gait representations within
a consistent and diverse semantic space to capture accurate
gait differences. As shown in Figure. 6, Origins presents the
semantic consistency as prior, applying a unified template
to generate gait representations for the entire gait database,
implying that each gait sequence can be constructed within
the space spanned by this unified template.
Diffusing Timestep Templates. Admittedly, learning this
unified template is extremely challenging, as it requires the
comprehensiveness of the template to encompass gait repre-
sentations with various conditions, facing the convergence
difficulty as many generative models (e.g., GANs [15] and
VQVAEs [50]). Inspired by the step-by-step mechanism
in Diffusion Models [7, 37, 42], Origins diffuses this uni-
fied template into timestep templates, where each is de-
rived from the unified template through time series mod-
eling and MLP. Formally, Given the learnable unified tem-
plate T ∈ R1×C4 , the diffusion process for timestep tem-
plates is as follows:

TN = T +MLP
(
tN

)
(2)

tN =
[
cos(ω1N ), . . . , cos(ωC4

2

N ),

sin(ω1N ), . . . , sin(ωC4

2

N )
] (3)

ωk = 10000−
2(k−1)

C4 , k = 1, . . . , C4

2 (4)

where TN ∈ R1×C4 , N is the scalar timestep, ωk de-
fines a frequency schedule. Similar to the training stage
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Table 1. DataBase and Architectures. Id. and Seq. denote the number of identities and sequences. CV, BG and CL refer to cross-view and
carrying bags and cross-clothing conditions. D and C denote the number of conv blocks and the channels in each visual stage.

Environment Dataset Train Test Condition Stage Channels StridesId. Seq. Id. Seq. [D1, D2, D3, D4] [C1, C2, C3, C4]

Constrained CASIA-B [66] 74 8,140 50 5,500 CV, BG, CL [1, 1, 1. -] [64, 128, 256, -] [1, 2, 1, -]
CCPG [29] 100 8,187 100 8,095 CV, BG, CL [1, 1, 1, 1] [64, 128, 256, 512] [1, 2, 2, 1]

In-the-wild

SUSTech1K [45] 200 5988 850 19,228 Real-world [1, 1, 1, 1] [64, 128, 256, 512] [1, 2, 2, 1]
CCGR-MINI [72] 571 27507 399 20377 Real-world [1, 4, 4, 1] [64, 128, 256, 512] [1, 2, 2, 1]

Gait3D [69] 3,000 18,940 1,000 6,369 Real-world [1, 4, 4, 1] [64, 128, 256, 512] [1, 2, 2, 1]
GREW [71] 20,000 102,887 6,000 24,000 Real-world [3, 4, 6, 3] [64, 128, 256, 512] [1, 2, 2, 1]

in Diffusion Models, Origins does not require generation
through all sequential timestep templates. Instead, it im-
plicitly learns the timestep template relations by randomly
sampling to generate gait representations. Given a gait rep-
resentation sequence O ∈ RS×C4 and a Random sampled
timestep template TN ∈ R1×C4 , the generation process is
as follows:

Q = WQO, K = WKTN , V = WVTN (5)

G = Sigmoid(Q⊗KT )⊗ V (6)

where WQ, WK and WV ∈ RC4×Z× C4
Z are mapping func-

tions and Z denotes the number of multi-heads in the atten-
tion mechanism, similar to Transformers [51]. Each head
denotes one type of semantic information. This generation
process is optimized by MSE Loss:

Lmse =
1

S
(G − detach(O))2 (7)

The generated gait representation G is composed of Z mul-
tiple heads of the timestep template (Z is empirically set
to 16). Diffusing Timestep Templates regularizes all gait
representations into a consistent and diverse space.
Transferring Unified Template. To further exploit tem-
plate information for capturing accurate gait differences,
Origins transfers the unified template T to compress a
gait sequence into one token. Specifically, as Diffusing
Timestep Template progresses, the unified template grad-
ually accumulates rich gait knowledge from the entire gait
database. Therefore, the unified template enables to com-
presses each gait sequence as completely and effectively as
possible, which is inspired by the idea of “Compression as
Intelligence” [43]. The process is as follows:

Q = WQT , K = WKO, V = WVO (8)

F = Softmax(Q⊗KT )⊗ V (9)

where WQ, WK and WV ∈ RC4×Z× C4
Z are mapping func-

tions and Z denotes the number of multi-heads in the atten-
tion mechanism. Finally, this one token F is fed into the
following Recognition Head.

Summarize. Origins includes that (i) Only the unified tem-
plate serves as (Q) transfers to extract discriminative rep-
resentations from real gait samples (K, V); (ii) Meanwhile,
the unified template diffuses into timestep templates; (iii)
Only timestep templates serve as bases (K, V) conditioned
by real gait samples (Q) for generative learning, where each
gait sample randomly selects a timestep template.

3.3. Training Details
Origins unifies gait generative and representation learning
for end-to-end joint training. The joint loss is as follows:

L = Lmse + Ltp + Lce (10)

where Lmse, Ltp and Lce denote MSE Loss, Triplet
Loss [18] and Cross Entropy Loss.

4. Experiments
4.1. Datasets
Gait datasets are generally divided into two subsets: con-
strained and in-the-wild, based on their collection environ-
ments. As shown in Table. 1, constrained datasets (i.e.,
CASIA-B [66] and CCPG [29]) typically provide quanti-
fied conditional benchmarks but include a relatively small
number of identities, whereas in-the-wild datasets (i.e.,
SUSTech1K [45], Gait3D [69], GREW [71]) and CCGR-
MINI [72] involve more complex environments and a large
number of identities. Origins is thoroughly evaluated the
effectiveness across these widely-used gait benchmarks.
CASIA-B contains 124 subjects with 11 camera views and
3 scenarios: normal walking (NM), carrying a bag (BG) and
cloth-changing condition (CL).
CCPG provides the challenge of rich cross-clothing condi-
tions and contains 200 subjects with over 16,000 sequences.
SUSTech1K consists of 1,050 subjects under various real-
world conditions such as Clothing, Occlusion and Night.
Gait3D collects gait data in a supermarket, addressing prac-
tical gait recognition. it includes 3,000 subjects and 25,309
sequences, divided into a training set of 2,000 subjects and
a testing set of 1,000 subjects.
GREW is a large-scale gait dataset in the wild, including
26,345 subjects and 128,671 sequences recorded by 882
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Table 2. The performance comparisons on CCPG under various conditions, including full-body cloth changes (CL), upper-body cloth
changes (UP), lower-body cloth changes (DN), and backpacks changes (BG), reported with Rank-1 accuracy (%).

Paradigm Method Venue Gait Evaluation Protocol ReID Evaluation Protocol
CL UP DN BG Mean CL UP DN BG Mean

Model

GaitGraph2 [47] CVPRW22 5.0 5.3 5.8 6.2 5.1 5.0 5.7 7.3 8.8 6.7
Gait-TR [68] ES23 15.7 18.3 18.5 17.5 17.5 24.3 28.7 31.1 28.1 28.1
MSGG [40] MTA23 29.0 34.5 37.1 33.3 33.5 43.1 52.9 57.4 49.9 50.8

SkeletonGait [11] AAAI24 40.4 48.5 53.0 61.7 50.9 52.4 65.4 72.8 80.9 67.9

Appearance

GaitSet [4] AAAI19 60.2 65.2 65.1 68.5 64.8 77.5 85.0 82.9 87.5 83.2
GaitPart [9] CVPR20 64.3 67.8 68.6 71.7 68.1 79.2 85.3 86.5 88.0 84.8

OGBase [29] CVPR23 52.1 57.3 60.1 63.3 58.2 70.2 76.9 80.4 83.4 77.7
GaitBase [10] CVPR23 71.6 75.0 76.8 78.6 75.5 88.5 92.7 93.4 93.2 92.0

DeepGaitV2 [12] TPAMI25 78.6 84.8 80.7 89.2 83.3 90.5 96.3 91.4 96.7 93.7
Origins-S (ours) - 84.3 90.2 86.4 93.6 88.6 93.4 97.6 94.6 97.6 95.8

Table 3. The performance comparisons on SUSTech1K are reported with Rank-1 and Rank-5 accuracy (%).

Paradigm Method Venue Probe Sequence (Rank-1) Overall
Normal Bag Clothing Carrying Umbrella Uniform Occlusion Night Rank-1 Rank-5

Model

GaitGraph2 [47] CVPRW22 22.2 18.2 6.8 18.6 13.4 19.2 27.3 16.4 18.6 40.2
Gait-TR [68] ES23 33.3 31.5 21.0 30.4 22.7 34.6 44.9 23.5 30.8 56.0
MSGG [40] MTA23 67.11 66.16 35.92 63.31 61.58 58.07 66.59 17.88 33.8 -

SkeletonGait [11] AAAI24 67.9 63.5 36.5 61.6 58.1 67.2 79.1 50.1 63.0 83.5

Appearance

GaitSet [4] AAAI19 69.1 68.2 37.4 65.0 63.1 61.0 67.2 23.0 65.0 84.8
GaitPart [9] CVPR20 62.2 62.8 33.1 59.5 57.2 54.8 57.2 21.7 59.2 80.8
GaitGL [32] ICCV21 67.1 66.2 35.9 63.3 61.6 58.1 66.6 17.9 63.1 82.8

GaitBase [10] CVPR23 81.5 77.5 49.6 75.8 75.5 76.7 81.4 25.9 76.1 89.4
DeepGaitV2 [12] TPAMI25 87.4 84.1 53.4 81.3 86.1 84.8 88.5 28.8 82.3 92.5
Origins-S (ours) - 91.4 88.1 64.8 86.0 89.8 88.9 92.8 29.6 86.9 94.2

cameras. The benchmark consists of 20,000 subjects for
training and 6,000 for testing.
CCGR-MINI is provided by the CCGR [72] team, which
serves as an alternative to CCGR, offers fast training, and
maintains equivalent covariates.

4.2. Implementation Details

The details of the training process are as follows. In-
puts. Each input gait sequence consists of 30 frames, and
all silhouettes are resized to 64 × 44. The batch size ]I,
J ] is consistent with [10], where I represents the num-
ber of subjects sampled per mini-batch, and J represents
the number of sequences sampled per subject. Networks.
As shown in Table. 1, we provide Origins-T, Origins-
S, Origins-M, and Origins-L based on network depths.
Origins-T consists of 3 Bottleneck3D Stages with block
numbers [1, 1, 1] and channels [64, 128, 256]. Origins-
S comprises 4 Bottleneck3D Stages with block numbers
[1, 1, 1, 1] and channels [64, 128, 256, 512]. Origins-M
consists of 1 Basic2D Stage and 3 Pseudo3D Stages, with
block numbers [1, 4, 4, 1] and channels [64, 128, 256,
512]. Origins-L is composed of 4 Bottleneck3D Stages,
with block numbers [3, 4, 6, 3] and channels [64, 128,
256, 512]. Optimization. We use the optimizer of SGD

with an initial learning rate of 0.1, which is decreasing
by a factor of 0.1 per [20K, 40K, 50K], [20K, 40K, 50K],
[20K, 30K, 40K], [20K, 40K, 50K], [80K, 120K, 150K],
[30K, 55K, 65K] for CASIA-B (Total 60K), CCPG (To-
tal 60K), SUSTech1K (Total 50K), Gait3D (Total 60K),
GREW (Total 180K) and CCGR-MINI (Total 80K). All
the models are trained on NVIDIA 8×3090 GPUs.

4.3. Results on Constrained Scenario

We first validate the effectiveness of Origins across various
complex scenarios on CASIA-B and CCPG.
CASIA-B. As shown in Table. 4, Origins-T achieves state-
of-the-art (SoTA) performance on all scenarios, with an av-
erage accuracy of 95.7%, demonstrating that the unified
template possesses a consistent and diverse semantic space
to improve the individual distinctiveness and discriminabil-
ity of gait representations under different conditions.
CCPG. As shown in Table. 2, Origins-S achieves outstand-
ing performance (e.g., 88.6% in Gait Evaluation Protocol
and 95.8% in ReID Evaluation Protocol) in more challeng-
ing clothing-change scenarios (e.g., full-body, upper-body,
lower-body, and backpacks changes), which indicates the
ability to capture accurate gait differences, significantly
alleviating one of the biggest bottlenecks in current gait
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Table 4. The performance comparisons on CASIA-B are reported
with Rank-1 accuracy (%).

Method Venue NM BG CL Mean
GaitSet [4] AAAI19 95.0 87.2 70.4 84.2
GaitPart [9] CVPR20 96.2 91.5 78.7 88.8
GLN [21] ECCV20 96.9 94.0 77.5 89.5

GaitGL [32] ICCV21 97.4 94.5 83.6 91.8
QAGait [60] AAAI24 97.9 94.6 78.2 90.2

GaitBase [10] CVPR23 97.6 94.0 77.4 89.8
DANet [33] CVPR23 98.0 95.9 89.9 94.6
GaitGCI [8] CVPR23 97.9 95.0 86.4 93.1
DyGait [57] ICCV23 98.4 96.2 87.8 94.1
HSTL [55] ICCV23 98.1 95.9 88.9 94.3
VPNet [35] CVPR24 98.3 96.3 90.0 94.9

DeepGaitV2 [12] TPAMI25 - - - 89.6
CLTD [63] ECCV24 98.6 96.4 89.3 94.8

Free Lunch [53] ECCV24 98.1 94.1 77.9 90.0
Origins-T (ours) - 99.3 97.4 90.3 95.7

Table 5. The performance comparisons on Gait3D are reported
with Rank-1, Rank-5 accuracy and mAP (%).

Method Venue Rank-1 Rank-5 mAP
GaitSet [4] AAAI19 36.7 58.3 30.0
GaitPart [9] CVPR20 28.2 47.6 47.6
GaitGL [32] ICCV21 29.7 48.5 22.3

SMPLGait [69] CVPR22 46.3 64.5 37.2
MTSGait [69] MM22 48.7 67.1 37.6
QAGait [60] AAAI24 67.0 81.5 56.5

GaitBase [10] CVPR23 64.6 - -
DANet [33] CVPR23 48.0 69.7 -
GaitGCI [8] CVPR23 50.3 68.5 39.5
DyGait [57] ICCV23 66.3 80.8 56.4
HSTL [55] ICCV23 61.3 76.3 55.5
VPNet [35] CVPR24 75.4 87.1 -

DeepGaitV2 [12] TPAMI25 74.4 88.0 65.8
CLTD [63] ECCV24 69.7 85.2 -

GaitMoE [25] ECCV24 73.7 - 66.2
Free Lunch [53] ECCV24 70.1 - 61.9

Origins-M (ours) - 75.8 86.8 67.0

recognition: the clothing-change problem.

4.4. Results on in-the-wild Scenario
We then validate the robustness of Origins against more
complex and unknown covariates on in-the-wild datasets,
SUSTech1K, Gait3D, GREW and CCGR-MINI.
SUSTech1K. As shown in Table. 3, Origins-S demon-
strates superior performance in more diverse and complex
environments, surpassing state-of-the-art methods Deep-
GaitV2 [12] by a significant margin 4.6% in Overall Rank-
1 accuracy. Notably, even facing the combination of var-
ious covariates, Origins achieves remarkable performance
(e.g., 64.8% Rank-1 accuracy in the Clothing benchmark),
demonstrating its ability to preserve diverse semantic space

Table 6. The performance comparisons on GREW are reported
with Rank-1, Rank-5 and Rank-10 accuracy (%).

Method Venue Rank-1 Rank-5 Rank-10
GaitSet [4] AAAI19 46.3 63.6 70.3
GaitPart [9] CVPR20 44.0 60.7 67.3
GaitGL [32] ICCV21 47.3 63.6 -

MTSGait [69] MM22 55.3 71.3 76.9
QAGait [60] AAAI24 59.1 74.0 79.2

GaitBase [10] CVPR23 60.1 - -
GaitGCI [8] CVPR23 68.5 80.8 84.9
DyGait [57] ICCV23 71.4 83.2 86.8
HSTL [55] ICCV23 62.7 76.6 81.3
VPNet [35] CVPR24 80.0 89.4 -

DeepGaitV2 [12] TPAMI25 77.7 88.9 91.8
CLTD [63] ECCV24 78.0 87.8 -

GaitMoE [25] ECCV24 79.6 89.1 -
Free Lunch [53] ECCV24 65.5 78.7 83.3
Origins-L (ours) - 80.8 89.6 92.1

Table 7. The performance comparisons on CCGR-MINI are re-
ported with Rank-1 accuracy, mAP and mINP (%).

Method Venue Rank-1 mAP mINP
GaitSet [4] AAAI19 13.77 15.39 5.75
GaitPart [9] CVPR20 8.02 10.12 3.52
GaitGL [32] ICCV21 17.51 18.12 6.85

GaitBase [10] CVPR23 26.99 24.89 9.72
DeepGaitV2 [12] TPAMI25 39.37 36.01 16.77
Origins-M (ours) - 41.45 38.31 24.71

during gait representation learning.
Gait3D. Origins-M achieves the SoTAs shown in Table. 5,
surpassing the latest appearance-based method CLTD [63]
by 6.1% in Rank-1 accuracy. Compared to the parameter-
heavy GaitMoE [25], it still maintain the improvements, in-
dicating that Origins-M learns meaningful semantic space
rather than noises.
GREW. Origins-L achieves competitive performance
shown in Table. 6, surpassing VPNet [35] by 0.8% Rank-
1 accuracy. Origins-L adopts Free Lunch [53] (i.e., logits as
gait representations) to achieve more stable results without
introducing any additional computational complexity.
CCGR-MINI. As shown in Table. 7, Origins-M outper-
forms the previous SoTA DeepGaitV2 by 2.1% Rank-1 ac-
curacy, which further reveals the robustness.

4.5. Ablation Study
We first validate the core modules of Origins on Gait3D.
Then, we analyze the number of timestep templates on
Gait3D and CASIA-B. Finally, we perform visualization to
better understand the mechanisms of Origins.
The core modules of Origins. As shown in Table. 8,
Origins achieved significant improvments compared to the
Baseline with 2.4% higher Rank-1 accuracy on Gait3D.
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(a) ID 77 with the timestep template (b) ID 77 with the unified template

(c) ID 75 with the timestep template (d) ID 75 with the unified template

Figure 7. The “elements” axe is Z that is the number of multi-
heads in the template. The visualization shows that different sub-
jects exhibit differences in the template.

Specifically, the combination of Transferring Unified Tem-
plate and Diffusing Timestep Templates enables further im-
proving performance, proving the effectiveness of unified
gait generative and representation learning. Additionally,
we find that the number of multi-heads Z in attention mech-
anism is set to 16 for better performance shown in Table. 8.
The number of timestep templates. As shown in Table. 9,
the number of timestep templates represents a trade-off. For
a large gait database with complex covariates, having fewer
timestep templates may result in a narrow semantic space,
potentially affecting the expression of gait representations.
Conversely, more timestep templates could lead to an over-
whelming semantic space that introduces noise and con-
fusion into the representations. For the smaller datasets,
the number of timestep templates has less impact, which
is make sense as gait representation learning already enable
to capture sufficient gait patterns.
The visualization of the unified Template. As shown in
(a, c) of Fig. 7, we perform the generative differences to bet-
ter understand the mechanism of Diffusing Timestep Tem-
plates. Specifically, we select the 8th timestep template to
generate gait representations for different IDs. It can be ob-
served that different IDs impact the signal from the timestep
template. However, they can be linearly combined by these
elements (i.e., the multi-heads Z), which means they are
regularized to a consistent space. As shown in (b, d) of
Fig. 7, we perform the discriminative differences to better

Table 8. The core module analysis on Gait3D.

Method Gait3D
Rank-1 Rank-5 mAP

Origins-M 75.8 86.8 67.0
The analysis on the core modules

-w/o Origins 73.6 86.9 65.1
- w/o Transferring Unified Template 74.4 87.9 67.1
- w/o Diffusing Timestep Templates 75.3 86.4 66.3

The analysis on the number of multi-heads
Z = 8 74.6 86.6 66.7
Z = 16 75.8 86.8 67.0
Z = 32 75.2 86.4 66.1

Table 9. The timestep template analysis on Gait3D and CASIA-B.

Method Gait3D CASIA-B
Rank-1 Rank-5 mAP NM BG CL Mean

Origins-M 75.8 86.8 67.0 99.3 97.4 90.3 95.7
Baseline 73.6 86.9 65.1 98.2 95.8 84.4 92.8

The analysis on the number of timestep templates
N = 8 75.3 87.0 66.5 99.1 97.3 90.4 95.6
N = 16 75.8 86.8 67.0 99.3 97.4 90.3 95.7
N = 32 73.7 86.3 65.4 99.2 97.3 90.0 95.5

understand the mechanism. Transferring Unified Template
aims to compresses each gait sequence into one token as
completely and effectively as possible. It can be observed
that not all information within a gait sequence effectively
contribute to recognition. Instead, the unified template cap-
tures accurate gait differences in the multi-heads Z atten-
tion mechanism for recognition. We also observe the gait
periodicity in some heads, highlighting the impact of fine-
grained body motion.

5. Conclusion and Limitations

In this work, we propose Origins with generative capa-
bilities, regularizing gait representations within a consis-
tent and diverse semantic space and addressing semantic
inconsistency and uniformity in complex scenarios. Ori-
gins learns a unified template through diffusing timestep
templates for gait generative learning, addressing the con-
vergence difficulty, and meanwhile transfers the unified
template for gait representation learning, capturing accu-
rate gait differences. Extensive experiments demonstrate
that Origins performs unified generative and representation
learning, achieving superior performance.
Limitations. While diffusion models have been widely
adopted to generate new samples at the pixel level, enhanc-
ing the usability, Origins performs generative learning in the
representation space. In the future, we will explore generat-
ing new gait samples to further enhance general representa-
tions, such as in pretraining paradigms.
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