Addressing Tokenization Inconsistency in Steganography and
Watermarking Based on Large Language Models

Anonymous ACL submission

Abstract

Large language models have significantly en-
hanced the capacities and efficiency of text
generation. On the one hand, they have im-
proved the quality of text-based steganogra-
phy. On the other hand, they have also un-
derscored the importance of watermarking as
a safeguard against malicious misuse. In this
study, we focus on tokenization inconsistency
(TT) between Alice and Bob in steganography
and watermarking, where TI can undermine
robustness. Our investigation reveals that the
problematic tokens responsible for TT exhibit
two key characteristics: infrequency and tem-
porariness. Based on these findings, we pro-
pose two tailored solutions for TI elimination:
a stepwise verification method for steganogra-
phy and a post-hoc rollback method for wa-
termarking. Experiments show that (1) com-
pared to traditional disambiguation methods in
steganography, directly addressing TI leads to
improvements in fluency, imperceptibility, and
anti-steganalysis capacity; (2) for watermark-
ing, addressing TI enhances detectability and
robustness against attacks.'

1 Introduction

Large language models (LLMs), such as GPT-
3 (Brown et al., 2020), GPT-4 (Achiam et al.,
2023), Gemini (Team et al., 2023, 2024), and
Claude 3 (Anthropic, 2024), have revolutionized
natural language processing and showcased impres-
sive near-human-level text generation capabilities.
These advanced LLMs facilitate the creation of
flexible and contextually coherent text across di-
verse genres for text-based steganography (Yang
et al., 2019; Ziegler et al., 2019) — a promising
field in safeguarding information, referring to the
art of concealing messages within texts.

However, the same human-like text generation
capabilities also pose risks, as synthesized content

! Anonymous code: https://anonymous.4open.science/r/
AddressingGlitch-FEE9.

can be exploited for malicious purposes (Bergman
et al., 2022; Mirsky et al., 2023). To address this,
watermarking techniques for LLMs (Kirchenbauer
et al., 2023; Zhao et al., 2024) have been devel-
oped, embedding imperceptible yet algorithmically
detectable signals into generated text. These tech-
niques play a crucial role in ensuring the detectabil-
ity and responsible use of LLM-generated content.
In both steganography and watermarking appli-
cations, Alice (the sender) employs LLMs to gen-
erate steganographic texts (stegotexts) or water-
marked texts, which are then transmitted to Bob
(the receiver). During this process, an interme-
diate detokenization-retokenization pipeline is
applied to the text as it moves from Alice to Bob.
As a result, tokenization inconsistency (TI) (Sun
et al., 2023) can arise, where discrepancies occur
between the originally generated token list and the
retokenized token list, potentially impacting the
robustness of the system. Specifically, the inconsis-
tent tokens generated by Alice which are responsi-
ble for TI are referred to source inconsistent tokens
(SITs), while the corresponding inconsistent tokens
resulting from Bob’s retokenization are termed con-
sequential inconsistent tokens (CITs). Figure 1
exemplifies how TI causes negative impacts on
steganography (1a) and watermarking (1b).
Inconsistent tokens have not been systemati-
cally investigated in view of the detokenization-
retokenization pipeline. Especially in steganogra-
phy and watermarking, they comprise robustness,
and can be 100% removable. Motivated by these
facts, this study aims to deepen the understand-
ing of inconsistent tokens in both steganography
and watermarking. Specifically, we achieve 100%
correct extraction for steganography with minimal
negative impact, and to enhance the detectability
and robustness of LLM watermarks.” The key con-

%Any inconsistent token could be catastrophic for most
LLM-based steganographic approaches, as any one-step ex-
traction error could cause a series of errors (Qi et al., 2025).

https://anonymous.4open.science/r/AddressingGlitch-FEE9
https://anonymous.4open.science/r/AddressingGlitch-FEE9

Steganographic Message z
l Embedding | ...1101... ! >

[KeyJ L‘-«' LM] O |
v Alice
Token list
. |id: 79| id: 332
“_no”| “body”

y

Stegotext

o Inconsistency
9 “...nobody...”
Token list
. “_nobody” ..
Steganographic Message -
Extraction ...0100... [O |

o

(a) Tokenization inconsistency (TI) in steganography.

L'-’ LM | Extraction error Bob

Watermark ¢ Watermark
l Embedding Pattern
Gl | B
\

. Alice
Token list
... [“_no”| “body” |...
o Inconsistency Watermarked text T
9 “..nobody...”
Token list
“_nobody”

Written
by human

Detection error

Watermark
Detection

(b) Tokenization inconsistency (TI) in watermarking.

Bob

Figure 1: An example of tokenization inconsistency (TT) in LLM-based steganography or LLM-based watermarking.
Alice generates a token sequence corresponding to subwords “_no” and “body” (SITs) during steganography or
watermark embedding. During transmission, the generated tokens are detokenized into the text “nobody”. However,
the receiver Bob retokenizes the text “nobody” as a single token “_nobody” (a CIT). This can lead to errors in

steganography extraction or watermark detection.

tributions of this work are as follows:

1) We investigate the emergence of inconsistent
tokens during token-by-token generation by lan-
guage models and identify two key characteristics:
infrequency and temporariness.

2) Taking advantage of the infrequency, we pro-
pose a stepwise verification method for steganogra-
phy, maintaining 100% correct extraction.

3) Taking advantage of both the infrequency
and temporariness, we propose a post-hoc rollback
method for watermarking, which is a lightweight
variant method.

4) Experiments are conducted across various lan-
guage models, demonstrating the superiority of
our methods: (1) In steganography, compared to
the best baseline in each group, our stepwise ver-
ification method improves fluency (lowering per-
plexity by 14.12%), imperceptibility (lowering KL
divergence by 47.86%), and anti-steganalysis ca-
pacity (lowering steganalysis accuracy by 3.53%)
of steganographic texts (stegotexts). (2) For wa-
termarking, our post-hoc rollback method overall
enhances the detectability and robustness compared
to TI-unaware watermarking.

2 Investigation: Inconsistent Tokens in
Generation by Language Models

We investigate how and to what extent inconsistent
tokens emerge during token-by-token generation
by language models. This investigation serves as a
fundamental basis for studying T1 in most steganog-
raphy and watermarking techniques.

We employ three language models — Llama-
2-7b° (Touvron et al., 2023), Swallow-7b* (Fujii
et al., 2024; Okazaki et al., 2024) and Qwen2.5-
7b° (Team, 2024; Yang et al., 2024) — respectively
with English, Japanese and Chinese contexts, to in-
vestigate the behavior of inconsistent tokens. Their
tokenizers are all based on subwords. For each
language model and for each specified number of
generated tokens, we generate 1,000 text samples.
Texts are produced token by token, with each token
sampled using multinomial sampling (in single-
track generation). The experimental setups for this
section are detailed in Appendix D.1.

Text-level inconsistency rate: The rate at which
TI appears. Table 1 presents the text-level incon-
sistency rates across various language models and

3https://huggingface.co/meta-llama/Llama-2-7b-hf
*https://huggingface.co/tokyotech-1lm/Swallow-7b-hf
Shttps://huggingface.co/Qwen/Qwen2.5-7B

https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/tokyotech-llm/Swallow-7b-hf
https://huggingface.co/Qwen/Qwen2.5-7B

Token list Token list Token list
id: 892 ~ . LM id: 892 id: 43 —> id: 892 id: 43 id: 3455
_in _in “put” in” “put” “ting”
| Detokenize | Detokenize | Detokenize
“..un” “..unus” “...unusable”
| Retokenize . Retokenize “~ Retokenize
o Temporary
Token list inconsistency Token list) Ry Token list
id: 892 |-----eeenenee- > id: 6419 [reeeeeeeeeeen > id: 892 id: 43 id: 3455
“ iy N “nput” < i “put” “ting”

Figure 2: An example where a candidate-level IT causes TI which recovers back to consistency during token-
by-token generation. As the token “put” (id: 43) can cause TI immediately after it is output, this token is a
candidate-level IT. However, this token does not cause a long-term TI, as TI recovers afterwards.

Token | jama-27h Swallow-7b Qwen2.5-7b
number

25 3.9% 3.9% 8.7%
50 8.1% 5.0% 11.1%
100 17.7% 9.6% 18.1%
200 33.6% 15.5% 39.4%
400 53.0% 34.2% 66.4%

Table 1: (Text-level inconsistency rates) Rates of exis-
tence of TI.

Token |y ama-27b Swallow-7b Qwen2.5-7b
number

2 0.176% 0242% 0.558%
50 0204% 0.181% 0.381%
100 0215% 0.185% 0.349%
200 0228% 0.157% 0.400%
400 0223% 0.186% 0.467%

Table 2: (Token-level inconsistency rates) Ratios of
the sum of SITs and CITs to the sum of generated tokens
and retokenized tokens.

token generation lengths. Since each token carries
some potential to become an inconsistent token,
the general trend indicates that the incidence of
inconsistent tokenization increases as the number
of generated tokens grows.

Token-level inconsistency rate: The ratio of the
sum of SITs and CITs to the sum of generated and
retokenized tokens. According to Table 2, this met-
ric is not closely related to text length. Another no-
table observation is that token-level inconsistency
rates are typically below 0.5%, which results in
much higher text-level inconsistency rates though.
The disparity between high text-level inconsistency
rates and low token-level inconsistency rates high-
lights the infrequency of inconsistent tokens.

Llama Swallow Qwen2.5
2-7b 7b -7b
Number ‘ 1497% 2.045% 3.993%
ratio
Probability ‘ 0.184% 1.126% 1.833%
ratio

Table 3: (Candidate-level inconsistency rates) Num-
ber ratios and probability ratios of candidate-level ITs
to tokens in candidate pools.

Candidate-level inconsistency rate: The ratio
of candidate tokens that can cause TI to all tokens in
candidate pools of token-by-token generative steps.
To further explore the cause of the infrequency of
inconsistent tokens, potential TI from candidate
pools are investigated. How to determine if a can-
didate token is a candidate-level inconsistent token
(candidate-level IT) is shown in Algorithm 1, which
refers to a detokenization-retokenization pipeline
in one step. For accurate calculation, those sce-
narios where TI has occurred before outputting a
token are excluded.

For simplicity, only the 64 highest probability to-
kens in each candidate pool are considered. Table 3
respectively lists the number ratios and probabil-
ity ratios of candidate-level ITs (the ratios of the
cumulative numbers or probabilities of candidate-
level ITs to the cumulative numbers or probabilities
of top-64 tokens) across various language models,
with data aggregated across various text lengths.
The results indicate that the infrequency of incon-
sistent tokens is primarily due to the low candidate-
level inconsistency rates in each candidate pool.
The infrequency of the SITs is also revealed.

However, when observing the data in Tables 1, 2,
and 3, another question arises: How does Llama-

Llama-2-7b Swallow-7b Qwen2.5-7b
8.76% 81.98% 87.93%

Table 4: (Temporary inconsistency rates) Rates of
candidate-level ITs that do not cause TI in final among
all candidate-level ITs.

2-7b, despite having a lower candidate-level IT
probability ratio in candidate pools (0.184% vs.
1.126% in Swallow-7b), exhibit higher inconsis-
tency rates at both the text level (17.7% vs. 9.6%
with 100 tokens) and the token level (0.215% vs.
0.185% with 100 tokens)? Considering limitations
in defining the candidate-level inconsistency rate,
it is likely that generating candidate-level I'Ts may
only result in temporary TI. Figure 2 instantiates
this phenomenon.

Temporary inconsistency rate: Among the
candidate-level ITs that are output, this metric rep-
resents the rate of temporary SITs (that do not
cause TI after the entire generation process). Ta-
ble 4 lists the temporary inconsistency rates for the
texts generated by the three language models. The
significantly lower temporary inconsistency rate
for Llama-2-7b compared to others indicates that
its generated potential SITs are more stable in af-
fecting the final tokenization. This stability leads
to higher text-level and token-level inconsistency
rates than those observed for Swallow-7b.%

In summary, our investigation reveals that in-
consistent tokens generated by language models
are characterized as (/) infrequency and (2) tem-
porariness. These findings inspire us to develop
methods to address inconsistent tokens and TI in
LLM-based steganography and watermarking.

3 Methods

In this section, the introduced methods are targeted
to the mechanisms of LLM-based steganography
and watermarking respectively, meanwhile taking
advantage of the infrequency and temporariness of
inconsistent tokens. Specifically:

For steganography: We propose a stepwise ver-
ification method that precisely removes candidate-
level ITs at each generation step. As only out-
putting candidate-level ITs can cause (at least tem-
porary) TI, the presence of candidate-level ITs is

®When using default tokenizer parameters, a fair amount
of ‘<s>" and ‘</s>’ output by Llama-2-7b lead to stable TI.
Besides, Swallow-7b and Qwen2.5-7b are featured by output-
ing a fair amount of partial UTF-8 tokens (Land and Bartolo,
2024). Appendix F provides supplements for it.

a necessary condition for the eventual occurrence
of inconsistent tokens.” Therefore, the absence of
candidate-level ITs is a sufficient condition for the
final absence of inconsistent tokens. Hence, our
method eliminates TI in the final output.

In steganography, since candidate tokens are as-
sociated with codewords, it is necessary to call the
tokenizer to verify whether each candidate token
is a candidate-level IT. Although this process may
appear inefficient, our method operates with linear
complexity, still providing some advantages over
the previous disambiguation algorithms (Nozaki
and Murawaki, 2022; Yan et al., 2023; Qi et al.,
2025) whose complexities are at least O(n?). Both
our method for addressing TI and previous disam-
biguation approaches share the same goal: ensuring
100% correct steganographic extraction.

Additionally, our method preemptively removes
candidate-level ITs to achieve extraction accuracy.
Since both candidate-level ITs and final inconsis-
tent tokens are infrequent, KL divergence between
the original and the modified candidate pools (re-
sulting from removing candidate tokens) remains
small, greatly reducing the negative impact on im-
perceptibility.®

For watermarking: We propose a post-hoc roll-
back method that makes the generation process roll-
back to the state where TI has not happened if TI
persists. The rollback mechanism does not respond
immediately to TI because of their temporariness.
Unlike the method used for steganography, there is
a higher relaxation for watermarking, because the
detector does not require detailed information of
candidate pools at each step to decode the text, so
that candidate tokens do not need to be examined
individually. Negative effects on imperceptibility
can be nearly negligible because of the infrequency
of the output inconsistent tokens.

3.1 A Stepwise Verification Method for
Steganography

The overview of the stepwise verification
method is shown in Figure 3, where the verification
mechanism is placed between the sampling and
steganographic encoding steps. Both the sender
and receiver can verify whether each token in the
candidate pool is a candidate-level IT, enabling
them to perform steganographic encoding on the

"Detailed analysis and explanations about SITs, CITs, TI
and candidate-level ITs are shown in Appendix B.

8Theories on imperceptibility are provided in Ap-
pendix A.2.3.

Secret message:
1011... ...

oy . e . Secret message:
5 [oo o |
Token-by-token embedding Top-k sampling (k=4) Filtering & Encoding
4
/
= " - Py "
w Token list Candnc:(ate pool Candliate pool |Inconsistency? Candidate pool Codeword Selecting & Generating
tokens tokenki —
| I:I tokenii 0
— L | 2 | £ | |4 tokenz tokenkz - . | |
Alice - — | tokene — tokenie 10 tokeniz
v, Detokenize tokenyocabuiani tokenke [1] tokenis n v
Stegotext
“Research on biology has ...”
) Retokenize ~.LM Top-k sampling (k=4) Filtering & Encodin Token list:
(G P pling (k= 9 9 [tokenk, ...]
w
‘ [;] Token list Candidate pool Candidate pool |Inconsistency? Candidate pool Codeword Selecting & Extracting
=== 1 [142 [a2] 4 tokens tokeni - tokeni 0
Bob v tokenz tokenke -
ok — tokenie 10
Token-by-token extraction | | ——— OKeNks
tokenyocabuany tokenke [tokenks 1

Secret message:
1011... ...

Figure 3: Overview and procedures of LM-based steganography with our stepwise consistency-verification approach.
For some simplicity in this example, Huffman encoding (Yang et al., 2019) and top-4 sampling in each candidate
pool is adopted. The verification mechanism is in place before encoding for both Alice and Bob.

Algorithm 1 Identify a candidate-level IT

Input:

Token to be verified, s,

Previously generated token list, L

Output:

Candidate-level IT or not (True or False), Resultg

1: Append s, to L to obtain L,.
/* Token list to be verified*/
: Detokenize L, into a temporary text t¢emp-
: Tokenize tiemp into L.
: Resultg + —(L, == L');
: return Resultg

DN B~ W

same filtered candidate pools. This guarantees that
the receiver can accurately extract the secret mes-
sages. How to identify a candidate-level IT from a
candidate pool is detailed in Algorithm 1.

The process simulates detokenization and reto-
kenization of the generated stegotext transmitted
from Alice to Bob. candidate-level ITs are removed
from the candidate pool, as they could interfere
Bob’s extraction process. By eliminating such prob-
lematic tokens, the approach ensures that both Al-
ice and Bob maintain identical token sequences,
enabling reliable steganographic extraction.’

3.2 A Post-Hoc Rollback Method for
Watermarking

This method of removing inconsistent tokens for
LLM watermarking leverages not only the infre-
quency of inconsistent tokens but also their tem-
porariness. The overview of this post-hoc method
is illustrated in Figure 4, which only involves the

Further details can be found in Appendix C.1.

t=T 0Temporary inconsistency
~ LM | s g)
t=T+gq @ Recovery

S(T) e _> S(T+q)

(a) Automatically recoverable inconsistency situation.

t=T 0Temporary inconsistency
~ LM s
t=T+gq o Stable inconsistency

@ Rollback

(b) Stable inconsistency situation which needs rollback.

Figure 4: Mechanisms of the post-hoc rollback method.
Due to temporariness of inconsistent tokens, a g-token
observation period is set for them.

token-by-token watermark embedding.

The core idea is as follows: If a candidate-level
IT is generated and causes temporary TI at that step,
the token is assigned an observation period that
lasts until the next ¢ tokens are generated. Once
the observation period ends, if tokenization consis-
tency is recovered (Figure 4a), no further action
is necessary. However, if TI persists, this tempo-
rary TI is deemed a stable TI, and the generation

process rolls back to the state before the candidate-
level IT was generated. At this regressed point,
the candidate pool is resampled, excluding that
candidate-level IT (Figure 4b).!0

4 Experiments

In this section we explore the behaviors of address-
ing TT in steganography and watermarking, using
Llama-2-7b (Touvron et al., 2023) (with English
contexts), Swallow-7b (Fujii et al., 2024; Okazaki
et al., 2024) (with Japanese contexts) and Qwen?2.5-
7b (Team, 2024; Yang et al., 2024) (with Chinese
contexts) (the same as Section 2). The prompts
are randomly selected from the multilingual C4
dataset (Raffel et al., 2019). Implementation de-
tails can be found in Appendix D.1.

4.1 Experiments on Steganography

The secret message for embedding is a random 128-
bit message, i.e. m ~ Uniform({0, 1}12®). As our
proposed stepwise verification method and those
disambiguation methods (Section A.2.2) all enable
steganographic extraction 100% correct, it is rea-
sonable to use these 100% disambiguation algo-
rithms as baseline methods, namely, Basic (Nozaki
and Murawaki, 2022), MWIS (Yan et al., 2023),
and SyncPool (Qi et al., 2025).

All methods employ arithmetic coding (Ziegler
et al., 2019), an efficient attempt to provably secure
steganography (Ding et al., 2023). To evaluate per-
formance under varying embedding capacities, ex-
periments are conducted with different top-k sam-
pling values (k € {4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048, 4096}). For each top-k value, for each
disambiguation method and ours, and for each lan-
guage model, 500 samples are generated.

4.1.1 Metrics

Bits per token (BPT) is a fundamental metric in lin-
guistic steganography, measuring the embedding
capacity. Perplexity (PPL) assesses the quality
and fluency of the generated text. KL divergence
(KLD) between modified and original candidate
pools quantifies statistical disparities, reflecting im-
perceptibility. Steganalysis accuracy (ACC) indi-
cates the ability to invalidate detection, which is
evaluated using a fine-tuned discriminator, with fur-
ther details provided in Appendix D.2. Finally, the
running time (Time, in seconds) to embed a secret
message indicates the steganographic efficiency.

%More detailed operation steps for this method for water-
marking are shown in Appendix C.2.

4.1.2 Results

While only 128 bits are embedded, there are non-
negligible extraction error rates for all the three
adopted language models, which are about 10%
for Llama-2-7b, about 5% for Swallow-7b, and
about 7% for Qwen2.5-7b (details are shown in
Appendix D.3). This illustrates the necessity of
our stepwise verification method or disambiguation
methods for steganography.

For each method, average experimental data ob-
tained under various top-k values are grouped into
embedding-capacity intervals (2.0 < BPT < 6.0).
Tables 5, 6, and 7 show the average performance
across these intervals for each approach. Note that
when the sample size in any group is 20 or fewer,
the data is considered insufficient and marked
as “—” in these tables. For each group, within
these valid data, the best data point is marked
in green background and the worst data point is

marked in red background . The main findings via
these experiments are as follows:

1) One of the baseline methods, SyncPool (Qi
et al., 2025), severely suffers from limitations in
embedding capacity. Especially in Llama-2-7b and
Swallow-7b, only when BPT < 3.0, there are suffi-
cient data. Details and explanations of this problem
are shown in Appendix D.4.

2) The operation efficiency of our stepwise ver-
ification method is acceptable. In our method, it
is necessary to call the tokenizer to check each
candidate token. Compared to baseline methods
whose time complexity is at least O(n?) (n is k in
the case), the lightweight aspect of our complexity
is O(n). According to the Time dimension, our
method is much more efficient than MWIS (Yan
et al., 2023). Even though the Basic (Nozaki and
Murawaki, 2022) method is the most efficient, the
gap between it and ours could be narrowed as BPT
increases essentially as k increases.!!

3) Overall, our method outperforms the base-
lines. Compared to the best baseline method for
each metric for each language model in each inter-
val, ours achieves an average reduction of 14.12%
in PPL, 47.86% in KLD, and 3.53% in ACC.

4.2 Experiments on Watermarking

We implement our proposed post-hoc rollback
method for two types of LLM watermarking, which
are, respectively, (1) logit-based watermarking and

"How BPT varies as k varies can be found in Figure 5 in
the Appendix.

2.0 <BPT < 3.0 3.0 <BPT < 4.0
PPL] KLD] ACC] Time] | PPL] KLD] ACC] Time]
Basic 17.72 1.005 0.936 1.62 38.96 1.355 0.976 1.43
MWIS 9.13 0.138 0.784 6.33 16.37 0.149 0.797 11.40
SyncPool 10.73 0.154 0.853 3.04 — — — —
Stepwise verification 8.69 0.070 0.766 5.35 15.07 0.031 0.846 8.09
4.0 <BPT < 5.0 5.0 < BPT < 6.0
PPL] KLD] ACC] Time] | PPL] KLD] ACC] Time|
Basic 77.91 1.690 0.963 2.73 | 134.87 1.934 0.922 7.21
MWIS 28.64 0.187 0.625 12.04 — — — —
SyncPool — — — — — — -
Stepwise verification | 26.41 0.022 0.621 9.10 47.73 0.020 0.704 9.51

Table 5: Quantitative comparison with previous disambiguation methods on Llama-2-7b and English contexts.

2.0 <BPT < 3.0 3.0 <BPT < 4.0
PPL] KLD] ACC] Time] | PPL] KLD] ACC] Timel
Basic 18.18 0.834 0.952 1.90 36.60 0929 0.961 3.62
MWIS 9.49 0.126 0.866 6.36 18.70 0.132 0.915 12.12
SyncPool 1270 0.172 0.890 3.40 — — — —
Stepwise verification 9.24 0.081 0.865 4.89 18.03 0.052 0911 7.26
4.0 <BPT < 5.0 5.0 < BPT < 6.0
PPL] KLD] ACC] Time] | PPL] KLD] ACC] Time]
Basic 73.11 0.995 0.984 6.04 | 130.71 0.985 0.948 7.32
MWIS 37.85 0.157 0.861 13.35 — — — —
SyncPool — — — — - - — -
Stepwise verification | 34.80 0.041 0.922 8.59 69.81 0.041 0.872 9.25

Table 6: Quantitative comparison with previous disambiguation methods on Swallow-7b and Japanese contexts.

2.0 < BPT < 3.0 3.0 <BPT < 4.0

PPL] KLD] ACC] Time] | PPL] KLD] ACC] Time]

Basic 2478 0975 0670 1.65 | 5464 1.044 0.760 1.56

MWIS 12.17 0.185 0.625 428 | 27.00 0.175 0762 7.87

SyncPool 1755 0105 0615 473 | 41.03 0.094 0755 4.98

Stepwise verification | 12.07 0152 0597 4.15 | 2476 0.111 0695 5.18
4.0 < BPT < 5.0 5.0 < BPT < 6.0

PPL] KLD] ACC| Time] | PPL] KLD] ACC] Time]

Basic [13.02 1.122 096 2.69 | 23297 1216 0806 _ 5.03

MWIS 5370 0.188 0758 975 | 111.11 0.193 0.686 13.93

SyncPool 8536 0.088 0.750 653 - - - -

Stepwise verification | 50.08 0.093 0699 6.68 | 10278 0075 0.667 825

Table 7: Quantitative comparison with previous disambiguation methods on Qwen2.5-7b and Chinese contexts.

(2) sampling-based watermarking.

For logit-based watermarking, the LeftHash
scheme (Kirchenbauer et al., 2023) (the context
width is 1), the SelfHash scheme (Kirchenbauer
et al., 2024) (the context width is 4), and the Uni-
gram scheme (Zhao et al., 2024) are adopted. For
each method, we set green list size v = 0.5, and
hardness parameter (priority in logits of green list)
0 = 2.0. For sampling-based watermarking, the
Gumbel softmax scheme (Aaronson and Kirchner,
2023)!? is adopted (the context width is 5). De-
tailed schemes are shown in Appendix D.5.

Due to differences in temporary inconsistency

12We use the version provided by Fu et al. (2024).

rates between various language models (shown in
Table 4), and this rate in Llama-2-7b is much lower
than those of the other two models. The obser-
vation period ¢ is also set differently according
to these models, i.e. larger q representing higher
relaxation, is set for scenarios with higher tempo-
rariness. Specifically, ¢ = 2 is set for Llama-2-7b,
and ¢ = 10 is set for Swallow-7b and Qwen?2.5-
7b.13 Besides, the number of generated tokens is
constantly 200. Regardless of whether to use our
post-hoc rollback method, 500 samples are gener-
ated and collected for each watermarking method
and each language model.

How to determine g is detailed in Appendix F.

Watermarking scheme - kUnattacked WAttack(]e(d (e =0.2) WAttack(le(d (e=0.4)
atermar atermar’ atermar

Strength? AUROCtT PPL| Strength?t AUROCT Strengtht AUROCY

LeftHash Original 7.58 0.996 20.55 4.59 0.982 2.57 0.878
Post-hoc rollback 7.73 0.996 19.56 4.82 0.984 2.58 0.879

SelfHash Original 7.33 0.999 20.53 4.09 0.967 2.01 0.812
Post-hoc rollback 7.44 0.999 19.87 4.30 0.973 2.05 0.820

Unigram Original 7.76 0.998 19.00 6.43 0.987 5.18 0.912
Post-hoc rollback 7.77 0.995 17.85 6.50 0.987 5.23 0.910

Gumbel Original 21.43 0.952 347 13.93 0.918 8.64 0.843
Post-hoc rollback 23.60 0.956 3.15 15.29 0.935 9.62 0.880

Table 8: Quantitative comparison in various watermarking schemes on Llama-2-7b and English context.

4.2.1 Attacking Watermarks

Considering the scales, fairness, and availability of
attacking models, we adopt the original language
model that generates watermarked texts as the re-
placement model to attack watermarks.'* For each
token, it can be selected and then replaced by in-
ference (according to the left context) and resam-
pling, where the selection probability is €. Besides,
for more practical scenarios, results under GPT-40
paraphrasing attack are shown in Appendix H.

4.2.2 Metrics

The detectability of watermarked texts is denoted
by watermark strength, where a higher water-
mark strength increases the likelihood of the text
being detected as watermarked. Details about how
to calculate the strength are shown in Appendix D.5.
Due to differences in approaches to computing wa-
termark strength, the obtained watermark strengths
indicate relative scores and are not comparable
across different watermarking types. Besides, AU-
ROC value is employed to simulate detectability in
real-world scenarios, where 500 watermarked texts
and 500 unwatermarked texts are evaluated in each
group. Perplexity (PPL) assesses the text quality.

4.2.3 Results

Table 8 lists the average experimental statistics
in various watermarking methods under Llama-2-
7b.15 The main findings are:

1) The watermark strengths with the rollback
mechanism exhibit a steady increase compared to
the original. This aligns with the fact that incon-
sistent tokens interfere with the detection process.
However, the extend of improvement is limited due
to the infrequency of inconsistent tokens.

“For watermarking attacks, the common T5 model (Raffel
et al., 2020) does not support Japanese or Chinese.

SFor Swallow-7b and Qwen2.5-7b, the results are shown
in Tables 14 and 15 (in the Appendix).

2) Some superiority of our post-hoc rollback
method in watermark strengths and AUROC values
under attack scenarios represents that watermarks
after addressing TI are more detectable and more
robust, i.e. higher anti-modification capability.

3) PPL in each group counterintuitively de-
creases steadily, as our method does not target it.'®
One possible explanation for this could be: The
tokenizer-based perplexity calculation is affected
by inconsistent tokens. Specifically, the predicted
probabilities of CITs could be considered very low,
thus PPL becomes higher finally.!’

5 Conclusion

We observed that tokenization inconsistency (TI)
in LL.M-based steganography and watermarking
can cause robustness issues in extraction or detec-
tion processes. Our investigation on inconsistent
tokens across different LLMs and language con-
texts reveals the infrequency and temporariness of
inconsistent tokens. Based on these two charac-
teristics, we propose two methods to address TI:
one for steganography and the other for watermark-
ing. Our experiments, conducted across various lan-
guage models, demonstrate that: (1) for steganog-
raphy, our stepwise verification method outper-
forms traditional disambiguation approaches across
embedding-capacity intervals, offering superior
text quality, imperceptibility, and anti-steganalysis
capacity; (2) for watermarking, our post-hoc roll-
back method enhances both detectability and ro-
bustness against adversarial modifications while
maintaining lower perplexity. Our proposed meth-
ods have great potential in generalizability, as they
can be applied to a wide range of steganographic
algorithms and watermarking schemes.

"®Perplexities in attack scenarios are shown in D.6.
""How inconsistent tokens affect perplexity is detailed
in E.3.

Limitations

For steganography: Similar to mainstream lin-
guistic steganographic approaches, the threat
model assumes the absence of an active attacker
capable of modifying the stegotexts. Otherwise,
the guarantee of 100% correct steganographic ex-
traction would not be ensured.

For watermarking: Compared to original TI-
unaware watermarking schemes, the superiority of
the watermarking schemes equipped with the post-
hoc rollback method is limited. It is the infrequency
of inconsistent tokens that makes improvements to
various metrics relatively minor. Specifically, for
comparison, any inconsistent token in steganog-
raphy can disturb subsequent inference.'® The in-
consistent tokens in watermarking can merely influ-
ence scores at inconsistency positions and positions
whose watermarking contexts contain inconsistent
tokens during watermarking detection process.'®

Ethical Considerations

Intended applications of steganography are embed-
ding copyright information, countering censorship,
and similar uses. However, it can also be used to
be exploited for harmful purposes, such as covert
communication by malicious actors, spreading dis-
information, or bypassing censorship mechanisms.
Hence, its potential to facilitate illicit activities ne-
cessitates robust monitoring and regulation to pre-
vent misuse. In addition, countermeasures against
steganography, steganalysis, the study of detecting
the presence of hidden messages, would also be an
encouraging research direction to safeguard against
malicious use.

References

S. Aaronson and H. Kirchner. 2023. Watermarking of
large language models. Watermarking gpt outputs.
Technical report, openai.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku. https://www-cdn.anthropic.com/

'8The incorrectness of steganographic extraction should
refer to text-level inconsistency rates shown in Table 1, which
could be higher than 20%.

The token-level inconsistency rates are often below 0.5%
shown in Table 2.

de8ba9b01c9ab7chbabf5c33b80b7bbc618857627/
Model_Card_Claude_3.pdf.

A. Stevie Bergman, Gavin Abercrombie, Shannon
Spruit, Dirk Hovy, Emily Dinan, Y-Lan Boureau,
and Verena Rieser. 2022. Guiding the release of safer
E2E conversational Al through value sensitive de-
sign. In Proceedings of the 23rd Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue, pages 39-52, Edinburgh, UK. Association for
Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Miranda Christ, Sam Gunn, and Or Zamir. 2024. Unde-
tectable watermarks for language models. In Pro-
ceedings of Thirty Seventh Conference on Learn-
ing Theory, volume 247 of Proceedings of Machine
Learning Research, pages 1125-1139. PMLR.

Falcon Dai and Zheng Cai. 2019. Towards near-
imperceptible steganographic text. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4303—4308, Florence,
Italy. Association for Computational Linguistics.

Jinyang Ding, Kejiang Chen, Yaofei Wang, Na Zhao,
Weiming Zhang, and Nenghai Yu. 2023. Discop:
Provably secure steganography in practice based on
"distribution copies". In 2023 IEEE Symposium on
Security and Privacy (SP), pages 2238-2255.

A.A. Fedotov, P. Harremoes, and F. Topsoe. 2003. Re-
finements of pinsker’s inequality. IEEE Transactions
on Information Theory, 49(6):1491-1498.

Pierre Fernandez, Antoine Chaffin, Karim Tit, Vivien
Chappelier, and Teddy Furon. 2023. Three bricks to
consolidate watermarks for large language models.
In 2023 IEEE International Workshop on Information
Forensics and Security (WIFS), pages 1-6.

Jiayi Fu, Xuandong Zhao, Ruihan Yang, Yuansen Zhang,
Jiangjie Chen, and Yanghua Xiao. 2024. Gumbel-
Soft: Diversified language model watermarking via
the GumbelMax-trick. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 5791—
5808, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Kazuki Fujii, Taishi Nakamura, Mengsay Loem, Hi-
roki Iida, Masanari Ohi, Kakeru Hattori, Hirai Shota,

https://www.youtube.com/watch?v=2Kx9jbSMZqA
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://doi.org/10.18653/v1/2022.sigdial-1.4
https://doi.org/10.18653/v1/2022.sigdial-1.4
https://doi.org/10.18653/v1/2022.sigdial-1.4
https://doi.org/10.18653/v1/2022.sigdial-1.4
https://doi.org/10.18653/v1/2022.sigdial-1.4
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.mlr.press/v247/christ24a.html
https://proceedings.mlr.press/v247/christ24a.html
https://proceedings.mlr.press/v247/christ24a.html
https://doi.org/10.18653/v1/P19-1422
https://doi.org/10.18653/v1/P19-1422
https://doi.org/10.18653/v1/P19-1422
https://doi.org/10.1109/SP46215.2023.10179287
https://doi.org/10.1109/SP46215.2023.10179287
https://doi.org/10.1109/SP46215.2023.10179287
https://doi.org/10.1109/SP46215.2023.10179287
https://doi.org/10.1109/SP46215.2023.10179287
https://doi.org/10.1109/TIT.2003.811927
https://doi.org/10.1109/TIT.2003.811927
https://doi.org/10.1109/TIT.2003.811927
https://doi.org/10.1109/WIFS58808.2023.10374576
https://doi.org/10.1109/WIFS58808.2023.10374576
https://doi.org/10.1109/WIFS58808.2023.10374576
https://doi.org/10.18653/v1/2024.acl-long.315
https://doi.org/10.18653/v1/2024.acl-long.315
https://doi.org/10.18653/v1/2024.acl-long.315
https://doi.org/10.18653/v1/2024.acl-long.315
https://doi.org/10.18653/v1/2024.acl-long.315

Sakae Mizuki, Rio Yokota, and Naoaki Okazaki.
2024. Continual pre-training for cross-lingual llm
adaptation: Enhancing japanese language capabili-
ties. In Proceedings of the First Conference on Lan-
guage Modeling, COLM, page (to appear), University
of Pennsylvania, USA.

Jonas Geiping, Alex Stein, Manli Shu, Khalid Saifullah,
Yuxin Wen, and Tom Goldstein. 2024. Coercing
LLMs to do and reveal (almost) anything. In ICLR
2024 Workshop on Secure and Trustworthy Large
Language Models.

Te Sun Han. 2005. Folklore in source coding:
information-spectrum approach. IEEE Trans. Inf.
Theor., 51(2):747-753.

Diederik P. Kingma and Jimmy Ba. 2017. Adam:

A method for stochastic optimization. Preprint,
arXiv:1412.6980.
John Kirchenbauer, Jonas Geiping, Yuxin Wen,

Jonathan Katz, Ian Miers, and Tom Goldstein. 2023.
A watermark for large language models. In Proceed-
ings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine
Learning Research, pages 17061-17084. PMLR.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli
Shu, Khalid Saifullah, Kezhi Kong, Kasun Fernando,
Aniruddha Saha, Micah Goldblum, and Tom Gold-
stein. 2024. On the reliability of watermarks for
large language models. In The Twelfth International
Conference on Learning Representations.

Rohith Kuditipudi, John Thickstun, Tatsunori
Hashimoto, and Percy Liang. 2024. Robust
distortion-free watermarks for language models.
Transactions on Machine Learning Research.

Sander Land and Max Bartolo. 2024. Fishing for
magikarp: Automatically detecting under-trained to-
kens in large language models. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 11631-11646, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Yuxi Li, Yi Liu, Gelei Deng, Ying Zhang, Wenjia Song,
Ling Shi, Kailong Wang, Yuekang Li, Yang Liu, and
Haoyu Wang. 2024. Glitch tokens in large language
models: Categorization taxonomy and effective de-
tection. Proc. ACM Softw. Eng., 1(FSE).

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming
Hu, Xi Zhang, Lijie Wen, Irwin King, Hui Xiong,
and Philip Yu. 2024. A survey of text watermarking
in the era of large language models. ACM Comput.
Surv., 57(2).

Yijian Lu, Aiwei Liu, Dianzhi Yu, Jingjing Li, and Irwin
King. 2024. An entropy-based text watermarking
detection method. arXiv preprint arXiv:2403.13485.

10

Yisroel Mirsky, Ambra Demontis, Jaidip Kotak, Ram
Shankar, Deng Gelei, Liu Yang, Xiangyu Zhang,
Maura Pintor, Wenke Lee, Yuval Elovici, and Battista
Biggio. 2023. The threat of offensive ai to organiza-
tions. Computers & Security, 124:103006.

Jumon Nozaki and Yugo Murawaki. 2022. Addressing
segmentation ambiguity in neural linguistic steganog-
raphy. In Proceedings of the 2nd Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 12th International Joint
Conference on Natural Language Processing (Vol-
ume 2: Short Papers), pages 109—-116, Online only.
Association for Computational Linguistics.

Naoaki Okazaki, Kakeru Hattori, Hirai Shota, Hiroki
lida, Masanari Ohi, Kazuki Fujii, Taishi Nakamura,
Mengsay Loem, Rio Yokota, and Sakae Mizuki. 2024.
Building a large japanese web corpus for large lan-
guage models. In Proceedings of the First Confer-
ence on Language Modeling, COLM, page (to ap-
pear), University of Pennsylvania, USA.

Yuang Qi, Kejiang Chen, Kai Zeng, Weiming Zhang,
and Nenghai Yu. 2025. Provably secure disam-
biguating neural linguistic steganography. I[EEE
Transactions on Dependable and Secure Computing,
22(3):2430-2442.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv e-prints.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1-67.

Jiaming Shen, Heng Ji, and Jiawei Han. 2020. Near-
imperceptible neural linguistic steganography via
self-adjusting arithmetic coding. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 303-313,
Online. Association for Computational Linguistics.

Kaiser Sun, Peng Qi, Yuhao Zhang, Lan Liu, William
Wang, and Zhiheng Huang. 2023. Tokenization con-
sistency matters for generative models on extractive
NLP tasks. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pages 13300-
13310, Singapore. Association for Computational
Linguistics.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,

https://openreview.net/forum?id=Y5inHAjMu0
https://openreview.net/forum?id=Y5inHAjMu0
https://openreview.net/forum?id=Y5inHAjMu0
https://doi.org/10.1109/TIT.2004.840860
https://doi.org/10.1109/TIT.2004.840860
https://doi.org/10.1109/TIT.2004.840860
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://openreview.net/forum?id=DEJIDCmWOz
https://openreview.net/forum?id=DEJIDCmWOz
https://openreview.net/forum?id=DEJIDCmWOz
https://openreview.net/forum?id=FpaCL1MO2C
https://openreview.net/forum?id=FpaCL1MO2C
https://openreview.net/forum?id=FpaCL1MO2C
https://doi.org/10.18653/v1/2024.emnlp-main.649
https://doi.org/10.18653/v1/2024.emnlp-main.649
https://doi.org/10.18653/v1/2024.emnlp-main.649
https://doi.org/10.18653/v1/2024.emnlp-main.649
https://doi.org/10.18653/v1/2024.emnlp-main.649
https://doi.org/10.1145/3660799
https://doi.org/10.1145/3660799
https://doi.org/10.1145/3660799
https://doi.org/10.1145/3660799
https://doi.org/10.1145/3660799
https://doi.org/10.1145/3691626
https://doi.org/10.1145/3691626
https://doi.org/10.1145/3691626
https://doi.org/10.1016/j.cose.2022.103006
https://doi.org/10.1016/j.cose.2022.103006
https://doi.org/10.1016/j.cose.2022.103006
https://doi.org/10.18653/v1/2022.aacl-short.15
https://doi.org/10.18653/v1/2022.aacl-short.15
https://doi.org/10.18653/v1/2022.aacl-short.15
https://doi.org/10.18653/v1/2022.aacl-short.15
https://doi.org/10.18653/v1/2022.aacl-short.15
https://doi.org/10.1109/TDSC.2024.3519322
https://doi.org/10.1109/TDSC.2024.3519322
https://doi.org/10.1109/TDSC.2024.3519322
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2020.emnlp-main.22
https://doi.org/10.18653/v1/2020.emnlp-main.22
https://doi.org/10.18653/v1/2020.emnlp-main.22
https://doi.org/10.18653/v1/2020.emnlp-main.22
https://doi.org/10.18653/v1/2020.emnlp-main.22
https://doi.org/10.18653/v1/2023.findings-emnlp.887
https://doi.org/10.18653/v1/2023.findings-emnlp.887
https://doi.org/10.18653/v1/2023.findings-emnlp.887
https://doi.org/10.18653/v1/2023.findings-emnlp.887
https://doi.org/10.18653/v1/2023.findings-emnlp.887

Damien Vincent, Zhufeng Pan, Shibo Wang, et al.
2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv
preprint arXiv:2403.05530.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Dixuan Wang, Yanda Li, Junyuan Jiang, Zepeng Ding,
Guochao Jiang, Jiaqing Liang, and Deqing Yang.
2024. Tokenization matters! degrading large lan-
guage models through challenging their tokenization.
Preprint, arXiv:2405.17067.

Zihui Wu, Haichang Gao, Ping Wang, Shudong Zhang,
Zhaoxiang Liu, and Shiguo Lian. 2024. GlitchMiner:
Mining glitch tokens in large language models
via gradient-based discrete optimization. Preprint,
arXiv:2410.15052.

Lingyun Xiang, Shuanghui Yang, Yuhang Liu, Qian
Li, and Chengzhang Zhu. 2020. Novel linguistic
steganography based on character-level text genera-
tion. Mathematics, 8(9).

Ruiyi Yan, Tian Song, and Yating Yang. 2024a. A near-
imperceptible disambiguating approach via verifica-
tion for generative linguistic steganography. In 2024
IEEE International Conference on Systems, Man, and

Cybernetics (SMC), pages 1638—1643.

Ruiyi Yan, Tian Song, and Yating Yang. 2024b. To-
kenFree: A tokenization-free generative linguistic
steganographic approach with enhanced impercep-
tibility. In 2024 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pages 449—
455.

Ruiyi Yan, Yating Yang, and Tian Song. 2023. A secure
and disambiguating approach for generative linguis-
tic steganography. IEEE Signal Processing Letters,
30:1047-1051.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang
Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zhihao Fan. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

11

Zhong-Liang Yang, Xiao-Qing Guo, Zi-Ming Chen,
Yong-Feng Huang, and Yu-Jin Zhang. 2019. RNN-
Stega: Linguistic steganography based on recurrent
neural networks. IEEE Transactions on Information
Forensics and Security, 14(5):1280-1295.

KiYoon Yoo, Wonhyuk Ahn, and Nojun Kwak. 2024.
Advancing beyond identification: Multi-bit water-
mark for large language models. In Proceedings of
the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long
Papers), pages 4031-4055, Mexico City, Mexico. As-
sociation for Computational Linguistics.

Zhibo Zhang, Wuxia Bai, Yuxi Li, Mark Huasong Meng,
Kailong Wang, Ling Shi, Li Li, Jun Wang, and Haoyu
Wang. 2024. GlitchProber: Advancing effective de-
tection and mitigation of glitch tokens in large lan-
guage models. In Proceedings of the 39th IEEE/ACM
International Conference on Automated Software En-
gineering, ASE 24, page 643655, New York, NY,
USA. Association for Computing Machinery.

Xuandong Zhao, Prabhanjan Vijendra Ananth, Lei Li,
and Yu-Xiang Wang. 2024. Provable robust water-
marking for Al-generated text. In The Twelfth Inter-
national Conference on Learning Representations.

Zachary Ziegler, Yuntian Deng, and Alexander Rush.
2019. Neural linguistic steganography. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-1JCNLP), pages 1210-1215, Hong
Kong, China. Association for Computational Linguis-
tics.

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2405.17067
https://arxiv.org/abs/2405.17067
https://arxiv.org/abs/2405.17067
https://arxiv.org/abs/2410.15052
https://arxiv.org/abs/2410.15052
https://arxiv.org/abs/2410.15052
https://arxiv.org/abs/2410.15052
https://arxiv.org/abs/2410.15052
https://doi.org/10.3390/math8091558
https://doi.org/10.3390/math8091558
https://doi.org/10.3390/math8091558
https://doi.org/10.3390/math8091558
https://doi.org/10.3390/math8091558
https://doi.org/10.1109/SMC54092.2024.10831370
https://doi.org/10.1109/SMC54092.2024.10831370
https://doi.org/10.1109/SMC54092.2024.10831370
https://doi.org/10.1109/SMC54092.2024.10831370
https://doi.org/10.1109/SMC54092.2024.10831370
https://doi.org/10.1109/SMC54092.2024.10831652
https://doi.org/10.1109/SMC54092.2024.10831652
https://doi.org/10.1109/SMC54092.2024.10831652
https://doi.org/10.1109/SMC54092.2024.10831652
https://doi.org/10.1109/SMC54092.2024.10831652
https://doi.org/10.1109/SMC54092.2024.10831652
https://doi.org/10.1109/SMC54092.2024.10831652
https://doi.org/10.1109/LSP.2023.3302749
https://doi.org/10.1109/LSP.2023.3302749
https://doi.org/10.1109/LSP.2023.3302749
https://doi.org/10.1109/LSP.2023.3302749
https://doi.org/10.1109/LSP.2023.3302749
https://doi.org/10.1109/TIFS.2018.2871746
https://doi.org/10.1109/TIFS.2018.2871746
https://doi.org/10.1109/TIFS.2018.2871746
https://doi.org/10.1109/TIFS.2018.2871746
https://doi.org/10.1109/TIFS.2018.2871746
https://doi.org/10.18653/v1/2024.naacl-long.224
https://doi.org/10.18653/v1/2024.naacl-long.224
https://doi.org/10.18653/v1/2024.naacl-long.224
https://doi.org/10.1145/3691620.3695060
https://doi.org/10.1145/3691620.3695060
https://doi.org/10.1145/3691620.3695060
https://doi.org/10.1145/3691620.3695060
https://doi.org/10.1145/3691620.3695060
https://openreview.net/forum?id=SsmT8aO45L
https://openreview.net/forum?id=SsmT8aO45L
https://openreview.net/forum?id=SsmT8aO45L
https://doi.org/10.18653/v1/D19-1115

A Preliminaries & Related Work

A.1 Language Model Basics

A language model (LM) has a vocabulary V con-
taining words or word fragments known as “to-
kens.” Consider a sequence of LM-generated T’
tokens {s(t)} € VT Entries with negative indices,
[s(Np) . s(=1)], represent a “prompt” of length
N, and [s(0) ... s(T)] are tokens generated by an
LM in response to the prompt.

An LM for the next token prediction at position
t, is a function f1(-) whose input is a sequence
of known tokens [s(~"») .. s(t=1] which con-
sists of a prompt and the first { — 1 LM-generated
tokens. Then it outputs a logit vector, correspond-
ing to each token in V. These logits are then
converted into a discrete probability distribution
p®) = (gt), . ,pl(f))‘) over the vocabulary, by a
softmax operator (for example). The next token is
then sampled from p® using either standard multi-
nomial sampling, beam search, or greedy sampling
and so on.

A.2 Steganography based on Language
Models

Alice (the sender) wants to communicate a secret
message ms ~ U ({0, 1}1) with Bob (the receiver)
by embedding it in a natural language cover text
ts (a stegotext). The uniform distribution is cho-
sen for m, without loss of generality: if ms has
additional structure it can be further compressed
to a uniformly distributed random variable (Han,
2005). Alice and Bob have agreed on an embed-
ding function S,,,; and an extracting function S¢
that perform steganography. Alice and Bob also
have access to the exact same language model,
M?, which can be used during embedding and
extraction. These two functions are supposed to
be invertible. In other words, Se;, (M, ms) = ts,
Sext(M° ts) = ml, and m/, should be equal to
M.

Generative linguistic steganography utilizes re-
dundancy of candidate pools to achieve steganog-
raphy. Through further sampling (e.g. top-k) and
encoding p® with Huffman coding (Yang et al.,
2019) or arithmetic coding (Ziegler et al., 2019)
and so on, a steganographic candidate pool é® is
obtained, with its probability distribution ﬁ(t). Dur-
ing embedding process, the language model in turn
chooses a token in é®) (¢ = 0,1,...) until it en-
codes the whole secret message ms; during extrac-
tion process, the language model in turn chooses

12

and extracts a token in &(*) (t =0,1,...)till the end
of the stegotext.

A.2.1 Segmentation Ambiguity

The stegotext generated by S5 is essentially a
sequence composed of tokens. The sender must
detokenize it using a tokenizer into a stegotext be-
fore transmission. As shown in Figure 1a (which
is also an illustration of segmentation ambiguity),
if the sender generates a token mapping to “_no”
and “body”, the sender needs to detokenize them
into the text “nobody” before sending it to Bob.
However, the issue is that common words like “_no-
body” often exist as independent tokens “_no” in
the model’s vocabulary as well. As a result, a sin-
gle piece of text can correspond to two or even
more different token representations. Therefore,
during extraction S¢.(M°,ts), since both “_no-
body” and “_no” exist in the candidate pool, Bob
cannot determine which token the sender embed-
ded the message into. This phenomenon is referred
to as segmentation ambiguity. This issue can be
exempted in only a few tokenizer-free linguistic
steganographic approaches (Xiang et al., 2020; Yan
et al., 2024b).

A.2.2 Disambiguation Algorithms

Recently, several solutions have emerged to address
segmentation ambiguity which achieves 100% dis-
ambiguation in extraction.

1) Basic Solution: Nozaki and Murawaki (2022)
proposed a simple disambiguation approach, which
removes tokens whose mapping subwords are pre-
fixes of others during every generation and extrac-
tion step. This process ensures that any token sent
by the sender is uniquely extractable for the re-
ceiver.

2) MWIS-based Solution: Yan et al. (2023) con-
sidered the influence of removing candidate words
on the probability distributions and decided to pro-
cess only if candidate-level ambiguity occurred.
Their solution identifies the maximum weight inde-
pendent set (MWIS) in the candidate pool to reduce
probability distortion.

3) SyncPool Solution: Qi et al. (2025) de-
signed provably secure disambiguation linguistic
steganography based on ambiguity pool group-
ing and synchronous sampling to address informa-
tion loss and token synchronization issues during
steganography, eliminating segmentation ambigu-
ity without altering the distribution.

All of these previous disambiguation approaches

make the steganographic extraction merely based
on prefixes of stegotexts instead of the tokenizer,
bypassing the TI between the sender-receiver
pair.?’ As a result, these traditional disambiguation
methods overly process candidate pools, compro-
mising imperceptibility or embedding capacity.

A.2.3 Imperceptibility of LM-based
Steganography

Following the previous formulation (Dai and Cai,
2019; Shen et al., 2020), statistical imperceptibility
refers to the similarity between the true language
model M in the monitored channel and M# which
is the language model M ¢ integrated with stegano-
graphic algorithms. Specifically, the total variation
distance (TVD) is used to measure statistical im-
perceptibility. Consider the TVD between M? and
Msie. d(ME, M?), by triangle inequality:

d(ME, M®) < d(ME, MO), d(M°, M) (1)

As d(M!, M°) is a criterion to measure the orig-
inal language model, which is limited by the re-
search on language models. Thus, d(M?°, M?®) is
the main focus of linguistic steganography.

According to Pinsker’s inequality (Fedotov
et al., 2003) and additivity of KL divergence,
d(M?°, M?) can be further decomposed in each
step, that is:?!

o s 1112 s ~(t
d(M°, M?) < 2tXZ;DKL<19<f>Ilzz>”>)

where p(*) is the original probability distribution
at t™" step, and ﬁ(t) is transformed from p(t) via
sampling and encoding. Hence, linguistic steganog-
raphy could aim to minimize D, (p®||p"), in
order to obtain relative near-imperceptibility.

A.3 Watermarks for Language Models

A watermarking algorithm for language models
typically comprises two components: a watermark
embedding function W,,,,;, and a watermark detect-
ing function Wy, (Liu et al., 2024). W,,,,; takes
a language model M?¢ and a watermark message
my, as input and outputs a watermarked text t,,,
expressed as Wepp (M, my,) = t,. For the de-
tecting function Wy, its input is any text ¢, and its

2 Another disambiguation method (Yan et al., 2024a) is
not introduced in this section or adopted as the baseline in
experiments, as its disambiguation is reported to be not 100%.

21Some derivation is omitted here, as details are verified
in (Dai and Cai, 2019; Shen et al., 2020; Fedotov et al., 2003).

13

output is its predicted watermark message for the
text, denoted Wyer = m/,. The watermark mes-
sage my, or m,, can be a Boolean value (True or
False) for zero-bit watermarks to indicate whether
the text is generated by Al (Kirchenbauer et al.,
2023, 2024), and can also be a bit stream for multi-
bit watermark usage (Yoo et al., 2024). So far, there
are two main types of inference-time watermarking
algorithms: (1) logit-based watermarking and (2)
sampling-based watermarking.

For the former, those methods refer to inserting
m,, into the logit of each generative step by lan-
guage models (Kirchenbauer et al., 2023; Fernan-
dez et al., 2023; Kirchenbauer et al., 2024; Lu et al.,
2024; Zhao et al., 2024). The trade-off between
text quality and detectability should be considered
in these watermarks.

For the latter, they do not alter the logits, but uti-
lize the watermark message to guide the sampling
process (Aaronson and Kirchner, 2023; Christ et al.,
2024; Kuditipudi et al., 2024). For token-by-token
sampling watermarking, the principle of incorpo-
rating watermarks during the token-sampling phase
is derived from the randomness inherent in token
sampling. In this scenario, watermarks can be intro-
duced using a fixed seed, where a pseudo-random
number generator produces a sequence of pseudo-
random numbers to guide the sampling of each
token. For watermark detection, it is only neces-
sary to assess the alignment between the text tokens
and the pseudo-random numbers, specifically eval-
uating whether the choice of each token in the text
matches the corresponding value in the random
number sequence.

A.4 Related Work on Abnormal Tokens

Tokenization stands as a cornerstone in natural lan-
guage processing, which transforms a continuous
text sequence into a list of discrete values called
tokens (Wang et al., 2024).

A.4.1 Glitch Tokens

Glitch tokens refer to a class of anomalous tokens
in LLMs that can trigger unexpected and often erro-
neous behaviors when processed by LLMs. This is-
sue arises from improper tokenization of raw texts,
which can stem from irregularities in the training
process, such as underrepresentation in training
data or inconsistencies in tokenization (Geiping
et al., 2024).

Glitch token and according glitchy phenomena
in LLMs are first investigated comprehensively and

systematically by Li et al. (2024), where glitch-
token symptoms and glitch-token taxonomy are
explored, and an efficient glitch-token detection
method named GlitchHunter is proposed. Glitch-
Hunter iteratively constructs a token embedding
graph and generates candidate glitch token clusters
for subsequent detection.

A more advanced and effective detection and
mitigation of glitch tokens is proposed and named
GlitchProber (Zhang et al., 2024). This work first
reveals the characteristic features induced by glitch
tokens on LLMs, which are evidenced by signif-
icant deviations in the distributions of attention
patterns and dynamic information from intermedi-
ate model layers. GlitchProber utilizes small-scale
sampling, principal component analysis for accel-
erated feature extraction, and a simple classifier for
efficient vocabulary screening.

Another advancing glitch-token detection
method is named GlitchMiner (Wu et al., 2024),
which is a gradient-based discrete optimization
framework that efficiently identifies glitch tokens
by introducing entropy as a measure of prediction
uncertainty and employing a local search strategy
to explore the token space.

A.4.2 Unreachable Tokens

Besides, ‘unreachable tokens’ are termed by Land
and Bartolo (2024), referring to those tokens that
are never produced as a result of tokenizing text.
In that work, they test this by checking if decoding
a token to a string, and re-tokenizing this string,
results in the original token ID. Although they also
apply the detokenization-retokenization pipeline,
they merely consider that one tested token without
contexts.

A.4.3 Tokenization Inconsistency (TT)

The importance of tokenization consistency is re-
ported in extractive NLP tasks (Sun et al., 2023).
They study the issue of tokenization inconsistency
that is commonly neglected in training these mod-
els, and reveal that this issue damages the extractive
nature of these tasks after the input and output are
tokenized inconsistently by the tokenizer, thus lead-
ing to performance drop as well as hallucination.
Besides, a recent work (Wang et al., 2024) con-
structs an adversarial dataset, named as ADT (Ad-
versarial Dataset for Tokenizer), which draws upon
the vocabularies of various open-source LL.Ms to
challenge LLMs’ tokenization. That study is the
first to investigating LLMs’ vulnerability in terms

14

Absence of SITs
Generated token ids 18 76
Retokenized token ids 18 | 325 | 76
Absence of CITs
Generated token ids 1092 8|92
Retokenized token ids 1092 92

Table 9: Examples of the absence of SITs or CITs when
TI occurs.

of challenging their token segmentation, which will
shed light on the subsequent research of improv-
ing LLMs’ capabilities through optimizing their
tokenization process and algorithms.

Correct or consistent tokenization is often over-
looked in most tasks. However, in text-based trans-
mission systems (including steganography and wa-
termarking) where texts are transmitted from Alice
to Bob, tokenization consistency becomes crucial,
as precise transmission is essential for maintaining
the integrity of the information.

B Analysis of Inconsistent Tokens and
Tokenization Inconsistency (TI)

In this section, we provide detailed analysis and
explanations of the relationships between source
inconsistent tokens (SITs), consequential incon-
sistent tokens (CITs), candidate-level inconsistent
tokens (candidate-level ITs), and tokenization in-
consistency (TI).

Proposition 1. The sufficient condition for the ex-
istence of Tl is the existence of SIT(s) or CIT{(s).

According to Proposition 1, when TI occurs,
there could be only SITs (in the generated token
list) or only CITs (in the retokenized token list).
Table 9 provides examples of TI where SITs or
CITs are absent. Inconsistent tokens are marked
in red background , and other tokens including ‘...
are all consistent tokens. The essential reason for
it is related to tokenizer preferences. For example,
the sole SIT or sole CIT could be detokenized to a
O-length character.

Proposition 2. A necessary condition for the exis-
tence of Tl is outputting candidate-level IT(s).

According to Algorithm 1, if outputting a can-
didate token changes the tokenization state from
consistency to inconsistency or persists TI, that can-
didate token is a candidate-level IT. Therefore, an
easy proof of Proposition 2 by contradiction is as
follows: If a candidate-level IT is never generated,
TI never occurs.

Algorithm 2 Stepwise verification (embedding)

Algorithm 3 Stepwise verification (extraction)

Input:

Prompt (initial historical tokens), [s(*NP), ..
Secret message, ms

Output:

Steganographic text, ¢

, s

1: fort =0,1,... do
2: Apply the language model to historical tokens to obtain
the probability distribution p*) over the vocabulary V.

3: S?Tple V according to p™® to get the candidate pool
e,

4: Filter out candidate-level ITs in &% to get a
inconsistency-free candidate pool &’ @

5. if&@" == then

6: Add the highest probability token (which is not an

SIT) from W, 4() to &,

7: Gezt)the normalized probability distribution p’ "

&,

over

8: Use the steganographic embedding algorithm and m
to generate the next token s®.
9: Detokenize historical tokens to ts;
10: return ¢,

Proposition 3. If all the inconsistent tokens are not
temporary, there is still possibility that a candidate-
level IT does not become an SIT.

According to Proposition 2, outputting
candidate-level ITs are necessary for TI, and
according to Proposition 1, SITs are not necessary
for TI. Therefore, there are some TI cases where
candidate-level ITs are output, but SITs are absent.
TI with the absence of SITs (Table 9) provides
an example of Proposition 3, where the ‘id: 18’
token or the ‘id: 76’ token should an output
candidate-level IT, but neither of them is an SIT.

C Algorithms of Methods

C.1 Stepwise Verification

Algorithm 2 provides details of the steganographic
embedding process equipped with our proposed
stepwise verification method. This algorithm con-
siders an error scenario with a very small proba-
bility of occurrence, that is, the inconsistency-free
candidate pool & ®) is ¢ (Line 4-5). Once it occurs,
a non-SIT token outside the steganographic candi-
date pool ¢/ should be added to &™), to make
sure the generation is always able to continue (Line
6). Algorithm 3 provides the details of the extrac-
tion version, and also includes the error prevention
mechanism (Line 6-7). At each step of generation,
both in embedding and extraction, they share the
same view of how the candidate pool is processed.

Input:

Prompt (initial historical tokens), [5(*NP>, ..
Steganographic text, ¢,

Output:

Secret message, ms

78(71)}

1: Tokenize t, to token list [s~V#) . 50 s],
2: fort =0,1,... do
3: Apply the language model to historical tokens to obtain

the probability distribution p*) over the vocabulary V.

4: Sample V according to p(t) to get the candidate pool
&)
¢\,
5: Filter out candidate-level ITs in & to get a
inconsistency-free candidate pool &,
6: if & ==(then
7: Add the highest probability token (which is not an
SIT) from V) 5y to &),
8: Get the normalized probability distribution ﬁ’(t> over
&®.
9: Use the steganographic extraction algorithm and s®
to update m.
10: Append s*) to the historical tokens;
11: return m;

Algorithm 4 Post-hoc rollback

Input:

Prompt (initial historical tokens), [s(_NP), ..
Watermark message, 1.,

Observation period parameter, ¢

Output:

Watermarked text, ¢,

7S(—l)}

1: q. < NULL;
/* Initialize the state of observation period™/

2: forT=0,1,... do

3: Apply the language model to historical tokens and
watermark embedding algorithm to generate the next
token s®);

4: Append s to historical tokens;

5 if Tokenization consistency then

6 qc. < NULL;

7 else

8 if . == NULL then

9: qec <+ 0;

10 if gc # NULL then

11 if ¢. < g then

12 Gc < qe + 1;

13 else

14: Delete the latest (g + 1) historical tokens;

15: Detokenize historical tokens to t.,;

16: return t,,

C.2 Post-Hoc Rollback

Algorithm 4 provides details on how to implement
our proposed post-hoc rollback method in the gen-
eration process, meanwhile embedding watermark-
ing. q. is a signal of whether the generation is cur-
rently in the state of TI (¢ == NULL indicates
tokenization consistency). Whenever tokenization
consistency is recovered, q. is reset as NULL (Line

5-6). Once the tokenization state changes from con-
sistency to inconsistency, q. is set as 0 (Line 9), and
. increases when the inconsistency lasts after gen-
erating the next token (Line 12). Once ¢, is not less
than the designated observation period parameter g,
the rollback mechanism is triggered: The token-by-
token generation rollbacks back to the state where
the stable inconsistent token g tokens ago is not
generated (Line 14).

D Experimental Details

D.1 Overall Setups

The initial contexts are randomly selected from the
multilingual C4 dataset.>> The temperature parame-
ter is set to 1.0 constantly. According to the features
of different languages, for Llama-2-7b, the initial
10 words of an item in the C4 dataset are the initial
context for each generation; while for Swallow-7b
and Qwen2.5-7b, the initial 10 characters of an
item in the C4 dataset are the initial context for
each generation. The perplexity of a text is calcu-
lated by the language model that generates the text.
All the parameters of the tokenizer functions are
default, except for setting skip_special_tokens
= True in detokenization.

All experiments are implemented in Python
3.12.7 with Torch 2.5.0, running on a 2.0 GHz
CPU and accelerated by using 8 x NVIDIA RTX
A6000 GPUs.

D.2 Steganalysis

As a discriminator for each language, we used
a base-sized BERT model taken from Hugging
Face’s transformers package (English: bert-base-
uncased,”® Japanese: cl-tohoku/bert-japanese,>*
Chinese: bert-base-chinese).”> Positive samples
are collected from stegotexts generated using var-
ious top-k samplings, while negative samples are
sourced from non-steganographic texts (generated
by the same models without any steganographic
algorithm).

As for each top-k sampling value (k € {4, 8,
16, 32, 64, 128, 256, 512, 1024, 2048, 4096} - 11
different k), for each disambiguation method and
ours (4 methods), and for each language model, 500
samples are generated, for each language model the
size of collected stegotexts is 11 x4 x 500 = 22000.

Zhttps://huggingface.co/datasets/allenai/c4
Bhttps://huggingface.co/google-bert/bert-base-uncased
**https://github.com/cl-tohoku/bert-japanese
2https://huggingface.co/google-bert/bert-base-chinese

16

| Llama-2-7b | Swallow-7b | Qwen2.5-7b

k BPT ER | BPT ER | BPT ER
4 .11 20.0% | 095 6.0% | 1.01 14.0%
8 1.62 14.6% | 138 5.0% | 1.45 6.8%
16 203 114% | 1.77 4.0% | 198 7.4%
32 2.34 80% | 212 44% | 237 6.2%
64 264 94% | 245 32% | 277 8.8%
128 2.87 8.0% | 268 52% | 3.08 7.2%
256 3.08 92% | 294 3.6% | 3.43 7.4%
512 321 114% | 323 4.6% | 3.71 6.8%
1024 | 3.27 72% | 338 4.6% | 4.05 8.0%
2048 | 3.41 62% | 371 54% | 4.25 7.6%
4096 | 341 11.4% | 3.69 34% | 436 7.6%

Table 10: Embedding capacities and error rates of
steganography (without disambiguation or stepwise ver-
ification) implemented under various language models
and top-k sampling values.

Hence, for each language model, during the train-
ing phase, both positive and negative samples con-
sist of 17,600 instances each (80% of all collected
stegotexts). For testing, 4,400 untrained positive
samples are used (20% of all collected stegotexts),
categorized into different embedding-capacity in-
tervals as shown in Tables 5, 6, and 7. In each
embedding-capacity interval and for each disam-
biguation approach, only stegotexts with a sample
size greater than 20 are included in the tests; other-
wise, “—” is marked to indicate insufficient data.

Given the significant variation in the lengths of
positive samples, we adjust the negative samples
to uniformly vary between 10 and 128 tokens (the
prompt is excluded) to ensure that the trained dis-
criminator is not sensitive to text length. Addi-
tionally, all texts are padded or truncated to 128
tokens, so that positive samples cannot be distin-
guished as steganographic based solely on their
length. For fine-tuning the BERT model, we use
Adam (Kingma and Ba, 2017) as the optimizer
with a learning rate of 5 x 107°. The batch size is
set to 2048, and the discriminator is trained for 20
epochs, running time of the whole training process
is approximately 10 minutes.

D.3 Original Error Rates

In this section, we use empirical statistics to show
the extent to which steganography suffers from ex-
traction errors, if extraction errors are neglected in
steganographic approaches. We use the stegano-
graphic extraction error rate (ER) to indicate the
rate that incorrect extraction occurs, and for ap-
proaches equipped with neither disambiguation nor
our proposed stepwise verification, the error rates

https://huggingface.co/datasets/allenai/c4
https://huggingface.co/google-bert/bert-base-uncased
https://github.com/cl-tohoku/bert-japanese
https://huggingface.co/google-bert/bert-base-chinese

Basic
—#— MWIS
51 —— syncpool
E —A— Stepwise verification
8 4
c
Q
v
O 31
-t
—
[}
Q
0 2
=
[a)
1<
04— r : : : " r : : . .
4 8 16 32 64 128 256 512 1024 2048 4096
Top-k sampling
(a) Llama-2-7b.
6
Basic
—=— MWIS
31 —— syncpool
E —A— Stepwise verification
8 41
c
Q
v
O 31
-+
—_
[
Q
0 2
=
[a)
14
04— T T T T T T T T T T
4 8 16 32 64 128 256 512 1024 2048 4096
Top-k sampling
(b) Swallow-7b.
6
Basic
—=— MWIS
31 —— syncpool
E —A— Stepwise verification
m 44
c
Q
X
O 31
o
—_
[
%
0 2
b=
[a)
14

64 128 256 512 1024 2048 4096
Top-k sampling

T T T T
4 8 16 32

(c) Qwen2.5-7b.

Figure 5: Average embedding capacities (bits per token,
BPT) when using various disambiguation methods and
our stepwise verification method, under top-k values.

are referred to as original error rates. Table 10 lists
BPT and ER for steganography with extraction
errors. For each language model and for each top-k
value, the data size is 500. For k = 4, BPT is
the lowest and ER is the highest for each language

17

model. The main reason is that when embedding
a 128-bit secret message, lower ER means longer
generated stegotext. And according to the relation-
ship between the token number and the text-level
inconsistency rate shown in Table 1, it is reason-
able for longer stegotexts to suffer from higher
ER. In addition, when the length of the secret mes-
sage increases, it is reasonable to anticipate that
the original error rates for various language models
increase further.

D.4 The Limitation of SyncPool in
Embedding Capacity

Figure 5 illustrates how embedding capacity varies
according to various top-k values when different
methods are adopted. For all three language mod-
els with respectively English, Japanese and Chi-
nese contexts, these data points in SyncPool share
a similar trajectory, that is, when top-k value in-
creases, BPT increases when k£ is small and de-
creases when &k becomes much larger. For compar-
ison, in other methods, when top-k value increases,
BPT increases steadily.

The reason for the phenomenon is that SyncPool
merges the original candidate pools into ambiguous
pools for subsequent steganographic processing.
However, as the ambiguous pools are formed ac-
cording to prefix relationships in candidate tokens,
when the size of original candidate pools increases,
the average tokens in each ambiguous pool also
increase. As a result, the size of ambiguous pools
could rise more rapidly than the size of original
candidate pools, so the average number of ambigu-
ous pools could decrease, thus leading to lower
embedding capacity.

Furthermore, the work of SyncPool (Qi et al.,
2025) reports a KL divergence of 0 in their experi-
ments, as their reference candidate pools are based
on top-k sampled candidates. However, as outlined
in Eq. 2, to accurately compare the divergence be-
tween the original language model and the model
used for steganography, we compute KLD using
the original candidate pools as references in our
experiments (Tables 5, 6, and 7).

D.5 Watermarking Schemes

Consider a text [s(), ... s(T)], its watermark
strength (an indicator of detectability) is denoted
as d(s), ..., s(1)).

For logit-based watermarking, including
LeftHash (Kirchenbauer et al., 2023), Self-
Hash (Kirchenbauer et al., 2024) and Un-

igram (Zhao et al., 2024) adopted by our
experiments, their mechanisms are as follows:

¢ Context: For LeftHash and SelfHash, the con-
text is previous h tokens; there is no context
for Unigram.

Pseudo-random function: For LeftHash and
SelfHash, Fy(context) hashes the context
to a seed at each generative step; Unigram
adopts a global seed. Then the seed is used to
generate a random vector Vec® in {0, 1}V,
the vector has v|V| 1’s (representing green
tokens) and (1 — v)[V| 0’s (representing red
tokens).

Decoder: Sample a token s from
softmax(logit® 4 § % Vec®)).

One-token score: ¢() = Vec®)[s(*)],

Watermark strength: ®(s(V) ... s(7))
S 8T
Ty(1—)

For sampling-based watermarking, the detailed
scheme of Gumbel softmax scheme (Aaronson and
Kirchner, 2023) is:

* Context: The previous h tokens.

* Pseudo-random function: Fj(context)
hashes the context to a seed at each gener-
ative step, then uses the seed to generate a
random vector Vec®) in (0, 1)!V! where each
element is uniformly sampled from (0, 1).

Select a token s¥) which is

ATIMAX - log(Vec(t) [])
& 1<i<V| softmax(logit(¥))[i]

¢(t)

Decoder:

One-token
Vec® [s0)]).

score: —log(1

Watermark strength: ®(s(1) ... s(T))
RS

D.6 Perplexities of Attacked Watermarked
Texts

Tables 11, 12, and 13, respectively, list perplexi-
ties of attacked watermarked texts at each attack
probability (¢ = 0.2 or ¢ = 0.4) under three lan-
guage models. In terms of the perplexity metric,
the superiority of addressing TI exists in attacked
scenarios as well as unattacked scenarios (shown
in Tables 8, 14, and 15).

18

. Attacked | Attacked
Watermarking scheme (e=02) | (e=0.4)
Original 185.25 477.71

LeftHash Post-hoc rollback 162.56 417.41
Original 188.69 470.96

SelfHash | b hoc rollback | 17293 | 455.81
Unigram Original 167.16 438.53
g Post-hoc rollback 161.24 424.75
Gumbel Original 19.38 46.32
Post-hoc rollback 18.70 40.70

Table 11: Perplexities in various watermarking schemes
under attack scenarios when Llama-2-7b is adopted.

. Attacked | Attacked
Watermarking scheme (e=02) | (e=0.4)
Original 133.44 301.82

LeftHash | b hoc rollback | 13031 | 290.67
Original 143.03 308.02

SelfHash | b hoc rollback | 14234 | 313.01
Unigram Original 136.13 301.39
g Post-hoc rollback 134.44 291.96
Original 5.99 9.44

Gumbel Post-hoc rollback 5.78 9.29

Table 12: Perplexities in various watermarking schemes
under attack scenarios when Swallow-7b is adopted.

. Attacked | Attacked
Watermarking scheme (e=02) | (e=0.4)
Original 414.34 962.58

LeftHash | o hoc rollback | 378.68 | 857.41
Original 398.99 890.30

SelfHash | 50 hoc rollback | 355.39 | 786.71
Unieram Original 309.83 686.18
g Post-hoc rollback 322.16 676.22
Original 6.96 12.76

Gumbel Post-hoc rollback 6.69 11.57

Table 13: Perplexities in various watermarking schemes
under attack scenarios when Qwen2.5-7b is adopted.

E Text Samples
E.1 Samples of Stegotexts

Table 16 presents examples of stegotexts gener-
ated by our proposed stepwise verification method.
Each generated text embeds a 128-bit random se-
cret message. Following the approach of Ziegler et
al. (Ziegler et al., 2019), we terminate the genera-
tion process once the proposed method has finished
embedding the message.

E.2 Samples of Watermarked Texts

Table 17 lists some examples of watermarked
texts generated by our proposed post-hoc rollback
method, and as the number of generated tokens is
200 for each text, the complete watermarked texts

Watermarking scheme Unattacked Attacked (e = 0.2) Attacked (e = 0.4)
Watermark Watermark Watermark
Strength? AUROCtT PPL| Strength?t AUROCT Strengtht AUROCY
LeftHash Original 8.05 0.999 2047 5.18 0.987 3.04 0.895
Post-hoc rollback 8.07 0.999 20.23 5.13 0.988 3.02 0.896
SelfHash Original 7.96 0.998 2221 4.58 0.971 2.54 0.855
Post-hoc rollback 7.99 0.998 21.72 4.67 0.975 2.58 0.859
Unigram Original 8.26 0.999 19.80 6.98 0.988 5.54 0.917
g Post-hoc rollback 8.32 0.999 19.74 7.02 0.988 5.78 0.921
Gumbel Original 29.97 0.910 1.97 22.36 0.885 16.63 0.862
Post-hoc rollback 31.24 0.905 1.95 23.33 0.887 17.01 0.864
Table 14: Quantitative comparison in various watermarking schemes on Swallow-7b and Japanese context.
Watermarking scheme Unattacked Attacked (e = 0.2) Attacked (¢ = 0.4)
Watermark Watermark Watermark
Strength? AUROCT PPL| Strength?t AUROCY Strengtht AUROCT
LeftHash Original 8.47 0.999 6242 5.36 0.991 2.85 0.901
Post-hoc rollback 8.54 0.999 58.12 5.37 0.992 3.00 0.910
SelfHash Original 8.29 1.000 58.00 4.67 0.975 2.13 0.829
Post-hoc rollback 8.35 1.000 53.16 4.68 0.978 2.22 0.835
Unigram Original 9.23 1.000 54.10 7.67 0.994 6.22 0.954
g Post-hoc rollback 9.28 1.000 51.84 7.72 0.994 6.07 0.939
Gumbel Original 22.09 0897 2.37 15.96 0.859 11.58 0.793
Post-hoc rollback 22.46 0900 2.37 16.27 0.858 12.17 0.796
Table 15: Quantitative comparison in various watermarking schemes on Qwen2.5-7b and Chinese context.
Model | Prompt | Stegotext | BPT | PPL | KLD
Finding a high quality photographer for your
family portrait, event or wedding is not as easy
Finding a high quality as it sounds. A photography business can offer
Llama-2-7b | photographer for photographers for hire that are affordable, but 2.33 6.23 | 0.024
your family portrait, this does not mean that you have to compromise
on quality. Here are more tips to help you find
the ultimate business that
I've never understood I’ve never understood the whole points thing,
Llama-2-7b | the whole points thing, | SMORsPS, ete. Now it sounds like a full e 1 41 56 64| 0,009
scholarships (or nearly so). The deal is still a good one. That
’ probably sounds heartless to the
FZUT LN) VORI —
4T B BL W2 EEIC. BT aMTF=HE
llow-7 SET SN i 21. .
Swallow7b | e LT, 1thostt s atosksek | 70| 2000
WY B
Swallow-Tb | 2 AR BHEBES XOF IMERERD Y | 4.27 | 71.62 | 0.013
‘ REICTEN D& S ORI R Ml & R
“EFF R AR KLY XA
TR T KIRHIJT Z8EE - Mot &K 3%
Qwen2.5-7b | “2MFFACEREILE | WAGEELE . 0 B BRI | 272 | 1139 | 0.096
OE NS N ERMUWE T - BT -
B E SRR NRER
fir = EIPR B HTT AT = [B AT T 5 [T4 7 o 2 B e X
Qwen2.5-7b £ HEHTZR 050 B3 oS A S 7.53 | 233.92 | 0.027

Table 16: Examples of stegotexts generated with our stepwise verification method.

are not provided due to space limitation. E.3 Samples of How TI Influences Perplexities

Table 18 provides examples to clarify how conse-
quential inconsistent tokens (CITs) affect the pre-
dicted probabilities of each token in the token list

19

Watermark

Model Method Prompt Stegotext strength PPL
In fact, there are currently over a million
In fact, there are international students enrolled around
Llama-2-7b | LeftHash | currently over a the World? These vall}able languages, 8.19 16.79
million international Partllcularly Fh'e most important ones, offer
infinite possibilities; with them, you’ll
set out[...continues]
So you have your children writing every
So you have your gay.. Gre’e’lt! But it’s important not to think
Llama-2-7b | SelfHash | children writing every writing means that only stories and. 6.82 16.55
day. Great! poems w111' qual}fy..ln the course of life,
children will write in any number of
ways:[...continues]
E)éﬁﬂ“@f@%;k)(]%[?_: Bl o(
e WEDH]) ISFERICT K L2
Swallow-7b | LeftHash j%ﬁﬁ’h@ T PO Z =R TY . 20034 9.71 | 32.14
- CRIRISIE) & 4[> 5 2 b] pe)
1995 F-(F-AR74E) & 1) X [...continues]
[ﬁfr;qrb% ﬁ?fr%)ﬁ%] %%EJE EZ g—
ok ZHeAIEE S A GHICEEIDI(BE 3
Swallow-7b | Unigram gé;t\i‘m% R T %) Ao VI T ARNNZ BEOWLEE0 7.50 14.36
72D F9) ALIRBUE L AligiE =
HEE 9 5 NEIC L 7=\ ![...continues]
PEHE: WELERRFANNBIE
s, | 15, TUGEBB00EE Bk
Qwen2.5-7b | LeftHash | o6 ™" A2 Z ISR 2> D M 2 AR 2 P = 2 8.55 | 116.27
= FIEST - ATEM RN BIEEAR
Biig o (HFEISEA I continues]
T 2< e 2730 T NEHEDPR K
e URIE %@E}Eﬁfﬁsﬂ ISHHSA
Qwen2.5-7b | Gumbel | oy 15H . 20231 B 2518 b & (R PR 2 448 | 276

)Tl AR A 5515 Bh AR
NETFERKIPEEAT, [...continues]

Table 17: Examples of watermarked generated with our post-hoc rollback method.

Llama-2-7b
Generated token list [Previous tokens]... ‘eye’ ‘q -
Predicted probability | [Previous probabilities]... | 6.59 x 107° | 2.94 x 10~* -
Retokenized token list [Previous tokens]... ‘e’ y’ ‘eq’
Predicted probability [Previous probabilities]... 9.49 x 10~ 9.79 x 107”7 9.27 x 1078
Swallow-7b
Generated token list [Previous tokens]... a4z’ A ‘z’
Predicted probability | [Previous probabilities]... | 1.91 x 1072 | 2.43 x 107* | 4.53 x 107*
Retokenized token list [Previous tokens]... Q2 Az -
Predicted probability | [Previous probabilities]... | 1.91 x 1072 | 2.17 x 10~¢ -
Qwen2.5-7b
Generated token list [Previous tokens]... ‘EAE B -
Predicted probability [Previous probabilities]... | 4.06 x 1072 | 5.27 x 1072 -
Retokenized token list [Previous tokens]... ‘= R DR
Predicted probability | [Previous probabilities]... | 1.94 x 1072 | 1.36 x 107® | 4.61 x 107°

Table 18: Examples of how TI effects predicted probabilities of tokens.

when the TI occurs, where CITs are marked in
red background . These examples show the fact
that these predicted probabilities of CITs are gener-
ally lower than those of SITs, whereas only these

=1

20

CITs can be accessed by perplexity calculation.
The expression of calculating perplexity is:

N
PPL = exp —% Z log P(s(i) | 5(1)2(i—1))

| Llama-2-7b ~ Swallow-7b Qwen2.5-7b
N=1 0.00% 1.36% 60.03%
N=2 3.61% 68.02% 27.69%
N=3 3.61% 2.33% 0.20%
N =0 91.24% 18.02% 12.07%

Table 19: The percentage that temporary inconsistency
disappears after generating /N tokens afterwards.

where NN is the length of the retokenized token list,
s(") denotes the i token in this list, and P(s() |
s(l):(i_l)) represents the predicted probability of
s according to historical ¢ — 1 tokens. Therefore,
when the predicted probabilities of CITs are lower
than SITs, the resulting perplexity is higher than
that if perplexity calculation is based on the original
generate token list (which includes SITs).

F Determine Observation Period (q)

Table 20 lists the percentage that temporary incon-
sistency naturally disappears after generating N
tokens afterwards. And N = oo denotes a perma-
nent inconsistency (in 100-token texts, 1000 sam-
ples for each model). According to this table, we
can find that, in Swallow-7b and Qwen2.5-7b, most
temporary inconsistencies disappear after generat-
ing 2 subsequent tokens (because of partial UTF-8
tokens), while in Llama-2-7b, most temporary in-
consistencies are much more stable (because of
special tokens).

Therefore, back to the principled way to deter-
mine, in Swallow-7b and Qwen2.5-7b, is set at least
greater than 2 (we set ¢ = 10 in experiments) for to
avoid most temporary inconsistencies (to avoid the
false positive), and in Llama-2-7b, can be set as a
much smaller value (we set ¢ = 2 in experiments),
because most inconsistencies which have happened
will not disappear, which means that it is suitable
to be fixed immediately.

Table 20 also explains the significant differences
in the temporariness of inconsistent tokens between
Llama-2-7b and the other two language models, as
more than 90% temporary inconsistencies do not
disappear in Llama-2-7b (shown in Table 4).

G Efficiency of the Post-Hoc Rollback
Method for Watermarking

Table 20 reports the running time (in seconds) for
various watermarking schemes across different lan-
guage models, based on 500 samples with 200
tokens each. The results show that the runtime

21

differences between the original methods and our
proposed post-hoc rollback method are minimal —
generally under 5% — indicating that our approach
introduces minor computational overhead.

H Attacking Watermarks with GPT-40
Paraphrasing

Table 21 lists the average experimental statis-
tics where the watermarked texts are attacked by
GPT-40 paraphrasing (temperature 1 and
max_completion_tokens = 2048). Specifically,
the prompt template is:

Paraphrasing template of GPT-40

System message: You are tasked to para-
phrase. Please directly paraphrase the
text you receive (in the corresponding lan-
guage).

User prompt: <text>

From Table 21, we can find that our proposed
post-hoc rollback method for watermarking over-
all improves the robustness against paraphrasing
attacks based on strong a large language model.

Watermarking scheme ‘ Llama—2—7b‘ Swallow—7b‘ Qwen2.5-7b

Original 6.89 7.13 6.03

LeftHash | 1, hoc rollback (116%) 697 | (13519 7-38 | (43.08%) 6.27
Original 7.04 7.24 5.96

SelfHash | 1,/ hoc rollback Cossz 710 | (Lasom 7:52 | (12319 6.10
Unieram Original 6.88 7.17 6.11
g Post-hoc rollback | (y2.00%) 7:08 | (15.44%) 7-56 | (15.24%) 643
Gumbel | Original 6.85 7.26 6.00
Post-hoc rollback (+2.04%) 6.99 (+3.03%) 7.48 (+4.17%) 6.25

Table 20: Running time (seconds) in various watermarking schemes when different language models are adopted.

Watermarking scheme Wi Llall(na-2-7b Wi Sw?{llowﬂb - Qwin2.5-7b
atermar atermar atermar

strength 1 AUROCT | gurengthp AUROCT | gironotn ¢ AUROCT
LeftHash Original 2.57 0.876 2.92 0.887 3.47 0913
Post-hoc rollback 2.60 0.877 291 0.886 3.47 0.915
SelfHash Original 1.86 0.803 2.35 0.837 2.42 0.861
Post-hoc rollback 1.99 0.815 2.35 0.840 2.44 0.865
Unigram Original 4.56 0.898 6.63 0.946 4.39 0.918
Post-hoc rollback 4.59 0.905 6.69 0.950 4.51 0.923
Gumbel Original 10.62 0.887 18.18 0.877 15.00 0.851
Post-hoc rollback 11.07 0.895 18.56 0.879 15.32 0.850

Table 21: Quantitative comparison in various watermarking schemes under GPT-40 paraphrasing attack when
different language models are adopted.

22

	Introduction
	Investigation: Inconsistent Tokens in Generation by Language Models
	Methods
	A Stepwise Verification Method for Steganography
	A Post-Hoc Rollback Method for Watermarking

	Experiments
	Experiments on Steganography
	Metrics
	Results

	Experiments on Watermarking
	Attacking Watermarks
	Metrics
	Results

	Conclusion
	Preliminaries & Related Work
	Language Model Basics
	Steganography based on Language Models
	Segmentation Ambiguity
	Disambiguation Algorithms
	Imperceptibility of LM-based Steganography

	Watermarks for Language Models
	Related Work on Abnormal Tokens
	Glitch Tokens
	Unreachable Tokens
	Tokenization Inconsistency (TI)

	Analysis of Inconsistent Tokens and Tokenization Inconsistency (TI)
	Algorithms of Methods
	Stepwise Verification
	Post-Hoc Rollback

	Experimental Details
	Overall Setups
	Steganalysis
	Original Error Rates
	The Limitation of SyncPool in Embedding Capacity
	Watermarking Schemes
	Perplexities of Attacked Watermarked Texts

	Text Samples
	Samples of Stegotexts
	Samples of Watermarked Texts
	Samples of How TI Influences Perplexities

	Determine Observation Period (q)
	Efficiency of the Post-Hoc Rollback Method for Watermarking
	Attacking Watermarks with GPT-4o Paraphrasing

