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Abstract

Direct Alignment Algorithms (DAAs) are
widely used for aligning Large Language Mod-
els (LLMs) to human preferences. The current
DAAs are using pairwise optimizing objectives
based on the variants of Direct Preference Opti-
mization (DPO). However, these methods only
focus on the pairwise differences of the samples
and cannot prevent optimization from reducing
the probabilities of preferred responses. In this
paper, we present Direct Reward Distillation
(DRD), an algorithm that uses an explicit re-
ward model to optimize the policy by setting
an exact probability target for each response.
DRD decouples target reward differentials and
bias in aligning objectives and utilizing not only
the relationship within response pairs but also
the relationship among them. Our experiments
show that DRD performs better than existing
methods while providing controllability to the
policy response probability.

1 Introduction

Large Language Model (LLM) alignment aims to
enhance the ability of the model to align with hu-
man values and preferences, ensuring that it is
helpful, honest, and harmless in serving humans
(Ouyang et al., 2022). The typical LLM align-
ment approach, Reinforced Learning from Human
Feedback (RLHF) (Ouyang et al., 2022), utilizes
methods that rely on annotated preference data (i.e.
positive and negative response pairs) to model hu-
man preferences through the Bradley-Terry (BT)
model (Bradley and Terry, 1952). This approach
first trains a reward model based on the preference
data and then utilizes this model to guide the op-
timization of the LLM policy through online rein-
forcement learning techniques, such as Proximal
Policy Optimization. Although RLHF has shown
state-of-the-art performance so far, its pipeline is
very complex, involving the training of multiple
LLMs and sampling processes within the train-
ing loop. As a result, simpler alignment methods

known as Direct Alignment Algorithms (DAAs)
have gradually replaced RLHF as the mainstream
approach (Gupta et al., 2025).

DAAs primarily incorporate Direct Preference
Optimization (DPO) (Rafailov et al., 2024) and
its various adaptations. DPO reparameterizes the
reward function within the RLHF framework, sug-
gesting that the optimizing policy can act as an im-
plicit reward function. By optimizing the implicit
reward function using the Bradley-Terry model, the
policy aligns with preferences without the need to
train an additional reward model or apply a rein-
forced learning process. As a result, DPO increases
the generalization probability gap between the pre-
ferred responses and dispreferred ones.

Although DPO shares the same optimal ob-
jective and shows comparable performance with
RLHE, it also has several proposed problems
(Meng et al., 2024; Sharifnassab et al., 2024; Lin
et al., 2024). Firstly, with a small 3, DPO simul-
taneously reduces the probabilities of preferred re-
sponses and dispreferred responses, while increas-
ing their gap (Meng et al., 2024; Hong et al., 2024).
Although a larger probability gap indicates a more
comprehensive alignment of preferences, making
the probabilities of preferred responses too low
can result in the LLM not being inclined to gener-
ate similar responses, further indicating a negative
impact on policy (Gupta et al., 2025). Current
approaches tend to solve this problem by adding
different weights to the preferred and dispreferred
responses in the training objective (Gupta et al.,
2025; Hong et al., 2024). However, these methods
break the objective consistency of DPO to RLHF.
Moreover, the added hyperparameters require ad-
ditional cost to locate the proper values in specific
tasks.

Secondly, while dropping the phase of training
an explicit reward model, the reward in DPO is
calculated through a function involving the policy
itself. Recent research points out that the implicit
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Figure 1: RLHF trains a reward model using the BT model and applies PPO for online optimizing the policy model.
DPO uses the BT model to offline optimize the policy model. DRD uses a reward model (which may be trained by
the BT model) to annotate the responses and offline distills the reward to the policy model.

reward model shows limited generalization capa-
bility (compared to explicit reward model train-
ing under the BT model in RLHF). The methods
(Adler et al., 2024; Fisch et al., 2024) solve this
problem by introducing an explicit reward model
to the DPO and show an outperformance. They
apply the rewards given by an explicit model to
preference learning. Unlike the DPO’s unbounded
optimization, they set a target for the "reward gap"
between each pair of responses and make the opti-
mization more specific. However, these methods
do not consider the drop in probability of preferred
responses referred to above and they ignore the re-
lationship among sample pairs indicated by given
reward since they only take the reward differences
between the responses within a pair.

In this paper, our aim is to answer the question:
Can DAA optimize the policy directly guiding
the exact target of generation probability? We
observe that the problem of current DAAs reducing
the preferred response probabilities is caused by
their pairwise optimization structure whose adop-
tion is due to the need to eliminate the normaliza-
tion terms in the derivation of the RLHF objective
for each sample (detailed in Section ??). In this
paper, we find that the terms can be derived from
an invariant value and the optimal policy. By re-
garding this value as a hyperparameter, we propose
Direct Reward Distillation (DRD), an algorithm
using an explicit reward model to optimize the pol-
icy setting an exact target of probability for each
response.

Compared to current DAAs, DRD solves the

problem of reducing the probabilities of preferred
responses. In fact, our method decouples target
reward differentials and offsets of DAA and has
controllability to the implicit reward value of the
policy LLM. This provides practitioners with flex-
ibility in adjusting optimization targets. In our
experiments, we show that both the reward differ-
entials and offsets affect the performance of the
alignment process. Furthermore, our DRD utilizes
the explicit reward model better (compared to pre-
vious works), referring not only to the relationship
between the responses with the same prompt but
also to the relationship among the responses with
different prompts while preserving the simplicity
of DPO. In particular, our DRD has no require-
ment for the reward model and how many responses
each prompt has to participate in optimization. We
present a standard way of training a typical BT re-
ward model for DRD and utilize two responses for
each prompt for training.

Our main contribution is Direct Reward Distilla-
tion (DRD), a pair-wise-optimization-free align-
ment algorithm with an explicit reward model
which decouples the target reward differentials and
bias and fully utilizes the reward information. Our
experiments show that DRD is at least as effec-
tive as existing methods on the Ultra-Feedback
(with Ultra-Chat) dataset, using language mod-
els Llama3-8B (Dubey et al., 2024), Qwen2.5-7B
(Yang et al., 2024) and EuroLLM-9B (Martins
et al., 2024).



2 Preliminaries

Given a large language model parameterized by 6,
donated as my. The current alignment algorithms
aim to optimize 7y by learning from annotated pref-
erence pairs.

RLHF: RLHF (Bai et al., 2022) fits a reward
model to pairwise samples of human preferences
and then uses Proximal Policy Optimization (PPO)
to optimize a language model policy to produce
responses that are assigned a higher reward with-
out drifting excessively far from the original model.
Consider an annotated dataset of pairwise samples
D, = {xi, vl yli}i]il, where z; denotes the it
prompt, y,, and y;, respectively, represent the pre-
ferred and preferred responses to x;. RLHF begins
by modeling the probability of preferring ¢!, to y;
using the Bradley-Terry model (Bradley and Terry,
1952), which appoints the following probabilistic
form:

(W= vt l2) =0 (r (ziyy) =7 (.9) D

where o represents the logistic function and
r(z;,y;) corresponds to a reward function ¢ (that
is, the LLLM classifier) that gives the estimation
of y; with respect to x; according to human pref-
erence. Using maximum likelihood estimation to
estimate the parameters of this function, we can op-
timize the classifier by the negative log-likelihood
loss as below:
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The target model 7y can then be trained by the
feedback of the learned reward function. In general,
we formulate the following optimization target for
this learning process.

max B [rg(z,y)] — ADkw [mo(y | 2) et (y | 2)]
3)
where (3 is a parameter that controls the deviation
of the target model 7y from the status when training
starts.

DPO: DPO (Rafailov et al., 2024) shows the
possibility of keeping the same optimization tar-
get as RLHF without explicitly training a reward
function and the implementation of RL. The loss
function of DPO is presented below:
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Notably, this optimization objective is based on
a theoretical optimal 7y beyond ry(x,y), which
enables its equivalence with Eq.3.

3 Direct Reward Distillation

Aiming to guide the extract probability of responses
for the policy LLM, we derived our training ob-
jectives from RLHF referring to previous works
(Rafailov et al., 2024) and introduce a reward
model to our DRD algorithm. By regarding the
normalization term as a hyperparameter, DRD dis-
tills the reward of an explicit model to the implicit
reward of policy LLM.

3.1 Reward Model

DRD uses the reward model to distill the rewards
of an offline dataset to the policy LLM to guide
the LLM to become the optimal policy under the
objective Eq. 3. This ensure our DRD rely on a
reward model with better generalization capability
comparing to the DAAs without a reward model.
Furthermore, our point-wise optimizing utilizes the
reward relation between responses with different
prompts rather than pair-wise DAAs.

Notably, DRD doesn’t restrict to one specific
reward model training method. In practice, for re-
ward model training we follow the RLHF utilizing
a Bradley-Terry model to model the preference of
a pair-wise dataset (Rafailov et al., 2024). Specif-
ically, we use the Eq. 2 to train a neural reward
model which using a classifier processes the hidden
state of the last token given by a pretrained LLM.

3.2 Direct Reward Distillation

Starting from the RLHF objective, we follow the
previous work (Bai et al., 2022) and construct the
reward function under the optimal solution 7 to Eq.
3 as follows:

ri(z,y) = Blog :f?zy’ f;)

where Z(z) = >_, Tet(y | x) exp (%r(x, y))
represents the normalization term. Due to space

limitation, we present a detailed deriving process
in the Appendix A.1.

+BlogZ(z) (5)



Algorithm 1: Direct Reward Distillation
Input: SFT model 7y, Reward model r,
Training Data D, Norm Value Zj,
Training Epochs T, Learning Rate n
Output: Optimized Policy 7
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The normalization term Z(z) changes with
prompts x, resulting in the result that the
implicit reward target needs exact Z =
{Z(x1),Z(x2), Z(xn)}. Considering that the re-
ward model partition of x and y doesn’t effect the
given reward in Eq. 5, we can deriving a relation-
ship between Z(z,y) and its prefix Z(z) as below:

Z(x,y) 7wy |z
Z($) 7I-’r“ef(y | SC)
Through this relationship, we can assume an
imaginary overall prefix ¢y which fits to every

prompt z;. Thus the normalization term Zy =
Z(tp) whose defination is Z, = Ey Tret (Y|

to) exp ( 57 (to, y)) This indicates that the rela-

tionships among Z are related to the 7 and ..
Once obtaining the value of Z(z;), our DRD opti-
mize the policy utilizing the MSE Loss:

(6)
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3.3 Optimization

DRD distills the explicit reward to improve the
LLM policy. Referring to the work of (Adler

et al., 2024), we adopt the phase of including more
than one response per prompt for training to en-
sure better preference supervision. Notably, while
the assumption of Zj requires an overall prefix ¢
which every prompt z; has, DRD theoretically re-
stricts the prompts to have the same "start token".
It is easy to meet this condition since almost ev-
ery LLM template stipulates the first token (e.g.,
"(|im_start|)" or "User").
Theorem 3.1. Suppose a reward model r(z,y)
gives a reward to the dataset D = {x;,y;}Y |,
infinite various r(x,y) can be constructed ensur-
ing: 1. r(zyy) = r'(z,y)forzi,y; € D.
2. For all x;,y;,x;,y; in the language space,
(i, yi) = 7 (g, yp) ]l (s, yi) — 7' (25,95)] > 0

The actual value of Zj is calculated by its defi-
nition. However, in DRD, we regard it as a hyper-
parameter. As our derivation in App. ?? proving
Thm. 3.1, there’re different reward models having
different Z act the same in the optimization. We
approximate 7 to my in optimization, ensuring the
consistency of the optimal solution of DRD. The
experiments further confirm that this approxima-
tion does not compromise the convergence.

We use a pseudocode presented as Algorithm
1 to show the DRD optimization. DRD aims to
optimize the implicit reward of the policy and treats
the normalization term Z; as a constant. After
obtaining the target of log 7(y | ), DRD utilizes
an MSE loss for training referring to previous work
(Fisch et al., 2024).

3.4 The Interpretation of DRD

Our DRD utilizes Eq. 6 to generate an approximate
normalized term to Eq. 5 and uses the MSE loss
for optimization. While combining Z(ty) to Eq. 5
using Eq. 6, we can result to the below equation:

7(to | z,y — to)
Tref (tO | r,Yy — tO)

r(z,y) = Blog

+ Blog Z(to)
®)

Which is the Eq. 5 in a certain situation. In
particular, in Algo. 1, Z; does not contribute to the
gradient since the generation probabilities of the
prompts are within our optimization scope, which
makes DRD optimization different than the direct
utilization of Eq. 8.

As Eq. 8 shares the same optimal policy with
DRD, we can infer from it that 5 presents the level
of reward differences of our optimization target.
The smaller § is, the greater the gap among our



reward target which is the same in the work of
(Rafailov et al., 2024). Zy in DRD presents an
"offset" to the rewards. While Zy grows down, all
the reward targets move upwards. This ensures that
DRD controls the generation probabilities from
simultaneous decreases.

4 Experiments

We experiment with our DRD based on the below
pretrained LLMs: Llama3-8B (Dubey et al., 2024),
Qwen2.5-7B (Bai et al., 2023) and EuroLLM-9B
(Martins et al., 2024). In this section, our aim is
to present the advantages of our DRD versus other
direct alignment baselines. We start from the base
models and fine-tuning them to gain the instruction-
following capability. Reward models are trained
on a pairwise preference data set. Then we use
the reward models to annotate the rewards of this
preference dataset and use DRD to optimize the
fine-tuned LLLMs. Notably, we keep sampling two
responses each prompt in order to keep the scale of
training data is same to DRD and all baselines.

4.1 Datasets and Evaluations

We follow the typical training pipeline of Zephyr
(Tunstall et al., 2023) and SimPO (Meng et al.,
2024) to select datasets. For the supervised fine-
tuning phase, we apply the UltraChat-200k dataset
(Ding et al., 2023) to train our base models. No-
tably, we optimize the base models utilizing the
multi-turn dialogue templates of their chat deriva-
tives. For reward model training and alignment
optimization, we apply the UltraFeedback dataset
(Cui et al., 2023). This approach provides a high
level of reproducing. Below we give their brief
introductions:

*UltraChat-200k is a multi-turn instructional con-
versation dataset that contains 207,865 conversa-
tions for training. UltraChat-200k is designed by
a principle that attempts to capture the breadth of
interactions that a human might have with an Al
assistant and then employs meta-information, in-
context expansion, and iterative prompting to scale
up the number of instructions. The constructors
use LLMs only to generate the conversations.

*UltraFeedback is a large-scale, high-quality,
and diversified Al feedback dataset, which contains
over 1 million GPT-4 feedback for user-assistant
conversations from various aspects. It is con-
structed beyond a compiled diverse array of over
60,000 instructions and 17 models from multiple

Table 1: The reward model training results.

. Small Large
Model Setting Loss Acc Loss Acc
RM-Base 0.0621 | 0975 | 0.0539 | 0.982
RM-SFT 0.0463 | 0979 | 0.035 | 0.988
DPO-Implicit | 0.2039 | 0.9521 | 0.2463 | 0.9660

sources and then utilizes GPT-4 for annotation with
a bunch of techniques to alleviate annotation biases
and improve feedback quality to the greatest extent.
Notably, we utilize binary preferences from Ultra-
Feedback by selecting the highest mean score as
the preferred response and one of the remaining
three at random as dispreferred referring to (Tun-
stall et al., 2023). The total number of data pairs
for training is 61,135.

For evaluation benchmarks, we apply the widely
used benchmarks for general instruction-following
capability: Alpaca-Eval2 (Dubois et al., 2024) and
MT-Bench (Zheng et al., 2024). These benchmarks
evaluate the LLLM’s versatile conversational capa-
bilities utilizing different queries. Alpaca-Eval2
constructs its 805 queries from 5 datasets and MT-
Bench contains 80 queries sampled from 8 different
categories. Both benchmarks rely on a LLM-as-
judge evaluating methods. Notably, we use GPT-4
(Achiam et al., 2023) as the annotator for them.
For Alpaca-Eval2, we present the results of win
rate (WR) and length-controlled win rate which
reflects the evaluation results eliminating the effect
of model verbosity over a base response which is
sampled from GPT-4 Turbo (Achiam et al., 2023).
For MT-Bench, we report the average overall score
calculated based on the judgment of GPT-4.

4.2 Baselines

We compare our DRD with different direct align-
ment algorithm baselines. Except the widely used
and introduced DPO, SLiC-HF (Zhao et al., 2023)
using linear ranking losses for optimization instead
of the BT model. ITPO (Azar et al., 2024), con-
structed a general preference learning structure ob-
jective deriving from which DPO is a special case,
bypasses the BT modelization assumption for pref-
erences, and utilizes an MSE loss. ORPO (Hong
et al., 2024) drop the reference model in DPO and
introduce an odd ratio to directly optimize the prob-
abilities of the policy model while jointly training
with an objective of preferred response maximum
likelihood loss. SimPO (Meng et al., 2024) uses
the average log probability of a sequence as the



implicit reward and introduces a target reward mar-
gin in the DPO objective. Robust Preference Opti-
mization (RPO) (Fisch et al., 2024) introduces an
explicit reward model to distill the reward gaps to
the policy model. Notably, we use the same reward
model to provide the reward gaps as our DRD uses.
We only use one reward model in RPO to ensure
the fairness of our DRD and RPO. Notably, except
IPO, all the above methods do not share the same
optimal solution consistency as DPO and DRD to
RLHFE

4.3 Implement Details

We present our detailed Implement Details in the
App. B

4.4 Reward Model

Our DRD doesn’t specify the approach of the re-
ward model used to give the reward. Here we
present a demonstrative reward model training pro-
cess. We utilize the Bradley-Terry model to train
an explicit reward model that gives a reward score
through a randomly initialized classifier on the hid-
den state of the last token of a pretrained model’s
output. To compare the performances of explicit
reward models initialized with the base model and
the SFT model and the implicit reward model indi-
cated in Eq. 5, we utilize all the preference pairs
in UltraFeedback (regarded as "large" setting) or
10000 pairs randomly sampled from it (regarded as
"small" setting) either to train the reward models
based on Llama3. Taking the loss of training ends
and the metrics of reward accuracy (i.e. the accu-
racy of the reward model gives a larger reward to
preferred response than dispreferred ones) on the
test set of UltraFeedback, we present the results in
Tab. 1.

We can observe that the explicit reward model
initialized by the SFT model performs best among
the three. The either explicit model shows an appar-
ent advantage to the implicit model. This indicates
the benefits of using an explicit reward model for
alignment as our DRD. Following the results, we
train the reward model of Qwen2.5 and EuroLLM
using their SFT model instead of directly using the
base model.

4.5 Main Results

The main results of our experiments are presented
in Tab. 2. Remarkably, while all the direct align-
ment baselines optimize the SFT model to a better

conversational capability referring to the bench-
marks, DRD outperforms all the baselines in all
settings except SimPO on EuroLLM-9B on the
Alpaca-Eval 2 win-rate metric. This illustrates the
advantages of DRD compared to current alignment
methods. Notably, DRD achieves an 82.83% in-
crease over the SFT model and a 5.04% increase
over RPO who performs best among the baselines
in the Alpaca-Eval 2 win rate metric based on
Llama3-8B and this advantage comes to 73.47%
and 12.31% on the length-controlled win rate. For
Qwen2.5-7B, DRD gains 14.79% and 14.98% ad-
vantages compared to the best baseline on win rate
and length-controlled win rate of Alpaca-Eval 2.
For EuroLLM-9B, DRD gains a 6.29% advantage
on the length-controlled win rate.

A cursory examination reveals that our DRD
has an obvious outperformance over all the direct
alignment baselines across all tasks. Such a pattern
underscores the effectiveness of DRD in improving
LLM’s ability in preference learning. DRD not
only introduces an explicit reward model that has
a better generalization capability to the alignment
training but also provides a more stable training tar-
get using point-wise loss and prevents the continual
decreasing of preferred response probabilities.

4.6 Analysis

We here present a detailed analysis of our DRD
controls and the alignment process of the Policy.
As shown in Fig. 2, we conclude:

*DRD utilizes point-wise loss to optimize the
policy model. It set a target to the chosen reward
of the policy model thus we can observe from Fig.
2(a) that the reward of both chosen and rejected re-
wards are symmetrically separated from each other
while keeping a clear stable mean value. This mean
value is the Zj value set to be stable in the training
process. While Z; grows larger, this mean value
drops.

*From another perspective, the effect of Zy and
5 in DRD is more clearer in Fig. 2(b). While Z,
grows larger, the chosen reward of the training end
decreases. While 8 grows smaller, this decreas-
ing trend becomes slower. It can be inferred that
when Zj is enough larger, the chosen reward can
be smaller than utilizing DPO.

*As for the gap between chosen rewards and
rejected rewards in the training ends, 3 can have a
significant effect. While 5 drops, this gap grows
rapidly. One of our DRD’s main effectiveness is
decoupling the reward gap and the mean value of



Table 2: Overall result.

Llama3-8B Qwen2.5-7B EuroLLM-9B
Methods AlpacaEval 2 MT-Bench AlpacaEval 2 MT-Bench AlpacaEval 2 MT-Bench
WR(%) LC(%) WR(%) LC(%) WR(%) LC(%)
SFT 3.35 5.82 5.0 5.41 10.69 5.7 4.11 7.81 5.3
SLiC-HF 9.87 11.06 5.5 8.55 12.86 6.0 8.28 9.03 5.4
DPO 18.32 17.63 6.5 18.12 23.16 6.8 12.52 16.02 6.0
IPO 14.92 15.24 6.1 13.25 14.47 6.4 11.38 11.98 5.8
ORPO 11.97 13.535 5.7 9.10 12.72 6.2 9.29 12.26 5.8
SimPO 18.42 19.97 6.6 17.32 23.28 6.7 14.92 16.53 6.2
RPO 18.52 19.24 6.6 17.74 22.14 6.6 14.24 14.59 6.1
DRD 19.51 21.94 6.6 20.82 26.04 6.8 14.11 17.64 6.2
Table 3: Overall result.
Methods | MMLU GSM8K ARC-Easy ARC-Hard MathQA  SocialQA  Avg.
SFT 63.81 25.84 52.82 48.29 26.73 50.25 44.62
SLiC-HF 64.76 28.32 65.00 50.94 26.37 53.73 48.19
DPO 64.88 28.84 49.37 39.25 28.88 37.45 41.45
PO 63.25 28.96 60.29 45.30 27.03 40.78 44.27
ORPO 65.02 26.24 63.95 49.82 24.14 53.69 47.14
SimPO 63.47 25.02 44.57 36.6 25.42 36.83 38.65
DRD 64.93 31.72 69.49 55.38 27.19 54.95 50.61

the alignment target. It can be seen in Fig. 2(c) that
Zy does little effectiveness to the reward gap.

*From Fig. 2(d) we can observe that the perfor-
mance of the alignment algorithm is affected by the
compound of other factors. Neither reward gap nor
the chosen reward can reflect the final performance
independently.

4.7 Downstream Tasks Evaluation

To examine how exactly the models perform in dif-
ferent fields, we evaluate all the models reported
in Tab. 2 which is based on Llama3-8B to vari-
ous downstream tasks. Specifically, we include the
MMLU (Hendrycks et al., 2020), GSM8K (Cobbe
etal., 2021), ARC-Easy and Challenge (Clark et al.,
2018), MathQA (Amini et al., 2019), and Social QA
(Sap et al., 2019). As reported in (Meng et al.,
2024), several direct alignment algorithms may
drop the model performances in reasoning tasks.
Thus we mainly choose the reasoning tasks in our
evaluation and the widely used MMLU. Notably,
except MMLU, all the tasks are evaluated through
the CoT Pass@1 zero-shot setting. We set the sam-
pling temperature to 0.0 as adopt the greedy sam-
pling method.

The results are presented in Tab. 3. We can ob-
serve that DRD performs better to all the baselines.
While alignment methods as DPO and SimPO ob-
viously drop the model’s reasoning capabilities,

DRD does not decrease the ability of SFT model
and instead improves the reasoning ability of the
model through alignment. We infer that some base-
lines dropping the model’s reasoning capability
may caused by the significant decrease of preferred
response probabilities the alignment methods do to
the policy model. While "heavily" optimizing the
model to align with human preference, the training
process overfits the model and weakens its gen-
eralization ability. This proves the advantages of
DRD.

5 Related Works

Large language models (LLMs) have shown great
zero-shot and few-shot performance (Brown et al.,
2020; Chowdhery et al., 2023; Radford et al., 2019).
After being pretrained on a large corpus, LLMs
obtain the ability to complete downstream tasks,
following the supervised fine-tuning instructions
and human-written responses (Chung et al., 2024;
Mishra et al., 2021; Sanh et al., 2021). Despite
the success of instruction tuning, preference opti-
mization has shown great effectiveness in aligning
LLMs with humans (Bai et al., 2022). As reinforce-
ment Learning with Human Feedback (RLHF) (Bai
et al., 2022) is a complex and often unstable proce-
dure (Pal et al., 2024), DPO (Rafailov et al., 2024)
has been proposed as a simple and computationally
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Figure 2: Analysis of DRD training process. The analysis experiments are conducted on Llama3-8B under different
hyperparameters. The blue dashed line represents the performance of DPO.

lightweight method with no need for additional re-
ward function training. Specifically, it derives the
optimal policy of RLHF objective and reparame-
ters the reward model using the current policy (i.e.
using policy as an implicit reward model). Through
this way, the optimization to policy model transfers
to the optimization of the reparametered reward
function using BT model.

Various works have been proposed based on
the DPO method for better performances. ORPO
(Hong et al., 2024) and SimPO (Meng et al., 2024)
focus on regularization of sequence length aiming
to reduce the phenomenon that DPO tend to in-
crease the response length of policy LLM. DPOP
(Pal et al., 2024), KTO (Ethayarajh et al., 2024) re-
duce the problem of DPO by lowering the preferred
response probabilities by increasing the weight of
the preferred term in the training objective. How-
ever, these methods break the theoretical basis of
DPO and obtain uncertain gains. In particular, Ro-
bust Preference Optimization (Fisch et al., 2024)
and Reward-Aware Preference Optimization (Adler
et al., 2024) introduce an explicit general reward
model to provide a target reward difference for each
prompt. However, they still adopt the pairwise opti-

mization method which cannot prevent the chosen
reward decrease problem and overlook the relation-
ship among samples given by the explicit reward
model.

Our DRD proposes a point-wise direct alignment
method that has better utilization of the reward
model information and strengthened control over
optimization objectives.

6 Conclusion

In this paper, we propose a Direct Reward Distilla-
tion (DRD) method that utilizes a point-wise target
for aligning the model.

Compared to the existing direct alignment ap-
proaches that are based on pair-wise losses to op-
timize the policy model. DRD prevents the policy
model from dropping the generation probability
of the preferred responses and referring not only
to the relationship between the responses with the
same prompt but also to the relationship among the
responses with different prompts.

Experimental results on various reasoning tasks
and datasets demonstrate the superior performance
of our DRD which consistently outperforms a wide
range of baseline approaches.



7 Limitations

Our paper presents a simple and effective method
to align the LLMs to human performances. We
present our experiments based on a typical trained
Bradley-Terry model using exactly the same data
used for alignment optimization. It would be bet-
ter to discuss more about the reward models and
do a more comprehensive experiment about the
number of responses for each prompt used in the
optimization as DRD doesn’t restrict to the pair-
wise training structure.

8 Discussion of Ethical Considerations

Our proposed methods are used to improve the
capabilities of LLMs. Using DRD training LLMs
may cause an environmental impact as all other
training methods do.

For the permissions of our used artifact, each
of our used models (Llama3-8B, Qwen2.5-7B,
EuroLLM-9B) and the datasets (UltraChat, Ul-
traFeedBack, GSM8K, ARC, MathQA) are open-
sourced and can be found from Github or Hugging-
face. Secondly, all the models can not be used
commercially.

We utilize all the models and datasets consis-
tent with their intended use. We do not provide
extra data. Our construction of self-training data us-
ing the LLMs presents the answers to the datasets,
which is the purpose LLMs are designed.

The datasets we used contain no information that
names or uniquely identifies individual people or
offensive content.
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A Deriving the optimal solution of RLHF

A.1 Proof for optimal solution of RLHF

We construct our proof following the previous works|[1} 2]]. From Eq. ??, our optimizing target is:

max Eyp,yr[r(z, y)] = BDx [7(y | 2)[|7meet (y | 2)] M

Notably, we can derive as:

max Eyp ynr [r(2,y)] = B0k [7(y | 2)[[7eet (y | )]

m(y | %)
=maxE, pE,wr(ylz [T z,y) — Blog }
" y~m(ylz) (z,y) Toet (Y | )
. m(ylz) 1 2
=minE, pEyriyz [log — 57z, Yy @)
u yemole) 108 Tom Ty 5@ Y)
= minEwNDEywﬂ.(ym) log 1 7T(y | 1‘) n - 10g Z(.T?)
T mﬂ-reftu | .’E) exp (Er(mvy))
where we define as :
1
20) = S mesly ] 2)exp ( 5r(on)) )
y
Notably, Z(x) is a function of only z and 7,..;. We can additionally define:
£ 0) = gy | e (riz) ) @
Ty | x) = =——7ret(y | x)exp | =7(x,y
Z(x) B

As is a probability distribution which holds > 7*(y | z) = 1. Using the Z(z), we can re-organize
the Eq. [T] as:

. mylx)] _
mﬂnﬂEzND {EyNﬂ(yw) [1og ] m)] log Z(x)} =

minE,p [Pk, (n(y | ) #(y | 2)) — log Z(x)]

&)

Since Z(x)does not depend on 7, the optimal solution is achieved by the policy that minimizes the
first term. The KL divergence is minimized in the situation where two distributions are equal. Thus
we have the optimal solution:

n(y | 2) = #(y | 2) = %my | 2) exp (;r(az,m) ©)

B Implement Details

The experiments are carried out on 16 A100-80G GPUs with a Linux system. For all baselines and
DRD, we search the hyperparameters as we present the details in the Appendix [C] For the SFT phase,
we train 2 epochs in each setting and report the performance of the best checkpoint. For the alignment
phase, we train 3 epochs and take the same approach. We use Pytorcfﬂ and Huggingfaceﬂ as tools for

"https://pytorch.org/
“https://huggingface.co/



18 the implementation. For alignment, we apply experiments based on trﬂ All the generations during
19 the evaluation process were done using vilm [3[]'} The code will be released on GitHu

20 C HyperParameter Search

Table 1: Hyperparameter search range.

Methods Search Range
5 €10.05,0.1,0.5,1.0]
DPO Ir € [le—"7,2e —7,5¢ — 7,1e — 6]
. A €0.05,0.1,0.5, 1.0, 5, 0]
SLiC-HF Ir € [le—7,2e —7,5¢ — 7]
5 €10.05,0.1,0.5, 1.0]
IPO Irele—7,2e —7,5¢ — 7,1e — 6]
a €1[0.25,0.5,1,2]
ORPO 7 € [0.01,0.05,0.1, 1.0]
. BE€[1.0,2.0,2.5]
SimPO v €10.3,0.5,0.7,1.0, 1.5]
RPO 3 €[0.05,0.1,0.5, 1.0]
B €[0.05,0.1,0.5, 1.0]
DRD Ir € [le—7,2¢ —7,5¢e — 7,1e — 6]
Zo € [—50,500]

21 Notably, we are referring to the papers [12} 4} 5] 16| [7] to set the search ranges.

3https://github.com/huggingface/tr]
*https://github.com/vilm-project/vllm
>http://github.com/xxxxxx
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