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ABSTRACT
Neural networks and Machine Learning in general, represent to-
day one of the greatest expectations for the realization of models
that can serve to determine the behavior and operation of different
physical systems. Undoubtedly the calculation resources necessary
for the training and the realization of the model are great especially
if linked to the amount of data needed to detect the salient parame-
ters of the model. At the same time, the models so obtained can be
integrated on embedded systems, thanks to TinyML technologies,
allowing to work exactly where the physical phenomena to analyze
happen. In the consumer and industrial world these technologies
have taken hold, and are also watched with interest by other sectors
such as the automotive world. In this article we present a framework
for the implementation of models based on neural networks on
automotive family microprocessors, demonstrating their efficiency
in two typical applications of the vehicle world: intrusion detection
on the CAN bus communication network and the determination of
the residual capacity of batteries for electric vehicles.

CCS CONCEPTS
• Computer systems organization → Embedded software; •
Security andprivacy→Network security; •Computingmethod-
ologies →Machine learning.

KEYWORDS
Microcontrollers, Neural Networks, LiIon Battery, Electric Vehicles,
Machine Learning, embedded software, CAN networks
ACM Reference Format:
. 2018. Characterization of Neural Networks Automatically Mapped on
Automotive-grade Microcontrollers. In xxxxxxxxxxxxxxxxxx. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Machine Learning (ML) is revolutionizing the way we understand
the world, allowing us to obtain valuable information and knowl-
edge from large amounts of data that cannot be analyzed by the
human brain. The data are those produced by us or our objects’ dig-
ital behavior, that are collected by real or virtual sensors generating
a big amount of information, requiring large amounts of resources
in terms of processing power to be managed and analyzed. In this
direction the research in recent years have investigated a wide
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range of ML techniques available, for example, Neural Networks
(NNs), Deep Learning (DL), clustering, Reinforcement Learning (
RL), and so on. these techniques cannot be considered indepen-
dently from processors, data centers and supercomputers. However,
an increasingly important segment of research concerns the use
of MicroController Units (MCUs). These processing entities are
usually the core of everyday appliances such as vehicles, medical
devices, personal gadgets, etc., where very often it is required to
process information and make decisions without resorting to pow-
erful mainframes. Undoubtedly the calculation resources necessary
for the training and the realization of the model are great especially
if linked to the amount of data necessary to detect the salient param-
eters of the model. At the same time, the models so obtained can be
integrated on embedded systems, thanks to TinyML technologies,
allowing to work exactly where the physical phenomena to analyze
happen.

In the consumer and industrial world these technologies have
taken hold, and are also watched with interest by other sectors
such as the automotive world. One of the main characteristics of
the automotive world is that the computational capacity must be
localized on the processors present in the control units and there-
fore the ML models must be easily discretized and coded for these
computing units. The purpose of MCU builders is to realize archi-
tectures and toolchains able to make ML algorithms more and more
integrable within customer applications. It becomes important to
focus that the purpose of tinyML architectures is to analyze data
while they are being produced, while the entire training and edu-
cation phase is delegated to more complex and high-performance
systems. Therefore, in the toolchain, it’s important to have the abil-
ity to incorporate models whose training takes place offline, and
at the same time to have an eye on performances, having in mind
that the electronic devices on board must also perform the primary
functions for which they are designed, from engine control to the
management of the different devices on board. In this article we
present a framework for the implementation of models based on
NNs on automotive family microprocessors, demonstrating their
efficiency and performance on two typical applications of the vehi-
cles onboard electronics: the estimation of data traffic on Controller
Area Networks (CANs) inside the vehicle and the estimation of
the remaining capacity in the case of Li-Ion batteries. In Section 3
we introduce the family of processors for the automotive industry
on which experiments are carried out and the development tool
needed to implement the solution on the MCU. In the following two
Sections we present originally two case studies of vehicular interest
that are challenging for the tiny implementation of ML. In Section 4
we present an Intrusion Detection System (IDS) on CAN bus traffic,
and in Section 5 we present an algorithm for the estimation of the
remaining battery capacity. In both cases, we describe the methods
and present an accurate and original analysis of the complexity and
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energy resources, described in Section 6. Finally, we present the
conclusion in Section 7, discussing the main findings of the paper.

2 RELATEDWORKS
Modern vehicles are becoming very complex products and dozens
of Electronic Control Units (ECUs) interact to perform the most
diverse functions.

Figure 1: In-vehicle communication system example, taken
from [20].

Figure 1 shows an example of an In-vehicle communication sys-
tem [20] where several subnetworks divided by functionality, inter-
connected bymeans of gateway. It a microcosm of ECUs where it be-
comes increasingly important to use traditional control techniques
combined with the most challenging techniques of ML and artificial
intelligence. In automotive embedded electronics, the MCUs size
and computational performance are reduced if compared with the
microprocessor or processor behavior, so it is necessary to apply
tiny forms of ML, already present in other consumer contexts. In
the latter, the needs and requirements are very different from those
required inside vehicles, which have much stricter requirements re-
lated to certifications and architectures. There are several examples
in the literature of these tinyML approaches for the automotive
scenario [1, 22, 26, 27]. In this paper, we want to present in a fresh
way a methodology to implement ML in automotive MCUs, using
the same tools used to develop traditional projects. We do on it two
typical automotive applications that we describe below.

2.1 Intrusion Detection Systems
To have a complete picture every ECU is interconnected through a
bus, the CAN bus [12], a simple but efficient solution to the problem
of interconnecting ECUs that meets the requirements for real-time
communication and low deployment cost. With a maximum trans-
fer rate of 1 Mbit / sec, the CAN bus is the standard the facto for the
ECU interconnections of several subnetworks that are divided by
functionality and interconnected by means of gateways [20]. Car
manufacturers must carefully design the interconnections between
critical and no critical subnetwork trying to prevent an attacker at-
tempt to remotely acquire the control of an ECU through a security
hole, for instance in the infotainment system. It was demonstrated

[13, 24] that is possible to attack the CAN network for example dis-
abling the braking system using the cellular connection in several
vehicles. In other words, the protocol was designed in 1986 with
“safety” in mind but without being secure [21]. Researchers have
already found some vulnerabilities in the CAN bus:

• It is a multicast message protocol with any intrinsic mech-
anism of addressing and authentication. In other words, a
hijacked ECU can “listen” to every message of its subnetwork
and can send messages with a fake identity.

• It is a protocol with limited bandwidth for nowadays ve-
hicles, which makes difficult the introduction of message
encryption.

• Most of the nodes are automotive-grade MCUs with limited
memory and computation capability and this makes difficult
the implementation of complex security protocol.

The introduction of an IDS can be a countermeasure suitable for the
CAN bus vulnerabilities. One of the intrusion detection methods
is the anomaly-based approach. An intuitive description of this
method is to consider a monitoring system, an ECU, that listens to
the CAN bus traffic and learn the normal behavior. The intruder
activities raise abnormal traffic, and this alerts the trained IDS.
Nowadays one of the most attractive promises related to DL is the
capabilities to train NNs providing a suitable amount of data with
the right quality. In this paper, we propose an original version of
this approach which can be embedded on MCUs.

2.2 Battery Residual Charge
In recent years, Lithium-Ion (Li-Ion) batteries are receiving great
interest because of their several advantages in terms of high spe-
cific energy and power [23]. Rechargeable battery stacks based on
Li-Ion cells are used to power many systems, including portable
devices, such as smartphones, and automotive systems, such as
Hybrid Electric Vehicles (HEV) and Electric Vehicles (EV) [2, 11, 28].
To increase safety, reliability, and cost-effectiveness of a battery,
the performance of the Battery Management System (BMS) needs
to be improved [29]. In this regard, battery capacity estimation is
essential as it allows the calculation of the State of Health (SoH),
e.g. a measure of battery functionality in energy storage and de-
livery, which is a fundamental parameter for the Battery Health
Monitoring (BHM) [8]. Due to internal aging processes, capacity
decays over the battery’s lifetime even if it is not used, causing bat-
tery performance to decrease. Typically, a 20% reduction in rated
capacity is considered the limit for safe use of the component (e.g.
𝐶𝑚𝑎𝑥 ≤ 0.8𝐶𝑟𝑎𝑡𝑒𝑑 ), under which the battery performance may not
be reliable [7, 9]. Therefore, SoH diagnosis, and accurate releasable
capacity estimation, are essential for safety risks reduction, criti-
cal failure prevention, and appropriate battery replacement [10].
Data-driven methods based on ML techniques are widely used for
battery capacity estimation [7]. In fact, they compute releasable
capacity starting from measurable parameters, such as voltage and
current, which can be easily extracted from a vehicle via CAN bus
[25]. Since SoH is highly non-linear and not directly observable,
DL algorithms are shown to be more flexible and efficient than
traditional methods [5].
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3 SPC5-STUDIO.AI: AUTOMATED
CONVERSION OF PRE-TRAINED NEURAL
NETWORKS

SPC5-Studio.AI is a plug-in component of the SPC5-STUDIO inte-
grated development environment supporting the SPC58 “Chorus”
automotive MCU family. It provides the capability to automati-
cally generate, execute, and validate pre-trained NN models on
automotive-grade MCUs. it outputs efficient “Ansi C” library that
can be compiled, installed, and executed on SPC58 MCUs. DL frame-
works, such as Keras, TensorFlow Lite, ONNX, Lasagne, Caffe, Con-
vNetJS are supported. The libraries can be integrated into the two
application-specific projects defined in Sections 4 and 5, thanks to
a well-defined short number of public APIs. Moreover, it provides
validation and performance analysis facilities that allow to validate
and characterize the converted NN and measure key metrics such
as validation error, memory requirements (i.e. Flash and RAM),
and execution time directly on the MCU. This plugin is integrated
within SPC5-STUDIO (currently version 2.0.0).

Figure 2: SPC5-Studio.AI block diagram

SPC5-Studio.AI was used to embed and to validate the developed
NNs on three automotive-grade MCUs, suitable for applications
which require low-power, connectivity, and security [31]: SPC584B,
SPC58EC, and SPC58NH. Themain features of the chosenMCUs are
shown in Table 1. Power consumption was computed considering
each MCU at its maximum frequency and with all cores enabled.

Table 1: Main features of the automotive-grade MCUs used
for the complexity analysis.

Device Flash
[Mb]

RAM
[Mb]

Clock
[MHz] I/D Cache FPU

Power
Consumption

[mA]

SPC584B 2 192 120 Yes Yes 102.0
SPC58EC 4 512 180 Yes Yes 132.6
SPC58NH 10 1024 200 Yes Yes 239.6

4 CASE STUDY 1: INTRUSION DETECTION IN
AN AUTOMOTIVE NETWORK

In this Section, we present a Long Short-Term Memory (LSTM)
Autoencoder to recognize CAN bus anomalies raised by abnormal
traffic, using the SynCAN dataset [15]. The pre-trained Autoencoder
was embedded into three different automotive MCUs via SPC5-
STUDIO-AI, it was validated, and its complexity was profiled.

4.1 Dataset
A CAN packet consists of a timestamp, an identifier ID, and 8
bytes of payload. The packet is broadcasted on the bus and the
identification field represents the type of message. The payload can
carry one or more meaningful signals. Thus, the CAN bus traffic in
a subnetwork can be represented by time series of signals. Figure 3
shows the structure of a CAN data frame [6].

Figure 3: The structure of a CAN data frame, taken from [6].

The data for the analysis were taken from SynCAN (Synthetic
CAN bus data), a synthetic dataset created to benchmark, evaluate,
and compare different CAN IDSs on different attack scenarios [15].
The dataset is composed of normal and abnormal traffic signals, the
latter divided according to the attack type:

(1) Plateau attack. A signal overwritten to a constant value over
a time period.

(2) Continuous change attack. A signal slowly drifted from its
true value.

(3) Playback attack. An already recorded time series of values
of the signal itself, over a time period.

(4) Suppress attack. A signal completely suppressed.
(5) Flooding attack. A signal to deny access to the other ECUs.
The anomaly detector developed was trained on the normal

traffic signals, and was tested on the abnormal ones, corresponding
to the attacks.

4.2 Long Short-Term Memory Autoencoder
The architecture used for the anomaly detector was an LSTM Au-
toencoder. In fact, the LSTM Autoencoder can learn the normal
behavior of a simulated CAN bus traffic, as shown by [16].

The implemented Autoencoder consists of a dense layer, two
LSTM layers, and a dense output layer. It is feed by 24 consecutive
messages related to network traffic of 20 different signals. Thus,
input data are provided in the three-dimensional format: number
of samples, time steps (24), and features (20). The LSTM layers have
18 output units, and the dense output layer consists of 20 nodes.
The network was made by 6272 parameters. The overall topology
is shown in Table 2.

The network hyperparameters were tuned using Keras-Tuner
[33]. The anomaly score was evaluated using the Mean Absolute
Error (MAE) between the true network traffic and its reconstruction,
made by the Autoencoder. Figure 4 shows the reconstruction error
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Table 2: The implemented Autoencoder consists of a dense
layer, two LSTM layers, and a dense output layer. Input data
are provided in the three-dimensional format: number of
samples, time steps (24), and features (20).

Layer Output shape

Input 24x20
Dense 24x20
LSTM 24x18
LSTM 24x18
Dense 24x20

(MAE) obtained on each attack type test set, with green representing
normal CAN bus traffic and red malicious one. For all the attack
types, the mean precision and recall were 0.86 and 0.81, respectively.

5 CASE STUDY 2: CAPACITY ESTIMATION IN
LITHIUM-ION RECHARGEABLE
BATTERIES

In this Section, we present a Convolutional Neural Network (CNN)
LSTM architecture to predict the maximum releasable capacity
of Li-Ion batteries, using the datasets made available by NASA
[30]. Then, the pre-trained NN was embedded into three different
automotive MCUs via SPC5-STUDIO-AI.

5.1 Dataset
The data were extracted from one of the Li-Ion battery datasets
made available by NASA Ames Prognostics Center of Excellence
(PCoE) database [30]. In all the experiments Li-Ion rechargeable
batteries were run through impedance, charge, and discharge opera-
tional profiles, measuring battery impedance, temperature, voltage,
current, and capacity. Due to the greater variability of discharge
experimental conditions, which implies a greater complexity of
the estimation, only discharge cycles have been extracted for the
analysis. The battery capacity can be obtained starting from a fully
charged battery and integrating the discharge current over time
until it reaches a certain threshold voltage [19]. Considering that
the discharge may not be complete in real-world conditions, only
some samples for each discharge cycle were selected. The features
used were output current, battery terminal voltage, temperature,
and the time difference between samples. The targets of the pre-
diction were the capacity values corresponding to each discharge
cycle. Different batteries were used for test and training phases,
thus getting closer to a real use case. During the training phase, a
validation set was used to evaluate the loss function and to tune
parameters (hold out method) [3].

5.2 Convolutional and Long Short-Term
Memory Network

The architecture used for estimating maximum releasable capacity
was CNN LSTM. In fact, a CNN can extract significant patterns
from time series by reducing noise [4], and its temporal and spatial
structure is particularly suitable for learning complex input features

[18]. Among Recurrent Neural Networks (RNNs), the LSTM archi-
tecture has been very successful with the long-term dependencies
of time series [17, 32]. Moreover, while standard RNNs experience
the vanishing gradient problem, LSTM networks can overcome it.

The input data are provided in the format that CNN expects, i.e.
the three-dimensional one: number of samples, time steps (20), and
features (4). The convolutional layer is initialized with 32 filters, of
size 4x4, and it uses the ReLu activation function after output nor-
malization. To summarize the features in the input, a max pooling
layer is used for the selection of the maximum of each pair of val-
ues. Then, an LSTM layer with 32 output units [35] and with TanH
activation function is used. The output is given by the dense single
node output layer. The network was made by 8961 parameters. The
developed CNN LSTM architecture is shown in Figure 5.

Adaptive Moment Estimation (Adam) optimization algorithm
was used to train the network, and the Mean Squared Error (MSE)
was the chosen loss function to minimize. Features were scaled
using MinMaxScaler, which preserves the shape of the original
distribution [14]. The capacity estimation error is computed using
the MAE. Due to the randomness present during the training pro-
cedure (e.g. random weights initialization in NNs), at each run the
results can be different. Thus, the model was trained and tested
10 times, each time using a different value for the pseudo-random
number generator. The mean MAE obtained was 0.0434, below the
acceptable SOH error range of ±0.05 for EVs [34]. The capacity es-
timation results of the CNN LSTM together with the ground truth
values are shown in Figure 6. Further analysis has been made on
the aforementioned dataset comparing different ML models [8], but
it is out of the scope of this paper.

6 COMPLEXITY PROFILING
The proposedNNswere evaluatedwith the automotive-gradeMCUs
chosen: SPC584B, SPC58EC, and SPC58NH. The AI plug-in of the
SPC5-STUDIO allowed the analysis of their performances in terms
of Flash [Kb], Random Access Memory (RAM) [Kb], and average
inference time [ms]. Tables 3 and 4 show the results obtained, for
each NN.

Table 3: Flash [Kb], RAM [Kb], and average inference time
[ms] required by the LSTMAutoencoder, for each MCU cho-
sen.

Device Flash [Kb] RAM [Kb] Average inference time [ms]

SPC584B 24.92 4.05 11
SPC58EC 24.92 4.05 8
SPC58NH 24.92 4.05 6

Table 4: Flash [Kb], RAM [Kb], and average inference time
[ms] required by the CNN LSTM, for each MCU chosen.

Device Flash [Kb] RAM [Kb] Average inference time [ms]

SPC584B 35.13 2.25 6.34
SPC58EC 35.13 2.25 4.38
SPC58NH 35.13 2.25 3.86
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Figure 4: LSTM Autoencoder reconstruction error (MAE) on each attack type test set, with green representing normal CAN
bus traffic and red malicious CAN bus traffic.

Figure 5: The implemented CNN-LSTM Architecture con-
sists of a 1D convolutional layer, a max pooling layer, a
LSTM layer, and a dense output layer. Input data are pro-
vided in the three-dimensional format: number of samples,
time steps (20), and features (4).

Note that only the average inference time differs between the
MCUs since it decreases linearly as the clock frequency increases.
Flash, RAM, and the average run time percentages are shown in
Figures 7 and 8, for each layer of each model. Due to its greater

Figure 6: Capacity estimation results for CNN LSTM versus
ground truth values.

complexity, the LSTM layer is the most expensive both in terms of
Flash (%), RAM (%), and average execution time (%), for both the
architectures. The validation of the NNs was run on each of the
chosen MCUs with 100% cross-accuracy, which uses the outputs of
the original model as ground truth values for those of the C-model.
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Figure 7: Flash, RAM, and average execution time percent-
ages obtained for each LSTM Autoencoder layer.

Figure 8: Flash, RAM, and average execution time percent-
ages obtained for each CNN LSTM layer.

7 CONCLUSION
In this work, we presented the implementation through ML of two
challenging problems for the automotive systems: an IDS for Can-
Bus messages and an estimation method of the residual capacity in
lithium batteries. The offline trained model was then quantized and
made a tiny model. The two algorithms have been implemented
on a family of automotive MCUs with PowerPC architecture. The
accuracy of the two models is evaluated using two appropriate
datasets on which the error was estimated, demonstrating the ef-
fectiveness of the two algorithms. The innovative aspect is the
definition of some metrics useful to evaluate energy consumption
and performance calculation of the models during their execution
on the MCUs. Future work will concern the implementation of the
models taking into account the safety requirements required for
embedded automotive applications.
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