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Abstract

Large language models have significantly en-001
hanced the capacities and efficiency of text002
generation. On the one hand, they have im-003
proved the quality of text-based steganogra-004
phy. On the other hand, they have also un-005
derscored the importance of watermarking as006
a safeguard against malicious misuse. In this007
study, we focus on tokenization inconsistency008
(TI) between Alice and Bob in steganography009
and watermarking, where TI can undermine010
robustness. Our investigation reveals that the011
problematic tokens responsible for TI exhibit012
two key characteristics: infrequency and tem-013
porariness. Based on these findings, we pro-014
pose two tailored solutions for TI elimination:015
a stepwise verification method for steganogra-016
phy and a post-hoc rollback method for wa-017
termarking. Experiments show that (1) com-018
pared to traditional disambiguation methods in019
steganography, directly addressing TI leads to020
improvements in fluency, imperceptibility, and021
anti-steganalysis capacity; (2) for watermark-022
ing, addressing TI enhances detectability and023
robustness against attacks.1024

1 Introduction025

Large language models (LLMs), such as GPT-026

3 (Brown et al., 2020), GPT-4 (Achiam et al.,027

2023), Gemini (Team et al., 2023, 2024), and028

Claude 3 (Anthropic, 2024), have revolutionized029

natural language processing and showcased impres-030

sive near-human-level text generation capabilities.031

These advanced LLMs facilitate the creation of032

flexible and contextually coherent text across di-033

verse genres for text-based steganography (Yang034

et al., 2019; Ziegler et al., 2019) — a promising035

field in safeguarding information, referring to the036

art of concealing messages within texts.037

However, the same human-like text generation038

capabilities also pose risks, as synthesized content039

1Anonymous code: https://anonymous.4open.science/r/
AddressingGlitch-FEE9.

can be exploited for malicious purposes (Bergman 040

et al., 2022; Mirsky et al., 2023). To address this, 041

watermarking techniques for LLMs (Kirchenbauer 042

et al., 2023; Zhao et al., 2024) have been devel- 043

oped, embedding imperceptible yet algorithmically 044

detectable signals into generated text. These tech- 045

niques play a crucial role in ensuring the detectabil- 046

ity and responsible use of LLM-generated content. 047

In both steganography and watermarking appli- 048

cations, Alice (the sender) employs LLMs to gen- 049

erate steganographic texts (stegotexts) or water- 050

marked texts, which are then transmitted to Bob 051

(the receiver). During this process, an interme- 052

diate detokenization-retokenization pipeline is 053

applied to the text as it moves from Alice to Bob. 054

As a result, tokenization inconsistency (TI) (Sun 055

et al., 2023) can arise, where discrepancies occur 056

between the originally generated token list and the 057

retokenized token list, potentially impacting the 058

robustness of the system. Specifically, the inconsis- 059

tent tokens generated by Alice which are responsi- 060

ble for TI are referred to source inconsistent tokens 061

(SITs), while the corresponding inconsistent tokens 062

resulting from Bob’s retokenization are termed con- 063

sequential inconsistent tokens (CITs). Figure 1 064

exemplifies how TI causes negative impacts on 065

steganography (1a) and watermarking (1b). 066

Inconsistent tokens have not been systemati- 067

cally investigated in view of the detokenization- 068

retokenization pipeline. Especially in steganogra- 069

phy and watermarking, they comprise robustness, 070

and can be 100% removable. Motivated by these 071

facts, this study aims to deepen the understand- 072

ing of inconsistent tokens in both steganography 073

and watermarking. Specifically, we achieve 100% 074

correct extraction for steganography with minimal 075

negative impact, and to enhance the detectability 076

and robustness of LLM watermarks.2 The key con- 077

2Any inconsistent token could be catastrophic for most
LLM-based steganographic approaches, as any one-step ex-
traction error could cause a series of errors (Qi et al., 2025).
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Figure 1: An example of tokenization inconsistency (TI) in LLM-based steganography or LLM-based watermarking.
Alice generates a token sequence corresponding to subwords “_no” and “body” (SITs) during steganography or
watermark embedding. During transmission, the generated tokens are detokenized into the text “nobody”. However,
the receiver Bob retokenizes the text “nobody” as a single token “_nobody” (a CIT). This can lead to errors in
steganography extraction or watermark detection.

tributions of this work are as follows:078

1) We investigate the emergence of inconsistent079

tokens during token-by-token generation by lan-080

guage models and identify two key characteristics:081

infrequency and temporariness.082

2) Taking advantage of the infrequency, we pro-083

pose a stepwise verification method for steganogra-084

phy, maintaining 100% correct extraction.085

3) Taking advantage of both the infrequency086

and temporariness, we propose a post-hoc rollback087

method for watermarking, which is a lightweight088

variant method.089

4) Experiments are conducted across various lan-090

guage models, demonstrating the superiority of091

our methods: (1) In steganography, compared to092

the best baseline in each group, our stepwise ver-093

ification method improves fluency (lowering per-094

plexity by 14.12%), imperceptibility (lowering KL095

divergence by 47.86%), and anti-steganalysis ca-096

pacity (lowering steganalysis accuracy by 3.53%)097

of steganographic texts (stegotexts). (2) For wa-098

termarking, our post-hoc rollback method overall099

enhances the detectability and robustness compared100

to TI-unaware watermarking.101

2 Investigation: Inconsistent Tokens in 102

Generation by Language Models 103

We investigate how and to what extent inconsistent 104

tokens emerge during token-by-token generation 105

by language models. This investigation serves as a 106

fundamental basis for studying TI in most steganog- 107

raphy and watermarking techniques. 108

We employ three language models — Llama- 109

2-7b3 (Touvron et al., 2023), Swallow-7b4 (Fujii 110

et al., 2024; Okazaki et al., 2024) and Qwen2.5- 111

7b5 (Team, 2024; Yang et al., 2024) — respectively 112

with English, Japanese and Chinese contexts, to in- 113

vestigate the behavior of inconsistent tokens. Their 114

tokenizers are all based on subwords. For each 115

language model and for each specified number of 116

generated tokens, we generate 1,000 text samples. 117

Texts are produced token by token, with each token 118

sampled using multinomial sampling (in single- 119

track generation). The experimental setups for this 120

section are detailed in Appendix D.1. 121

Text-level inconsistency rate: The rate at which 122

TI appears. Table 1 presents the text-level incon- 123

sistency rates across various language models and 124

3https://huggingface.co/meta-llama/Llama-2-7b-hf
4https://huggingface.co/tokyotech-llm/Swallow-7b-hf
5https://huggingface.co/Qwen/Qwen2.5-7B
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Figure 2: An example where a candidate-level IT causes TI which recovers back to consistency during token-
by-token generation. As the token “put” (id: 43) can cause TI immediately after it is output, this token is a
candidate-level IT. However, this token does not cause a long-term TI, as TI recovers afterwards.

Token
number Llama-2-7b Swallow-7b Qwen2.5-7b

25 3.9% 3.9% 8.7%
50 8.1% 5.0% 11.1%
100 17.7% 9.6% 18.1%
200 33.6% 15.5% 39.4%
400 53.0% 34.2% 66.4%

Table 1: (Text-level inconsistency rates) Rates of exis-
tence of TI.

Token
number Llama-2-7b Swallow-7b Qwen2.5-7b

25 0.176% 0.242% 0.558%
50 0.204% 0.181% 0.381%
100 0.215% 0.185% 0.349%
200 0.228% 0.157% 0.400%
400 0.223% 0.186% 0.467%

Table 2: (Token-level inconsistency rates) Ratios of
the sum of SITs and CITs to the sum of generated tokens
and retokenized tokens.

token generation lengths. Since each token carries125

some potential to become an inconsistent token,126

the general trend indicates that the incidence of127

inconsistent tokenization increases as the number128

of generated tokens grows.129

Token-level inconsistency rate: The ratio of the130

sum of SITs and CITs to the sum of generated and131

retokenized tokens. According to Table 2, this met-132

ric is not closely related to text length. Another no-133

table observation is that token-level inconsistency134

rates are typically below 0.5%, which results in135

much higher text-level inconsistency rates though.136

The disparity between high text-level inconsistency137

rates and low token-level inconsistency rates high-138

lights the infrequency of inconsistent tokens.139

Llama
-2-7b

Swallow
-7b

Qwen2.5
-7b

Number
ratio 1.497% 2.045% 3.993%

Probability
ratio 0.184% 1.126% 1.833%

Table 3: (Candidate-level inconsistency rates) Num-
ber ratios and probability ratios of candidate-level ITs
to tokens in candidate pools.

Candidate-level inconsistency rate: The ratio 140

of candidate tokens that can cause TI to all tokens in 141

candidate pools of token-by-token generative steps. 142

To further explore the cause of the infrequency of 143

inconsistent tokens, potential TI from candidate 144

pools are investigated. How to determine if a can- 145

didate token is a candidate-level inconsistent token 146

(candidate-level IT) is shown in Algorithm 1, which 147

refers to a detokenization-retokenization pipeline 148

in one step. For accurate calculation, those sce- 149

narios where TI has occurred before outputting a 150

token are excluded. 151

For simplicity, only the 64 highest probability to- 152

kens in each candidate pool are considered. Table 3 153

respectively lists the number ratios and probabil- 154

ity ratios of candidate-level ITs (the ratios of the 155

cumulative numbers or probabilities of candidate- 156

level ITs to the cumulative numbers or probabilities 157

of top-64 tokens) across various language models, 158

with data aggregated across various text lengths. 159

The results indicate that the infrequency of incon- 160

sistent tokens is primarily due to the low candidate- 161

level inconsistency rates in each candidate pool. 162

The infrequency of the SITs is also revealed. 163

However, when observing the data in Tables 1, 2, 164

and 3, another question arises: How does Llama- 165

3



Llama-2-7b Swallow-7b Qwen2.5-7b

8.76% 81.98% 87.93%

Table 4: (Temporary inconsistency rates) Rates of
candidate-level ITs that do not cause TI in final among
all candidate-level ITs.

2-7b, despite having a lower candidate-level IT166

probability ratio in candidate pools (0.184% vs.167

1.126% in Swallow-7b), exhibit higher inconsis-168

tency rates at both the text level (17.7% vs. 9.6%169

with 100 tokens) and the token level (0.215% vs.170

0.185% with 100 tokens)? Considering limitations171

in defining the candidate-level inconsistency rate,172

it is likely that generating candidate-level ITs may173

only result in temporary TI. Figure 2 instantiates174

this phenomenon.175

Temporary inconsistency rate: Among the176

candidate-level ITs that are output, this metric rep-177

resents the rate of temporary SITs (that do not178

cause TI after the entire generation process). Ta-179

ble 4 lists the temporary inconsistency rates for the180

texts generated by the three language models. The181

significantly lower temporary inconsistency rate182

for Llama-2-7b compared to others indicates that183

its generated potential SITs are more stable in af-184

fecting the final tokenization. This stability leads185

to higher text-level and token-level inconsistency186

rates than those observed for Swallow-7b.6187

In summary, our investigation reveals that in-188

consistent tokens generated by language models189

are characterized as (1) infrequency and (2) tem-190

porariness. These findings inspire us to develop191

methods to address inconsistent tokens and TI in192

LLM-based steganography and watermarking.193

3 Methods194

In this section, the introduced methods are targeted195

to the mechanisms of LLM-based steganography196

and watermarking respectively, meanwhile taking197

advantage of the infrequency and temporariness of198

inconsistent tokens. Specifically:199

For steganography: We propose a stepwise ver-200

ification method that precisely removes candidate-201

level ITs at each generation step. As only out-202

putting candidate-level ITs can cause (at least tem-203

porary) TI, the presence of candidate-level ITs is204

6When using default tokenizer parameters, a fair amount
of ‘<s>’ and ‘</s>’ output by Llama-2-7b lead to stable TI.
Besides, Swallow-7b and Qwen2.5-7b are featured by output-
ing a fair amount of partial UTF-8 tokens (Land and Bartolo,
2024). Appendix F provides supplements for it.

a necessary condition for the eventual occurrence 205

of inconsistent tokens.7 Therefore, the absence of 206

candidate-level ITs is a sufficient condition for the 207

final absence of inconsistent tokens. Hence, our 208

method eliminates TI in the final output. 209

In steganography, since candidate tokens are as- 210

sociated with codewords, it is necessary to call the 211

tokenizer to verify whether each candidate token 212

is a candidate-level IT. Although this process may 213

appear inefficient, our method operates with linear 214

complexity, still providing some advantages over 215

the previous disambiguation algorithms (Nozaki 216

and Murawaki, 2022; Yan et al., 2023; Qi et al., 217

2025) whose complexities are at least O(n2). Both 218

our method for addressing TI and previous disam- 219

biguation approaches share the same goal: ensuring 220

100% correct steganographic extraction. 221

Additionally, our method preemptively removes 222

candidate-level ITs to achieve extraction accuracy. 223

Since both candidate-level ITs and final inconsis- 224

tent tokens are infrequent, KL divergence between 225

the original and the modified candidate pools (re- 226

sulting from removing candidate tokens) remains 227

small, greatly reducing the negative impact on im- 228

perceptibility.8 229

For watermarking: We propose a post-hoc roll- 230

back method that makes the generation process roll- 231

back to the state where TI has not happened if TI 232

persists. The rollback mechanism does not respond 233

immediately to TI because of their temporariness. 234

Unlike the method used for steganography, there is 235

a higher relaxation for watermarking, because the 236

detector does not require detailed information of 237

candidate pools at each step to decode the text, so 238

that candidate tokens do not need to be examined 239

individually. Negative effects on imperceptibility 240

can be nearly negligible because of the infrequency 241

of the output inconsistent tokens. 242

3.1 A Stepwise Verification Method for 243

Steganography 244

The overview of the stepwise verification 245

method is shown in Figure 3, where the verification 246

mechanism is placed between the sampling and 247

steganographic encoding steps. Both the sender 248

and receiver can verify whether each token in the 249

candidate pool is a candidate-level IT, enabling 250

them to perform steganographic encoding on the 251

7Detailed analysis and explanations about SITs, CITs, TI
and candidate-level ITs are shown in Appendix B.

8Theories on imperceptibility are provided in Ap-
pendix A.2.3.
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Figure 3: Overview and procedures of LM-based steganography with our stepwise consistency-verification approach.
For some simplicity in this example, Huffman encoding (Yang et al., 2019) and top-4 sampling in each candidate
pool is adopted. The verification mechanism is in place before encoding for both Alice and Bob.

Algorithm 1 Identify a candidate-level IT
Input:
Token to be verified, so
Previously generated token list, L
Output:
Candidate-level IT or not (True or False), ResultG

1: Append so to L to obtain Lo.
/* Token list to be verified*/

2: Detokenize Lo into a temporary text ttemp.
3: Tokenize ttemp into L′.
4: ResultG ← ¬(Lo == L′);
5: return ResultG

same filtered candidate pools. This guarantees that252

the receiver can accurately extract the secret mes-253

sages. How to identify a candidate-level IT from a254

candidate pool is detailed in Algorithm 1.255

The process simulates detokenization and reto-256

kenization of the generated stegotext transmitted257

from Alice to Bob. candidate-level ITs are removed258

from the candidate pool, as they could interfere259

Bob’s extraction process. By eliminating such prob-260

lematic tokens, the approach ensures that both Al-261

ice and Bob maintain identical token sequences,262

enabling reliable steganographic extraction.9263

3.2 A Post-Hoc Rollback Method for264

Watermarking265

This method of removing inconsistent tokens for266

LLM watermarking leverages not only the infre-267

quency of inconsistent tokens but also their tem-268

porariness. The overview of this post-hoc method269

is illustrated in Figure 4, which only involves the270

9Further details can be found in Appendix C.1.
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Figure 4: Mechanisms of the post-hoc rollback method.
Due to temporariness of inconsistent tokens, a q-token
observation period is set for them.

token-by-token watermark embedding. 271

The core idea is as follows: If a candidate-level 272

IT is generated and causes temporary TI at that step, 273

the token is assigned an observation period that 274

lasts until the next q tokens are generated. Once 275

the observation period ends, if tokenization consis- 276

tency is recovered (Figure 4a), no further action 277

is necessary. However, if TI persists, this tempo- 278

rary TI is deemed a stable TI, and the generation 279
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process rolls back to the state before the candidate-280

level IT was generated. At this regressed point,281

the candidate pool is resampled, excluding that282

candidate-level IT (Figure 4b).10283

4 Experiments284

In this section we explore the behaviors of address-285

ing TI in steganography and watermarking, using286

Llama-2-7b (Touvron et al., 2023) (with English287

contexts), Swallow-7b (Fujii et al., 2024; Okazaki288

et al., 2024) (with Japanese contexts) and Qwen2.5-289

7b (Team, 2024; Yang et al., 2024) (with Chinese290

contexts) (the same as Section 2). The prompts291

are randomly selected from the multilingual C4292

dataset (Raffel et al., 2019). Implementation de-293

tails can be found in Appendix D.1.294

4.1 Experiments on Steganography295

The secret message for embedding is a random 128-296

bit message, i.e. m ∼ Uniform({0, 1}128). As our297

proposed stepwise verification method and those298

disambiguation methods (Section A.2.2) all enable299

steganographic extraction 100% correct, it is rea-300

sonable to use these 100% disambiguation algo-301

rithms as baseline methods, namely, Basic (Nozaki302

and Murawaki, 2022), MWIS (Yan et al., 2023),303

and SyncPool (Qi et al., 2025).304

All methods employ arithmetic coding (Ziegler305

et al., 2019), an efficient attempt to provably secure306

steganography (Ding et al., 2023). To evaluate per-307

formance under varying embedding capacities, ex-308

periments are conducted with different top-k sam-309

pling values (k ∈ {4, 8, 16, 32, 64, 128, 256, 512,310

1024, 2048, 4096}). For each top-k value, for each311

disambiguation method and ours, and for each lan-312

guage model, 500 samples are generated.313

4.1.1 Metrics314

Bits per token (BPT) is a fundamental metric in lin-315

guistic steganography, measuring the embedding316

capacity. Perplexity (PPL) assesses the quality317

and fluency of the generated text. KL divergence318

(KLD) between modified and original candidate319

pools quantifies statistical disparities, reflecting im-320

perceptibility. Steganalysis accuracy (ACC) indi-321

cates the ability to invalidate detection, which is322

evaluated using a fine-tuned discriminator, with fur-323

ther details provided in Appendix D.2. Finally, the324

running time (Time, in seconds) to embed a secret325

message indicates the steganographic efficiency.326

10More detailed operation steps for this method for water-
marking are shown in Appendix C.2.

4.1.2 Results 327

While only 128 bits are embedded, there are non- 328

negligible extraction error rates for all the three 329

adopted language models, which are about 10% 330

for Llama-2-7b, about 5% for Swallow-7b, and 331

about 7% for Qwen2.5-7b (details are shown in 332

Appendix D.3). This illustrates the necessity of 333

our stepwise verification method or disambiguation 334

methods for steganography. 335

For each method, average experimental data ob- 336

tained under various top-k values are grouped into 337

embedding-capacity intervals (2.0 ≤ BPT < 6.0). 338

Tables 5, 6, and 7 show the average performance 339

across these intervals for each approach. Note that 340

when the sample size in any group is 20 or fewer, 341

the data is considered insufficient and marked 342

as “−” in these tables. For each group, within 343

these valid data, the best data point is marked 344

in green background and the worst data point is 345

marked in red background . The main findings via 346

these experiments are as follows: 347

1) One of the baseline methods, SyncPool (Qi 348

et al., 2025), severely suffers from limitations in 349

embedding capacity. Especially in Llama-2-7b and 350

Swallow-7b, only when BPT < 3.0, there are suffi- 351

cient data. Details and explanations of this problem 352

are shown in Appendix D.4. 353

2) The operation efficiency of our stepwise ver- 354

ification method is acceptable. In our method, it 355

is necessary to call the tokenizer to check each 356

candidate token. Compared to baseline methods 357

whose time complexity is at least O(n2) (n is k in 358

the case), the lightweight aspect of our complexity 359

is O(n). According to the Time dimension, our 360

method is much more efficient than MWIS (Yan 361

et al., 2023). Even though the Basic (Nozaki and 362

Murawaki, 2022) method is the most efficient, the 363

gap between it and ours could be narrowed as BPT 364

increases essentially as k increases.11 365

3) Overall, our method outperforms the base- 366

lines. Compared to the best baseline method for 367

each metric for each language model in each inter- 368

val, ours achieves an average reduction of 14.12% 369

in PPL, 47.86% in KLD, and 3.53% in ACC. 370

4.2 Experiments on Watermarking 371

We implement our proposed post-hoc rollback 372

method for two types of LLM watermarking, which 373

are, respectively, (1) logit-based watermarking and 374

11How BPT varies as k varies can be found in Figure 5 in
the Appendix.
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2.0 ≤ BPT < 3.0 3.0 ≤ BPT < 4.0
PPL↓ KLD↓ ACC↓ Time↓ PPL↓ KLD↓ ACC↓ Time↓

Basic 17.72 1.005 0.936 1.62 38.96 1.355 0.976 1.43
MWIS 9.13 0.138 0.784 6.33 16.37 0.149 0.797 11.40
SyncPool 10.73 0.154 0.853 3.04 − − − −
Stepwise verification 8.69 0.070 0.766 5.35 15.07 0.031 0.846 8.09

4.0 ≤ BPT < 5.0 5.0 ≤ BPT < 6.0
PPL↓ KLD↓ ACC↓ Time↓ PPL↓ KLD↓ ACC↓ Time↓

Basic 77.91 1.690 0.963 2.73 134.87 1.934 0.922 7.21
MWIS 28.64 0.187 0.625 12.04 − − − −
SyncPool − − − − − − − −
Stepwise verification 26.41 0.022 0.621 9.10 47.73 0.020 0.704 9.51

Table 5: Quantitative comparison with previous disambiguation methods on Llama-2-7b and English contexts.

2.0 ≤ BPT < 3.0 3.0 ≤ BPT < 4.0
PPL↓ KLD↓ ACC↓ Time↓ PPL↓ KLD↓ ACC↓ Time↓

Basic 18.18 0.834 0.952 1.90 36.60 0.929 0.961 3.62
MWIS 9.49 0.126 0.866 6.36 18.70 0.132 0.915 12.12
SyncPool 12.70 0.172 0.890 3.40 − − − −
Stepwise verification 9.24 0.081 0.865 4.89 18.03 0.052 0.911 7.26

4.0 ≤ BPT < 5.0 5.0 ≤ BPT < 6.0
PPL↓ KLD↓ ACC↓ Time↓ PPL↓ KLD↓ ACC↓ Time↓

Basic 73.11 0.995 0.984 6.04 130.71 0.985 0.948 7.32
MWIS 37.85 0.157 0.861 13.35 − − − −
SyncPool − − − − − − − −
Stepwise verification 34.80 0.041 0.922 8.59 69.81 0.041 0.872 9.25

Table 6: Quantitative comparison with previous disambiguation methods on Swallow-7b and Japanese contexts.

2.0 ≤ BPT < 3.0 3.0 ≤ BPT < 4.0
PPL↓ KLD↓ ACC↓ Time↓ PPL↓ KLD↓ ACC↓ Time↓

Basic 24.78 0.975 0.670 1.65 54.64 1.044 0.760 1.56
MWIS 12.17 0.185 0.625 4.28 27.00 0.175 0.762 7.87
SyncPool 17.55 0.105 0.615 4.73 41.03 0.094 0.755 4.98
Stepwise verification 12.07 0.152 0.597 4.15 24.76 0.111 0.695 5.18

4.0 ≤ BPT < 5.0 5.0 ≤ BPT < 6.0
PPL↓ KLD↓ ACC↓ Time↓ PPL↓ KLD↓ ACC↓ Time↓

Basic 113.02 1.122 0.796 2.69 232.97 1.216 0.806 5.03
MWIS 53.70 0.188 0.758 9.75 111.11 0.193 0.686 13.93
SyncPool 85.36 0.088 0.750 6.53 − − − −
Stepwise verification 50.08 0.093 0.699 6.68 102.78 0.075 0.667 8.25

Table 7: Quantitative comparison with previous disambiguation methods on Qwen2.5-7b and Chinese contexts.

(2) sampling-based watermarking.375

For logit-based watermarking, the LeftHash376

scheme (Kirchenbauer et al., 2023) (the context377

width is 1), the SelfHash scheme (Kirchenbauer378

et al., 2024) (the context width is 4), and the Uni-379

gram scheme (Zhao et al., 2024) are adopted. For380

each method, we set green list size γ = 0.5, and381

hardness parameter (priority in logits of green list)382

δ = 2.0. For sampling-based watermarking, the383

Gumbel softmax scheme (Aaronson and Kirchner,384

2023)12 is adopted (the context width is 5). De-385

tailed schemes are shown in Appendix D.5.386

Due to differences in temporary inconsistency387

12We use the version provided by Fu et al. (2024).

rates between various language models (shown in 388

Table 4), and this rate in Llama-2-7b is much lower 389

than those of the other two models. The obser- 390

vation period q is also set differently according 391

to these models, i.e. larger q representing higher 392

relaxation, is set for scenarios with higher tempo- 393

rariness. Specifically, q = 2 is set for Llama-2-7b, 394

and q = 10 is set for Swallow-7b and Qwen2.5- 395

7b.13 Besides, the number of generated tokens is 396

constantly 200. Regardless of whether to use our 397

post-hoc rollback method, 500 samples are gener- 398

ated and collected for each watermarking method 399

and each language model. 400

13How to determine q is detailed in Appendix F.

7



Watermarking scheme Unattacked Attacked (ϵ = 0.2) Attacked (ϵ = 0.4)
Watermark

Strength↑ AUROC↑ PPL↓ Watermark
Strength↑ AUROC↑ Watermark

Strength↑ AUROC↑

LeftHash Original 7.58 0.996 20.55 4.59 0.982 2.57 0.878
Post-hoc rollback 7.73 0.996 19.56 4.82 0.984 2.58 0.879

SelfHash Original 7.33 0.999 20.53 4.09 0.967 2.01 0.812
Post-hoc rollback 7.44 0.999 19.87 4.30 0.973 2.05 0.820

Unigram Original 7.76 0.998 19.00 6.43 0.987 5.18 0.912
Post-hoc rollback 7.77 0.995 17.85 6.50 0.987 5.23 0.910

Gumbel Original 21.43 0.952 3.47 13.93 0.918 8.64 0.843
Post-hoc rollback 23.60 0.956 3.15 15.29 0.935 9.62 0.880

Table 8: Quantitative comparison in various watermarking schemes on Llama-2-7b and English context.

4.2.1 Attacking Watermarks401

Considering the scales, fairness, and availability of402

attacking models, we adopt the original language403

model that generates watermarked texts as the re-404

placement model to attack watermarks.14 For each405

token, it can be selected and then replaced by in-406

ference (according to the left context) and resam-407

pling, where the selection probability is ϵ. Besides,408

for more practical scenarios, results under GPT-4o409

paraphrasing attack are shown in Appendix H.410

4.2.2 Metrics411

The detectability of watermarked texts is denoted412

by watermark strength, where a higher water-413

mark strength increases the likelihood of the text414

being detected as watermarked. Details about how415

to calculate the strength are shown in Appendix D.5.416

Due to differences in approaches to computing wa-417

termark strength, the obtained watermark strengths418

indicate relative scores and are not comparable419

across different watermarking types. Besides, AU-420

ROC value is employed to simulate detectability in421

real-world scenarios, where 500 watermarked texts422

and 500 unwatermarked texts are evaluated in each423

group. Perplexity (PPL) assesses the text quality.424

4.2.3 Results425

Table 8 lists the average experimental statistics426

in various watermarking methods under Llama-2-427

7b.15 The main findings are:428

1) The watermark strengths with the rollback429

mechanism exhibit a steady increase compared to430

the original. This aligns with the fact that incon-431

sistent tokens interfere with the detection process.432

However, the extend of improvement is limited due433

to the infrequency of inconsistent tokens.434

14For watermarking attacks, the common T5 model (Raffel
et al., 2020) does not support Japanese or Chinese.

15For Swallow-7b and Qwen2.5-7b, the results are shown
in Tables 14 and 15 (in the Appendix).

2) Some superiority of our post-hoc rollback 435

method in watermark strengths and AUROC values 436

under attack scenarios represents that watermarks 437

after addressing TI are more detectable and more 438

robust, i.e. higher anti-modification capability. 439

3) PPL in each group counterintuitively de- 440

creases steadily, as our method does not target it.16 441

One possible explanation for this could be: The 442

tokenizer-based perplexity calculation is affected 443

by inconsistent tokens. Specifically, the predicted 444

probabilities of CITs could be considered very low, 445

thus PPL becomes higher finally.17 446

5 Conclusion 447

We observed that tokenization inconsistency (TI) 448

in LLM-based steganography and watermarking 449

can cause robustness issues in extraction or detec- 450

tion processes. Our investigation on inconsistent 451

tokens across different LLMs and language con- 452

texts reveals the infrequency and temporariness of 453

inconsistent tokens. Based on these two charac- 454

teristics, we propose two methods to address TI: 455

one for steganography and the other for watermark- 456

ing. Our experiments, conducted across various lan- 457

guage models, demonstrate that: (1) for steganog- 458

raphy, our stepwise verification method outper- 459

forms traditional disambiguation approaches across 460

embedding-capacity intervals, offering superior 461

text quality, imperceptibility, and anti-steganalysis 462

capacity; (2) for watermarking, our post-hoc roll- 463

back method enhances both detectability and ro- 464

bustness against adversarial modifications while 465

maintaining lower perplexity. Our proposed meth- 466

ods have great potential in generalizability, as they 467

can be applied to a wide range of steganographic 468

algorithms and watermarking schemes. 469

16Perplexities in attack scenarios are shown in D.6.
17How inconsistent tokens affect perplexity is detailed

in E.3.

8



Limitations470

For steganography: Similar to mainstream lin-471

guistic steganographic approaches, the threat472

model assumes the absence of an active attacker473

capable of modifying the stegotexts. Otherwise,474

the guarantee of 100% correct steganographic ex-475

traction would not be ensured.476

For watermarking: Compared to original TI-477

unaware watermarking schemes, the superiority of478

the watermarking schemes equipped with the post-479

hoc rollback method is limited. It is the infrequency480

of inconsistent tokens that makes improvements to481

various metrics relatively minor. Specifically, for482

comparison, any inconsistent token in steganog-483

raphy can disturb subsequent inference.18 The in-484

consistent tokens in watermarking can merely influ-485

ence scores at inconsistency positions and positions486

whose watermarking contexts contain inconsistent487

tokens during watermarking detection process.19488

Ethical Considerations489

Intended applications of steganography are embed-490

ding copyright information, countering censorship,491

and similar uses. However, it can also be used to492

be exploited for harmful purposes, such as covert493

communication by malicious actors, spreading dis-494

information, or bypassing censorship mechanisms.495

Hence, its potential to facilitate illicit activities ne-496

cessitates robust monitoring and regulation to pre-497

vent misuse. In addition, countermeasures against498

steganography, steganalysis, the study of detecting499

the presence of hidden messages, would also be an500

encouraging research direction to safeguard against501

malicious use.502
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A Preliminaries & Related Work771

A.1 Language Model Basics772

A language model (LM) has a vocabulary V con-773

taining words or word fragments known as “to-774

kens.” Consider a sequence of LM-generated T775

tokens {s(t)} ∈ VT . Entries with negative indices,776

[s(−Np), . . . , s(−1)], represent a “prompt” of length777

Np and [s(0), . . . , s(T )] are tokens generated by an778

LM in response to the prompt.779

An LM for the next token prediction at position780

t, is a function fLM(·) whose input is a sequence781

of known tokens [s(−Np), . . . , s(t−1)] which con-782

sists of a prompt and the first t− 1 LM-generated783

tokens. Then it outputs a logit vector, correspond-784

ing to each token in V . These logits are then785

converted into a discrete probability distribution786

p(t) = (p
(t)
1 , . . . , p

(t)
|V|) over the vocabulary, by a787

softmax operator (for example). The next token is788

then sampled from p(t) using either standard multi-789

nomial sampling, beam search, or greedy sampling790

and so on.791

A.2 Steganography based on Language792

Models793

Alice (the sender) wants to communicate a secret794

message ms ∼ U({0, 1}L) with Bob (the receiver)795

by embedding it in a natural language cover text796

ts (a stegotext). The uniform distribution is cho-797

sen for ms without loss of generality: if ms has798

additional structure it can be further compressed799

to a uniformly distributed random variable (Han,800

2005). Alice and Bob have agreed on an embed-801

ding function Semb and an extracting function Sext802

that perform steganography. Alice and Bob also803

have access to the exact same language model,804

Mo, which can be used during embedding and805

extraction. These two functions are supposed to806

be invertible. In other words, Semb(Mo,ms) = ts,807

Sext(Mo, ts) = m′
s, and m′

s should be equal to808

ms.809

Generative linguistic steganography utilizes re-810

dundancy of candidate pools to achieve steganog-811

raphy. Through further sampling (e.g. top-k) and812

encoding p(t) with Huffman coding (Yang et al.,813

2019) or arithmetic coding (Ziegler et al., 2019)814

and so on, a steganographic candidate pool ĉ(t) is815

obtained, with its probability distribution p̂(t). Dur-816

ing embedding process, the language model in turn817

chooses a token in ĉ(t) (t = 0, 1, ...) until it en-818

codes the whole secret message ms; during extrac-819

tion process, the language model in turn chooses820

and extracts a token in ĉ(t) (t = 0, 1, ...) till the end 821

of the stegotext. 822

A.2.1 Segmentation Ambiguity 823

The stegotext generated by Semb is essentially a 824

sequence composed of tokens. The sender must 825

detokenize it using a tokenizer into a stegotext be- 826

fore transmission. As shown in Figure 1a (which 827

is also an illustration of segmentation ambiguity), 828

if the sender generates a token mapping to “_no” 829

and “body”, the sender needs to detokenize them 830

into the text “nobody” before sending it to Bob. 831

However, the issue is that common words like “_no- 832

body” often exist as independent tokens “_no” in 833

the model’s vocabulary as well. As a result, a sin- 834

gle piece of text can correspond to two or even 835

more different token representations. Therefore, 836

during extraction Sext(Mo, ts), since both “_no- 837

body” and “_no” exist in the candidate pool, Bob 838

cannot determine which token the sender embed- 839

ded the message into. This phenomenon is referred 840

to as segmentation ambiguity. This issue can be 841

exempted in only a few tokenizer-free linguistic 842

steganographic approaches (Xiang et al., 2020; Yan 843

et al., 2024b). 844

A.2.2 Disambiguation Algorithms 845

Recently, several solutions have emerged to address 846

segmentation ambiguity which achieves 100% dis- 847

ambiguation in extraction. 848

1) Basic Solution: Nozaki and Murawaki (2022) 849

proposed a simple disambiguation approach, which 850

removes tokens whose mapping subwords are pre- 851

fixes of others during every generation and extrac- 852

tion step. This process ensures that any token sent 853

by the sender is uniquely extractable for the re- 854

ceiver. 855

2) MWIS-based Solution: Yan et al. (2023) con- 856

sidered the influence of removing candidate words 857

on the probability distributions and decided to pro- 858

cess only if candidate-level ambiguity occurred. 859

Their solution identifies the maximum weight inde- 860

pendent set (MWIS) in the candidate pool to reduce 861

probability distortion. 862

3) SyncPool Solution: Qi et al. (2025) de- 863

signed provably secure disambiguation linguistic 864

steganography based on ambiguity pool group- 865

ing and synchronous sampling to address informa- 866

tion loss and token synchronization issues during 867

steganography, eliminating segmentation ambigu- 868

ity without altering the distribution. 869

All of these previous disambiguation approaches 870
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make the steganographic extraction merely based871

on prefixes of stegotexts instead of the tokenizer,872

bypassing the TI between the sender-receiver873

pair.20 As a result, these traditional disambiguation874

methods overly process candidate pools, compro-875

mising imperceptibility or embedding capacity.876

A.2.3 Imperceptibility of LM-based877

Steganography878

Following the previous formulation (Dai and Cai,879

2019; Shen et al., 2020), statistical imperceptibility880

refers to the similarity between the true language881

model Mt in the monitored channel and Ms which882

is the language model Mo integrated with stegano-883

graphic algorithms. Specifically, the total variation884

distance (TVD) is used to measure statistical im-885

perceptibility. Consider the TVD between Mt and886

Ms, i.e. d(Mt,Ms), by triangle inequality:887

d(Mt,Ms) ≤ d(Mt,Mo), d(Mo,Ms) (1)888

As d(Mt,Mo) is a criterion to measure the orig-889

inal language model, which is limited by the re-890

search on language models. Thus, d(Mo,Ms) is891

the main focus of linguistic steganography.892

According to Pinsker’s inequality (Fedotov893

et al., 2003) and additivity of KL divergence,894

d(Mo,Ms) can be further decomposed in each895

step, that is:21896

d(Mo,Ms) ≤

√√√√ ln 2

2

∞∑
t=1

DKL(p(t)||p̂(t)) (2)897

where p(t) is the original probability distribution898

at tth step, and p̂(t) is transformed from p(t) via899

sampling and encoding. Hence, linguistic steganog-900

raphy could aim to minimize DKL(p
(t)||p̂(t)), in901

order to obtain relative near-imperceptibility.902

A.3 Watermarks for Language Models903

A watermarking algorithm for language models904

typically comprises two components: a watermark905

embedding function Wemb and a watermark detect-906

ing function Wdet (Liu et al., 2024). Wemb takes907

a language model Mo and a watermark message908

mw as input and outputs a watermarked text tw,909

expressed as Wemb(Mo,mw) = tw. For the de-910

tecting function Wdet, its input is any text t, and its911

20Another disambiguation method (Yan et al., 2024a) is
not introduced in this section or adopted as the baseline in
experiments, as its disambiguation is reported to be not 100%.

21Some derivation is omitted here, as details are verified
in (Dai and Cai, 2019; Shen et al., 2020; Fedotov et al., 2003).

output is its predicted watermark message for the 912

text, denoted Wdet = m′
w. The watermark mes- 913

sage mw or m′
w can be a Boolean value (True or 914

False) for zero-bit watermarks to indicate whether 915

the text is generated by AI (Kirchenbauer et al., 916

2023, 2024), and can also be a bit stream for multi- 917

bit watermark usage (Yoo et al., 2024). So far, there 918

are two main types of inference-time watermarking 919

algorithms: (1) logit-based watermarking and (2) 920

sampling-based watermarking. 921

For the former, those methods refer to inserting 922

mw into the logit of each generative step by lan- 923

guage models (Kirchenbauer et al., 2023; Fernan- 924

dez et al., 2023; Kirchenbauer et al., 2024; Lu et al., 925

2024; Zhao et al., 2024). The trade-off between 926

text quality and detectability should be considered 927

in these watermarks. 928

For the latter, they do not alter the logits, but uti- 929

lize the watermark message to guide the sampling 930

process (Aaronson and Kirchner, 2023; Christ et al., 931

2024; Kuditipudi et al., 2024). For token-by-token 932

sampling watermarking, the principle of incorpo- 933

rating watermarks during the token-sampling phase 934

is derived from the randomness inherent in token 935

sampling. In this scenario, watermarks can be intro- 936

duced using a fixed seed, where a pseudo-random 937

number generator produces a sequence of pseudo- 938

random numbers to guide the sampling of each 939

token. For watermark detection, it is only neces- 940

sary to assess the alignment between the text tokens 941

and the pseudo-random numbers, specifically eval- 942

uating whether the choice of each token in the text 943

matches the corresponding value in the random 944

number sequence. 945

A.4 Related Work on Abnormal Tokens 946

Tokenization stands as a cornerstone in natural lan- 947

guage processing, which transforms a continuous 948

text sequence into a list of discrete values called 949

tokens (Wang et al., 2024). 950

A.4.1 Glitch Tokens 951

Glitch tokens refer to a class of anomalous tokens 952

in LLMs that can trigger unexpected and often erro- 953

neous behaviors when processed by LLMs. This is- 954

sue arises from improper tokenization of raw texts, 955

which can stem from irregularities in the training 956

process, such as underrepresentation in training 957

data or inconsistencies in tokenization (Geiping 958

et al., 2024). 959

Glitch token and according glitchy phenomena 960

in LLMs are first investigated comprehensively and 961
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systematically by Li et al. (2024), where glitch-962

token symptoms and glitch-token taxonomy are963

explored, and an efficient glitch-token detection964

method named GlitchHunter is proposed. Glitch-965

Hunter iteratively constructs a token embedding966

graph and generates candidate glitch token clusters967

for subsequent detection.968

A more advanced and effective detection and969

mitigation of glitch tokens is proposed and named970

GlitchProber (Zhang et al., 2024). This work first971

reveals the characteristic features induced by glitch972

tokens on LLMs, which are evidenced by signif-973

icant deviations in the distributions of attention974

patterns and dynamic information from intermedi-975

ate model layers. GlitchProber utilizes small-scale976

sampling, principal component analysis for accel-977

erated feature extraction, and a simple classifier for978

efficient vocabulary screening.979

Another advancing glitch-token detection980

method is named GlitchMiner (Wu et al., 2024),981

which is a gradient-based discrete optimization982

framework that efficiently identifies glitch tokens983

by introducing entropy as a measure of prediction984

uncertainty and employing a local search strategy985

to explore the token space.986

A.4.2 Unreachable Tokens987

Besides, ‘unreachable tokens’ are termed by Land988

and Bartolo (2024), referring to those tokens that989

are never produced as a result of tokenizing text.990

In that work, they test this by checking if decoding991

a token to a string, and re-tokenizing this string,992

results in the original token ID. Although they also993

apply the detokenization-retokenization pipeline,994

they merely consider that one tested token without995

contexts.996

A.4.3 Tokenization Inconsistency (TI)997

The importance of tokenization consistency is re-998

ported in extractive NLP tasks (Sun et al., 2023).999

They study the issue of tokenization inconsistency1000

that is commonly neglected in training these mod-1001

els, and reveal that this issue damages the extractive1002

nature of these tasks after the input and output are1003

tokenized inconsistently by the tokenizer, thus lead-1004

ing to performance drop as well as hallucination.1005

Besides, a recent work (Wang et al., 2024) con-1006

structs an adversarial dataset, named as ADT (Ad-1007

versarial Dataset for Tokenizer), which draws upon1008

the vocabularies of various open-source LLMs to1009

challenge LLMs’ tokenization. That study is the1010

first to investigating LLMs’ vulnerability in terms1011

Absence of SITs
Generated token ids ... 18 76 ... ...
Retokenized token ids ... 18 325 76 ...

Absence of CITs
Generated token ids ... 1092 8 92 ...
Retokenized token ids ... 1092 92 ... ...

Table 9: Examples of the absence of SITs or CITs when
TI occurs.

of challenging their token segmentation, which will 1012

shed light on the subsequent research of improv- 1013

ing LLMs’ capabilities through optimizing their 1014

tokenization process and algorithms. 1015

Correct or consistent tokenization is often over- 1016

looked in most tasks. However, in text-based trans- 1017

mission systems (including steganography and wa- 1018

termarking) where texts are transmitted from Alice 1019

to Bob, tokenization consistency becomes crucial, 1020

as precise transmission is essential for maintaining 1021

the integrity of the information. 1022

B Analysis of Inconsistent Tokens and 1023

Tokenization Inconsistency (TI) 1024

In this section, we provide detailed analysis and 1025

explanations of the relationships between source 1026

inconsistent tokens (SITs), consequential incon- 1027

sistent tokens (CITs), candidate-level inconsistent 1028

tokens (candidate-level ITs), and tokenization in- 1029

consistency (TI). 1030

Proposition 1. The sufficient condition for the ex- 1031

istence of TI is the existence of SIT(s) or CIT(s). 1032

According to Proposition 1, when TI occurs, 1033

there could be only SITs (in the generated token 1034

list) or only CITs (in the retokenized token list). 1035

Table 9 provides examples of TI where SITs or 1036

CITs are absent. Inconsistent tokens are marked 1037

in red background , and other tokens including ‘...’ 1038

are all consistent tokens. The essential reason for 1039

it is related to tokenizer preferences. For example, 1040

the sole SIT or sole CIT could be detokenized to a 1041

0-length character. 1042

Proposition 2. A necessary condition for the exis- 1043

tence of TI is outputting candidate-level IT(s). 1044

According to Algorithm 1, if outputting a can- 1045

didate token changes the tokenization state from 1046

consistency to inconsistency or persists TI, that can- 1047

didate token is a candidate-level IT. Therefore, an 1048

easy proof of Proposition 2 by contradiction is as 1049

follows: If a candidate-level IT is never generated, 1050

TI never occurs. 1051
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Algorithm 2 Stepwise verification (embedding)
Input:
Prompt (initial historical tokens), [s(−Np), . . . , s(−1)]
Secret message, ms

Output:
Steganographic text, ts

1: for t = 0, 1, . . . do
2: Apply the language model to historical tokens to obtain

the probability distribution p(t) over the vocabulary V .

3: Sample V according to p(t) to get the candidate pool
ĉ(t).

4: Filter out candidate-level ITs in ĉ(t) to get a
inconsistency-free candidate pool ĉ′(t).

5: if ĉ′(t) == ∅ then
6: Add the highest probability token (which is not an

SIT) from V\ĉ(t) to ĉ′
(t).

7: Get the normalized probability distribution p̂′(t) over
ĉ′

(t).
8: Use the steganographic embedding algorithm and ms

to generate the next token s(t).
9: Detokenize historical tokens to ts;

10: return ts

Proposition 3. If all the inconsistent tokens are not1052

temporary, there is still possibility that a candidate-1053

level IT does not become an SIT.1054

According to Proposition 2, outputting1055

candidate-level ITs are necessary for TI, and1056

according to Proposition 1, SITs are not necessary1057

for TI. Therefore, there are some TI cases where1058

candidate-level ITs are output, but SITs are absent.1059

TI with the absence of SITs (Table 9) provides1060

an example of Proposition 3, where the ‘id: 18’1061

token or the ‘id: 76’ token should an output1062

candidate-level IT, but neither of them is an SIT.1063

C Algorithms of Methods1064

C.1 Stepwise Verification1065

Algorithm 2 provides details of the steganographic1066

embedding process equipped with our proposed1067

stepwise verification method. This algorithm con-1068

siders an error scenario with a very small proba-1069

bility of occurrence, that is, the inconsistency-free1070

candidate pool ĉ′(t) is ∅ (Line 4-5). Once it occurs,1071

a non-SIT token outside the steganographic candi-1072

date pool c′(t) should be added to ĉ′(t), to make1073

sure the generation is always able to continue (Line1074

6). Algorithm 3 provides the details of the extrac-1075

tion version, and also includes the error prevention1076

mechanism (Line 6-7). At each step of generation,1077

both in embedding and extraction, they share the1078

same view of how the candidate pool is processed.1079

Algorithm 3 Stepwise verification (extraction)
Input:
Prompt (initial historical tokens), [s(−Np), . . . , s(−1)]
Steganographic text, ts
Output:
Secret message, ms

1: Tokenize ts to token list [s(−Np), . . . , s(0), s(1), . . . ].
2: for t = 0, 1, . . . do
3: Apply the language model to historical tokens to obtain

the probability distribution p(t) over the vocabulary V .

4: Sample V according to p(t) to get the candidate pool
ĉ(t).

5: Filter out candidate-level ITs in ĉ(t) to get a
inconsistency-free candidate pool ĉ′(t).

6: if ĉ′(t) == ∅ then
7: Add the highest probability token (which is not an

SIT) from V\ĉ(t) to ĉ′
(t).

8: Get the normalized probability distribution p̂′(t) over
ĉ′

(t).
9: Use the steganographic extraction algorithm and s(t)

to update ms.
10: Append s(t) to the historical tokens;
11: return ms

Algorithm 4 Post-hoc rollback
Input:
Prompt (initial historical tokens), [s(−Np), . . . , s(−1)]
Watermark message, mw

Observation period parameter, q
Output:
Watermarked text, tw

1: qc ← NULL;
/* Initialize the state of observation period*/

2: for T = 0, 1, . . . do
3: Apply the language model to historical tokens and

watermark embedding algorithm to generate the next
token s(t);

4: Append s(t) to historical tokens;
5: if Tokenization consistency then
6: qc ← NULL;
7: else
8: if qc == NULL then
9: qc ← 0;

10: if qc ̸= NULL then
11: if qc < q then
12: qc ← qc + 1;
13: else
14: Delete the latest (q + 1) historical tokens;
15: Detokenize historical tokens to tw;
16: return tw

C.2 Post-Hoc Rollback 1080

Algorithm 4 provides details on how to implement 1081

our proposed post-hoc rollback method in the gen- 1082

eration process, meanwhile embedding watermark- 1083

ing. qc is a signal of whether the generation is cur- 1084

rently in the state of TI (qc == NULL indicates 1085

tokenization consistency). Whenever tokenization 1086

consistency is recovered, qc is reset as NULL (Line 1087
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5-6). Once the tokenization state changes from con-1088

sistency to inconsistency, qc is set as 0 (Line 9), and1089

qc increases when the inconsistency lasts after gen-1090

erating the next token (Line 12). Once qc is not less1091

than the designated observation period parameter q,1092

the rollback mechanism is triggered: The token-by-1093

token generation rollbacks back to the state where1094

the stable inconsistent token q tokens ago is not1095

generated (Line 14).1096

D Experimental Details1097

D.1 Overall Setups1098

The initial contexts are randomly selected from the1099

multilingual C4 dataset.22 The temperature parame-1100

ter is set to 1.0 constantly. According to the features1101

of different languages, for Llama-2-7b, the initial1102

10 words of an item in the C4 dataset are the initial1103

context for each generation; while for Swallow-7b1104

and Qwen2.5-7b, the initial 10 characters of an1105

item in the C4 dataset are the initial context for1106

each generation. The perplexity of a text is calcu-1107

lated by the language model that generates the text.1108

All the parameters of the tokenizer functions are1109

default, except for setting skip_special_tokens1110

= True in detokenization.1111

All experiments are implemented in Python1112

3.12.7 with Torch 2.5.0, running on a 2.0 GHz1113

CPU and accelerated by using 8 × NVIDIA RTX1114

A6000 GPUs.1115

D.2 Steganalysis1116

As a discriminator for each language, we used1117

a base-sized BERT model taken from Hugging1118

Face’s transformers package (English: bert-base-1119

uncased,23 Japanese: cl-tohoku/bert-japanese,241120

Chinese: bert-base-chinese).25 Positive samples1121

are collected from stegotexts generated using var-1122

ious top-k samplings, while negative samples are1123

sourced from non-steganographic texts (generated1124

by the same models without any steganographic1125

algorithm).1126

As for each top-k sampling value (k ∈ {4, 8,1127

16, 32, 64, 128, 256, 512, 1024, 2048, 4096} - 111128

different k), for each disambiguation method and1129

ours (4 methods), and for each language model, 5001130

samples are generated, for each language model the1131

size of collected stegotexts is 11×4×500 = 22000.1132

22https://huggingface.co/datasets/allenai/c4
23https://huggingface.co/google-bert/bert-base-uncased
24https://github.com/cl-tohoku/bert-japanese
25https://huggingface.co/google-bert/bert-base-chinese

Llama-2-7b Swallow-7b Qwen2.5-7b

k BPT ER BPT ER BPT ER
4 1.11 20.0% 0.95 6.0% 1.01 14.0%
8 1.62 14.6% 1.38 5.0% 1.45 6.8%
16 2.03 11.4% 1.77 4.0% 1.98 7.4%
32 2.34 8.0% 2.12 4.4% 2.37 6.2%
64 2.64 9.4% 2.45 3.2% 2.77 8.8%
128 2.87 8.0% 2.68 5.2% 3.08 7.2%
256 3.08 9.2% 2.94 3.6% 3.43 7.4%
512 3.21 11.4% 3.23 4.6% 3.71 6.8%
1024 3.27 7.2% 3.38 4.6% 4.05 8.0%
2048 3.41 6.2% 3.71 5.4% 4.25 7.6%
4096 3.41 11.4% 3.69 3.4% 4.36 7.6%

Table 10: Embedding capacities and error rates of
steganography (without disambiguation or stepwise ver-
ification) implemented under various language models
and top-k sampling values.

Hence, for each language model, during the train- 1133

ing phase, both positive and negative samples con- 1134

sist of 17,600 instances each (80% of all collected 1135

stegotexts). For testing, 4,400 untrained positive 1136

samples are used (20% of all collected stegotexts), 1137

categorized into different embedding-capacity in- 1138

tervals as shown in Tables 5, 6, and 7. In each 1139

embedding-capacity interval and for each disam- 1140

biguation approach, only stegotexts with a sample 1141

size greater than 20 are included in the tests; other- 1142

wise, “−” is marked to indicate insufficient data. 1143

Given the significant variation in the lengths of 1144

positive samples, we adjust the negative samples 1145

to uniformly vary between 10 and 128 tokens (the 1146

prompt is excluded) to ensure that the trained dis- 1147

criminator is not sensitive to text length. Addi- 1148

tionally, all texts are padded or truncated to 128 1149

tokens, so that positive samples cannot be distin- 1150

guished as steganographic based solely on their 1151

length. For fine-tuning the BERT model, we use 1152

Adam (Kingma and Ba, 2017) as the optimizer 1153

with a learning rate of 5× 10−5. The batch size is 1154

set to 2048, and the discriminator is trained for 20 1155

epochs, running time of the whole training process 1156

is approximately 10 minutes. 1157

D.3 Original Error Rates 1158

In this section, we use empirical statistics to show 1159

the extent to which steganography suffers from ex- 1160

traction errors, if extraction errors are neglected in 1161

steganographic approaches. We use the stegano- 1162

graphic extraction error rate (ER) to indicate the 1163

rate that incorrect extraction occurs, and for ap- 1164

proaches equipped with neither disambiguation nor 1165

our proposed stepwise verification, the error rates 1166

16
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(a) Llama-2-7b.
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(b) Swallow-7b.
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(c) Qwen2.5-7b.

Figure 5: Average embedding capacities (bits per token,
BPT) when using various disambiguation methods and
our stepwise verification method, under top-k values.

are referred to as original error rates. Table 10 lists1167

BPT and ER for steganography with extraction1168

errors. For each language model and for each top-k1169

value, the data size is 500. For k = 4, BPT is1170

the lowest and ER is the highest for each language1171

model. The main reason is that when embedding 1172

a 128-bit secret message, lower ER means longer 1173

generated stegotext. And according to the relation- 1174

ship between the token number and the text-level 1175

inconsistency rate shown in Table 1, it is reason- 1176

able for longer stegotexts to suffer from higher 1177

ER. In addition, when the length of the secret mes- 1178

sage increases, it is reasonable to anticipate that 1179

the original error rates for various language models 1180

increase further. 1181

D.4 The Limitation of SyncPool in 1182

Embedding Capacity 1183

Figure 5 illustrates how embedding capacity varies 1184

according to various top-k values when different 1185

methods are adopted. For all three language mod- 1186

els with respectively English, Japanese and Chi- 1187

nese contexts, these data points in SyncPool share 1188

a similar trajectory, that is, when top-k value in- 1189

creases, BPT increases when k is small and de- 1190

creases when k becomes much larger. For compar- 1191

ison, in other methods, when top-k value increases, 1192

BPT increases steadily. 1193

The reason for the phenomenon is that SyncPool 1194

merges the original candidate pools into ambiguous 1195

pools for subsequent steganographic processing. 1196

However, as the ambiguous pools are formed ac- 1197

cording to prefix relationships in candidate tokens, 1198

when the size of original candidate pools increases, 1199

the average tokens in each ambiguous pool also 1200

increase. As a result, the size of ambiguous pools 1201

could rise more rapidly than the size of original 1202

candidate pools, so the average number of ambigu- 1203

ous pools could decrease, thus leading to lower 1204

embedding capacity. 1205

Furthermore, the work of SyncPool (Qi et al., 1206

2025) reports a KL divergence of 0 in their experi- 1207

ments, as their reference candidate pools are based 1208

on top-k sampled candidates. However, as outlined 1209

in Eq. 2, to accurately compare the divergence be- 1210

tween the original language model and the model 1211

used for steganography, we compute KLD using 1212

the original candidate pools as references in our 1213

experiments (Tables 5, 6, and 7). 1214

D.5 Watermarking Schemes 1215

Consider a text [s(1), ..., s(T )], its watermark 1216

strength (an indicator of detectability) is denoted 1217

as Φ(s(1), ..., s(T )). 1218

For logit-based watermarking, including 1219

LeftHash (Kirchenbauer et al., 2023), Self- 1220

Hash (Kirchenbauer et al., 2024) and Un- 1221

17



igram (Zhao et al., 2024) adopted by our1222

experiments, their mechanisms are as follows:1223

• Context: For LeftHash and SelfHash, the con-1224

text is previous h tokens; there is no context1225

for Unigram.1226

• Pseudo-random function: For LeftHash and1227

SelfHash, Fsk(context) hashes the context1228

to a seed at each generative step; Unigram1229

adopts a global seed. Then the seed is used to1230

generate a random vector Vec(t) in {0, 1}|V|,1231

the vector has γ|V| 1’s (representing green1232

tokens) and (1− γ)|V| 0’s (representing red1233

tokens).1234

• Decoder: Sample a token s(t) from1235

softmax(logit(t) + δ ∗Vec(t)).1236

• One-token score: ϕ(t) = Vec(t)[s(t)].1237

• Watermark strength: Φ(s(1), ..., s(T )) =1238 ∑T
t=1 ϕ

(t)−γT√
Tγ(1−γ)

.1239

For sampling-based watermarking, the detailed1240

scheme of Gumbel softmax scheme (Aaronson and1241

Kirchner, 2023) is:1242

• Context: The previous h tokens.1243

• Pseudo-random function: Fsk(context)1244

hashes the context to a seed at each gener-1245

ative step, then uses the seed to generate a1246

random vector Vec(t) in (0, 1)|V| where each1247

element is uniformly sampled from (0, 1).1248

• Decoder: Select a token s(t) which is1249

argmax1≤i≤|V|
log(Vec(t)[i])

softmax(logit(t))[i]
.1250

• One-token score: ϕ(t) = −log(1 −1251

Vec(t)[s(t)]).1252

• Watermark strength: Φ(s(1), ..., s(T )) =1253
1√
T

∑T
t=1 ϕ

(t) −
√
T .1254

D.6 Perplexities of Attacked Watermarked1255

Texts1256

Tables 11, 12, and 13, respectively, list perplexi-1257

ties of attacked watermarked texts at each attack1258

probability (ϵ = 0.2 or ϵ = 0.4) under three lan-1259

guage models. In terms of the perplexity metric,1260

the superiority of addressing TI exists in attacked1261

scenarios as well as unattacked scenarios (shown1262

in Tables 8, 14, and 15).1263

Watermarking scheme Attacked
(ϵ = 0.2)

Attacked
(ϵ = 0.4)

LeftHash Original 185.25 477.71
Post-hoc rollback 162.56 417.41

SelfHash Original 188.69 470.96
Post-hoc rollback 172.93 455.81

Unigram Original 167.16 438.53
Post-hoc rollback 161.24 424.75

Gumbel Original 19.38 46.32
Post-hoc rollback 18.70 40.70

Table 11: Perplexities in various watermarking schemes
under attack scenarios when Llama-2-7b is adopted.

Watermarking scheme Attacked
(ϵ = 0.2)

Attacked
(ϵ = 0.4)

LeftHash Original 133.44 301.82
Post-hoc rollback 130.31 290.67

SelfHash Original 143.03 308.02
Post-hoc rollback 142.34 313.01

Unigram Original 136.13 301.39
Post-hoc rollback 134.44 291.96

Gumbel Original 5.99 9.44
Post-hoc rollback 5.78 9.29

Table 12: Perplexities in various watermarking schemes
under attack scenarios when Swallow-7b is adopted.

Watermarking scheme Attacked
(ϵ = 0.2)

Attacked
(ϵ = 0.4)

LeftHash Original 414.34 962.58
Post-hoc rollback 378.68 857.41

SelfHash Original 398.99 890.30
Post-hoc rollback 355.39 786.71

Unigram Original 309.83 686.18
Post-hoc rollback 322.16 676.22

Gumbel Original 6.96 12.76
Post-hoc rollback 6.69 11.57

Table 13: Perplexities in various watermarking schemes
under attack scenarios when Qwen2.5-7b is adopted.

E Text Samples 1264

E.1 Samples of Stegotexts 1265

Table 16 presents examples of stegotexts gener- 1266

ated by our proposed stepwise verification method. 1267

Each generated text embeds a 128-bit random se- 1268

cret message. Following the approach of Ziegler et 1269

al. (Ziegler et al., 2019), we terminate the genera- 1270

tion process once the proposed method has finished 1271

embedding the message. 1272

E.2 Samples of Watermarked Texts 1273

Table 17 lists some examples of watermarked 1274

texts generated by our proposed post-hoc rollback 1275

method, and as the number of generated tokens is 1276

200 for each text, the complete watermarked texts 1277

18



Watermarking scheme Unattacked Attacked (ϵ = 0.2) Attacked (ϵ = 0.4)
Watermark

Strength↑ AUROC↑ PPL↓ Watermark
Strength↑ AUROC↑ Watermark

Strength↑ AUROC↑

LeftHash Original 8.05 0.999 20.47 5.18 0.987 3.04 0.895
Post-hoc rollback 8.07 0.999 20.23 5.13 0.988 3.02 0.896

SelfHash Original 7.96 0.998 22.21 4.58 0.971 2.54 0.855
Post-hoc rollback 7.99 0.998 21.72 4.67 0.975 2.58 0.859

Unigram Original 8.26 0.999 19.80 6.98 0.988 5.54 0.917
Post-hoc rollback 8.32 0.999 19.74 7.02 0.988 5.78 0.921

Gumbel Original 29.97 0.910 1.97 22.36 0.885 16.63 0.862
Post-hoc rollback 31.24 0.905 1.95 23.33 0.887 17.01 0.864

Table 14: Quantitative comparison in various watermarking schemes on Swallow-7b and Japanese context.

Watermarking scheme Unattacked Attacked (ϵ = 0.2) Attacked (ϵ = 0.4)
Watermark

Strength↑ AUROC↑ PPL↓ Watermark
Strength↑ AUROC↑ Watermark

Strength↑ AUROC↑

LeftHash Original 8.47 0.999 62.42 5.36 0.991 2.85 0.901
Post-hoc rollback 8.54 0.999 58.12 5.37 0.992 3.00 0.910

SelfHash Original 8.29 1.000 58.00 4.67 0.975 2.13 0.829
Post-hoc rollback 8.35 1.000 53.16 4.68 0.978 2.22 0.835

Unigram Original 9.23 1.000 54.10 7.67 0.994 6.22 0.954
Post-hoc rollback 9.28 1.000 51.84 7.72 0.994 6.07 0.939

Gumbel Original 22.09 0.897 2.37 15.96 0.859 11.58 0.793
Post-hoc rollback 22.46 0.900 2.37 16.27 0.858 12.17 0.796

Table 15: Quantitative comparison in various watermarking schemes on Qwen2.5-7b and Chinese context.

Model Prompt Stegotext BPT PPL KLD

Llama-2-7b
Finding a high quality
photographer for
your family portrait,

Finding a high quality photographer for your
family portrait, event or wedding is not as easy
as it sounds. A photography business can offer
photographers for hire that are affordable, but
this does not mean that you have to compromise
on quality. Here are more tips to help you find
the ultimate business that

2.33 6.23 0.024

Llama-2-7b
I’ve never understood
the whole points thing,
scholarships,

I’ve never understood the whole points thing,
scholarships, etc. Now it sounds like a full ride
(or nearly so). The deal is still a good one. That
probably sounds heartless to the

4.41 26.64 0.009

Swallow-7b 該当する商品が、
売り

該当する商品が、売りたい商品の条件に一
致している場合に、お勧めできる相手を探
して、1社から該当する会社への発送を依
頼する方法が出品

3.76 21.99 0.059

Swallow-7b 褐色仙台八幡、
汚れ

褐色仙台八幡、汚れ再生塗装 :仙台外壁
塗装お客さまの声外壁塗装終わり、綺
麗に汚れが落ちて大満足!仙台中央

4.27 71.62 0.013

Qwen2.5-7b “全脑开发”真能让孩

“全脑开发”真能让孩成长吗？这个“脑”就是
指孩子大脑的开发潜能。全脑开发的主要
内容包括情绪、记忆力、思维力、想象力、
创造力等智力因素和观察力、注意力、
思维力等非智力因素的

2.72 11.39 0.096

Qwen2.5-7b 荷兰国际集团预计
美国

荷兰国际集团预计美国五金商品经销商对
抵押率为25%的卷心菜/枫叶拱

7.53 233.92 0.027

Table 16: Examples of stegotexts generated with our stepwise verification method.

are not provided due to space limitation.1278 E.3 Samples of How TI Influences Perplexities 1279

Table 18 provides examples to clarify how conse- 1280

quential inconsistent tokens (CITs) affect the pre- 1281

dicted probabilities of each token in the token list 1282
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Model Method Prompt Stegotext Watermark
strength PPL

Llama-2-7b LeftHash
In fact, there are
currently over a
million international

In fact, there are currently over a million
international students enrolled around
the world? These valuable languages,
particularly the most important ones, offer
infinite possibilities; with them, you’ll
set out[...continues]

8.19 16.79

Llama-2-7b SelfHash
So you have your
children writing every
day. Great!

So you have your children writing every
day. Great! But it’s important not to think
“writing” means that only stories and
poems will qualify. In the course of life,
children will write in any number of
ways:[...continues]

6.82 16.55

Swallow-7b LeftHash 『秋晴れや千種
若水

『秋晴れや千種若水父逝きぬ』 (
『敬老の日』) 18年前に亡くした父
親のことをのせた俳句です。2003年
(平成15年)とイ「ンタネット」がリ
1995年(平成7年)より普[...continues]

9.71 32.14

Swallow-7b Unigram 【札幌（新千歳）
発】

【札幌（新千歳）発】北海道クルー
ズ旅物語こんな方にお勧め! (もちろ
ん、リクエスト型をお選びいただい
た方に限ります)札幌観光と北海道を
網羅する内容にしたい![...continues]

7.50 14.36

Qwen2.5-7b LeftHash 书法教育：临摹
还是创

书法教育：临摹还是创发我们的书法
临写，可以从追溯300年传统书法产
生之时就分为帖学和碑学两个主要
的传统。行摹也是帖学书法传承的主
要途径。但在现实生活[...continues]

8.55 116.27

Qwen2.5-7b Gumbel 湖南茶博会全
省30个

湖南茶博会全省30个市州组团来长
沙设馆参展星辰在线5月15日讯5月
15日，2023湖南茶叶博览会(简称“茶博
会”)专业观众招募活动媒体吹
风会在长沙举行，[...continues]

4.48 2.76

Table 17: Examples of watermarked generated with our post-hoc rollback method.

Llama-2-7b

Generated token list [Previous tokens]... ‘eye’ ‘q’ -
Predicted probability [Previous probabilities]... 6.59× 10−5 2.94× 10−4 -
Retokenized token list [Previous tokens]... ‘e’ ‘y’ ‘eq’
Predicted probability [Previous probabilities]... 9.49× 10−6 9.79× 10−7 9.27× 10−8

Swallow-7b

Generated token list [Previous tokens]... ‘に’ ‘生’ ‘え’
Predicted probability [Previous probabilities]... 1.91× 10−3 2.43× 10−4 4.53× 10−4

Retokenized token list [Previous tokens]... ‘に’ ‘生え’ -
Predicted probability [Previous probabilities]... 1.91× 10−3 2.17× 10−6 -

Qwen2.5-7b

Generated token list [Previous tokens]... ‘医生’ ‘态度’ -
Predicted probability [Previous probabilities]... 4.06× 10−3 5.27× 10−2 -
Retokenized token list [Previous tokens]... ‘医’ ‘生态’ ‘度’
Predicted probability [Previous probabilities]... 1.94× 10−2 1.36× 10−6 4.61× 10−6

Table 18: Examples of how TI effects predicted probabilities of tokens.

when the TI occurs, where CITs are marked in1283

red background . These examples show the fact1284

that these predicted probabilities of CITs are gener-1285

ally lower than those of SITs, whereas only these1286

CITs can be accessed by perplexity calculation. 1287

The expression of calculating perplexity is: 1288

PPL = exp

(
− 1

N

N∑
i=1

logP (s(i) | s(1):(i−1))

)
1289
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Llama-2-7b Swallow-7b Qwen2.5-7b

N = 1 0.00% 1.36% 60.03%
N = 2 3.61% 68.02% 27.69%
N = 3 3.61% 2.33% 0.20%
... ... ... ...
N =∞ 91.24% 18.02% 12.07%

Table 19: The percentage that temporary inconsistency
disappears after generating N tokens afterwards.

where N is the length of the retokenized token list,1290

s(i) denotes the ith token in this list, and P (s(i) |1291

s(1):(i−1)) represents the predicted probability of1292

s(i) according to historical i− 1 tokens. Therefore,1293

when the predicted probabilities of CITs are lower1294

than SITs, the resulting perplexity is higher than1295

that if perplexity calculation is based on the original1296

generate token list (which includes SITs).1297

F Determine Observation Period (q)1298

Table 20 lists the percentage that temporary incon-1299

sistency naturally disappears after generating N1300

tokens afterwards. And N = ∞ denotes a perma-1301

nent inconsistency (in 100-token texts, 1000 sam-1302

ples for each model). According to this table, we1303

can find that, in Swallow-7b and Qwen2.5-7b, most1304

temporary inconsistencies disappear after generat-1305

ing 2 subsequent tokens (because of partial UTF-81306

tokens), while in Llama-2-7b, most temporary in-1307

consistencies are much more stable (because of1308

special tokens).1309

Therefore, back to the principled way to deter-1310

mine, in Swallow-7b and Qwen2.5-7b, is set at least1311

greater than 2 (we set q = 10 in experiments) for to1312

avoid most temporary inconsistencies (to avoid the1313

false positive), and in Llama-2-7b, can be set as a1314

much smaller value (we set q = 2 in experiments),1315

because most inconsistencies which have happened1316

will not disappear, which means that it is suitable1317

to be fixed immediately.1318

Table 20 also explains the significant differences1319

in the temporariness of inconsistent tokens between1320

Llama-2-7b and the other two language models, as1321

more than 90% temporary inconsistencies do not1322

disappear in Llama-2-7b (shown in Table 4).1323

G Efficiency of the Post-Hoc Rollback1324

Method for Watermarking1325

Table 20 reports the running time (in seconds) for1326

various watermarking schemes across different lan-1327

guage models, based on 500 samples with 2001328

tokens each. The results show that the runtime1329

differences between the original methods and our 1330

proposed post-hoc rollback method are minimal — 1331

generally under 5% — indicating that our approach 1332

introduces minor computational overhead. 1333

H Attacking Watermarks with GPT-4o 1334

Paraphrasing 1335

Table 21 lists the average experimental statis- 1336

tics where the watermarked texts are attacked by 1337

GPT-4o paraphrasing (temperature = 1 and 1338

max_completion_tokens = 2048). Specifically, 1339

the prompt template is: 1340

Paraphrasing template of GPT-4o

System message: You are tasked to para-
phrase. Please directly paraphrase the
text you receive (in the corresponding lan-
guage).
User prompt: <text>

1341

From Table 21, we can find that our proposed 1342

post-hoc rollback method for watermarking over- 1343

all improves the robustness against paraphrasing 1344

attacks based on strong a large language model. 1345
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Watermarking scheme Llama-2-7b Swallow-7b Qwen2.5-7b

LeftHash Original 6.89 7.13 6.03
Post-hoc rollback (+1.16%) 6.97 (+3.51%) 7.38 (+3.98%) 6.27

SelfHash Original 7.04 7.24 5.96
Post-hoc rollback (+0.85%) 7.10 (+3.89%) 7.52 (+2.34%) 6.10

Unigram Original 6.88 7.17 6.11
Post-hoc rollback (+2.90%) 7.08 (+5.44%) 7.56 (+5.24%) 6.43

Gumbel Original 6.85 7.26 6.00
Post-hoc rollback (+2.04%) 6.99 (+3.03%) 7.48 (+4.17%) 6.25

Table 20: Running time (seconds) in various watermarking schemes when different language models are adopted.

Watermarking scheme Llama-2-7b Swallow-7b Qwen2.5-7b
Watermark
Strength ↑ AUROC ↑ Watermark

Strength ↑ AUROC ↑ Watermark
Strength ↑ AUROC ↑

LeftHash Original 2.57 0.876 2.92 0.887 3.47 0.913
Post-hoc rollback 2.60 0.877 2.91 0.886 3.47 0.915

SelfHash Original 1.86 0.803 2.35 0.837 2.42 0.861
Post-hoc rollback 1.99 0.815 2.35 0.840 2.44 0.865

Unigram Original 4.56 0.898 6.63 0.946 4.39 0.918
Post-hoc rollback 4.59 0.905 6.69 0.950 4.51 0.923

Gumbel Original 10.62 0.887 18.18 0.877 15.00 0.851
Post-hoc rollback 11.07 0.895 18.56 0.879 15.32 0.850

Table 21: Quantitative comparison in various watermarking schemes under GPT-4o paraphrasing attack when
different language models are adopted.
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