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Abstract

Graph neural networks are powerful tools that enable deep learning on non-Euclidean data
structures like graphs, point clouds, and meshes. They leverage the connectivity of data
points and can even benefit learning tasks on data, which is not naturally graph-structured
–like point clouds. In these cases, the graph structure needs to be determined from the
dataset, which adds a significant challenge to the learning process. This opens up a multi-
tude of design choices for creating suitable graph structures, which have a substantial impact
on the success of the graph learning task. However, so far no concrete guidance for choosing
the most appropriate graph construction is available, not only due to the large variety of
methods out there but also because of its strong connection to the dataset at hand. In
medicine, for example, a large variety of different data types complicates the selection of
graph construction methods even more. We therefore summarise the current state-of-the-art
graph construction methods, especially for medical data. In this work, we introduce a cat-
egorisation scheme for graph types and graph construction methods. We identify two main
strands of graph construction: static and adaptive methods, discuss their advantages and
disadvantages, and formulate recommendations for choosing a suitable graph construction
method. We furthermore discuss how a created graph structure can be assessed and to what
degree it supports graph learning. We hope to support medical research with graph deep
learning with this work by elucidating the wide variety of graph construction methods.8

1 Introduction

Graphs can be used to represent several kinds of real-world datasets, such as networks, interactions, connec-
tions, or information flows. They hold information encoded in a set of nodes and edges, which connect pairs
of nodes. They can add a structural component to otherwise independent data points. A wide variety of data
can be structured as graphs, such as knowledge (Ruan et al., 2021), (3D) structures in space (Wolterink
& Suk, 2021), brain signals (Kim et al., 2021), or maps (Yu et al., 2021c). Yet, the question of how to
construct an appropriate graph structure from a given dataset can be non-trivial.

8The authors used ChatGPT for minor writing support.
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Figure 1: In this work, we summarise the state-of-the-art graph creation methods that allow one to transform
a high variety of medical datasets into graph structures to perform graph deep learning. Static graph creation
methods (upper row) extract the graph structure prior to learning, while adaptive methods (lower row)
change the graph structure during training.

Graph learning techniques have been designed to apply deep learning (DL) methods directly to non-Euclidean
datasets like graphs or meshes (Bronstein et al., 2017). These methods have since been frequently applied
to data that can efficiently be structured by using a graph, for example, social networks (Fan et al., 2019)
or molecules (Moreira-Filho et al., 2022), and have addressed tasks like friendship recommendations or
drug discovery. Graph deep learning also naturally benefits many applications on medical datasets, as
Graph Neural Networks (GNNs) have proven to be powerful algorithms for downstream tasks like medical
diagnosis (Parisot et al., 2017), or image segmentation (Xie et al., 2022). They allow for straightforward
integration of multi-modal data, such as image features and clinical data, into one coherent data structure,
which has been explored in the context of so-called population graphs, where a medical cohort is represented
by a graph structure instead of a tabular database (Kazi et al., 2022; Parisot et al., 2017).

Even in cases where a graph representation is not the default choice for a dataset, it has been shown that
imposing such a graph structure by leveraging connections between data points can improve the performance
of ML algorithms (Parisot et al., 2017; Ahmedt-Aristizabal et al., 2021; Bessadok et al., 2022; Pellegrini
et al., 2022). This way, relations can be utilised or newly discovered, which can be beneficial for the task
at hand (Cosmo et al., 2020). The application of GNNs to point cloud datasets, for example, can improve
model performance compared to only using individual data points (Wang et al., 2019). This has also
been shown in the medical field for tasks like disease prediction (Parisot et al., 2017), vessel segmentation
(Paetzold et al., 2021), or the interaction between symptoms, diseases, and medication (Ruan et al., 2021).
Here, spatial proximity (Yao et al., 2022; Hansen & Heinrich, 2021), medical knowledge (Mueller et al.,
2022a), anatomical structures (Sun et al., 2021), correlations (Kim et al., 2021), or cartographic location
(Yu et al., 2021c), have been used to generate a graph structure from previously disconnected data points.

This additional processing step of generating a graph structure introduces new challenges to the overall
downstream task (Ahmedt-Aristizabal et al., 2021) and the definition or fine-tuning of nodes and edges
hold a range of crucial design choices. This has turned out to be especially challenging in many medical
settings since for medical images or health reports a graph structure is not the default choice of representation.
Brain connectivity graphs have, for example, shown to be a suitable representation of the human connectome
(Bessadok et al., 2022), which represents a map of neural connections in the brain. However, the construction
of the brain graph holds challenges like the temporal component of functional magnetic resonance imaging
(fMRI). Tube-like structures like airways (Selvan et al., 2020) and vessels (Paetzold et al., 2021) can be
accurately represented by a graph that follows the anatomy of the structure at hand. Still, the concrete
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extraction of the graph structure requires precisely segmenting the curvilinear structures or transforming
branching points into nodes.

In addition to the wide variety of graph construction methods, the strong impact of the graph structure on
the success of the learning task makes this especially challenging (Luan et al., 2022). We thus conclude that
the construction of a suitable graph structure is crucial to optimally leverage the connectedness inherent to
the dataset.

1.1 Why the graph construction matters

Since the introduction of GNNs, many works have shown that GNNs can improve performance on non-
Euclidean datasets compared to graph-agnostic DL models (Cosmo et al., 2020; Parisot et al., 2017; Ahmedt-
Aristizabal et al., 2021). However, this assumption does not apply to all settings and datasets and recent
works have demonstrated that GNNs outperform graph-agnostic models only under specific circumstances.
This can often be attributed to the utilisation of unsuitable graph structures and can even lead to simple
graph-agnostic methods outperforming GNNs (Luan et al., 2022; Zhu et al., 2020). One of the reasons
for this might be an over-smoothing of node features over unideal neighbourhoods (with, for example,
highly diverse labels), which complicates the establishment of suitable feature embeddings required for the
downstream task. When node features of neighbours with highly different labels (and therefore different node
features) get averaged during message passing, the resulting node embedding might be an over-smoothed
representation that merges node features of different labels.

The interaction between the graph structure and the model performance has been investigated in several
works. One question of interest here is how and under which circumstances the graph structure hinders or
benefits graph deep learning. In this context, several graph metrics that assess the graph structure have
been introduced that are strongly correlated with GNN performances. One such metric is homophily (and its
counterpart: heterophily) (Luan et al., 2021; Ma et al., 2022), which quantifies the similarity of neighbouring
labels. Originally, GNNs were built on the assumption that connected nodes share similar properties (they
are homophilic), and GNNs perform well based on this assumption (McPherson et al., 2001). As a result,
several graph DL models underperform on datasets with diverse neighbourhoods (heterophilic graphs). More
metrics and their impact on GNN performance are discussed in Section 5.2.

Even though this line of research implies that the graph structure and, therefore, the graph construction
method strongly impacts the performance of GNNs, the analysis of the works of GNNs in medicine shows
that there is no unique, clearly defined method nor any guidelines for creating the graph structures from
the wide variety of medical datasets. In this work, we, therefore, survey recent works that address graph
creation methods for graph deep learning tasks with a focus on medical data. The methods summarised in
this review are not limited to applications on medical datasets, and we provide links to other non-medical
domains in Section 6.

1.2 Contributions and outline

This work provides an overview of graph construction methods in medicine. We performed a literature search
on Google Scholar based on keywords like “geometric deep learning”, “graph neural network”, “medicine”,
“population graph”, “disease”, “graph construction”, and combinations of them. We summarise 78 works
and categorise them by their graph construction method. The outline of this work can be summarised as
follows:

• We identify three types of graphs that can be distinguished: population-level graphs, subject-level
graphs, and subject-independent graphs, which we use to categorise the included works (Section 3),
as well as two structure types: relationship-based structures and spatially motivated graphs;

• In Section 4, we systematise existing works that utilise GNNs in medical application areas by graph
construction methods with a focus on static and adaptive graph construction (see Figure 1);

• We formulate recommendations for choosing suitable graph construction methods in Section 5.3;
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• We summarise existing graph assessment metrics that allow the evaluation of generated graph struc-
tures in Section 5.2;

• We embed our work into the context of related review papers in Section 6;

• We identify open challenges of graph learning in medicine (Section 7) and conclude with promising
future directions of research (Section 8).

2 Background

In this section, we give an overview of graphs, GNNs, and homophily - a main graph property linked to the
performance of GNNs.

2.1 Formal definition of graphs

Throughout this work, we discuss datasets involving graph structures. A graph G := (V , E) is defined as a
collection including a set of nodes/vertices V and a set of edges E connecting nodes. n = |V | denotes the
number of nodes in the graph. An edge eij = (vi, vj) defines the connection from node vi to node vj . A graph
G is undirected if and only if eij ⇒ eji, ∀i, j ∈ {1, . . . , n}. All edges E can be represented in the adjacency
matrix A of size n × n, where Aij = 1 if eij ∈ E and 0 otherwise. A weighted graph Gw := (V , E , W)
additionally requires a weight matrix W that assigns a weight to every edge in the adjacency matrix. The
weight matrix has the same dimensions as the adjacency matrix. A neighbourhood Nv of a node v ∈ V is
defined by a set of all nodes that have an incoming edge to node v: Nv := {u ∈ V |euv ∈ E}. A node v can
be represented by a feature vector xv ∈ Rm. The features of all nodes (node features) can be summarised by
the feature matrix X ∈ Rn×m. In this work, we summarise, categorise, and investigate different methods to
build the node feature matrix X, the adjacency matrix A, and the weight matrix W from different datasets.

2.2 Graph neural networks

Graph neural networks (GNNs) were first introduced by Gori et al. (2005) and further extended by Scarselli
et al. (2008). The term summarises a branch of research that expanded DL methods to non-Euclidean
datasets, using graph convolutions. Over the last years, several different graph convolutions have been
introduced. GNNs are based on a message-passing scheme, where the information stored in the nodes is
propagated among neighbouring nodes, following the graph’s edges. We here define the message passing at
the example of graph convolutional networks (GCNs) (Kipf & Welling, 2016) but note that the principle is
easily transferable to other graph convolutions.

Definition 2.1 (Graph convolutional networks (Kipf & Welling, 2016)) Let h
(k)
v define the feature

representation of node v at layer k. For GCNs, the initial node representation for all nodes v ∈ V is defined
as following:

h(0)
v = xv. (1)

The node embedding of node v at step k is then defined as:

h(k)
v = f (k)

(
W (k) ·

∑
u∈Nv

hk−1
u

|Nv|
+ B(k) ∗ h(k−1)

v

)
, (2)

where the function f , the weight matrix W , and the bias B are k-dependent learnable parameters that are
shared across all nodes (Daigavane et al., 2021).

The embedding of node v of the previous step (h(k−1)
v ), as well as the sum of all neighbouring node em-

beddings, are combined in the new node feature representation at step k. Different graph convolutions use
varied versions of this definition but also follow the message-passing scheme. For more information about
GNNs, we refer to Wu et al. (2020).
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2.3 Graph homophily and heterophily

A key statistical property of graphs that indicates how nodes of different labels are connected throughout the
entire graph structure is homophily (Luan et al., 2021). This property has been shown to potentially have a
significant impact on the performance of GNNs (Zhu et al., 2020). In general, three types of homophily can
be distinguished that all focus on a different nuance of the metric: node, edge, and label homophily (Luan
et al., 2021). Edge homophily (Zhu et al., 2020; Ma et al., 2022) in graphs is defined as the ratio of edges
that connect nodes with the same label vs. different labels (see Equation 3). Node homophily (Pei et al.,
2020) describes the average number of direct neighbours with the same label. Class homophily (introduced
by Lim et al. (2021) and termed by Luan et al. (2021)) is an extension of edge homophily with the additional
consideration for class imbalance. Formal definitions of node and class homophily can be found in Luan
et al. (2021). We here define edge homophily since this is the most commonly used metric to assess graphs.

Definition 2.2 (Edge homophily) Formally, the edge homophily of a graph G := (V , E) and the set of
node labels Y := {yu; u ∈ V } is defined as:

h(G, Y ) := 1
|E |

∑
euv∈E

I(yu = yv), (3)

where I is the indicator function.

In case half of the edges in a graph connect nodes with different labels and the other half connects nodes
with the same label, the graph has edge homophily of 0.5. A graph is described as homophilous when h is
large (typically larger than 0.5) and as heterophilous otherwise (Kim & Oh, 2021). Homophily is only one
metric to assess a graph structure and still holds some drawbacks regarding comparability between datasets
and the direct impact on the performance of the downstream model (Platonov et al., 2022). More details
about homophily and further graph assessment metrics can be found in Section 5.2.

3 Graph structures in medicine

Medical research and data often contain patient data that defines the structure of the dataset. We identify
three distinct graph types that are used in medical applications: (1) population-level graphs, where typi-
cally individuals of a cohort are connected in a large graph, (2) subject-level graphs, where each subject is
represented by an individual graph –leading to a multi-graph dataset–, and (3) subject-independent graphs,
which represent more general structures, such as knowledge graphs, molecules or maps. Each graph type
comes with individual challenges and utilises different methods for graph creation. In this section, we give an
overview of those three graph types, which are visualised in Figure 2. We furthermore distinguish between
two types of structures: (a) relationship-based and (b) spatial structures. Relationship-based structures use
concepts and relationships to determine the graph structure and spatial structures use spatial information,
for example, image key-points in Euclidean space. All graph types can be combined with all structure types.
We summarise the combinations of graph types and structure types with examples in Figure 3.

3.1 Population graphs

One research area of graph learning in medicine utilises so-called population graphs (Figure 2(a)). They are
generated by connecting all subjects in a cohort to a single (usually large) graph. The goal is to improve
model performance by using interactions between the subjects/nodes in the graph. The most common
structure of a population graph is one where every subject in the dataset is represented as a node and node
connectivity is, for example, defined by some distance metric between the subjects. When using population
graphs, the learning task of the GNN is usually node prediction. Here, a prediction (e.g. classification or
regression) is made for every node. This can, e.g. be a disease prediction (Parisot et al., 2017) or age
prediction (Kazi et al., 2022). Population graphs are an effective method to integrate multi-modal data and
enable the usage of patient data from different data sources and modalities. There are some examples where
population graphs are extended with some additional components. In Gao et al. (2021) e.g., the authors
create a bipartite graph, where subjects and gene expressions are represented by node entities.
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(a) Population-level graphs (b) Subject-level graphs (c) Subject-independent graphs

Figure 2: Schematic display of the three graph types utilised in medical research with GNNs: (a)
population-level graphs, where each node represents a subject and subjects are connected based on similarity,
(b) subject-level graphs with the example of a brain connectivity graph, where each subject is represented
by a separate graph structure (c) subject-independent graph structures, here represented by a schematic
display of a knowledge graph. The last category summarises graphs that represent more general aspects
compared to subject- or population-level graphs that are not linked to medical subjects.

3.2 Subject-level graphs

Another way to represent medical data is in the form of subject-level graphs. This term summarises various
graphs, where each subject in a dataset is represented by a single graph. The individual graphs are therefore
independent of each other and together constitute a multi-graph dataset. One commonly used example for a
subject-level graph is the representation of brain images as a brain connectivity graph (see Figure 2 (b)). In
general, there are numerous ways to create subject-level graphs, depending on the dataset at hand and the
application. They can, for instance, be used to represent structural connectivity in graph representations of
arteries (Chen et al., 2020b), brain vessels (Paetzold et al., 2021), or airways (Zhao & Yin, 2021; Selvan
et al., 2020), or to model a skeleton of a human in motion (He et al., 2022). When using subject-level
graphs, the most common learning task is graph prediction (e.g. classification or regression). However, there
are also applications where node-level and edge-level predictions (Chen et al., 2020b) are targeted using
subject-level graphs.

3.3 Subject-independent graphs

As a third category, we summarise subject-independent graph structures that represent more general concepts
and data. The graphs in this category represent structures that are independent of individuals, such as
molecules or maps, that are not tailored to subjects or cohorts of patients – in contrast to subject- or
population-level graphs. This includes knowledge graphs, which encode general concepts and knowledge
in graph structure, highlighting relations between different entities. They are often utilised in the context
of diseases, symptoms, drugs, or genes to display their correlation or interaction. They are usually not
personalised but are “intended to accumulate and convey knowledge of the natural world, whose nodes
represent entities of interest and whose edges represent potentially different relations between these entities”
(Hogan et al., 2021). An example of a multi-modal medical knowledge graph is PrimeKG (Chandak et al.,
2023), which includes information about drugs, diseases, phenotypes, exposures, and genes. Cheng et al.
(2021a) construct a knowledge graph on stroke data, and Bonner et al. (2022) review different knowledge
graphs on biomedical data for drug discovery. A knowledge graph differs from population graphs in the
sense that here, no individual patient data is represented as a graph, but general knowledge and connections
between entities are modelled in graph form. For a more detailed review of knowledge graphs, we refer to
Ye et al. (2022). Knowledge graphs can be used for different applications, either on their own or as an
additional source of information for other tasks, like in Pfeifer et al. (2022). Another example would be the
encoding of cartographical proximity in maps like connecting hospitals in different regions of the country
(Jin et al., 2021) or connecting cities based on their local proximity (Yu et al., 2021c) or molecules, where
nodes represent atoms and the edges bindings between them (Bonner et al., 2022). We consider molecules
as another example of subject-independent graphs. Molecule-based datasets in the medical domain are
commonly used for graph-level predictions, for example investigating drug properties (Duvenaud et al.,
2015; Kearnes et al., 2016) or potential interactions between different drugs (Xu et al., 2019).

6



Published in Transactions on Machine Learning Research (01/2024)

Figure 3: Categorisation of graph types and structure types with examples for the different cate-
gories. We consider three graph types: population-level, subject-level, and subject-independent graphs, which
represent overall structures that are not linked to medical subjects. Additionally, we distinguish two types
of structures: ones where the edges are based on relationships between nodes and ones that follow spatial
information.

4 Graph construction methods

In the following, we summarise and categorise the state-of-the-art graph construction methods for medical
data, linking them to the different graph and structure types introduced in Section 3. For graph deep
learning, graph structures are usually extended to contain node features. This additional knowledge is then
propagated along the graph structure during the learning process.

Generally, the graph construction process consists of two aspects: (1) defining the nodes and their features
and (2) defining connections between the nodes (edge construction). Each node has a feature vector of shape
m and all node features of a graph G with n nodes are summarised by a feature matrix X ∈ Rn×m. The edges
can be summarised by the adjacency matrix A ∈ Rn×n. The definition of the adjacency matrix and node
feature matrix are in general intertwined, and both steps are necessary to extract the full graph structure.

In the following sections, we investigate the definition of nodes and node features as well as the creation of
the graph structure itself (the edges). An overview of the categories for graph construction methods, with a
focus on the definition of the graph’s edges, is visualised in Figure 4.

4.1 Defining the graph’s nodes

The extraction of the graph’s nodes is highly dependent on the constructed graph type. When building
population-level graphs, every node usually represents a subject in the dataset. Node features can,
for example, contain tabular data like lab results (Parisot et al., 2017), images (Keicher et al., 2021),
image-derived features (Parisot et al., 2017), or combinations of those (Keicher et al., 2021).

For subject-level graphs, the node feature extraction can vary greatly. We here summarise the most
prominent node and node feature definition strategies for different subject-level graphs. For the creation of
brain connectivity graphs from fMRI data, the most commonly used approach to define node features is to
define regions of interest (ROIs). Here, the definition of nodes is often guided by a 3D atlas, which defines
the ROIs from the recorded BOLD signal (Wang et al., 2022b). We, therefore, say the definition of the
graph nodes relies on prior knowledge (it is prior-driven). There are some examples where slightly different
approaches are utilised to define the final nodes of a graph connectivity graph. For example, Zheng et al.
(2022a) identify the brain’s most informative regions through sub-graph generation. Yao et al. (2021) use
several templates with varying ROI parcellation scales to create coarse-to-fine brain connectivity networks
for each subject instead of depending on a specific brain parcellation. Yao et al. (2022), for instance, build
a graph from image data and use features extracted from a convolutional neural network (CNN) as node
features of the graph. To extract a subject-level graph that represents curvilinear structures, like vessels or
airways, branching points of the structure can be used to define the nodes of the graph. However, nodes
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Figure 4: Overview of graph construction methods for GNN training in medicine categorised by
static and adaptive graph construction. The icons represent examples of represented data in the respective
categories. For static graph construction methods, the previously introduced separation of structure types
by relationship-based and spatial interactions remains.

can also represent a section of the tube (Paetzold et al., 2021). Since in most cases, the definition of node
features and edges for subject-level graphs are intertwined, we provide more information about the node
features of subject-level graphs in Section 4.2.

Subject-independent graphs cover a wide range of different graph structures and datasets that all rep-
resent data that is independent of patients or subjects. This includes knowledge graphs, molecules, or
cartography-based data of maps. When building knowledge graphs, the nodes typically represent entities of
interest, such as diseases, symptoms, or medications. For molecules in drug research, for example, the nodes
usually represent the molecules’ atoms (Zheng et al., 2021; Zhao et al., 2021), and for cartography-based
graphs, cities or hospitals can, for instance, be used to encode the graph’s nodes (Yu et al., 2021c; Jin et al.,
2021).

4.2 Defining the graph’s edges

In this section, we introduce different methods for defining the structure of the graph (the edges). We hereby
categorise existing works based on the following criteria:

(a) Graph type: population-level, subject-level, and subject-independent graph structures
(b) Static and adaptive graph construction mechanisms
(c) Purely data-driven and prior-driven methods

Graph creation methods can be categorised into static and adaptive approaches. We consider a graph creation
method as static if the adjacency matrix is generated prior to training without any adaptions during the
learning pipeline and as adaptive if the graph structure is adapted during training. The different static and
adaptive graph creation methods are summarised in Table 1 and 2, respectively. Both tables also indicate
the generated graph type and whether the approach is data- or prior-driven. We consider methods that only
use the dataset at hand as data-driven and ones that also include additional prior knowledge as prior-driven.

4.3 Static graph construction methods

In this section, we categorise different static graph construction methods by the metric and information
utilised to define the edges between the nodes. We mainly discuss graph type, connection mechanism, and
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the utilised data. The available methods are summarised in Table 1. In column “Category” we categorise
each method by the utilised relation for edge construction. “Graph type” indicates the specific type of graph
(Section 3) that is generated, “Graph construction” refers to the utilised metric or property to decide when
an edge is added to the graph, the represented data is listed in the respective column, “P/D” indicates
whether the graph is prior- or data-driven and the listed references give examples of works that utilise the
respective methods, including the initial introduction of a specific method.

Table 1: Summary of static graph construction methods. We differentiate between different graph
types, construction methods, and source data types. We also indicate if the method is prior-driven (P),
data-driven (D) or both (P, D), as well as if the graph is weighted (W).

Category Graph type Graph construction Represented data P/D W References

Similarity
and
distance

Population level Similarity score Patient cohort D ✗ Parisot et al. (2017); Ghorbani
et al. (2022); Vivar et al. (2021)
Pellegrini et al. (2022); Peng et al.
(2022); Pan et al. (2021); Kazi
et al. (2019); Ghorbani et al.
(2021)

Population level Similarity score Image features, clinical data D ✓ Lin et al. (2023); Qiu et al. (2021)
Population level Mutual information Images, clinical data D ✗ Keicher et al. (2021)
Population level Euclidean distance Image features, clinical data D ✗ Lu et al. (2022); Yu et al. (2021b)
Subject level Euclidean distance EEG signal D ✗ Demir et al. (2021)
Subject level Euclidean distance Images D ✗ Sun et al. (2021)
Subject level Euclidean distance Airways D ✗ Tan et al. (2021)
Subject level Cosine similarity Images D ✗ Mahapatra et al. (2022)
Subject level Morphological similarity fMRI data D ✗ Mahjoub et al. (2018)
Subject level Pearson correlation Brain connectivity D ✗ Kim et al. (2021)
Subject level Partial correlation Brain connectivity D ✓ Li et al. (2021c)
Subject-independent Conditional probability Lesion types D ✗ Cheng et al. (2021b)

Relation Population level Medical assessments Patient cohort D ✓ Mao et al. (2022)
Subject-independent Known interactions Disease/symptom/medication P ✓ Ruan et al. (2021)
Subject-independent Interactions Ontologies P ✓ Hao et al. (2021)
Subject-independent Synergism/antagonism Drugs P ✓ Zheng et al. (2021)
Subject-independent Drug–protein pairs Drugs P ✓ Zhao et al. (2021)
Subject-independent Protein interactions Proteins P ✗ Schulte-Sasse et al. (2021)
Subject-independent Co-occurrences (Clinical) abnormalities P ✓ Liu et al. (2021); Zhou et al. (2021)
Subject-independent Co-occurrences Medical labels D ✓ Hou et al. (2021)
Subject level Medical importance ECG leads P ✗ Mueller et al. (2022a)
Subject level Protein interactions Proteins P ✓ Pfeifer et al. (2022)

Space,
structure,
or anatomy

Subject level Local proximity Image landmarks D ✗ Yao et al. (2022); Hansen & Hein-
rich (2021); Huang et al. (2023)

Subject level Tree structure Curvilinear structures D ✓ Yu et al. (2022a)
Subject level Tree structure Curvilinear structures D ✗ Paetzold et al. (2021); Wittmann

et al. (2023); Shin et al. (2019)
Chen et al. (2020b); Wolterink
et al. (2019); Yu et al. (2022b)

Subject level Local proximity Curvilinear structures D ✗ Xu et al. (2022); Xie et al. (2022)
Subject level Local proximity Curvilinear structures D ✓ Li et al. (2021b)
Subject level Anatomy Variety of patient data D ✗ Barbiero et al. (2021)
Subject level Anatomy 3D point clouds D ✗ Yu et al. (2021a)
Subject level Anatomy Skeleton P,D ✗ He et al. (2022); Deb et al. (2022)
Subject level Anatomy Curvilinear structures D ✗ Selvan et al. (2020)
Subject level Mesh generation Cortical surface meshes D ✗ Azcona et al. (2020); Gopinath

et al. (2019a); Wu et al. (2019);
Gopinath et al. (2019b)

Subject-independent Cartography Maps D ✗ Yu et al. (2021c); Jin et al. (2021)
Subject-independent Chemical structure Molecules D ✗ Bonner et al. (2022); Kearnes et al.

(2016); Duvenaud et al. (2015)
Subject-independent Text-derived Disease/symptom/medication P,D ✓ Vretinaris et al. (2021)
Subject-independent Chemical structure Disease/symptom/medication P,D ✓ Zhang et al. (2022b)

4.3.1 Graph construction based on relations

Following the in Section 3 introduced structure types (relationship-based and spatially motivated structures),
we can differentiate these two types of static graph construction. Relationship-based graph construction
methods define a relation between node features, such as similarity or interactions, and spatially motivated
graph construction methods utilise spatial information to define edges.
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Similarity-based graph construction

One method that is frequently used to determine whether nodes connect is based on a similarity or distance
measure. Simplified speaking, in this approach, two nodes will be connected, if they are “similar” or “similar
enough”. The similarity/distance between nodes can be defined by different metrics, including a similarity
score, the Euclidean distance, cosine similarity, or correlation-based similarity. Furthermore, methods using
similarity or distance measures to construct the graph structure can be categorised into ones using the
original data at hand, or a (mostly lower-dimensional) embedding of the original data (Lu et al., 2022).
When using a similarity or distance measure to determine whether nodes should be connected, usually an
additional step of edge selection needs to be performed to obtain the final graph (Section 4.3.4).

Similarity score The similarity between nodes in the graph can be defined with the help of a similarity
score. This is one of the most commonly used methods for the creation of population graphs in order to
determine how similar two subjects in a cohort are. This method was first introduced by Parisot et al.
(2017) in 2017 and has since then been used in many variants and applications, e.g. in Ghorbani et al.
(2022); Vivar et al. (2021); Pellegrini et al. (2022); Peng et al. (2022) and Lu et al. (2022). One advantage
of this method is that the similarity score considers discrete and non-discrete features and can be adapted
by adding additional weight factors. All available features are divided into two groups (e.g. imaging and
demographic features), then the graph is built based on a similarity score that uses one of these subgroups
of features (e.g. demographic features). The second group of features (e.g. imaging features) are used as
node features. Parisot et al. (2017) originally used this approach for brain analysis in Alzheimer’s disease
and autism prediction. They used phenotypic information for the graph creation and imaging features as
node features and show an example of multi-modal data integration.

Variations of this method have been used for bone age estimation (Du et al., 2015), brain age prediction
(Stankevičiūtė et al., 2020), autism detection (Rakhimberdina et al., 2020), genome inference (Dilthey et al.,
2015), disease prediction (Chen et al., 2020a; Kazi et al., 2019; Ghorbani et al., 2021), to only name a few.
In each of the here mentioned works, the original approach of creating the population graph by Parisot et al.
(2017) has been modified to best fit the data and the application. Some adaptations of this method have
also used both imaging and non-imaging features for graph creation as well as node feature representation
(Lin et al., 2023) to maximise the information about the similarity between individual subjects.

Correlation-based similarity Another option to create the graph structure is by evaluating the cor-
relation between node features and connecting those nodes that show high correlation. Similar to the
similarity-based creation, the correlation is thresholded and only nodes that are “correlated enough” will be
connected by edges (Section 4.3.4). This method is used mainly for the creation of brain connectivity graphs
from functional magnetic resonance imaging (fMRI) data. Here the correlation between the blood oxygen
level dependency (BOLD) signal, indicating alterations in blood oxygen levels over time of all previously
defined regions of interest (ROIs) –which are represented by the nodes in the graph– is first averaged within
each brain ROI. Then, a correlation metric is calculated between pairs of regions, and the nodes that show a
high correlation are connected leading to functional connectivity that illustrates the communication between
different brain regions.

Pearson’s correlation coefficient, which measures the linear correlation between nodes, has been commonly
used to evaluate functional connectivity. Values range from −1 to 1 where the former shows perfect negative
correlation and the latter perfect positive correlation. A value of 0 indicates no correlation. Alternatively,
other correlation methods such as partial correlation, Ledoit-Wolf (LDW) regularised shrinkage estimator
(Noman et al., 2021) and Spearman’s rank correlation (Yu et al., 2023) are utilised to construct functional
connectivity. Partial correlation is an extension of the Pearson correlation coefficient, which measures the lin-
ear relationship between two variables. By removing the effects of the controlling variables, partial correlation
helps to identify the unique relationship between the two variables of interest, providing a clearer understand-
ing of the associations between them. LDW regularised shrinkage estimator is a statistical method designed
to improve the estimation of covariance matrices when the number of observations –number of scans– is
small compared to the number of variables –number of ROIs. Noman et al. (2021) use this method to obtain
well-conditioned functional connectivity. Spearman’s rank correlation is a non-parametric rank correlation
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method between two nodes that can detect monotonic nonlinear relationships. Yu et al. (2023) propose a
multi-graph attention network to use both Pearson’s and Spearman’s rank correlation measures. Li et al.
(2021c) utilise ROI-aware GNN assuming more closely connected ROIs exert a greater effect on each other
and apply node (ROI) pooling layer (R-pool) to retain the most representative ROIs while eliminating noisy
nodes. Gharsallaoui et al. (2021) predict an affinity matrix of the target view from the source view. Klepl
et al. (2022) compare different functional connectivity measures for Alzheimer’s disease prediction from EEG
data as well as different edge selection methods.

One potential shortcoming of the creation of brain connectivity graphs from the BOLD signal is that the
signal and the correlation between ROIs change over time. Kim et al. (2021); Kong et al. (2021); Wang et al.
(2022b) target this by creating several brain connectivity graphs for different time steps to allow a more
dynamic graph structure over time. Kong et al. (2022), e.g., propose a multi-stage learning module to fully
utilise features at different stages and use a deep auto-encoder to extract the graph structure.

Distance measures and mutual information In line with the usage of a similarity score, the Euclidean
distance or the cosine similarity has also been used to determine the “distance” between nodes (Lu et al.,
2022; Yu et al., 2021b). These distance measures can also be interpreted as a similarity between nodes and
used as a basis for edge selection (Section 4.3.4), where only the least distant nodes are connected. Keicher
et al. (2021) use images, extracted image features, and clinical data as node features and build the graph
based on mutual information.

Interaction-based graph construction

Apart from similarity- and correlation-based edge definitions, the graph structure can also be derived from
(usually known) interactions between entities. This can e.g. be symptoms that are related to certain diseases,
medications that are used to treat diseases, or lab results that are associated with specific doctor’s visits
(Mao et al., 2022).

Knowledge graphs Knowledge graphs are typically constructed based on known relations between entities
that are usually extracted from large knowledge resources or clinical studies. Medical knowledge graphs can
for example contain diseases, symptoms and medications, connecting co-occurring symptoms and diagnosed
diseases with prescribed medication and reported symptoms. Even though the graph is constructed based on
general knowledge, several design choices still remain. Zhang et al. (2020) create a knowledge graph based on
clinical studies where abnormalities are connected with organs and body parts. Hou et al. (2021) follow the
same graph creation approach, with an additional step of post-processing where missing links are included
in a data-driven manner. Protein-protein interactions can be encoded in knowledge graphs and have, for
example, been used to identify cancer genes (Schulte-Sasse et al., 2021) and drug–target interactions (Zhao
et al., 2021).

The knowledge graph PrimeKG (Chandak et al., 2023) was for example built on large resources like Drug-
Bank (Assempour et al., 2018), Drug central (Avram et al., 2021), and Entrez gene (Maglott et al., 2010)
- to mention only a few. The authors highlight that PrimeKG contains edges between drugs and diseases
that specify “indications”, “contradictions”, and “off-label use”, which are often missing in other medical
knowledge graphs (Chandak et al., 2023).

These constructed knowledge graphs can then be used as a basis for decision-making and graph learning.
The authors in (Vretinaris et al., 2021) for example use a knowledge graph to combine generally applica-
ble information regarding medications and symptoms with text-derived patient-specific information about
their individual symptoms. Zhang et al. (2022b) utilise a similar technique and utilise an attribute graph,
containing chemical structures of drugs as an additional graph to the knowledge graph.

Prior knowledge The graph structure can also be created or influenced by the inclusion of prior knowledge
about the data and the importance of specific features in other areas apart from knowledge graphs. This
was for example applied in a graph classification task using electrocardiogram (ECG) data to determine left
bundle branch blocks (Mueller et al., 2022a), where prior medical knowledge about the importance of seeds
guided the graph construction method.
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(a) Vessel tree (b) Centerline and branching points (c) Abstract graph

Figure 5: Example of an abstract graph representation of a vessel tree, with nodes encoding
branching points and edges encoding vessel segments. Given a vessel segmentation extracted from a 3D or
2D image (a), centerlines and branching points are automatically or semi-automatically extracted (b), from
which a graph is defined (c). Although the graph is inherent to the structure of the vessel tree, the extracted
graph ultimately depends on the entire processing pipeline, which is inherently noisy.

Pre-defined structural connections Some datasets come with internal structural information, from
which the graph can be extracted. An example of this would be molecules, which have been used for drug
discoveries (Bonner et al., 2022) or protein analysis (Pfeifer et al., 2022). Here, the graph creation usually
follows the molecular bindings. For more information about these pre-defined structural connections, we
refer the interested reader for example to a review on ML approaches for the design of multi-target drugs
(Moreira-Filho et al., 2022).

4.3.2 Graph construction based on space, structure, or anatomy

Another graph construction technique is building spatio-structural or spatio-semantic graphs, where the
nodes have associated positions in a metric space. In this case, the relations between the nodes usually
correspond to distances in the respective metric space. The starting point can e.g. be a 2D or 3D image or
a map, and a common choice for the metric space is the Euclidean space.

Curvilinear structures One prominent application of spatio-structural graphs in medical imaging is rep-
resented by curvilinear structures. These are long, thin, structurally constrained tubular structures, following
a tree or network configuration. Examples of such structures are vessel trees, airways, or neurons. As an
exemplification of their structural constraints, vessel trees follow blood flow constraints, their branching
pattern is dictated by the perfusion requirements of nearby tissue, and the cross-sectional diameter of con-
stituent vessels progressively narrows in the distal direction. The inherent graph structure of these objects
makes them ideal candidates for geometric deep learning: either by achieving a more compact, abstract
representation for branch classification or exploiting geometric information for an auxiliary task. The graph
representation is typically only a secondary representation derived from an initial imaging representation,
making graph learning highly dependent on the quality of the graph extraction process. Figure 5 shows an
example of a graph representation derived from a vessel tree.

The most straightforward representation of curvilinear trees as graphs follows the structure of the trees, where
branching points form the node set and individual segments are edges. Such an approach is suitable for multi-
class classification tasks, such as airway or vessel labelling. Chen et al. (2020b) construct a graph of the
intracranial arteries by choosing nodes as centerline points with more than two neighbours and linking them
based on skeleton connectivity. Their approach to multi-class vessel labelling is formulated as simultaneous
node and edge classification, where message passing occurs through both node and edge representations.
Many other works opt to formulate the branch labelling problem as node classification instead since node
classification is more widely spread than edge classification. Paetzold et al. (2021) introduced the VesselGraph
dataset of graphs derived from mouse brains for the tasks of link prediction and vessel classification. The
graph structure is extracted by first generating a segmentation of a 3D volume, then processing it via the
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graph extraction tool Voreen (Drees et al., 2021). Then the initial graphs with nodes as branching points
and vessels as edges are subsequently converted via the line graph approach, such that nodes of the derived
graph correspond to the edges of the initial graph. Xie et al. (2022) performed anatomical labelling of
airways by directly constructing a graph where nodes correspond to branches and assigning edges based
on the connectivity in the image segmentation map. Yu et al. (2022b) used a similar graph construction
approach for airway labelling while adding additional hyperedges between the children of a parent, thereby
using two information passing pathways.

Another prominent use of curvilinear structures in graph-based deep learning is to improve image segmen-
tation. The construction of the graph is less abstract in such scenarios, instead following the voxel structure
of the data representation. Nodes are no longer well-defined anatomical structures such as branches or
branching points but tend to be pixels or superpixels, while edges follow their connectivity in the image. Xu
et al. (2022) first partition the input image into superpixels, which become the nodes of the vessel graph.
Edges are then only defined between nodes corresponding to neighbouring superpixels in the original image.
The superpixel-derived graph is used for vessel segmentation refinement, by predicting superpixel vesselness
as a binary node classification problem. Similarly, Shin et al. (2019) proposed to train a node classifier for
segmentation refinement also using vesselness prediction. However, in their approach nodes are represented
by points sampled equidistantly along the centerlines rather than superpixels, whereas edges are based on
node connectivity or geodesic distances.

Some works (Yu et al., 2022a; Li et al., 2021b; Tan et al., 2021) only use GNNs during training for improved
CNN feature representation for image segmentation, rather than as a standalone task. Yu et al. (2022a)
partition the image into super-voxels and sample a node per super-voxel, relying on travel distance between
nodes in the ground truth for determining edges, while Li et al. (2021b) rely on corner sampling following
skeletonization for node creation and a similar approach for determining edges. Tan et al. (2021) perform
airway segmentation via CNNs with concatenated GNN features by combining nodes around landmarks and
nodes sampled at random lung locations. The adjacency matrix is created by connecting the k nearest
neighbours, in addition to connecting another node with the same predicted semantic class for each node to
improve homogeneity.

Wolterink et al. (2019) use a different approach for vessel segmentation. Instead of working in the pixel
space, they turn to the polar space centred around the vessel centerline and formulate the vessel segmentation
problem as regression. For each cross-section of the centerline, a node for the centerline and 24 additional
nodes around the centerline are created. Thus, the GNN is trained to regress the distance to the centerline.
Each non-centerline node is connected to its corresponding centerline node, the corresponding nodes in
adjacent cross-sections, as well as 2 neighbouring nodes. Additional connections are defined to establish a
triangle mesh, whose vertex coordinates are determined by the regressed distances in the polar space.

Skeleton representation Another application that follows anatomical structures for graph creation, is
the representation of the human skeleton in graph structure. Deb et al. (2022) use skeleton representation
and GNNs for the assessment of physical rehabilitation exercises. Similar representations have been used for
the detection of Parkinson’s disease, where skeletons are extracted from video data of patients (He et al.,
2022). The authors use two different methods for generating the graph structure: (1) connecting the joints
of the skeleton locally, following the underlying skeleton (prior knowledge), or (2) globally, where every joint
of the skeleton is connected to one node at the position of the neck. This shows that even when the data
contains natural connectivity, there are multiple ways to extract a suitable graph structure for graph deep
learning. The different representations are visualised in Figure 6.

Surface Meshes Meshes are a special type of graph structure, that can benefit from graph deep learning
Bronstein et al. (2017). A mesh usually represents a 3D structure in space, where nodes are aligned around
the surface of an object. Edges usually build triangular faces between neighbouring nodes, which is why they
are often also referred to as triangulated meshes. Meshes have also been used for medical data representation,
such as cortical structures (Azcona et al., 2020; Gopinath et al., 2019a; Wu et al., 2019; Gopinath et al.,
2019b) in neuroscience or organ surfaces (Mueller et al., 2022b). Meshes can, for example, be extracted from
segmentations of 3D images, using methods like marching cubes (Lorensen & Cline, 1998). Other works
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(a) Local connection module: here the
graph structure follows the underlying
skeleton of a person.

(b) Global connection module: all rele-
vant joints are connected to one global
node at the neck of a person.

(c) Another local connection module:
here the spine is also included in the
skeleton representation.

Figure 6: Schematic visualisation of two approaches to create a graph structure for skeleton representa-
tions that are introduced in He et al. (2022) and Duan et al. (2022).

utilise finite element meshes (Salehi & Giannacopoulos, 2022), for example, using methods like TetGen
(Hang, 2015). Mueller et al. (2023c) use body surface meshes for the quantification of different types of fatty
tissue. Surface meshes are frequently used in neuroscience. The authors in Salehi & Giannacopoulos (2022)
use cortical meshes for soft tissue prediction in image-guided neurosurgery. Salehi & Giannacopoulos (2022),
e.g., use meshes for predicting soft tissue deformation in image–guided neurosurgery. Azcona et al. (2020)
use surface meshes for brain morphology estimation for Alzheimer’s disease classification. They analyse
cortical and subcortical irregularities that have been shown to be correlated with Alzheimer’s disease. A
review by Zhao et al. (2023) summarises methods for cortical surface-based neuroimage analyses, including
methodologies for cortical surface extraction and parcellation. Popular software tools like FreeSurfer (Fischl,
2012) have integrated methods for cortical surface extraction from MR images.

Image landmarks Graphs can also be extracted from images by identifying landmarks in the image and
then connecting them based on local proximity. Hansen & Heinrich (2021) apply this method to extract
lung landmarks from 3D computer tomography (CT) images in order to perform graph-based registration.
They use the Foerstner interest operator (Förstner & Gülch, 1987) to identify sparse landmarks from the
image, and then use a minimum spanning tree to construct the edges of the graph structure (Heinrich et al.,
2015). Zhao (2021) use several graph structures in their work. One of them uses simple linear iterative
clustering (SLIC) (Achanta et al., 2012) to determine the connection between super-pixels in chest X-ray
images. Huang et al. (2023) use image patches as nodes, connect neighbouring nodes to construct a graph,
and apply GNNs for image reconstruction.

Cartography-based graphs There are a few works, where the graph structure follows cartographic prox-
imity, like maps or regions. Jin et al. (2021) e.g. use hospitals and regions as nodes in their graphs, connecting
geologically close entities. Yu et al. (2021c) suggest representing nodes by cities in the graph structure, and
the proximity of geolocation is used to connect them.

4.3.3 Fully connected graphs

Similar to pre-defined graph structures, there are some applications, where a fully connected graph is used
(Chao et al., 2020). In those scenarios, no graph creation method has to be chosen. Instead, all nodes are
connected to all other nodes. Chao et al. (2020), for example, use fully connected graphs for lymph node
gross tumour volume detection.

4.3.4 Edge selection

In many of the above-mentioned graph creation methods, a distance/similarity/correlation/proximity be-
tween nodes is derived. However, this does not directly lead to a final graph structure. In order to create
the final (sparse) graph from the determined distance between the nodes, a set of –sometimes weighted–
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edges needs to be selected. This is usually either done by (a) thresholding or (b) selecting a fixed number of
neighbours (k-nearest neighbours).

Thresholding edges Thresholding techniques can be further split into absolute thresholding and pro-
portional thresholding. In absolute thresholding, a fixed threshold is chosen to remove weak connections
which results in varying graph densities for different subjects. In proportional thresholding, a portion of
the strongest connections is kept resulting in all graphs having the same edge density. The latter method
is for instance used by (Noman et al., 2021; ElGazzar et al., 2022). In addition to those methods, Yang
et al. (2021) applied the spatial-constrained sparse representation optimisation method to obtain a sparse
representation matrix that captures the relationships between brain regions while considering their spatial
proximity.

k-nearest neighbour selection Alternatively, the k-nearest neighbours (k-NN) of each node can be
selected based on the similarity/distance/proximity between the nodes. This way, every node is connected
to a fixed number (k) of neighbours. K-NN graph creation methods are applied in several application areas,
e.g. for population-level graph creation and brain graph creation. In the latter, a k-NN graph is derived
from each densely connected functional connectivity matrix. It connects each brain region of interest to the
k neighbours that show the highest connectivity. This is for example used in Zhang et al. (2021b); Qu et al.
(2021); El Ouahidi et al. (2022); Wang et al. (2022a); Yao et al. (2021). For population-level graphs, usually,
the k-nearest neighbours are selected based on the features extracted from the dataset (Lu et al., 2022; Yu
et al., 2021b). An implementation of a k-NN graph creation is for example provided by PyTorch Geometric
(Fey & Lenssen, 2019).

4.4 Adaptive graph construction methods

In contrast to the previously investigated static graph creation methods, we here introduce adaptive methods,
where the graph structure is adapted during GNN training. The methods using adaptive graph construction
are summarised in Table 2.

Zhu et al. (2021) propose a categorisation of adaptive graph creation methods into (a) metric-based, (b)
neural-based, and (c) direct approaches. Metric-based approaches (a) use kernel functions to compute a
similarity between node features or embeddings and use those to determine edge weights. Neural approaches
(b) use neural networks to predict the edge weights, and direct approaches (c) interpret the adjacency matrix
as free variables. They refer to adaptive graph creation methods in general as “graph structure learning”
(GSL). However, these terms are not common in the medical domain, where instead the terms dynamic
and latent are used. Dynamic approaches adapt the graph structure in between training steps, but do not
specifically learn the graph structure in an end-to-end manner, which latent graph construction methods do.

Table 2: Summary of adaptive graph creation methods with their corresponding graph types and
examples of original data, from which the graph is extracted. D indicates, that the graph creation method
is data-driven and P that it is prior-driven.

Category Graph type Method Represented data P/D References

Dynamic Subject-independent Euclidean distance Point clouds (non-medical) D Wang et al. (2019)
Subject-independent Euclidean distance Proteins, molecules D Tran et al. (2018)
Population level Cosine distance Patient cohort D Zheng et al. (2022b)
Population level Contrastive learning Brain connectivity D Wang et al. (2022b)
Subject level Euclidean distance Airways D Garcia-Uceda Juarez et al. (2019)

Latent Population-level End-to-end learned Patient cohort P,D/D Kazi et al. (2022); Cosmo et al. (2020); Mul-
lakaeva et al. (2022); Huang & Chung (2020);
de Ocáriz Borde et al. (2023); Song et al. (2021)

Subject level End-to-end learned Brain connectivity D Kan et al. (2022); Campbell et al. (2022); Mah-
mood et al. (2021); El-Gazzar et al. (2021); Zhu
et al. (2022)

Subject level End-to-end learned MR images D Mo et al. (2021a)
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4.4.1 Dynamic graph construction

Dynamic graph creation methods do not construct a fixed/static graph structure before training but change
the graph structure depending on the embeddings during GNN training. Wang et al. (2019) propose dynamic
graph CNNs (DGCNNs) for the analysis of point clouds. They extract a k-nearest neighbour graph based
on the feature space of the applied neural network, which changes in between training steps. In Tran et al.
(2018), the authors extend this method with a new definition of graph convolutional filters with the goal
of improving the impact of distant neighbours. They use the shortest path connections and also do not
optimise the latent space with respect to the graph structure but regarding the downstream task. Their
k-nearest neighbour operation is not differentiable. Tran et al. (2018) also apply their method to biological
graphs like molecules and proteins, however, they have not been applied to medical datasets specifically.

Zheng et al. (2022b) introduce a framework that utilises a dynamic graph generation method for disease
prediction with a focus on the integration of multi-modal data. With the addition of separate loss terms,
their method optimises for the downstream task and certain properties of the adjacency matrix of the graph,
using attention. Wang et al. (2022b) use contrastive learning to generate a population-level graph from fMRI
data using multiple views of the fMRI scans of every subject. They use partial correlations between ROIs to
learn the graph structure that represents the fMRI data. Zhao et al. (2022) dynamically generate the graph
structure by aggregating calculated k-NN graphs during training. This method retains more comprehensive
non-local information diffusion compared to the proximity derived from a fixed input space.

Garcia-Uceda Juarez et al. (2019) use GNNs for improved CNN feature representation, by placing a GNN
as the bottleneck layer inside a U-Net (Ronneberger et al., 2015). Features from the last encoder layer
corresponding to encoded super-voxels serve as nodes connected either through regular grid connectivity, or
based on the nearest neighbours in the feature space.

4.4.2 Latent graph learning

Here, we summarise methods that specifically learn the graph structure in an end-to-end manner. This
requires the adjacency matrix of the graph to be differentiable. When using static graph construction
methods, the adjacency matrix A is often a binary discrete matrix, where an entry aij = 1 indicates that
there is a connection from node i to node j. When using latent graph creation methods, A needs to be
continuous, to allow backpropagation through the adjacency matrix (Figure 7). This is usually implemented
by a fully connected graph with continuous edge weights that are updated during learning.

GNN

Figure 7: Schematic overview of a latent graph learning approach. Figure adapted from Cosmo et al.
(2020); Kazi et al. (2022). The purple arrows indicate the backpropagation tracks through the networks. fϕ

is an embedding network with learnable weights ϕ and A is the adjacency matrix, which will be updated.

The first works in this area used the spectral domain to learn the latent structure of the graph (Zhan et al.,
2018; Li et al., 2018; Huang et al., 2018). These spectral methods require an initial graph which will then
be changed over training and are limited to transductive learning settings since the extraction of the graph
Laplacian requires the full graph including test and validation sets. Later, latent graph learning methods
have also been transformed into the spatial domain, which also allows inductive training.
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Cosmo et al. (2020) were the first to apply this approach in medical research for computer-aided diagnosis
(CADx) and disease prediction. They could report improved performance when using a learned graph
structure on two CADx problems (brain age prediction and Alzheimer’s Disease prediction) compared to the
approach of extracting a graph structure prior to training the GNN. In terms of graph structure learning,
their method is classified as a “metric-based” GSL (Zhu et al., 2021). Mullakaeva et al. (2022) suggest
extending the same graph learning method by adding additional loss to control the graph sparsity and
applying it to a graph-in-graph learning task. Mo et al. (2021a) explore a similar technique for multi-modal
data integration of MR images that also utilises an end-to-end trainable adaptive graph learning method.
Huang & Chung (2020) also utilise an adaptive graph learning mechanism for disease prediction with the
aid of population graphs. Their method includes a Monte-Carlo edge dropout for uncertainty estimation.
This can be used to quantify the uncertainty of the edges learned in the graph creation method.

As an extension of Cosmo et al. (2020), Kazi et al. (2022) introduce the differentiable graph module (DGM).
They propose two variants of their method with different sampling strategies: continuous and discrete. The
latter has the advantage that a sparse graph can be sampled without the need for a fully connected adjacency
matrix and requires the utilisation of the Gumbel-top-k trick (Kool et al., 2019) to ensure differentiability. In
general, DGM can be applied based on an initial graph structure (prior-driven) or solely on the node features
(data-driven). DGM uses Euclidean space to encode the latent features from which the latent graphs are
decided. de Ocáriz Borde et al. (2023), extend the DGM to work on more complex embedding spaces by
utilising Riemannian geometry.

One aspect in which static methods seem to show shortcomings in representing the full dimensionality of
the data is when a temporal component is introduced. Functional brain connectivity networks e.g. fluctuate
over time and can therefore benefit from an adaptive creation of the graph structure (Kim et al., 2021). We
found five works that use similar approaches to learning the graph structure of functional brain connectivity
networks end-to-end (Kan et al., 2022; Campbell et al., 2022; Mahmood et al., 2021; El-Gazzar et al., 2021;
Zhu et al., 2022). In the method proposed by El-Gazzar et al. (2021), the adjacency matrix is randomly
initialised, and its weights are adaptively learned along with the GNN weights by using gradient descent.
Zhu et al. (2022) couple feature learning with dynamic graph learning into the GCN architecture. Campbell
et al. (2022) and Mahmood et al. (2021) utilise self-attention in their model architecture. Kan et al. (2022)
introduce loss components that enforce sparsity in the graph and maximise the similarity between adjacency
matrices of the same group while minimising similarity between differently labelled subjects.

There are some methods for adaptive graph construction, that have –to the best of our knowledge– so far
not been applied to medical data that we consider promising methods from which medical data analysis with
GNNs could benefit. Some examples are pointer graph networks (Velickovic et al., 2020), dynamic graph
message passing networks (Zhang et al., 2022a), and deep heterophily graph rewiring (Bi et al., 2022).

5 Discussion and recommendations

In this section, we give insights and recommendations for selecting suitable graph construction methods.
We summarise the main advantages of static and adaptive graph creation methods (Table 3) and provide
an overview of graph metrics, that can be used to assess the generated graph structure. We give recom-
mendations regarding the selection of a graph type as well as the choice between static and adaptive graph
construction and discuss some essential impacts of the graph structure on different graph convolutions,
guiding a suitable choice of the latter for the downstream task.

5.1 Static vs. adaptive graph construction

Comparing Tables 1 and 2, we can see that fewer works utilise approaches that work with an adaptive graph
structure creation, compared to the static approaches. In the following, we will compare both methods and
discuss the shortcomings and benefits of both (Table 3).

Static graph creation methods are more computationally efficient during training since they do not require
updating the graph structure. They require fewer trainable parameters and are easier to train in general.
Backpropagating through the adjacency matrix and fine-tuning the adjacency matrix during training (adap-
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Table 3: Overview of advantages and disadvantages of static and adaptive graph construction methods
with respect to different aspects of the methods.

Aspect Static Adaptive

Training efficiency Computationally more efficient during training No pre-processing w.r.t graph creation required
Complexity of training Easier to train (fewer (hyper-)parameters) More difficult to train
Final graph structure Generally applicable for different problems Adjacency matrix is fine-tuned to the problem
Further utility of graph structure Application independent graph structure Adjacency matrix usable for interpretability
Generalisability of method Different datasets require different methods General method, dataset independent
Prior knowledge Can be easily included in the graph Some methods allow inclusion of prior knowledge

tive approach) adds additional complexity to the learning problem and can make training more difficult. On
the other hand, the end-to-end learning of the graph structure eliminates critical design choices, since the
adjacency matrix does not need to be defined prior to training.

Another advantage of adaptive graph creation methods is that the resulting adjacency matrix is fine-tuned
to the specific task. This way, the most suitable adjacency matrix can be learned. This is not the case
for static methods, where the edges are defined prior to learning. Whereas the latter makes the adjacency
matrix more general and the same matrix can be used for different learning tasks on the same dataset.

Regarding the utility of the created graph structure beyond the specific downstream task, the adeptly gener-
ated adjacency matrix can also be used for interpretability purposes. Learned connections can indicate corre-
lations between node components or highlight more important regions of the graph. Campbell et al. (2022)
use their adaptive graph creation functional connectivity networks as a basis to identify sex-discriminate
brain regions, which show higher importance within the decision-making progress of the algorithm.

5.2 Graph assessment

So far, we have investigated different methods to construct a graph structure from medical data and evaluated
the advantages and disadvantages of different methods. Now we discuss methods that can be used to assess
the constructed graph in terms of similarities in neighbourhoods. This can be done before or during model
training, depending on the utilisation of static or dynamic methods. Several graph assessment metrics have
been introduced to evaluate the impact of the graph structure on the learning of GNNs. Table 4 summarises
the different metrics as well as a summary of their targets.

Table 4: Summary of graph assessment metrics that have been shown to be correlated to GNN
performance and can be used to evaluate generated graph structures.

Graph Assessment Metric Reference Details

Edge homophily Zhu et al. (2020) Ratio between edges connecting same and differently labelled nodes
Node homophily Pei et al. (2020) Average amount of neighbours with the same label
Class homophily Lim et al. (2021) Edge homophily with consideration for class imbalance

Adjusted homophily Platonov et al. (2022) Extension of edge homophily satisfying maximal agreement
Label informativeness (LI) Information quantity provided about a node’s label

Probabilistic Bayes Error (PBE) Luan et al. (2023) Probability of a node being misclassified
Negative generalized Jeffreys divergence Analytic expression for PBE

Normalized total variation (NTV) Luan et al. (2022) Variation of the graph signal w.r.t. graph filters
Normalized smoothness value (NSV) Effect of the edge bias

Neighbourhood entropy Xie et al. (2020) Similarity of node embeddings within neighbourhoods
Center-neighbour similarity (Dis)similarity of the neighbours of a node

Aggregation similarity score Luan et al. (2021) Proportion of similarity weights after aggregation
Diversification distinguishability Proportion of nodes benefitting from diversification operations

Cross-class neighbourhood similarity (CCNS) Ma et al. (2022) Similarity measure for neighbourhoods

Label smoothness Hou et al. (2019) Dissimilarity of neighbouring labels
Feature smoothness Similarity between connected feature vectors
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Edge homophily (Zhu et al., 2020) (defined in Section 2.3) is one of the most commonly used metrics
known to be correlated with the performance of GNNs. It has been shown that several graph convolutions
do not perform well on heterophilic graph structures. However, homophily is not a necessary property for
successful graph learning and heterophily affects different graph models at different rates (Zhu et al., 2020).
Heterophilic graphs can have very different structures, containing either highly informative neighbourhoods
or uninformative ones. These different notions of heterophily can be captured by other metrics, such as label
informativeness (Platonov et al., 2022) or cross-class neighbourhood similarity (CCNS) (Ma et al., 2022).
For that reason, a more general term node distinguishability (ND) has been used (Luan et al., 2023), which
quantifies the difference in neighbourhoods more generally than heterophily/homophily.

Additional metrics have been introduced that have shown to impact the performance of GNNs (Luan et al.,
2021; Ma et al., 2022; Luan et al., 2022). Luan et al. (2022) discuss in which settings GNNs are beneficial and
when GNNs under-perform other ML models and introduce two metrics called normalized total variation
(NTV) and normalized smoothness value (NSV) to measure the effect of edge bias. Xie et al. (2020) decide
when neighbourhood aggregation may be unnecessary by evaluating the so-called neighbourhood entropy and
centre-neighbour similarity in graphs. Luan et al. (2021) assess graph statistics with the aid of an aggregation
similarity score and a diversification distinguishability metric, mainly capturing the linear relations of the
aggregated node features. Ma et al. (2022) investigate the similarity in neighbourhoods of same-labelled
nodes and call their metric cross-class neighbourhood similarity (CCNS). Mueller et al. (2023a) reduce the
CCNS matrix to a single value they call CCNS distance. Label informativeness (LI) (Platonov et al., 2022)
quantifies the information content a neighbour’s label provides about the label of a node of interest and
therefore gives more insights into different notions of heterophily. Luan et al. (2023) address the concept of
node-distinguishability (ND), which is represented by several metrics (Ma et al., 2022; Luan et al., 2023).
This concept is more general than homophily versus heterophily. Luan et al. (2023) also extend the idea of
homophily by introducing probabilistic Bayes error (PBE) and negative generalised Jeffreys divergence as
metrics. PBE describes the “probability of a node being misclassified when the true class probabilities given
the predictors are known” (Luan et al., 2023) and the negative generalised Jeffreys divergence is an analytic
expression for PBE. Hou et al. (2019) introduce two smoothness metrics: label and feature smoothness.
Label smoothness is similar to the homophily metric and feature smoothness quantifies how similar the node
features are between connected nodes.

There is no easy answer to what a “good” graph structure looks like. Some graph learning methods are
highly sensitive to heterophilic graphs, while others work well on both homophilic and heterophilic graphs
(Zhu et al., 2020). Different notions of heterophilic graphs (Platonov et al., 2022) show the complexity of
assessing graph structures by their homophily value. We believe that the notion of node distinguishability
(Luan et al., 2023) summarises the impact of graph characteristics on GNN performance best.

Given the complexity of assessing a graph structure, we advise using multiple graph assessment metrics –
ideally before (and for adaptive methods also during) model training. They can shed light on the composition
of the graph and can potentially reveal reasons for poor performance or guide a suitable graph convolution
for performing the downstream task. The evaluation of different metrics that assess different qualities of
the graph structure can be essential for understanding the complex interplay between graph structure and
model performance (Platonov et al., 2022).

Graph assessment beyond supervised node classification While graph assessment metrics have
mostly been applied for node-level classification tasks and under supervised training, they are not limited
to these settings since they represent general graph properties and can equally be applied to graph-level or
edge-level predictions. Homophily has initially been introduced for classification tasks and discrete adjacency
matrices but has recently been extended to the notion of node homophily in regression tasks and continuous
adjacency matrices, which are required for some adaptive graph learning methods (Mueller et al., 2023a).
Furthermore, some metrics have been specifically used for link prediction and unsupervised learning tasks.
Li et al. (2022) discuss unsupervised learning for node and edge classification tasks and link prediction, as
well as the utilisation of edge labels for edge label assortativity. They observe that edge classification tasks
rely more on features of paired nodes having signals with different frequencies. We notice a lack of more
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detailed and specific graph assessment metrics for tasks beyond node-level classification and identify this as
an open and important research area.

5.3 Selection of graph construction methods

We here formulate specific recommendations for selecting a graph construction method for different ap-
plications and datasets. We discuss the choice of graph type (population-level, subject-level, or subject-
independent graphs) as well as the choice between static and adaptive graph construction.

Choosing a graph type The choice between the different graph types is highly dependent on the dataset
as well as the desired downstream task. If a graph structure can be extracted for each subject individually,
subject-level graphs are of use. Here, no dependencies between the subjects need to exist or be derived.
Population-level graphs on the other hand aim to represent all subjects in one data structure. Each subject
is represented by a feature vector or matrix and additional information is added by connecting the subjects.
There are also works studying graph-in-graph problems, where subject-level graphs can be additionally
connected to form a population-level graph (Mullakaeva et al., 2022). The authors show that nested graph
approaches can improve performance. Subject-independent graphs are of interest, when no specific relation
to a medical subject is available or relevant. This is for example the case when performing link prediction in
knowledge graphs, where the relationships between entities (such as diseases and symptoms) are of interest
and there is no personal data of patients.

Choosing a static or adaptive graph construction method The choice between a static or adaptive
graph construction method is more challenging and depends both on the application and its goal. Knowledge
graphs are typically created statically, since here, the connections between entities (e.g. symptoms and
diseases) are based on literature and probably do not benefit from end-to-end learning. The same holds
for molecules. Here, the graph structure is intrinsic to the data, and it would be unintuitive to change the
edges (i.e. chemical bonds) of molecules. On the other hand, population-level graphs and some subject-level
graphs have shown to benefit from an adaptive graph construction (Kazi et al., 2022; Campbell et al., 2022;
Kan et al., 2022). They can, for example, be used to incorporate a temporal component into the learning
process, like with fMRI data. It can also be a suitable method to altogether avoid the necessity of picking
the right graph creation method before training since no specific metric or feature selection is required in this
case. The main advantages and shortcomings of adaptive and static graph creation methods are summarised
in Section 5.1. We believe that choosing an adaptive graph construction method is especially beneficial in
settings like population graphs, where neither an initial graph structure nor a ground truth is available.
We believe that this is a promising area for future research. Especially, the possibility of using the learned
graphs to gain insight into the dataset at hand for interpretability purposes shows high potential for further
investigation.

The most commonly used method to generate population-level graphs is based on similarity (Parisot et al.,
2017) or distance (e.g. Euclidean) (Lu et al., 2022). In both settings, a subset of the available features can be
used to define the edges of the graph (e.g. non-imaging features), while the remaining features (e.g. imaging
features) can be used as node features (Parisot et al., 2017). This –in itself– implements an opportunity for
multi-modal data integration. Later, it has also been shown that using all available features for both, creating
the edges and the node features might be beneficial over splitting the features up (Keicher et al., 2021).
The most frequently used approach for generating brain graphs is based on correlation, and graphs from
curvilinear structures are mostly extracted based on the underlying tree structure of the vessels/airways.

Regardless of the graph construction method of choice, we highly recommend evaluating graph assessment
metrics to gain insights into the graph structure and potentially evaluate whether it is beneficial to the learn-
ing task or might hinder GNN performance. This is especially useful when using static graph construction
methods so that the graph structure can be judged prior to training.
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5.4 Selection of Graph Learning Method

The graph construction method directly impacts the graph structure and therefore the performance of the
utilised GNN for the downstream task. We, therefore, here discuss the interplay between the two components.
The graph construction method can be either independent of the graph learning pipeline (static graph
construction) or intertwined (adaptive graph construction). In both cases, the choice of graph convolution is
an important factor. Zhu et al. (2020) identify some critical design choices that can improve the performance
of GNNs on heterophilous graphs. They show that a separate embedding of neighbourhood node features and
node-internal features improves the performance of heterophilous graphs as well as a separate embedding of
higher-order neighbourhoods and introduces a new model architecture that works well on both homophilous
and heterophilous graphs. Graph convolutions that propagate information simultaneously for all neighbours
and their own node features are more impacted by heterophilic graphs than convolutions that have separate
message-passing schemes for the neighbourhoods and their own node features. There are several graph
convolutions, that have been specifically designed for low-homophily graphs, such as H2GCN (Zhu et al.,
2020), HEAT convolutions (Mo et al., 2021b), or heterogeneous graph transformers (Hu et al., 2020b). In
case the constructed graph results in a low-homophily graph, it is advisable to select one of these graph
convolutions for graph learning. However, the choice of such graph convolutions does not guarantee high
performance. We furthermore note that graph convolutions that are highly impacted by the graph structure
(e.g. GCN (Kipf & Welling, 2016)) benefit most from the utilisation of adaptive graph construction methods.
In these cases, the graph structure can be optimised for the whole graph learning pipeline, including the
graph convolution at hand. Different models have also been specifically designed for specific tasks. RotatE
(Sun et al., 2018), TransE (Bordes et al., 2013), and PairRE (Chao et al., 2021) have, for example, been
designed for link prediction tasks and applied for knowledge graph completion. We furthermore identify
a systematic evaluation of the connection between model architectures and graph structures as an open
research question.

6 Related work

In this section, we put our work in context with existing research. Table 5 summarises adjacent works in
similar fields and more information about GNNs and their application in different areas of medicine.

Table 5: Summary of recent survey papers in connected areas with their specific application areas, the
year of publication, and the reviewed methods. Categorisation methodology lists the main categorisation
schemes followed in the respective works. GSP refers to graph signal processing, and AE to autoencoders.

Domain Reference Year Reviewed methods Categorisation methodology

Medical Ahmedt-Aristizabal et al. (2021) 2021 GNNs Model architecture, application
Medical imaging Ding et al. (2022) 2022 GNNs medical image type
Bioinformatics Yi et al. (2022) 2021 Graph embedding, GNNs Algorithm, application levels
Bioinformatics Zhang et al. (2021a) 2020 GNNs Application, prediction task

Neuroscience Bessadok et al. (2022) 2020 GNNs Application, loss function
Architecture, graph creation

Biological data Li et al. (2021a) 2022 GNNs, GSP Application, feature extraction

Medical Ours 2023 GNNs Graph construction, graph type

Knowledge graphs Ye et al. (2022) 2022 GNNs Task, application
Recommender systems Wu et al. (2022) 2022 GNNs Type of information used
Fault analysis Chen et al. (2021) 2021 GNNs Application, data representation
Finance Wang et al. (2021) 2021 GNNs Graph construction, feature extraction

Text classification Pham et al. (2022) 2022 GNNs, RNNs Text to graph transformation,
CNN, AE Model architectures

Domain invariant Zhu et al. (2021) 2022 GNNs Graph structure learning type

Reviews on GNNs on medical data Ahmedt-Aristizabal et al. (Ahmedt-Aristizabal et al., 2021) give
a detailed overview of GNN training on medical data, organised by application type and graph architectures.
The authors investigate different graph creation methods, however, putting them mostly into context with
varying application areas. They specifically name graph creation as one of the open challenges in research
in this area. For an overview of works covering GNNs, different graph embedding techniques (homogeneous,
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heterogeneous, and attributed), and generative graph models, we refer to Yi et al. (2022), who target works
in bioinformatics. Zhang et al. (2021a) focus on GNNs in bioinformatics, and Bessadok et al. (2022) give
an overview of GNNs in network neuroscience. The latter also categorise existing works by graph creation
methods; however only refer to research in neuroscience, and summarise different loss functions for different
applications. For a review of graph signal processing and graph learning on biological data, we refer to Li
et al. (2021a). The authors also provide a summary of feature extraction techniques in the graph domain.
Ding et al. (2022) give an overview of applications of GNN methods to multi-modal medical imaging datasets.

Graph construction in other domains Graph construction can be a challenging aspect of graph deep
learning pipelines, regardless of the domain and application. Therefore, we list some works investigating
graph creation methods in different domains.

For recommender systems, Wu et al. (2022) provide an extensive survey on GNN applications, including an
elaboration of the graph creation methods in this area. However, they only focus on the post-processing
of the graph structure before training since the initial graph structure is usually always provided by the
bipartite user-item graph - which differs from several medical datasets. Han et al. (2022) highlight the dif-
ficulties of creating a graph for retrosynthetic planning with GNNs and propose a semi-dynamic approach
for connecting different molecules with each other. Different graph construction methods for association
graphs for fault analysis are discussed in Chen et al. (2021). Here, the authors categorise the graph con-
struction methods into (a) using the k-nearest neighbour method, (b) using prior knowledge, and (c) using
matrix completion. This categorisation is similar to the one we use in this review. However, we add the
additional component of adaptive graph construction. For a review on GNNs in finance, including different
graph construction methods, we refer to Wang et al. (2021). They distinguish three graph creation methods:
data-based, knowledge-based, and similarity-based. This categorisation is similar to the one utilised in our
work. However, we provide a more detailed methodological distinction between the graph creation methods.
Pham et al. (2022) give an overview of graph creation methods for text analysis, categorising existing works
based on text graphs and model architectures. In Zhu et al. (2021), the authors investigate general methods
for graph structure learning, limited to the here termed “adaptive” graph creation methods.

7 Open challenges and future directions

In this section, we discuss open challenges that arise when working with GNNs in medicine that can be
linked to graph construction methods and graph learning in general.

7.1 GNNs vs. graph agnostic models

As mentioned in Sections 1.1 and 5.2, recent works have shown that GNNs do not consistently outperform
graph agnostic models (Luan et al., 2022). In most of the here summarised works, the original data does
not come naturally in graph structure. Therefore, one could raise the question of when it is beneficial to
construct a graph and perform graph learning at all. Most methodological works show that GNNs lead to
improved performances compared to graph-agnostic baselines. However, sometimes GNNs show only little
or no improvement over other ML methods. We see a detailed investigation of these connections to be a
highly relevant area of future work.

7.2 Bias introduction

Another challenge that arises when choosing a graph creation method is the introduction of bias (Mehrabi
et al., 2021). When creating a graph structure statically, every design choice (e.g. which features to select for
graph creation and which to use as node features, the incorporation of prior knowledge) introduces (human)
bias to the resulting graph structure. Sohn et al. (2015), for example, discuss the impact of the selection
of ROIs for brain graph creation from fMRI data and argue that individual ROI selections would be more
accurate. When using purely adaptive graph creation methods, no human bias will be introduced into the
graph creation method. Here, the bias in the dataset will dominate the graph creation. If the available data
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is highly imbalanced, questions of fairness might arise. This is something we believe should be considered
when selecting a graph creation method, and we believe this to be an interesting area of research.

7.3 Undirected vs. directed graphs

Most approaches discussed in this work have been applied to undirected graphs, where edges are always bi-
directional and only a few works discuss methods that work on directed graphs (Keicher et al., 2021). The
effects of using directed versus undirected graphs have not been studied in detail. Changing an undirected
graph to a directed one could be an extension of some of the here mentioned methods for graph construction.

7.4 Availability of public datasets

One significant challenge in exploring graph construction methods on medical data is the shortage of publicly
available datasets. For population graphs, two commonly used public datasets are TADPOLE (Yu et al.,
2020), a subset of the ADNI dataset, and the autism brain imaging data exchange (ABIDE) (Di Martino
et al., 2014), which address Alzheimer’s disease and autism detection, respectively. The private dataset UK
Biobank (Sudlow et al., 2015) is also frequently used. The open graph benchmark (Hu et al., 2020a) holds
a set of benchmark datasets for graph learning. It also contains molecule datasets and a vessel graph dataset
from Paetzold et al. (2021). For the construction of brain connectivity graphs, the human connectome project
(HCP) (Elam et al., 2021) and the brain connectivity challenge dataset1 have been used apart from several
private datasets. For surface mesh representations, MedShapeNet Scharinger et al. (2023) offers a variety of
medical mesh structures.

7.5 Data privacy

Medical research is usually performed on private data such as medical images or patient records, which hold
highly sensitive information about patients. A well-established, formal method to allow DL while giving
privacy guarantees to individuals is Differential Privacy (DP) (Dwork et al., 2014). It ensures that the
output of a randomised algorithm is approximately the same, independent of a single data point being in the
dataset or not. It has been shown that guaranteeing DP in GNNs is more challenging than in tabular data
since the individual data points (nodes) in a graph are inter-connected (Mueller et al., 2023b). Furthermore,
graph-structured data is more sensitive to privacy attacks like Membership Inference Attacks (MIAs), which
aim to identify whether a certain data point was part of the training dataset. This is because the additional
information lies in the graph structure itself and can be leveraged by adversaries (Olatunji et al., 2021).
We see a requirement for the development of high-utility privacy-preserving techniques for graph learning in
medicine.

8 Conclusion

This in-depth review of state-of-the-art works on graph creation methods for medical data shows that graph
construction is challenging and requires various design choices as well as a careful consideration of the dataset
and task at hand. There are numerous ways to construct a suitable graph structure from a dataset and
the best method needs to be selected with caution. We categorise graph construction methods by static or
adaptive approaches. Static graph construction methods generate a graph structure prior to learning, whereas
adaptive methods change the graph throughout GNN training. We analyse advantages and disadvantages of
both approaches and formulate recommendations about how to pick a suitable graph construction method.

So far, adaptive methods have only been applied to a small subset of graph-learning tasks in medicine. We
believe that this will be explored further in the coming years. Especially, the post-hoc interpretability of
the learned adjacency matrix can hold valuable information about the dataset and task, which might not be
possible to extract from a statically generated graph.

Given the findings about the strong impact of the graph structure on GNN performance (Section 1.1 and
5.2), we want to raise awareness that in cases where the graph structure is not clearly defined by the dataset,

1miccai.brainconnectivity.net
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it is important to consider different graph creation methods as well as suitable graph convolutions. One
characteristic of static graph creation methods is that the graph structure is defined before training. This
opens up the possibility of evaluating the graph structure based on the metrics summarised in Section 5.2.
We believe this to be a valuable step in evaluating the generated graph structure. This way, for example,
the homophily of the graph can be analysed and the potential need for graph convolutions that can handle
heterophilous graph structures can be evaluated (Du et al., 2022; Zhu et al., 2020). This could lead to graph
learning methods that are more linked to the constructed/available graph structures. These graph metrics
could also potentially be incorporated into the end-to-end learning of adaptive graph structures, where they
could be added to the loss function to push the generated graph in the direction of a specific metric.

Given the various options to construct graphs from medical data, we think that explicit explanations of the
applied graph creation method in each work would be beneficial to the research community. Even though the
current state-of-the-art results summarised in this work indicate several recommendations for graph-creation
methods on medical data, we believe that there are still a lot of open questions regarding which graph-
creation method works best for which application. Furthermore, we consider a more thorough investigation
of why a certain method might be beneficial over others to be necessary to learn more about the fundamental
methodologies of GNNs and how they can be applied in the most favourable ways. We hope to contribute
to further research in this area with this survey.
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