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Abstract
Direct Alignment Algorithms (DAAs) are001
widely used for aligning Large Language Mod-002
els (LLMs) to human preferences. The current003
DAAs are using pairwise optimizing objectives004
based on the variants of Direct Preference Opti-005
mization (DPO). However, these methods only006
focus on the pairwise differences of the samples007
and cannot prevent optimization from reducing008
the probabilities of preferred responses. In this009
paper, we present Direct Reward Distillation010
(DRD), an algorithm that uses an explicit re-011
ward model to optimize the policy by setting012
an exact probability target for each response.013
DRD decouples target reward differentials and014
bias in aligning objectives and utilizing not only015
the relationship within response pairs but also016
the relationship among them. Our experiments017
show that DRD performs better than existing018
methods while providing controllability to the019
policy response probability.020

1 Introduction021

Large Language Model (LLM) alignment aims to022

enhance the ability of the model to align with hu-023

man values and preferences, ensuring that it is024

helpful, honest, and harmless in serving humans025

(Ouyang et al., 2022). The typical LLM align-026

ment approach, Reinforced Learning from Human027

Feedback (RLHF) (Ouyang et al., 2022), utilizes028

methods that rely on annotated preference data (i.e.029

positive and negative response pairs) to model hu-030

man preferences through the Bradley-Terry (BT)031

model (Bradley and Terry, 1952). This approach032

first trains a reward model based on the preference033

data and then utilizes this model to guide the op-034

timization of the LLM policy through online rein-035

forcement learning techniques, such as Proximal036

Policy Optimization. Although RLHF has shown037

state-of-the-art performance so far, its pipeline is038

very complex, involving the training of multiple039

LLMs and sampling processes within the train-040

ing loop. As a result, simpler alignment methods041

known as Direct Alignment Algorithms (DAAs) 042

have gradually replaced RLHF as the mainstream 043

approach (Gupta et al., 2025). 044

DAAs primarily incorporate Direct Preference 045

Optimization (DPO) (Rafailov et al., 2024) and 046

its various adaptations. DPO reparameterizes the 047

reward function within the RLHF framework, sug- 048

gesting that the optimizing policy can act as an im- 049

plicit reward function. By optimizing the implicit 050

reward function using the Bradley-Terry model, the 051

policy aligns with preferences without the need to 052

train an additional reward model or apply a rein- 053

forced learning process. As a result, DPO increases 054

the generalization probability gap between the pre- 055

ferred responses and dispreferred ones. 056

Although DPO shares the same optimal ob- 057

jective and shows comparable performance with 058

RLHF, it also has several proposed problems 059

(Meng et al., 2024; Sharifnassab et al., 2024; Lin 060

et al., 2024). Firstly, with a small β, DPO simul- 061

taneously reduces the probabilities of preferred re- 062

sponses and dispreferred responses, while increas- 063

ing their gap (Meng et al., 2024; Hong et al., 2024). 064

Although a larger probability gap indicates a more 065

comprehensive alignment of preferences, making 066

the probabilities of preferred responses too low 067

can result in the LLM not being inclined to gener- 068

ate similar responses, further indicating a negative 069

impact on policy (Gupta et al., 2025). Current 070

approaches tend to solve this problem by adding 071

different weights to the preferred and dispreferred 072

responses in the training objective (Gupta et al., 073

2025; Hong et al., 2024). However, these methods 074

break the objective consistency of DPO to RLHF. 075

Moreover, the added hyperparameters require ad- 076

ditional cost to locate the proper values in specific 077

tasks. 078

Secondly, while dropping the phase of training 079

an explicit reward model, the reward in DPO is 080

calculated through a function involving the policy 081

itself. Recent research points out that the implicit 082
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Figure 1: RLHF trains a reward model using the BT model and applies PPO for online optimizing the policy model.
DPO uses the BT model to offline optimize the policy model. DRD uses a reward model (which may be trained by
the BT model) to annotate the responses and offline distills the reward to the policy model.

reward model shows limited generalization capa-083

bility (compared to explicit reward model train-084

ing under the BT model in RLHF). The methods085

(Adler et al., 2024; Fisch et al., 2024) solve this086

problem by introducing an explicit reward model087

to the DPO and show an outperformance. They088

apply the rewards given by an explicit model to089

preference learning. Unlike the DPO’s unbounded090

optimization, they set a target for the "reward gap"091

between each pair of responses and make the opti-092

mization more specific. However, these methods093

do not consider the drop in probability of preferred094

responses referred to above and they ignore the re-095

lationship among sample pairs indicated by given096

reward since they only take the reward differences097

between the responses within a pair.098

In this paper, our aim is to answer the question:099

Can DAA optimize the policy directly guiding100

the exact target of generation probability? We101

observe that the problem of current DAAs reducing102

the preferred response probabilities is caused by103

their pairwise optimization structure whose adop-104

tion is due to the need to eliminate the normaliza-105

tion terms in the derivation of the RLHF objective106

for each sample (detailed in Section ??). In this107

paper, we find that the terms can be derived from108

an invariant value and the optimal policy. By re-109

garding this value as a hyperparameter, we propose110

Direct Reward Distillation (DRD), an algorithm111

using an explicit reward model to optimize the pol-112

icy setting an exact target of probability for each113

response.114

Compared to current DAAs, DRD solves the115

problem of reducing the probabilities of preferred 116

responses. In fact, our method decouples target 117

reward differentials and offsets of DAA and has 118

controllability to the implicit reward value of the 119

policy LLM. This provides practitioners with flex- 120

ibility in adjusting optimization targets. In our 121

experiments, we show that both the reward differ- 122

entials and offsets affect the performance of the 123

alignment process. Furthermore, our DRD utilizes 124

the explicit reward model better (compared to pre- 125

vious works), referring not only to the relationship 126

between the responses with the same prompt but 127

also to the relationship among the responses with 128

different prompts while preserving the simplicity 129

of DPO. In particular, our DRD has no require- 130

ment for the reward model and how many responses 131

each prompt has to participate in optimization. We 132

present a standard way of training a typical BT re- 133

ward model for DRD and utilize two responses for 134

each prompt for training. 135

Our main contribution is Direct Reward Distilla- 136

tion (DRD), a pair-wise-optimization-free align- 137

ment algorithm with an explicit reward model 138

which decouples the target reward differentials and 139

bias and fully utilizes the reward information. Our 140

experiments show that DRD is at least as effec- 141

tive as existing methods on the Ultra-Feedback 142

(with Ultra-Chat) dataset, using language mod- 143

els Llama3-8B (Dubey et al., 2024), Qwen2.5-7B 144

(Yang et al., 2024) and EuroLLM-9B (Martins 145

et al., 2024). 146
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2 Preliminaries147

Given a large language model parameterized by θ,148

donated as πθ. The current alignment algorithms149

aim to optimize πθ by learning from annotated pref-150

erence pairs.151

RLHF: RLHF (Bai et al., 2022) fits a reward152

model to pairwise samples of human preferences153

and then uses Proximal Policy Optimization (PPO)154

to optimize a language model policy to produce155

responses that are assigned a higher reward with-156

out drifting excessively far from the original model.157

Consider an annotated dataset of pairwise samples158

Dp =
{
xi, y

i
w, y

i
l

}N

i=1
, where xi denotes the ith159

prompt, yiw and yil , respectively, represent the pre-160

ferred and preferred responses to xi. RLHF begins161

by modeling the probability of preferring yiw to yil162

using the Bradley-Terry model (Bradley and Terry,163

1952), which appoints the following probabilistic164

form:165

p
(
yiw ≻ yil | x

)
= σ

(
r
(
xi, y

i
w

)
− r

(
x, yil

))
(1)166

where σ represents the logistic function and167

r(xi, yi) corresponds to a reward function rϕ (that168

is, the LLM classifier) that gives the estimation169

of yi with respect to xi according to human pref-170

erence. Using maximum likelihood estimation to171

estimate the parameters of this function, we can op-172

timize the classifier by the negative log-likelihood173

loss as below:174

LR (rϕ,D) =
− ED [log (σ (rϕ (x, yw)− rϕ (x, yl))]

(2)175

The target model πθ can then be trained by the176

feedback of the learned reward function. In general,177

we formulate the following optimization target for178

this learning process.179

max
πθ

E [rϕ(x, y)]− βDKL [πθ(y | x)∥πref(y | x)]
(3)180

where β is a parameter that controls the deviation181

of the target model πθ from the status when training182

starts.183

DPO: DPO (Rafailov et al., 2024) shows the184

possibility of keeping the same optimization tar-185

get as RLHF without explicitly training a reward186

function and the implementation of RL. The loss187

function of DPO is presented below:188

LDPO (πθ;πref) = −E(x,yw,yl)∼D log σ(
β log

πθ (yw | x)
πref (yw | x)

− β log
πθ (yl | x)
πref (yl | x)

) (4) 189

Notably, this optimization objective is based on 190

a theoretical optimal πθ beyond rU (x, y), which 191

enables its equivalence with Eq.3. 192

3 Direct Reward Distillation 193

Aiming to guide the extract probability of responses 194

for the policy LLM, we derived our training ob- 195

jectives from RLHF referring to previous works 196

(Rafailov et al., 2024) and introduce a reward 197

model to our DRD algorithm. By regarding the 198

normalization term as a hyperparameter, DRD dis- 199

tills the reward of an explicit model to the implicit 200

reward of policy LLM. 201

3.1 Reward Model 202

DRD uses the reward model to distill the rewards 203

of an offline dataset to the policy LLM to guide 204

the LLM to become the optimal policy under the 205

objective Eq. 3. This ensure our DRD rely on a 206

reward model with better generalization capability 207

comparing to the DAAs without a reward model. 208

Furthermore, our point-wise optimizing utilizes the 209

reward relation between responses with different 210

prompts rather than pair-wise DAAs. 211

Notably, DRD doesn’t restrict to one specific 212

reward model training method. In practice, for re- 213

ward model training we follow the RLHF utilizing 214

a Bradley-Terry model to model the preference of 215

a pair-wise dataset (Rafailov et al., 2024). Specif- 216

ically, we use the Eq. 2 to train a neural reward 217

model which using a classifier processes the hidden 218

state of the last token given by a pretrained LLM. 219

3.2 Direct Reward Distillation 220

Starting from the RLHF objective, we follow the 221

previous work (Bai et al., 2022) and construct the 222

reward function under the optimal solution π̂ to Eq. 223

3 as follows: 224

ri(x, y) = β log
π̂(y | x)

πref (y | x)
+ β logZ(x) (5) 225

where Z(x) =
∑

y πref(y | x) exp
(

1
β r(x, y)

)
226

represents the normalization term. Due to space 227

limitation, we present a detailed deriving process 228

in the Appendix A.1. 229
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Algorithm 1: Direct Reward Distillation
Input: SFT model πθ, Reward model r,

Training Data D, Norm Value Z0,
Training Epochs T, Learning Rate η

Output: Optimized Policy π̂θ
1 πref ←− πθ ;
2 foreach Epoch t=1, 2, ..., T do
3 Get a batch of samples DT ⊂ D ;
4 LT ←− 0 ;
5 foreach

(
xT , y

1
T , y

2
T , ...

)
∈ DT do

6 ZT = πθ(xT−t0|t0
πref (xT−t0|t0)Z0 ;

7 Detach ZT ;
8 foreach yiT do
9 rT ←−

β log
πθ(y

i
T |xT )

πref (y
i
T |xT )

+ β logZT

LT ←−
LT +

(
r(xT , y

i
T )− rT

)2 ;

10 πθ ←− πθ − η∇
(

LT
|the number of y in DT |

)
;

11 π̂θ ←− πθ;

The normalization term Z(x) changes with230

prompts x, resulting in the result that the231

implicit reward target needs exact Z =232

{Z(x1), Z(x2), Z(xN )}. Considering that the re-233

ward model partition of x and y doesn’t effect the234

given reward in Eq. 5, we can deriving a relation-235

ship between Z(x, y) and its prefix Z(x) as below:236

Z(x, y)

Z(x)
=

π̂(y | x)
πref (y | x)

(6)237

Through this relationship, we can assume an238

imaginary overall prefix t0 which fits to every239

prompt xi. Thus the normalization term Z0 =240

Z(t0) whose defination is Z0 =
∑

y πref(y |241

t0) exp
(

1
β r(t0, y)

)
. This indicates that the rela-242

tionships among Z are related to the π̂ and πref .243

Once obtaining the value of Z(xi), our DRD opti-244

mize the policy utilizing the MSE Loss:245

LDRD (πθ, r,Z;D) = E(x,y)∼D[(
r(x, y)− β log

π(y | x)
πref (y | x)

− β logZ(x)

)2
]

(7)246

3.3 Optimization247

DRD distills the explicit reward to improve the248

LLM policy. Referring to the work of (Adler249

et al., 2024), we adopt the phase of including more 250

than one response per prompt for training to en- 251

sure better preference supervision. Notably, while 252

the assumption of Z0 requires an overall prefix t0 253

which every prompt xi has, DRD theoretically re- 254

stricts the prompts to have the same "start token". 255

It is easy to meet this condition since almost ev- 256

ery LLM template stipulates the first token (e.g., 257

"⟨|im_start|⟩" or "User"). 258

Theorem 3.1. Suppose a reward model r(x, y) 259

gives a reward to the dataset D = {xi, yi}Ni=1, 260

infinite various r(x, y) can be constructed ensur- 261

ing: 1. r(xi, yi) = r′(xi, yi)forxi, yi ∈ D. 262

2. For all xi, yi, xj , yj in the language space, 263

[r(xi, yi)− r(xj , yj)][r
′(xi, yi)− r′(xj , yj)] > 0 264

The actual value of Z0 is calculated by its defi- 265

nition. However, in DRD, we regard it as a hyper- 266

parameter. As our derivation in App. ?? proving 267

Thm. 3.1, there’re different reward models having 268

different Z0 act the same in the optimization. We 269

approximate π̂ to πθ in optimization, ensuring the 270

consistency of the optimal solution of DRD. The 271

experiments further confirm that this approxima- 272

tion does not compromise the convergence. 273

We use a pseudocode presented as Algorithm 274

1 to show the DRD optimization. DRD aims to 275

optimize the implicit reward of the policy and treats 276

the normalization term Zi as a constant. After 277

obtaining the target of log π̂(y | x), DRD utilizes 278

an MSE loss for training referring to previous work 279

(Fisch et al., 2024). 280

3.4 The Interpretation of DRD 281

Our DRD utilizes Eq. 6 to generate an approximate 282

normalized term to Eq. 5 and uses the MSE loss 283

for optimization. While combining Z(t0) to Eq. 5 284

using Eq. 6, we can result to the below equation: 285

r(x, y) = β log
π̂(t0 | x, y − t0)

πref (t0 | x, y − t0)
+ β logZ(t0)

(8) 286

Which is the Eq. 5 in a certain situation. In 287

particular, in Algo. 1, Zi does not contribute to the 288

gradient since the generation probabilities of the 289

prompts are within our optimization scope, which 290

makes DRD optimization different than the direct 291

utilization of Eq. 8. 292

As Eq. 8 shares the same optimal policy with 293

DRD, we can infer from it that β presents the level 294

of reward differences of our optimization target. 295

The smaller β is, the greater the gap among our 296
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reward target which is the same in the work of297

(Rafailov et al., 2024). Z0 in DRD presents an298

"offset" to the rewards. While Z0 grows down, all299

the reward targets move upwards. This ensures that300

DRD controls the generation probabilities from301

simultaneous decreases.302

4 Experiments303

We experiment with our DRD based on the below304

pretrained LLMs: Llama3-8B (Dubey et al., 2024),305

Qwen2.5-7B (Bai et al., 2023) and EuroLLM-9B306

(Martins et al., 2024). In this section, our aim is307

to present the advantages of our DRD versus other308

direct alignment baselines. We start from the base309

models and fine-tuning them to gain the instruction-310

following capability. Reward models are trained311

on a pairwise preference data set. Then we use312

the reward models to annotate the rewards of this313

preference dataset and use DRD to optimize the314

fine-tuned LLMs. Notably, we keep sampling two315

responses each prompt in order to keep the scale of316

training data is same to DRD and all baselines.317

4.1 Datasets and Evaluations318

We follow the typical training pipeline of Zephyr319

(Tunstall et al., 2023) and SimPO (Meng et al.,320

2024) to select datasets. For the supervised fine-321

tuning phase, we apply the UltraChat-200k dataset322

(Ding et al., 2023) to train our base models. No-323

tably, we optimize the base models utilizing the324

multi-turn dialogue templates of their chat deriva-325

tives. For reward model training and alignment326

optimization, we apply the UltraFeedback dataset327

(Cui et al., 2023). This approach provides a high328

level of reproducing. Below we give their brief329

introductions:330

•UltraChat-200k is a multi-turn instructional con-331

versation dataset that contains 207,865 conversa-332

tions for training. UltraChat-200k is designed by333

a principle that attempts to capture the breadth of334

interactions that a human might have with an AI335

assistant and then employs meta-information, in-336

context expansion, and iterative prompting to scale337

up the number of instructions. The constructors338

use LLMs only to generate the conversations.339

•UltraFeedback is a large-scale, high-quality,340

and diversified AI feedback dataset, which contains341

over 1 million GPT-4 feedback for user-assistant342

conversations from various aspects. It is con-343

structed beyond a compiled diverse array of over344

60,000 instructions and 17 models from multiple345

Table 1: The reward model training results.

Model Setting
Small Large

Loss Acc Loss Acc
RM-Base 0.0621 0.975 0.0539 0.982
RM-SFT 0.0463 0.979 0.035 0.988
DPO-Implicit 0.2039 0.9521 0.2463 0.9660

sources and then utilizes GPT-4 for annotation with 346

a bunch of techniques to alleviate annotation biases 347

and improve feedback quality to the greatest extent. 348

Notably, we utilize binary preferences from Ultra- 349

Feedback by selecting the highest mean score as 350

the preferred response and one of the remaining 351

three at random as dispreferred referring to (Tun- 352

stall et al., 2023). The total number of data pairs 353

for training is 61,135. 354

For evaluation benchmarks, we apply the widely 355

used benchmarks for general instruction-following 356

capability: Alpaca-Eval2 (Dubois et al., 2024) and 357

MT-Bench (Zheng et al., 2024). These benchmarks 358

evaluate the LLM’s versatile conversational capa- 359

bilities utilizing different queries. Alpaca-Eval2 360

constructs its 805 queries from 5 datasets and MT- 361

Bench contains 80 queries sampled from 8 different 362

categories. Both benchmarks rely on a LLM-as- 363

judge evaluating methods. Notably, we use GPT-4 364

(Achiam et al., 2023) as the annotator for them. 365

For Alpaca-Eval2, we present the results of win 366

rate (WR) and length-controlled win rate which 367

reflects the evaluation results eliminating the effect 368

of model verbosity over a base response which is 369

sampled from GPT-4 Turbo (Achiam et al., 2023). 370

For MT-Bench, we report the average overall score 371

calculated based on the judgment of GPT-4. 372

4.2 Baselines 373

We compare our DRD with different direct align- 374

ment algorithm baselines. Except the widely used 375

and introduced DPO, SLiC-HF (Zhao et al., 2023) 376

using linear ranking losses for optimization instead 377

of the BT model. IPO (Azar et al., 2024), con- 378

structed a general preference learning structure ob- 379

jective deriving from which DPO is a special case, 380

bypasses the BT modelization assumption for pref- 381

erences, and utilizes an MSE loss. ORPO (Hong 382

et al., 2024) drop the reference model in DPO and 383

introduce an odd ratio to directly optimize the prob- 384

abilities of the policy model while jointly training 385

with an objective of preferred response maximum 386

likelihood loss. SimPO (Meng et al., 2024) uses 387

the average log probability of a sequence as the 388
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implicit reward and introduces a target reward mar-389

gin in the DPO objective. Robust Preference Opti-390

mization (RPO) (Fisch et al., 2024) introduces an391

explicit reward model to distill the reward gaps to392

the policy model. Notably, we use the same reward393

model to provide the reward gaps as our DRD uses.394

We only use one reward model in RPO to ensure395

the fairness of our DRD and RPO. Notably, except396

IPO, all the above methods do not share the same397

optimal solution consistency as DPO and DRD to398

RLHF.399

4.3 Implement Details400

We present our detailed Implement Details in the401

App. B402

4.4 Reward Model403

Our DRD doesn’t specify the approach of the re-404

ward model used to give the reward. Here we405

present a demonstrative reward model training pro-406

cess. We utilize the Bradley-Terry model to train407

an explicit reward model that gives a reward score408

through a randomly initialized classifier on the hid-409

den state of the last token of a pretrained model’s410

output. To compare the performances of explicit411

reward models initialized with the base model and412

the SFT model and the implicit reward model indi-413

cated in Eq. 5, we utilize all the preference pairs414

in UltraFeedback (regarded as "large" setting) or415

10000 pairs randomly sampled from it (regarded as416

"small" setting) either to train the reward models417

based on Llama3. Taking the loss of training ends418

and the metrics of reward accuracy (i.e. the accu-419

racy of the reward model gives a larger reward to420

preferred response than dispreferred ones) on the421

test set of UltraFeedback, we present the results in422

Tab. 1.423

We can observe that the explicit reward model424

initialized by the SFT model performs best among425

the three. The either explicit model shows an appar-426

ent advantage to the implicit model. This indicates427

the benefits of using an explicit reward model for428

alignment as our DRD. Following the results, we429

train the reward model of Qwen2.5 and EuroLLM430

using their SFT model instead of directly using the431

base model.432

4.5 Main Results433

The main results of our experiments are presented434

in Tab. 2. Remarkably, while all the direct align-435

ment baselines optimize the SFT model to a better436

conversational capability referring to the bench- 437

marks, DRD outperforms all the baselines in all 438

settings except SimPO on EuroLLM-9B on the 439

Alpaca-Eval 2 win-rate metric. This illustrates the 440

advantages of DRD compared to current alignment 441

methods. Notably, DRD achieves an 82.83% in- 442

crease over the SFT model and a 5.04% increase 443

over RPO who performs best among the baselines 444

in the Alpaca-Eval 2 win rate metric based on 445

Llama3-8B and this advantage comes to 73.47% 446

and 12.31% on the length-controlled win rate. For 447

Qwen2.5-7B, DRD gains 14.79% and 14.98% ad- 448

vantages compared to the best baseline on win rate 449

and length-controlled win rate of Alpaca-Eval 2. 450

For EuroLLM-9B, DRD gains a 6.29% advantage 451

on the length-controlled win rate. 452

A cursory examination reveals that our DRD 453

has an obvious outperformance over all the direct 454

alignment baselines across all tasks. Such a pattern 455

underscores the effectiveness of DRD in improving 456

LLM’s ability in preference learning. DRD not 457

only introduces an explicit reward model that has 458

a better generalization capability to the alignment 459

training but also provides a more stable training tar- 460

get using point-wise loss and prevents the continual 461

decreasing of preferred response probabilities. 462

4.6 Analysis 463

We here present a detailed analysis of our DRD 464

controls and the alignment process of the Policy. 465

As shown in Fig. 2, we conclude: 466

•DRD utilizes point-wise loss to optimize the 467

policy model. It set a target to the chosen reward 468

of the policy model thus we can observe from Fig. 469

2(a) that the reward of both chosen and rejected re- 470

wards are symmetrically separated from each other 471

while keeping a clear stable mean value. This mean 472

value is the Z0 value set to be stable in the training 473

process. While Z0 grows larger, this mean value 474

drops. 475

•From another perspective, the effect of Z0 and 476

β in DRD is more clearer in Fig. 2(b). While Z0 477

grows larger, the chosen reward of the training end 478

decreases. While β grows smaller, this decreas- 479

ing trend becomes slower. It can be inferred that 480

when Z0 is enough larger, the chosen reward can 481

be smaller than utilizing DPO. 482

•As for the gap between chosen rewards and 483

rejected rewards in the training ends, β can have a 484

significant effect. While β drops, this gap grows 485

rapidly. One of our DRD’s main effectiveness is 486

decoupling the reward gap and the mean value of 487
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Table 2: Overall result.

Methods
Llama3-8B Qwen2.5-7B EuroLLM-9B

AlpacaEval 2
MT-Bench

AlpacaEval 2
MT-Bench

AlpacaEval 2
MT-Bench

WR(%) LC(%) WR(%) LC(%) WR(%) LC(%)
SFT 3.35 5.82 5.0 5.41 10.69 5.7 4.11 7.81 5.3
SLiC-HF 9.87 11.06 5.5 8.55 12.86 6.0 8.28 9.03 5.4
DPO 18.32 17.63 6.5 18.12 23.16 6.8 12.52 16.02 6.0
IPO 14.92 15.24 6.1 13.25 14.47 6.4 11.38 11.98 5.8
ORPO 11.97 13.535 5.7 9.10 12.72 6.2 9.29 12.26 5.8
SimPO 18.42 19.97 6.6 17.32 23.28 6.7 14.92 16.53 6.2
RPO 18.52 19.24 6.6 17.74 22.14 6.6 14.24 14.59 6.1
DRD 19.51 21.94 6.6 20.82 26.04 6.8 14.11 17.64 6.2

Table 3: Overall result.

Methods MMLU GSM8K ARC-Easy ARC-Hard MathQA SocialQA Avg.
SFT 63.81 25.84 52.82 48.29 26.73 50.25 44.62
SLiC-HF 64.76 28.32 65.00 50.94 26.37 53.73 48.19
DPO 64.88 28.84 49.37 39.25 28.88 37.45 41.45
IPO 63.25 28.96 60.29 45.30 27.03 40.78 44.27
ORPO 65.02 26.24 63.95 49.82 24.14 53.69 47.14
SimPO 63.47 25.02 44.57 36.6 25.42 36.83 38.65
DRD 64.93 31.72 69.49 55.38 27.19 54.95 50.61

the alignment target. It can be seen in Fig. 2(c) that488

Z0 does little effectiveness to the reward gap.489

•From Fig. 2(d) we can observe that the perfor-490

mance of the alignment algorithm is affected by the491

compound of other factors. Neither reward gap nor492

the chosen reward can reflect the final performance493

independently.494

4.7 Downstream Tasks Evaluation495

To examine how exactly the models perform in dif-496

ferent fields, we evaluate all the models reported497

in Tab. 2 which is based on Llama3-8B to vari-498

ous downstream tasks. Specifically, we include the499

MMLU (Hendrycks et al., 2020), GSM8K (Cobbe500

et al., 2021), ARC-Easy and Challenge (Clark et al.,501

2018), MathQA (Amini et al., 2019), and SocialQA502

(Sap et al., 2019). As reported in (Meng et al.,503

2024), several direct alignment algorithms may504

drop the model performances in reasoning tasks.505

Thus we mainly choose the reasoning tasks in our506

evaluation and the widely used MMLU. Notably,507

except MMLU, all the tasks are evaluated through508

the CoT Pass@1 zero-shot setting. We set the sam-509

pling temperature to 0.0 as adopt the greedy sam-510

pling method.511

The results are presented in Tab. 3. We can ob-512

serve that DRD performs better to all the baselines.513

While alignment methods as DPO and SimPO ob-514

viously drop the model’s reasoning capabilities,515

DRD does not decrease the ability of SFT model 516

and instead improves the reasoning ability of the 517

model through alignment. We infer that some base- 518

lines dropping the model’s reasoning capability 519

may caused by the significant decrease of preferred 520

response probabilities the alignment methods do to 521

the policy model. While "heavily" optimizing the 522

model to align with human preference, the training 523

process overfits the model and weakens its gen- 524

eralization ability. This proves the advantages of 525

DRD. 526

5 Related Works 527

Large language models (LLMs) have shown great 528

zero-shot and few-shot performance (Brown et al., 529

2020; Chowdhery et al., 2023; Radford et al., 2019). 530

After being pretrained on a large corpus, LLMs 531

obtain the ability to complete downstream tasks, 532

following the supervised fine-tuning instructions 533

and human-written responses (Chung et al., 2024; 534

Mishra et al., 2021; Sanh et al., 2021). Despite 535

the success of instruction tuning, preference opti- 536

mization has shown great effectiveness in aligning 537

LLMs with humans (Bai et al., 2022). As reinforce- 538

ment Learning with Human Feedback (RLHF) (Bai 539

et al., 2022) is a complex and often unstable proce- 540

dure (Pal et al., 2024), DPO (Rafailov et al., 2024) 541

has been proposed as a simple and computationally 542

7



(a) Training Rewards. (b) Chosen rewards.

(c) Reward gap. (d) Performances.

Figure 2: Analysis of DRD training process. The analysis experiments are conducted on Llama3-8B under different
hyperparameters. The blue dashed line represents the performance of DPO.

lightweight method with no need for additional re-543

ward function training. Specifically, it derives the544

optimal policy of RLHF objective and reparame-545

ters the reward model using the current policy (i.e.546

using policy as an implicit reward model). Through547

this way, the optimization to policy model transfers548

to the optimization of the reparametered reward549

function using BT model.550

Various works have been proposed based on551

the DPO method for better performances. ORPO552

(Hong et al., 2024) and SimPO (Meng et al., 2024)553

focus on regularization of sequence length aiming554

to reduce the phenomenon that DPO tend to in-555

crease the response length of policy LLM. DPOP556

(Pal et al., 2024), KTO (Ethayarajh et al., 2024) re-557

duce the problem of DPO by lowering the preferred558

response probabilities by increasing the weight of559

the preferred term in the training objective. How-560

ever, these methods break the theoretical basis of561

DPO and obtain uncertain gains. In particular, Ro-562

bust Preference Optimization (Fisch et al., 2024)563

and Reward-Aware Preference Optimization (Adler564

et al., 2024) introduce an explicit general reward565

model to provide a target reward difference for each566

prompt. However, they still adopt the pairwise opti-567

mization method which cannot prevent the chosen 568

reward decrease problem and overlook the relation- 569

ship among samples given by the explicit reward 570

model. 571

Our DRD proposes a point-wise direct alignment 572

method that has better utilization of the reward 573

model information and strengthened control over 574

optimization objectives. 575

6 Conclusion 576

In this paper, we propose a Direct Reward Distilla- 577

tion (DRD) method that utilizes a point-wise target 578

for aligning the model. 579

Compared to the existing direct alignment ap- 580

proaches that are based on pair-wise losses to op- 581

timize the policy model. DRD prevents the policy 582

model from dropping the generation probability 583

of the preferred responses and referring not only 584

to the relationship between the responses with the 585

same prompt but also to the relationship among the 586

responses with different prompts. 587

Experimental results on various reasoning tasks 588

and datasets demonstrate the superior performance 589

of our DRD which consistently outperforms a wide 590

range of baseline approaches. 591

8



7 Limitations592

Our paper presents a simple and effective method593

to align the LLMs to human performances. We594

present our experiments based on a typical trained595

Bradley-Terry model using exactly the same data596

used for alignment optimization. It would be bet-597

ter to discuss more about the reward models and598

do a more comprehensive experiment about the599

number of responses for each prompt used in the600

optimization as DRD doesn’t restrict to the pair-601

wise training structure.602

8 Discussion of Ethical Considerations603

Our proposed methods are used to improve the604

capabilities of LLMs. Using DRD training LLMs605

may cause an environmental impact as all other606

training methods do.607

For the permissions of our used artifact, each608

of our used models (Llama3-8B, Qwen2.5-7B,609

EuroLLM-9B) and the datasets (UltraChat, Ul-610

traFeedBack, GSM8K, ARC, MathQA) are open-611

sourced and can be found from Github or Hugging-612

face. Secondly, all the models can not be used613

commercially.614

We utilize all the models and datasets consis-615

tent with their intended use. We do not provide616

extra data. Our construction of self-training data us-617

ing the LLMs presents the answers to the datasets,618

which is the purpose LLMs are designed.619

The datasets we used contain no information that620

names or uniquely identifies individual people or621

offensive content.622
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A Deriving the optimal solution of RLHF2

A.1 Proof for optimal solution of RLHF3

We construct our proof following the previous works[1, 2]. From Eq. ??, our optimizing target is:4

max
π

Ex∼D,y∼π[r(x, y)]− βDKL [π(y | x)∥πref(y | x)] (1)

Notably, we can derive as:5

max
π

Ex∼D,y∼π[r(x, y)]− βDKL [π(y | x)∥πref(y | x)]

= max
π

Ex∼DEy∼π(y|x)

[
r(x, y)− β log

π(y | x)
πref(y | x)

]
= min

π
Ex∼DEy∼π(y|x)

[
log

π(y | x)
πref(y | x)

− 1

β
r(x, y)

]

= min
π

Ex∼DEy∼π(y|x)

log π(y | x)
1

Z(x)πref(y | x) exp
(

1
β r(x, y)

) − logZ(x)


(2)

where we define as :6

Z(x) =
∑
y

πref (y | x) exp
(
1

β
r(x, y)

)
(3)

Notably, Z(x) is a function of only x and πref . We can additionally define:7

π̂(y | x) = 1

Z(x)
πref(y | x) exp

(
1

β
r(x, y)

)
(4)

As is a probability distribution which holds
∑

y π
∗(y | x) = 1. Using the Z(x), we can re-organize8

the Eq. 1 as:9

min
π

Ex∼D

[
Ey∼π(y|x)

[
log

π(y | x)
π̂(y | x)

]
− logZ(x)

]
=

min
π

Ex∼D [DKL (π(y | x)∥π̂(y | x))− logZ(x)]
(5)

Since Z(x)does not depend on π, the optimal solution is achieved by the policy that minimizes the10

first term. The KL divergence is minimized in the situation where two distributions are equal. Thus11

we have the optimal solution:12

π(y | x) = π̂(y | x) = 1

Z(x)
πref(y | x) exp

(
1

β
r(x, y)

)
(6)

B Implement Details13

The experiments are carried out on 16 A100-80G GPUs with a Linux system. For all baselines and14

DRD, we search the hyperparameters as we present the details in the Appendix C. For the SFT phase,15

we train 2 epochs in each setting and report the performance of the best checkpoint. For the alignment16

phase, we train 3 epochs and take the same approach. We use Pytorch1 and Huggingface2 as tools for17

1https://pytorch.org/
2https://huggingface.co/

2



the implementation. For alignment, we apply experiments based on trl3. All the generations during18

the evaluation process were done using vllm [3]4. The code will be released on GitHub5.19

C HyperParameter Search20

Table 1: Hyperparameter search range.

Methods Search Range

DPO β ∈ [0.05, 0.1, 0.5, 1.0]
lr ∈ [1e− 7, 2e− 7, 5e− 7, 1e− 6]

SLiC-HF λ ∈ [0.05, 0.1, 0.5, 1.0, 5, 0]
lr ∈ [1e− 7, 2e− 7, 5e− 7]

IPO
β ∈ [0.05, 0.1, 0.5, 1.0]

lr ∈ [1e− 7, 2e− 7, 5e− 7, 1e− 6]
α ∈ [0.25, 0.5, 1, 2]

ORPO τ ∈ [0.01, 0.05, 0.1, 1.0]

SimPO β ∈ [1.0, 2.0, 2.5]
γ ∈ [0.3, 0.5, 0.7, 1.0, 1.5]

RPO β ∈ [0.05, 0.1, 0.5, 1.0]

DRD
β ∈ [0.05, 0.1, 0.5, 1.0]

lr ∈ [1e− 7, 2e− 7, 5e− 7, 1e− 6]
Z0 ∈ [−50, 500]

Notably, we are referring to the papers [2, 4, 5, 6, 7] to set the search ranges.21

3https://github.com/huggingface/trl
4https://github.com/vllm-project/vllm
5http://github.com/xxxxxx
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